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Non-commutative first-order EQ-logic

Motivation

How did EQ-logic arise?

Motivation comes from G. W. Leibniz, L. Wittgenstein and
F. P. Ramsey. To develop logic on the basis of identity
(equality) as the principle connective.
Henkin’s type theory (higher ordered logic) was developed.
[L. Henkin, A theory of propositional types, Fundamenta
Math., 52: 323–344, (1963).]
A fully satisfactory logical calculus must be an equational
one.”

Classical equality-based logic:
[D. Gries, F. B. Schneider. Equational propositional logic.
Information Processing Letters, 53:145-152, 1995.]
[G. Tourlakis. Mathematical Logic. New York, J.Wiley &
Sons, 2008.]



Non-commutative first-order EQ-logic

Motivation

How did EQ-logic arise?

How could fuzzy logic be developed on the basis of fuzzy
equality?

Residuated lattice a↔ b = (a→ b) ∧ (b → a)
[V. Novák. On fuzzy type theory. Fuzzy Sets and Systems,
149:235-273, 2005.]
EQ-algebra
[M. Dyba and V. Novák. EQ-logics: Non-commutative
fuzzy logics based on fuzzy equality. Fuzzy Sets and
Systems, 2011, sv. 172, 13–32.]

[Dyba, M., Novák, V., EQ-logics with delta connective.
Iranian Journal of Fuzzy Systems, submitted.]

[V. Novák. EQ-algebra-based fuzzy type theory and ist
extensions. Logic Journal of the IGPL, 2011, 19, 512–542.]
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Non-commutative first-order EQ-logic

EQ-algebras

Definition

Non-commutative EQ-algebra is the algebra

E = 〈E ,∧,⊗,∼,1〉

of type (2, 2, 2, 0)

(E1) 〈E ,∧,1〉 is a commutative idempotent monoid (i.e.
∧-semilattice with top element 1) with the ordering: a ≤ b
iff a ∧ b = a

(E2) 〈E ,⊗,1〉 is a monoid and ⊗ is isotone w.r.t. ≤
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Non-commutative first-order EQ-logic

EQ-algebras

Definition (continued)

(E3) a ∼ a = 1 (reflexivity)

(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) ≤ c ∼ (d ∧ b) (substitution)

(E5) (a ∼ b)⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d) (congruence)

(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a (monotonicity)

(E7) a⊗ b ≤ a ∼ b (boundedness)

Implication: a→ b = (a ∧ b) ∼ a
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EQ-algebras

Special EQ-algebras

EQ-algebra is
(a) good if a ∼ 1 = a
(b) residuated if

(a⊗ b) ∧ c = a⊗ b iff a ∧ ((b ∧ c) ∼ b) = a
(c) involutive if ¬¬a = a ( IEQ-algebra)
(d) prelinear if for all a,b ∈ E sup{a→ b,b → a} = 1.
(e) lattice EQ-algebra if it is a lattice-ordered and for all

a,b, c,d ∈ E ((a ∨ b) ∼ c)⊗ (d ∼ a) ≤ (d ∨ b) ∼ c
(`EQ-algebra)
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EQ-algebras

Special EQ-algebras

A lattice EQ∆-algebra (`EQ∆-algebra)
E∆ = 〈E ,∧,∨,⊗,∼,∆,0,1〉

〈E ,∧,∨,⊗,∼,0,1〉 is a good non-commutative and
bounded `EQ-algebra.

∆1 = 1
∆a ≤ ∆∆a
∆(a ∼ b) ≤ ∆a ∼ ∆b

∆(a ∧ b) = ∆a ∧∆b

∆a = ∆a⊗∆a
∆(a ∨ b) ≤ ∆a ∨∆b

∆a ∨ ¬∆a = 1
∆(a ∼ b) ≤ (a⊗ c) ∼ (b ⊗ c)

∆(a ∼ b) ≤ (c ⊗ a) ∼ (c ⊗ b)
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EQ-algebras

Representation of `EQ∆-algebras

Lemma
If a good EQ-algebra E satisfies

(a→ b) ∨ (d → (d ⊗ (c → ((b → a)⊗ c)))) = 1 (1)

for all a,b, c,d ∈ E then it is prelinear.

Theorem
Let E∆ be `EQ∆-algebra. The following are equivalent:
(a) E∆ is subdirectly embeddable into a product of linearly

ordered good `EQ∆-algebras.
(b) E∆ satisfies (1).
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Propositional EQ-logics

Why EQ-logics

EQ-logics — special class of many-valued logics
truth values form an EQ-algebra

Equivalence as the basic connective instead of implication
Proofs in equational style
Even more general than MTL-logics
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Propositional EQ-logics

Basic EQ-logic

Language

Propositional variables p1,p2, . . .

Connectives: ∧∧∧ (conjunction), &&& (fusion), ≡ (equivalence),
Logical constant > (true)

Implication:
A⇒⇒⇒ B := (A∧∧∧ B) ≡ A
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Propositional EQ-logics

Basic EQ-logic

Logical axioms

(EQ1) (A ≡ >) ≡ A
(EQ2) A∧∧∧ B ≡ B ∧∧∧ A
(EQ3) (A© B)© C ≡ A© (B© C), © ∈ {∧∧∧,&&&}
(EQ4) A∧∧∧ A ≡ A
(EQ5) A∧∧∧ > ≡ A
(EQ6) A&&&> ≡ A
(EQ7) >&&& A ≡ A

(EQ8a) ((A∧∧∧ B) &&& C)⇒⇒⇒ (B &&& C)

(EQ8b) (C &&&(A∧∧∧ B))⇒⇒⇒ (C &&& B)

(EQ9) ((A∧∧∧ B) ≡ C) &&&(D ≡ A)⇒⇒⇒ (C ≡ (D ∧∧∧ B)) (substitution)
(EQ10) (A ≡ B) &&&(C ≡ D)⇒⇒⇒ (A ≡ C) ≡ (B ≡ D) (congruence)
(EQ11) (A⇒⇒⇒ (B ∧∧∧ C))⇒⇒⇒ (A⇒⇒⇒ B) (monotonicity)
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Propositional EQ-logics

Basic EQ-logic

Inference rules

Equanimity rule
From A and A ≡ B infer B

Leibniz rule
From A ≡ B infer C[p := A] ≡ C[p := B]

C[p := A] denotes a formula resulting from C by replacing all
occurrences of a variable p in C by the formula A.
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Propositional EQ-logics

Basic EQ-logic

Semantics

Truth values
The set of truth values is a good non-commutative EQ-algebra
E = 〈E ,∧,⊗,∼,1〉

Theorem (Completeness)
For every formula A ∈ FJ the following is equivalent:
(a) ` A
(b) e(A) = 1 for every truth evaluation e : FJ −→ E and every

good non-commutative EQ-algebra E .
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Propositional EQ-logics

Extensions

Other EQ-logics

Involutive EQ-logic (with double negation)
Prelinear EQ-logic (stronger variant of the completeness
theorem)
EQ(MTL)-logic (equivalent with MTL-logic)

Not strong enough for development of the predicate EQ-logic!

Basic EQ∆∆∆-logic (weaker variant of the completeness
theorem)
Prelinear EQ∆∆∆-logic

Theorem (Deduction)
For each theory T and formulas A,B,C ∈ FJ :
T ∪ {A ≡ B} ` C iff T `∆∆∆(A ≡ B)⇒⇒⇒ C
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Propositional EQ-logics

Prelinear EQ∆∆∆-logic

Prelinear EQ∆∆∆-logic

Language
The language of basic EQ-logic extended by unary connective
∆∆∆, binary connective ∨∨∨ and logical constant ⊥.
Negation ¬A := A ≡ ⊥

Axioms (EQ1)–(EQ11) and
((((A∧∧∧B)∨∨∨C) ≡ D) &&&(F ≡ C)) &&&(E ≡ A)⇒⇒⇒ (D ≡ (F∨∨∨(B∧∧∧E)))

(EQ12) (A∨∨∨ B)∨∨∨ C ≡ A∨∨∨ (B ∨∨∨ C)

(EQ13) A∨∨∨ (A∧∧∧ B) ≡ A

(EQ14) (A∧∧∧ ⊥) ≡ ⊥

(EQ15) (A⇒⇒⇒ B)∨∨∨ (D⇒⇒⇒ (D &&&(C⇒⇒⇒ ((B⇒⇒⇒ A) &&& C))))
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Propositional EQ-logics

Prelinear EQ∆∆∆-logic

Prelinear EQ∆∆∆-logic

Axioms (continued)

(EQ∆∆∆1) ∆∆∆A⇒⇒⇒∆∆∆∆∆∆A

(EQ∆∆∆2) ∆∆∆(A ≡ B)⇒⇒⇒ (∆∆∆A ≡∆∆∆B)

(EQ∆∆∆3) ∆∆∆(A∧∧∧ B) ≡ (∆∆∆A∧∧∧∆∆∆B)

(EQ∆∆∆4) ∆∆∆A ≡ (∆∆∆A&&& ∆∆∆A)

(EQ∆∆∆5) ∆∆∆(A∨∨∨ B)⇒⇒⇒ (∆∆∆A∨∨∨∆∆∆B)

(EQ∆∆∆6) ∆∆∆A∨∨∨ ¬∆∆∆A

(EQ∆∆∆7) ∆∆∆(A ≡ B)⇒⇒⇒ ((A&&& C) ≡ (B &&& C))

(EQ∆∆∆8) ∆∆∆(A ≡ B)⇒⇒⇒ ((C &&& A) ≡ (C &&& B))
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Prelinear EQ∆∆∆-logic

Prelinear EQ∆∆∆-logic

Inference rules
Equanimity rule
Leibniz rule
Necessitation rule

From A infer ∆∆∆A

Semantics
An `EQ∆-algebras in which (1) is satisfied.
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Propositional EQ-logics

Prelinear EQ∆∆∆-logic

Prelinear EQ∆∆∆-logic

Theorem (Completeness)
For every formula A ∈ FJ and every theory T the following is
equivalent:
(a) T ` A
(b) e(A) = 1 for every truth evaluation e : FJ −→ E and every

linearly ordered, `EQ∆-algebra E .
(c) e(A) = 1 for every truth evaluation e : FJ −→ E and every

`EQ∆-algebra E satisfying (1).
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Predicate EQ-logic

Syntax

Language
Object variables x , y , . . . .
Set of object constants Const = {u,v, . . . }.
Non-empty set of n-ary predicate symbols
Pred = {P,Q, . . . }.
Binary connectives ∧∧∧,∨∨∨,&&&,≡ and unary connective ∆∆∆.
Logical (truth) constants > (true) and ⊥ (false).
Quantifiers ∀,∃.
Auxiliary symbols: brackets.
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Predicate EQ-logic

Syntax

Terms
Object variables and object constants are terms.

Formulas
If P is an n-ary predicate symbol and t1, . . . , tn are terms
then P(t1, . . . , tn) is atomic formula.
Logical constants > and ⊥ are (atomic) formulas.
If A,B are formulas then A∧∧∧ B,A∨∨∨ B,A&&& B,A ≡ B,∆∆∆A are
formulas.
If A is formula and x is an object variable then (∀x)A, (∃x)A
are formulas.
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Predicate EQ-logic

Semantics

Structure for language J

ME = 〈M, E , {rP}P∈Pred , {mu}u∈Const〉

E = 〈E ,∧,∨,⊗,∼,∆,0,1〉 is a non-commutative linearly
ordered `EQ∆-algebra,
rP : Mn −→ E is n-ary relation,
mu ∈ M.
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Predicate EQ-logic

Interpretation of terms and formulas

v — assignment of elements from M to variables
ME

v (x) = v(x),ME
v (u) = mu,

ME
v (P(t1, . . . , tn)) = rP(ME(t1), . . . ,ME(tn)),

ME
v (A∧∧∧ B) =ME

v (A) ∧ME
v (B),

ME
v (A∨∨∨ B) =ME

v (A) ∨ME
v (B),

ME
v (A&&& B) =ME

v (A)⊗ME
v (B),

ME
v (A ≡ B) =ME

v (A) ∼ME
v (B),

ME
v (∆∆∆A) = ∆ME

v (A),ME
v (>) = 1,ME

v (⊥) = 0,

ME
v ((∀x)A) = inf{ME

v ′(A) | v ′ = v \ x},
ME

v ((∃x)A) = sup{ME
v ′(A) | v ′ = v \ x}
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Predicate EQ-logic

Logical Axioms

(EQ1)–(EQ15), (EQ∆1)–(EQ∆8) plus

(EQ∀1) (∀x)A(x)⇒⇒⇒ A(t) (t substituable for x in A(x)),
(EQ∃1) A(t)⇒⇒⇒ (∃x)A(x) (t substituable for x in A(x)),
(EQ∀2) ∆∆∆(∀x)(A⇒⇒⇒ B)⇒⇒⇒ (A⇒⇒⇒ (∀x)B) (x not free in A),
(EQ∃2) (∀x)(A⇒⇒⇒ B)⇒⇒⇒ ((∃x)A⇒⇒⇒ B) (x not free in B),
(EQ∀3) (∀x)(A∨∨∨ B)⇒⇒⇒ ((∀x)A∨∨∨ B) (x not free in B),
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Predicate EQ-logic

Inference Rules

Equanimity rule
Leibniz rule

From A ≡ B infer C[p := A] ≡ C[p := B],

provided that the subformula p is not in the scope of a
quantifier in C.
Necessitation rule
Rule of Generalization

From A infer (∀x)A
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Predicate EQ-logic

Model

Definition

StructureME is a model of a theory T ifME
v (A) = 1 holds for

all axioms A of T .
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Predicate EQ-logic

Main properties

Lemma
(i) ` (∀x)(A⇒⇒⇒ B) ≡ (A⇒⇒⇒ (∀x)B), x not free in A

(ii) ` (∀x)(B⇒⇒⇒ A) ≡ ((∃x)B⇒⇒⇒ A), x not free in A
(iii) `∆∆∆(∀x)(A⇒⇒⇒ B)⇒⇒⇒ ((∀x)A⇒⇒⇒ (∀x)B)

(iv) ` (∀x)(A⇒⇒⇒ B)⇒⇒⇒ ((∃x)A⇒⇒⇒ (∃x)B)

Theorem (Deduction)
For each theory T , closed formulas A,B and arbitrary formula
C:

T ∪ {A ≡ B} ` C iff T `∆∆∆(A ≡ B)⇒⇒⇒ C.
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Predicate EQ-logic

Completeness

Definition

(i) Theory T is consistent if there is a formula A unprovable in
T .

(ii) T is linear (complete) if for every two formulas A,B,
T ` A⇒⇒⇒ B or T ` B⇒⇒⇒ A.

(iii) T is extensionally complete if for every closed formula
(∀x)(A(x) ≡ B(x)), T 6` (∀x)(A(x) ≡ B(x)) there is a
constant u such that T 6` (Ax [u] ≡ Bx [u])
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Predicate EQ-logic

Completeness

Theorem
Every consistent theory T can be extended to a maximally
consistent linear theory.

Theorem
Every consistent theory T can be extended to an extensionally
complete consistent theory T .
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Predicate EQ-logic

Completeness

Theorem (Completeness)
(a) A theory T of the predicate first-order EQ-logic is consistent

iff it has a safe modelM.
(b) T ` A iff T |= A
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Conclusion

Conclusion

Formal system of predicate EQ-logic with equivalence as
main connective was developed.
∆-connective (deduction theorem) is indispensable for
development of the first-order EQ-logic.

Current and future work:
To extend the language of the predicate EQ-logic by the
functional symbols and symbol .

= for fuzzy equality
between objects.
To prepare a software (based on differential evolution) that
finds examples of EQ-algebras with given properties.
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Thank you for your attention.
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