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Content

f (m1(x + y)) = m2(f (x) + f (y))

Some intuition what „fuzzy logic” is.
What do we study this equation for?
How have we come to this equation?
The solutions of equation we have obtained.
What does still remain to do?
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Classical formulas

(Handsome ∧ Smart) → Happy ?

(0.9 ∧ 0.5)→ 0.6 ?

I(T (0.9, 0.5), 0.6) =?
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Introduction of fuzzy operators - Implication

x → y
”→ ”: {0, 1}2 → {0, 1}

0→ 0 = 1
0→ 1 = 1
1→ 0 = 0
1→ 1 = 1

I(x , y)

I : [0, 1]2 → [0, 1]

I(0, 0) = 1
I(0, 1) = 1
I(1, 0) = 0
I(1, 1) = 1

Definition 1
A function I : [0, 1]2 → [0, 1] is called a FUZZY IMPLICATION if it
satisfies, for all x , y ∈ [0, 1], the following conditions

1 I(·, y) is decreasing,
2 I(x , ·) is increasing,
3 I(0, 0) = 1,
4 I(1, 1) = 1,
5 I(1, 0) = 0.
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Introduction of fuzzy operators - Conjunction

x ∧ y
” ∧ ”: {0, 1}2 → {0, 1}

0 ∧ 0 = 0
0 ∧ 1 = 0
1 ∧ 0 = 0
1 ∧ 1 = 1

T (x , y)

T : [0, 1]2 → [0, 1]

T (0, 0) = 0
T (0, 1) = 0
T (1, 0) = 0
T (1, 1) = 1

Definition 2
A function T : [0, 1]2 → [0, 1] is called a TRIANGULAR NORM (t-norm)
if it satisfies, for all x , y , z ∈ [0, 1], the following conditions

1 T (x , y) = T (y , x),
2 T (x ,T (y , z)) = T (T (x , y), z),
3 T (x , ·) is decreasing,
4 T (x , 1) = x.
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Introduction of fuzzy operators - Disjunction

x ∨ y
” ∨ ”: {0, 1}2 → {0, 1}

0 ∨ 0 = 0
0 ∨ 1 = 1
1 ∨ 0 = 1
1 ∨ 1 = 1

S(x , y)

S : [0, 1]2 → [0, 1]
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A function S : [0, 1]2 → [0, 1] is called a TRIANGULAR CONORM
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Fuzzy thinking
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Compositional Rule of Inference (CRI): Laundry

D - the laundry is Dirty;
VD - the laundry is Very Dirty;
S - the laundry is Small;
B - the laundry is Big;
T>x - at least x minutes of
laundering;

(D ∧ S)→ T>45

(VD ∧ S)→ T>60

(D ∧ B)→ T>70

(VD ∧ B)→ T>90

(D → T>45) ∨ (S → T>45)

(VD → T>60) ∨ (S → T>60)

(D → T>70) ∨ (B → T>70)

(VD → T>90) ∨ (B → T>90)

(x ∧ y)→ z ≡ (x → z) ∨ (y → z) (T1)
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Compositional Rule of Inference (CRI): Laundry

x → (y ∨ z) ≡ (x → y) ∨ (x → z) (T2)

D → T>45, S → T>45,

VD → T>60, S → T>60,

D → T>70, B → T>70,

VD → T>90, B → T>90

D → (T>45 ∨ T>70)

VD → (T>60 ∨ T>90)

S → (T>45 ∨ T>60)

B → (T>70 ∨ T>90)

D → T>45

VD → T>60

S → T>45

B → T>70
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Compositional Rule of Inference (CRI): Laundry

IF the laundry is Big, THEN ...
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Compositional Rule of Inference (CRI): Laundry

IF the laundry is Big, THEN ....

Big(Laundry1) =
1

Big(Laundry2) =
0

Big(Laundry3) =
0.27

Big(Laundry4) =
0.62
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Compositional Rule of Inference (CRI) - Laundry

The general schema of multiconditional approximate reasoning has the
form:

Rule 1 : IF x̃ is A1, THEN ỹ is B1
Rule 2 : IF x̃ is A2, THEN ỹ is B2
· · · · · · · · · · · · · · · · · ·
Rule n: IF x̃ is An, THEN ỹ is Bn

Fact: x̃ is A

Conclusion: ỹ is B

B(y) = supj∈Nn supx∈X T (A(x), I(Aj(x),Bj(y)))

IF x̃ is D, THEN ỹ is T>45

IF x̃ is VD, THEN ỹ is T>60

IF x̃ is S, THEN ỹ is T>45

IF x̃ is B, THEN ỹ is T>70
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Derivation of the functional equation

(x ∧ y)→ z ≡ (x → z) ∨ (y → z) (T1)

x → (y ∨ z) ≡ (x → y) ∨ (x → z) (T2)

I(T (x , y), z) = S(I(x , z), I(y , z)) (D1)

I(x ,S(y , z)) = S(I(x , y), I(x , z)) (D2)
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Derivation of the functional equation

x → (y ∨ z) ≡ (x → y) ∨ (x → z) (T2)

TAUTOLOGY

x y z x → (y ∨ z) (x → y) ∨ (x → z) L ≡ R
y ∨ z L x → y x → z R

0 0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1 1
1 0 0 0 0 0 0 0 1
0 1 1 1 1 1 1 1 1
1 0 1 1 1 0 1 1 1
1 1 0 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1
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Derivation of the functional equation

I(x ,S(y , z)) = S(I(x , y), I(x , z)) (D2)

TAUTOLOGY?
The question: When the above equation is true? For which S and I?

I(x ,S1(y , z)) = S2(I(x , y), I(x , z))

Lemma 1
When S is continuous and Archimedean triangular conorm, then S is of
the form

S(x , y) = s−1(min(s(x) + s(y), s(1))), x , y ∈ [0, 1]

where s : [0, 1]→ [0,∞] is a continuous, strictly increasing function with
s(0) = 0.
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Derivation of the functional equation

I(x ,S(y , z)) = S(I(x , y), I(x , z)) (D2)

TAUTOLOGY?
The question: When the above equation is true? For which S and I?
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When S is continuous and Archimedean triangular conorm, then S is of
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Derivation of the functional equation

I(x ,S1(y , z)) = S2(I(x , y), I(x , z))

↓
Lemma 1 and some simple calculations

↓

f (min(u + v , r1)) = min(f (u) + f (v), r2),

where u, v ∈ [0, r1], r1 := s1(1), r2 := s2(1) ∈ (0,∞)

For S1,S2 both nilpotent or both strict t-conorms we know the form
of implication I,
For a R-implication I generated from a strict t-norm T equation
holds if and only if t-conorms S1 = S2 are Φ-conjugate with the
Łukasiewicz t-conorm for some increasing bijection Φ, which is a
multiplicative generator of the strict t-norm T .
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f (min(u + v , r1)) = min(f (u) + f (v), r2),

where u, v ∈ [0, r1], r1 := s1(1), r2 := s2(1) ∈ (0,∞)

↓

f (m1(x + y)) = m2(f (x) + f (y)) (1),

where for fixed r1, r2 ∈ (0,∞) functions
m1 : [0, 2r1]→ [0, r1],m2 : [0, 2r2]→ [0, r2] and f : [0, r1]→ [0, r2].
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m2 - injective

Theorem 1

Let r1, r2 ∈ (0,∞) be some numbers and let m1 : [0, 2r1]→ [0, r1],
m2 : [0, 2r2]→ [0, r2], f : [0, r1]→ [0, r2] be given functions. Further, let
m2 be injective. Then the following sentences are equivalent:

1 The triple of functions m1,m2, f satisfies the equation (1).
2 f (x) = ax + b for some a, b ∈ R.

More precisely:
Either f = b for some b ∈ [0, r2] and m2(2b) = b, or f (x) = ax + b
for some a, b ∈ R, a 6= 0 such that

ax + b ∈ [0, r2], for all x ∈ [0, r1] (1)

and

m1(x) =
m2(ax + 2b)− b

a . (2)



References Introduction Main results Examples Conclusion

m2 - injective

Theorem 1

Let r1, r2 ∈ (0,∞) be some numbers and let m1 : [0, 2r1]→ [0, r1],
m2 : [0, 2r2]→ [0, r2], f : [0, r1]→ [0, r2] be given functions. Further, let
m2 be injective. Then the following sentences are equivalent:

1 The triple of functions m1,m2, f satisfies the equation (1).

2 f (x) = ax + b for some a, b ∈ R.
More precisely:
Either f = b for some b ∈ [0, r2] and m2(2b) = b, or f (x) = ax + b
for some a, b ∈ R, a 6= 0 such that

ax + b ∈ [0, r2], for all x ∈ [0, r1] (1)

and

m1(x) =
m2(ax + 2b)− b

a . (2)



References Introduction Main results Examples Conclusion

m2 - injective

Theorem 1

Let r1, r2 ∈ (0,∞) be some numbers and let m1 : [0, 2r1]→ [0, r1],
m2 : [0, 2r2]→ [0, r2], f : [0, r1]→ [0, r2] be given functions. Further, let
m2 be injective. Then the following sentences are equivalent:

1 The triple of functions m1,m2, f satisfies the equation (1).
2 f (x) = ax + b for some a, b ∈ R.

More precisely:
Either f = b for some b ∈ [0, r2] and m2(2b) = b, or f (x) = ax + b
for some a, b ∈ R, a 6= 0 such that

ax + b ∈ [0, r2], for all x ∈ [0, r1] (1)

and

m1(x) =
m2(ax + 2b)− b

a . (2)



References Introduction Main results Examples Conclusion

m2 - injective

Theorem 1

Let r1, r2 ∈ (0,∞) be some numbers and let m1 : [0, 2r1]→ [0, r1],
m2 : [0, 2r2]→ [0, r2], f : [0, r1]→ [0, r2] be given functions. Further, let
m2 be injective. Then the following sentences are equivalent:

1 The triple of functions m1,m2, f satisfies the equation (1).
2 f (x) = ax + b for some a, b ∈ R.

More precisely:
Either f = b for some b ∈ [0, r2] and m2(2b) = b, or f (x) = ax + b
for some a, b ∈ R, a 6= 0 such that

ax + b ∈ [0, r2], for all x ∈ [0, r1] (1)

and

m1(x) =
m2(ax + 2b)− b

a . (2)



References Introduction Main results Examples Conclusion

m2 - NOT injective

Theorem 2

Let r1, r2 ∈ (0,∞) be some numbers and let functions
m1 : [0, 2r1]→ [0, r1], m2 : [0, 2r2]→ [0, r2] be continuous and strictly
increasing on some intervals [0, x1], [0, x2], respectively, and then be
equal to r1, r2, respectively, where x1 ≤ r1 and x2 ≤ r2. Further, let
m1,m2 satisfy

m1(0) = 0, 2m1(x) > x , x ∈ (0, 2r1) (3)

and

m2(0) = 0, 2m2(x) > x , x ∈ (0, 2r2). (4)

. Finally let f be a function f : [0, r1]→ [0, r2].
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m2 - NOT injective

Theorem 2

Let f ,m1,m2 satisfy the above assumptions.
If that triple of functions satisfies equation (1), then we have one of the
following possibilities:

1 f = r2 and m1,m2 may be any functions;
2 f = 0 and m1,m2 may be any functions;
3 f (0) = 0, f (x) > x2 for x > 0, f (r1) = r2, and m1,m2 may be any

functions;
4 there exists x0 ∈ (0, r1] such that f (x) ≥ x2 for x ≥ x0, f (x) = r2 for

x ∈ [m1(x0), r1] and f (x) = x2
x0
x for x < x0. Moreover in this case

m1(x) =
x0m2( x2

x0
x)

x2
for x < y0, such that m1(y0) = x0.

Conversely, if we add to the case (4) an assumption that y0 = x0 or
f (m1(x)) = m2(f (x)) for x ∈ [y0, x0), then each of the triples of
functions described above satisfies the equation (1).
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m2 - NOT injective

Remark 1
We’ve showed that an additional assumption in the converse to
Theorem 2 (y0 = x0 or f (m1(x)) = m2(f (x)) for x ∈ [y0, x0)) is
necessary.
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Example 1

Example 1
Let us fix arbitrarily r1, r2 > 0 and α ≥ 1.

m1(x) = min(αx , r1) for x ∈ [0, 2r1]

m2(x) = min(αx , r2) for x ∈ [0, 2r2].
In this case we obtain the following equation

f (min(α(x + y), r1)) = min(α(f (x) + f (y)), r2).

From Theorem 2 we obtain that the only nontrivial continuous solution is
f (x) = min(kx , r2), where k = r2

αx0
.
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Example 2

Example 2
Let us fix arbitrarily r1, r2 > 0.

m1(x) = min(
√r1x , r1) for x ∈ [0, 2r1]

m2(x) = min(
√r2x , r2) for x ∈ [0, 2r2].

In this case we obtain the following equation

f (min(
√
r1(x + y), r1)) = min(

√
r2(f (x) + f (y)), r2) (3)

From Theorem 2 we obtain that the only nontrivial continuous solution is
f (x) = r2

r1
x.
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Conclusion

We have discussed some solutions of one functional equation which
generalizes an equation connected with solutions of the distributivity
equation of fuzzy implications functions over some classes of triangular
conorms:

for m2, which is injective, we gave complete characterization of
solutions of the equation (1)
for m2, which is NOT injective, we gave partial characterization of
solutions of the equation (1)

We believe that obtained results can be used in future for instance in:
fuzzy control,
fuzzy mathematical morphology,
aggregations functions.
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