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A clustering problem?

Can you form a small cluster of people you know within this group
of people?
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» What is cluster analysis?

» Why do we want to apply cluster analysis?
» Assignment of data to clusters

> Classes of clustering algorithms

> Are there clusters at all in my data?

» Visualisation techniques

» Resampling, robustness of clustering results and cluster
comparison

» Model selection techniques
» Validity measures

» Conclusions
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How many clusters are there?
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Can clusters look like this?
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Is this a clustering problem?
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Are all attributes important for the clusters?
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What is cluster analysis?

A cluster (in a given data set) is a subset of data, so that the data
» within the cluster are “similar”

» and differ from the data outside the cluster.

Data inside a cluster should be homogeneous, data from different
clusters heterogeneous.
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Goals of cluster analysis

v

Partition a given data set into clusters

v

Check whether related objects cluster together

v

Classify unknown objects

v

Find single “meaningful” clusters (and do not care about the
rest of the data)
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Assignment of data to clusters

» Crisp clustering: Each data object is assigned to exactly one
cluster

» Probabilistic models: For each data object a probability
distribution over the clusters is specified.

» Fuzzy “probabilistic” clustering: Each data object is assigned
to a cluster with a membership degree. (The membership
degrees add up to one, but cannot be interpreted as
probabilities.)

» (Fuzzy) possibilistic clustering: Each data object is assigned to
a cluster with a membership degree. The sum of the
membership degrees can have arbitrary values. (Problems of
inconsistency.)
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Assignment of data to clusters

» Crisp clustering: Each data object is assigned to exactly one
cluster

» Probabilistic models: For each data object a probability
distribution over the clusters is specified.

» Fuzzy “probabilistic” clustering: Each data object is assigned
to a cluster with a membership degree. (The membership
degrees add up to one, but cannot be interpreted as
probabilities.)

» (Fuzzy) possibilistic clustering: Each data object is assigned to
a cluster with a membership degree. The sum of the
membership degrees can have arbitrary values. (Problems of
inconsistency.)

A “noise” cluster might be included, i.e. data might (partially) not
be assigned to any cluster.
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Hierarchical clustering
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k-Means clustering
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(Gaussian) mixture models

T R R R R
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Mixture model (both normal distributions contribute 50%)
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(Gaussian) mixture models
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Mixture model (one normal distributions contributes 10%, the
other 90%)
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(Gaussian) mixture models
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Subtractive clustering

> ldentify clusters step by step.
» Find one cluster, remove it from the data set and

» continue this procedure until no data objects are left or no
more clusters can be found.
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Subtractive clustering
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Density-based clustering: DBScan

Principle idea of DBScan:

1. Find a data point where the data density is high, i.e. in whose
e-neighbourhood are at least ¢ other points. (¢ and ¢ are
parameters of the algorithm to be chosen by the user.)

2. All the points in the e-neighbourhood are considered to
belong to one cluster.

3. Expand this e-neighbourhood (the cluster) as long as the high
density criterion is satisfied.

4. Remove the cluster (all data points assigned to the cluster)
from the data set and continue with 1. as long as data points
with a high data density around them can be found.
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Density-based clustering: DBScan
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Are there clusters at all? Hopkins index

» Choose a number m < n.

» Sample m points {yi,...,ym} from a uniform distribution
over the convex hull of the data.

» Choose m points {z, ..., zy} randomly from the original data
set.

» d,,: Distance of y; to the closest point in the data set.

> d,.: Distance of z; to its closest neighbour in the data set.

h = Ei:l d}’i c [0’ 1]

Hopkins index =
Z:’:’;l d}’i + an:l dZi
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Are there clusters at all? Hopkins index

» Choose a number m < n.

» Sample m points {yi,...,ym} from a uniform distribution
over the convex hull of the data.

» Choose m points {z, ..., zy} randomly from the original data
set.

» d,,: Distance of y; to the closest point in the data set.

> d,.: Distance of z; to its closest neighbour in the data set.

m
h = - Ei:l d}’im c [0’ 1]
Zi:l d}’i + 2i:1 dZi
h depends very much on the random selection. Repeat the
procedure multiple times and compute the mean value of the
results.

Hopkins index
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Are there clusters at all? Hopkins index

h = 0: regular structure, but no clusters
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Are there clusters at all? Hopkins index

h =~ 0.5: roughly uniform distribution, no clusters
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Are there clusters at all? Hopkins index

h =~ 1: clusters in the data set
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Model selection and clustering

» Model selection refers to choosing the right (statistical) model
from a set of candidate models for a given data set.

» The more complex the model, the better it can be fit to the
data.

» But the most complex model is usually not the best model.
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Model selection and clustering

Model selection refers to choosing the right (statistical) model
from a set of candidate models for a given data set.

v

v

The more complex the model, the better it can be fit to the
data.

v

But the most complex model is usually not the best model.

v

For cluster analysis, the “model” which defines an individual
cluster for each data object yields a “perfect fit".

» Data within a cluster are very similar, they are even equal.
» Data from different clusters are different.
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Model selection and clustering

» Model selection refers to choosing the right (statistical) model
from a set of candidate models for a given data set.
» The more complex the model, the better it can be fit to the
data.
» But the most complex model is usually not the best model.
» For cluster analysis, the “model” which defines an individual
cluster for each data object yields a “perfect fit".
» Data within a cluster are very similar, they are even equal.
» Data from different clusters are different.
» Danger of overfitting.
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Model selection and clustering

» Common technique to avoid overfitting: Split the data into
training data to build the model and test data to validate the
model.

» To remove dependence on the specific training and test set:
k-fold crossvalidation.
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Model selection and clustering

» Common technique to avoid overfitting: Split the data into
training data to build the model and test data to validate the
model.

» To remove dependence on the specific training and test set:
k-fold crossvalidation.

» Partition the data set into k (usually k = 10) random subsets
of approximately the same size.

» Remove one of the subsets and train the model with the
remaining data.

» Validate the model with the test set. (e.g. for regression,
compute the mean squared error in the removed subset, for
classification, calculate the misclassification rate for the
removed subset.)

» Repeat this for each subset.

» Take the mean value of the k validation runs as performance
measure.
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Resampling

Basic idea of resampling:

» Sample subsets of the data set,

» cluster the subsets and
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Resampling

Basic idea of resampling:

» Sample subsets of the data set,
» cluster the subsets and

» check whether the clustering results remain “stable”.
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Resampling

Simple strategy:

» Partition the data set into k (usually k = 10) random subsets
of approximately the same size.

» Remove one of the subsets and cluster the remaining data.

> Repeat this for each subset.
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Resampling

Simple strategy:

» Partition the data set into k (usually k = 10) random subsets
of approximately the same size.

» Remove one of the subsets and cluster the remaining data.

> Repeat this for each subset.

But how can the clustering results be validated?
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Resampling: Stability of clusters
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Resampling: Stability of clusters
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Resampling: Stability of clusters
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Resampling: Stability of clusters
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Resampling: Stability of clusters
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Resampling: Stability of clusters
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Resampling: Simple validation strategy

» Consider two data objects x; and x» that had both been
sampled together for clustering.
(If the sampling is carried out as in k-fold crossvalidation,
they will be selected together at least (k — 2) times.)
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Resampling: Simple validation strategy

» Consider two data objects x; and x» that had both been
sampled together for clustering.
(If the sampling is carried out as in k-fold crossvalidation,
they will be selected together at least (k — 2) times.)

> If the clustering is perfectly stable, in all clustering results
where x; and x» were in the clustering set, they should either

» always be in the same cluster or
» always be in different clusters.
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Resampling: Simple validation strategy

» Consider two data objects x; and x» that had both been
sampled together for clustering.
(If the sampling is carried out as in k-fold crossvalidation,
they will be selected together at least (k — 2) times.)

> If the clustering is perfectly stable, in all clustering results
where x; and x» were in the clustering set, they should either

» always be in the same cluster or
» always be in different clusters.

For real data, clustering will seldom be perfectly stable.

As a (basis for a) validation measure, count for each pair of data
objects the number of consistent clustering results. (Rand index)
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Resampling: More sophisticated cases

» Extension to fuzzy or probabilistic cluster memberships

» Stability/consistency check for clustering algorithms that
determine the number of clusters automatically and classify
data as noise:

» How to match (crisp, probabilistic or fuzzy) clustering results

with different numbers of clusters?
» How should the data classified as noise be handled?
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Minimum description length principle

The minimum description length principle (MDL) is a model
selection techniques based on the following idea:

» A model is understood as a summary or decoding of the data.

> In order to store or transfer the data, the decoding scheme
and the encoded (compressed) data are required.

» A model with a perfect fit would make it possible to recover
the data without additional information.
Example: A polynomial regression function

y = ao—i—alx—i—...—i—akxk

with zero error (i.e. an interpolation function) would make it
possible to compute the y;-values only on the basis of the
x;-values.
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Minimum description length principle

» The polynomial (or its coefficients) would be the “decoding
scheme”, the x;-values the “compressed” data.

> If a regression instead of an interpolation polynomial is used,
the “compressed” data must also contain the residuals ¢; in
addition to the x;-values in order to retrieve the y;-avlues.
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Minimum description length principle

» The polynomial (or its coefficients) would be the “decoding
scheme”, the x;-values the “compressed” data.

> If a regression instead of an interpolation polynomial is used,

the “compressed” data must also contain the residuals ¢; in
addition to the x;-values in order to retrieve the y;-avlues.

» The coding length of the data corresponds to the sum of the
coding needed for the decoding scheme (the model) and the
required information (compressed data) (the residuals) to
recover the original data.

» The “best” model is the one with the shortest coding length.
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MDL and clustering

Basic idea (for k-means):

» Each cluster is represented by its clustre centre.

» The cluster centres and the assignments of the data to the
clusters correspond to the “model”.

» The correction vectors of the data points to the corresponding
cluster centres correspond to the compressed data.
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BIC and Gaussian mixture models

For Gaussian mixture models usually the Bayesian information
criterion (BIC) is applied to determine the number of clusters.
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Visualisation techniques

Frank Klawonn Cluster Analysis



Visualisation: OPTICS and DBSCAN

reachability-
distance

=10, MinPits = 10 cluster-order
of the objects
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Visualisation: gCLUTO
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Visualisation: gCLUTO

» One peak per cluster

» Distance between peaks corresponds to similarity between
clusters

» Height of the peak: Internal similarity of the cluster (average
pairwise similarity of the objects in the cluster)

» Volume of the peak proportional to the number of objects in
the cluster

» Colour of a peak for internal standard deviation (standard
deviation of the pair-wise similarities between the cluster’s
objects) of the cluster’s objects.
red: low, blue: high
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Visualisation techniques
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Visualisation techniques
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Visualisation techniques
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Visualisation techniques
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Visualisation techniques

EE3ClusterbistanceGraph

Cluster 1 Cluster 2
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Cluster 3

Itensity ¢

| tensity ON H Ciose |

Frank Klawonn Cluster Analysis



Visualisation techniques

[ T JSIISIES]

Cluster 1 Cluster 2 Cluster 3 Cluster 4
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Validity measures

(Global) validity measures provide a numeric value for a clustering
result.

The cluster analysis can be repeated with different numbers of
clusters and the result with the best value for the validity measure
is chosen.
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Validity measures exclusively based on membership degrees

Bezdek's partition coefficent

1 ZC Z 1
— 2
/PC = ; - - 1Uij € |:C7].:|
i=1 j=

or its normalised version 1 — —<5(1 — Ipc)
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Validity measures exclusively based on membership degrees

Bezdek's partition coefficent

1 ZC Z 1
— 2
/PC = ; - - 1Uij € |:C7].:|
i=1 j=

or its normalised version 1 — —<5(1 — Ipc)
Bezdek's (normalised) partition entropy

Ipe = Z Z ujj log (ujj)

Io
g2 11_/1
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Validity measures based on geometry/topology

Dunn (separation) index

smallest distance between clusters

l = . . —
Dunn largest distance between objects within the same cluster
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Validity measures based on geometry/topology

Dunn (separation) index

smallest distance between clusters

l = . . —
Dunn largest distance between objects within the same cluster

Davies-Bouldin index

1« dispersion cluster i + dispersion cluster j
IDB = - Zmax : . .
J#i distance between clusters i and j
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Validity measures based on geometry/topology

Silhouette index

» a(j): Average distance between object j and all other objects
in the same cluster

> b;(j): Average distance between object j and all objects in a
different cluster i

> b(j): mini{bi(j)}

) minai)
> sU) = marar 407y
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Validity measures based on geometry/topology

Silhouette index

k=3
n=300 3 clusters C;
it nlaverg s
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1: 100 | 0.77
©
<4
> 2: 100 | 0.74
~ 4
o 4
3: 100 | 0.73
&~
b
T T T T T T T T T T T T 1
-2 0 2 4 6 8 10 00 02 04 06 08 10

Silhouette width s;

Average silhouette width : 0.75
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Validity measures based on geometry/topology

Silhouette index

k=2

k=4
n =300 2 clusters C; n =300 4 clusters C;
itonlaveig si jnlavepg s
1: 631031
1: 100 | 0.75
2: 100 | 0.73
2: 200 | 0.39
3: 100 | 0.76
4: 37029
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Silhouette width s, Silhouette width s,
Average silhouette width : 0.51 Average silhouette width : 0.6
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Validity measures based on geometry/topology

Huber's I statistic

= ,,_IZZdJk v(K))

Jj=1 k=j+1
where

» dji is the distance between objects j and k and

» d(v()), v(k)) is the distance between the corresponding
clusters (cluster centres)
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Validity measures based on geometry/topology

Xie-Bieni index

1 c n m ..
5 2ie1 j=1 Ujj djj

mini<j<k<c{distance between cluster i and k}

Ixg =

Fukuyama-Sugeno index

(o} n
s = DD ufld
i=1 j=1
(o}
- Z (distance between cluster i and the centre of the data)
i=1
n

§ m
. u[:j
j=1
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Validity measures based on geometry/topology

Average partition density

The (square root of the) determinant of the covariance matrix S;
of a cluster is a measure for the cluster (hyper-)volume.

/ _ jEI ujj
APD Z %det

where [; is the set of objects “close” to the cluster centre.
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Compatible cluster merging

» Start with a large number of clusters (e.g. k-means, FCM,
Gaussian mixture).

» A local cluster index for isolated clusters with a small number
of objects is needed.

» A measure to identify similar clusters is needed.
» Discard the small isolated clusters.

> Merge similar clusters together and recalculate the cluster
prototypes.

» Cluster again with the recalculated prototypes and the smaller
number of clusters.

» Repeat this procedure until no clusters can be merged or
removed.
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Concluding remarks

» Resampling is a very reliable technique, but with high
computational costs.

> It is always assumed that the clustering algorithm has found
the best clustering result (best fit for the data) for a given the
number of clusters.
This is not necessarily the case for objective function-based
clustering.

» The use of geometrical /topological properties of the data for
evaluating the clustering result can be misleading for
high-dimensional data.
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