Estimation of Nonlinear-Regression Parameters

Problem Specification

In an additive nonlinear regression model, the elements of random vector \mathbf{Y} are expressed as follows

(1)
Y_i=g(\mathbf{x}_i, \mathbf{\beta})+\varepsilon_i, \quad i=1,2,\ldots,n\,,

where \mathbf{x}_i^T=(x_1, x_2, \ldots, x_k) is i-th row of regressor matrix \mathbf{X}, \mathbf{\beta} is vector of parameters, g is a given function nonlinear in parameters, and \varepsilon_i‘s are iid random variables with zero means. The estimation of parameters by the least squares method means to find such estimates of \mathbf{\beta} that minimize the residual sum of squares Q(\mathbf{\beta}) given by the following equation

(2)
Q(\mathbf{\beta})=\sum_{i=1}^{n}\left[Y_i - g(\mathbf{x}_i, \mathbf{\beta})\right]^{2} .

Due to the fact that the function Q(\mathbf{\beta}) need not be unimodal, the estimation of \mathbf{\beta} is the global optimization problem. Iterative deterministic algorithms (Levenberg-Marquardt or Gauss-Newton) used in standard statistical packages often fail when searching for the true solution of the problem.

Definition: (Global optimization problem with box constraints)
The global optimization problem with box constraints is formed as follows:

For a given objective function f: D \rightarrow {\mathbb R}, \ D \subset {\mathbb R}^{d}, the point {\mathbf x}^{*} is to be found such that:

\vec{x}^{*} = \arg \min_{\vec{x} \in D } f(\vec{x}).

The point \vec{x}^{*} is called the global minimum, D is the search space defined as d-dimensional box, D=\prod_{i=1}^{d} [a_i,b_i], a_i < b_i, i=1,2,\ldots,d.

Description of Implemented Algorithms

CRS with Adaptive Stopping Condition

Adaptive stopping condition is implemented in the second algorithm. The value \varepsilon starts from input value \varepsilon_0 and can be decreased if 1-R^2 < \gamma \times \varepsilon, where \gamma \gg 1 is another input parameter. Algorithm written in pseudo-code presents this adaptation in more detail. The line 15 statement prevents the endless outer while loop.


Algorithm 2: CRS with Adaptive Stopping Condition



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
generate P; // population of N points in D at random
epsilon := epsilon_0;
pass := false;
find x_max; // find x with the highest function value
while ((1 - R^2) < (gamma * epsilon)) and not pass do begin // outer loop
   while R_max^2 - R_min^2 > epsilon do begin // inner loop
      y := newTrialPoint(D); // generate a new trial point y from D
      if f(y) < f(x_max) then begin
         x_max := y; // replace x_max in pouplation with y
         find x_max; // find new x_max
      end;
      pass := true;
   end; // end of inner loop
   if not pass then gamma := gamma / 10;
   if ((1 - R^2) < (gamma * epsilon)) and pass then begin
      epsilon := epsilon / 10;
      pass = false;
   end;
end; // end of outer loop

This algorithm is implemented as crs4hce function in Matlab. Recommended values of additional input parameters are \varepsilon_0=1 \times 10^{-9} and \gamma=1 \times 10^7.

References

[1]Ali, M.M., Törn, A.: Population set based global optimization algorithms: Some modifications and numerical studies, Computers and Operations Research 31 (2004) 1703 – 1725.
[2]Křivý, I., Tvrdík, J.: The controlled random search algorithm in optimizing regression models. Comput. Statist. and Data Anal. 20 (1995) 229 – 234.
[3]MATLAB, version 2006b. The MathWorks, Inc., 2006.
[4]Price, W. L.: A controlled random search procedure for global optimization. Computer J. 20 (1977) 367 – 370.
[5]Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization 11 (1997) 341 – 359.
[6]Tvrdík, J.: Generalized controlled random search and competing heuristics. MENDEL 2004, 10th International Conference on Soft Computing, (Matoušek R. and Ošmera P. eds). University of Technology, Brno (2004) 228 – 233.
[7]Tvrdík, J., Křivý, I.: Comparison of algorithms for nonlinear regression estimates. In: Antoch, J. (ed) COMPSTAT 2004. Physica-Verlag, Heidelberg New York (2004) 1917 – 1924.
[8]Tvrdík, J., Křivý, I., Mišík, L.: Adaptive Population-based Search: Application to Estimation of Nonlinear Regression Parameters. COMPUT STAT DATA AN. 52 (2007) 713 – 724.