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Personal motivation

Why I have chosen Ergodic Theory?

It is usually missing in curriculae of universities in our
regions.
I found it interesting. The topic contains nice results
with many deep applications.
In this topic both deterministic and stochastic points of
view meet in result of the kind: ”For a truly random
element the following surely holds”.
Typical result of the theory is educational, it says:
”Under stated conditions, almost all elements behave
fairly.”
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Real motivation

Example from physics

Statistical mechanics: Consider a system of N particles
enclosed in a box. Their positions and momenta
determine the system by 6N numbers, i.e.the state of
the system at each moment can be represented by a
point in a bounded subset X of 6N-dimensional
Euclidean space (the so-called phase space). The
behaviour of the system is then represented by a
trajectory in the phase space.
In classical, deterministic mechanics, the entire
trajectory is determined once one of its point is known.
In practice we almost never have enough information
for such a complete determination.
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Real motivation

Example from physics

The basic idea of statistical mechanics (Gibbs,
Boltzmann): Instead of asking: ”what will the state be at
time t?” we should ask ”what is the probability that at
time t the state of the system will belong to a specified
subset of the phase space?” The questions of greatest
interest are the asymptotic ones: ”what will (probably)
happen to the system as t tends to infinity”?
Concentration on asymptotic questions allows us to
simplify the model passing from the continuous to the
discrete as follows.
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Real motivation

Example from physics

In classical model the behaviour of the system is
determined by the system of 6N Hamilton’s equations.
Solution of this system yields a parametric system of
transformations {Tt}t∈[0,∞) of the phase space X into
itself where Tt(x) is the state of system at time t from
the initial state x . It forms a one parametric semigroup
with unit T0 = idX (obviously Tt+s = TtTs).
From the point of view of the asymptotic behaviour
(t →∞) we can simplify the model passing from the
continuous to the discrete considering a subgroup
{Tn | n ∈ Z} for a suitable choice of the time unit t0 = 1.
Moreover, simplifying T = T1, the composed
transformation Tn is in fact T n.
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Real motivation

Example from physics

Notice that the asymptotic behaviour of both continuous
and discrete systems should be identical. In practice
the problem is intractable because of enormous
number of equations (N ≈ 1024).
Nevertheless, Poincaré was able to found important
information on asymptotic behaviour: ”Almost all points
of the phase space are recurrent, i.e. infinitely many of
T n(x) are arbitrarily close to x”.
He used the Liuville’s theorem: The Lebesgue measure
λ on the phase space X satisfies λ(Tt(E)) = λ(E) for
all t and all measurable E ⊂ X .
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Real motivation

Poincaré’s solution

Fix ε > 0 and denote
W = {x ∈ X | ∀n ∈ N d(x , T n(x)) > ε}. Divide W into
finitely many pieces Wi , each of diameter less than ε.
For each fixed i , all the sets T−n(Wi); n ∈ N are
pairwise disjoint.
To see this, assume x ∈ T−n(Wi) ∩ T−(n+k)(Wi) 6= ∅.
Then there exists an y = T n(x) ∈ Wi ∩ T−k (Wi) and,
consequently d(y , T k (y)) < diam Wi < ε, a
contradiction.

Consequently
∞∑

k=1
λ(T−k (Wi)) ≤ λ(X ) < ∞. Using

Liuville’s theorem we get λ(T−k (Wi)) = 0 for each
k ∈ N, yielding λ(W ) = 0.
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Location of Ergodic Theory in Mathematics

Relations to other mathematical fields

Probability and measure. The main object of the theory
is a measure preserving mapping.
Topology. The convergence concept is needed. A
typical result says something about some limit, or
compares two limits.
Functional analysis. Most, originally concrete, results
are generalized as results on operators in Hilbert
spaces.
Applications in: dynamical systems, measure theory,
number theory, physics, combinatorics, .....
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Introductory examples

Almost all sets of positive integers have density 1
2

Assume that X is the binary uniformly distributed
random variable, i.e. X ∈ {0, 1} and
p({0}) = p({1}) = 1

2 .
Consider a sequence (Xn)n∈N of independent random
variables as described above. Then each such (Xn)
can be identified with the real number
r =

∞∑
n=1

Xn
2n ∈ [0, 1] as well as with (via characteristic

function) a subset A ⊂ N, i.e. Ar = {n ∈ N |Xn = 1}.
By Borel’s law of large numbers: The relation
d(Ar ) = lim

n→∞
#{k≤n | k∈A}

n = 1
2 holds for almost all

r ∈ [0, 1].
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Introductory examples

Almost all sequences in [0, 1) are uniformly distributed

A sequence (xn) in [0, 1] is uniformly distributed (u.d.) if
lim

N→∞
#{n≤N | xn∈[a,b)}

N = b − a holds for every

0 ≤ a < b ≤ 1.
Product measure λ∞ on [0, 1]∞ is the unique measure
defined on the σ-algebra generated by all cylinders
C = [a1, b1]× · · · × [an, bn]× [0, 1]× . . . such that

λ∞(C) =
n∏

i=1
(bi − ai).

Almost all sequences in [0, 1] are u.d. with respect to
the product measure λ∞ on [0, 1]∞.
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Mišı́k

Introduction

Main objects
of Ergodic
Theory

Main
theorems of
Ergodic
Theory

Ergodicity

Some
applications

Introductory examples

Almost all sequences in [0, 1) are uniformly distributed

A sequence (xn) in [0, 1] is uniformly distributed (u.d.) if
lim

N→∞
#{n≤N | xn∈[a,b)}

N = b − a holds for every

0 ≤ a < b ≤ 1.
Product measure λ∞ on [0, 1]∞ is the unique measure
defined on the σ-algebra generated by all cylinders
C = [a1, b1]× · · · × [an, bn]× [0, 1]× . . . such that

λ∞(C) =
n∏

i=1
(bi − ai).

Almost all sequences in [0, 1] are u.d. with respect to
the product measure λ∞ on [0, 1]∞.



An excursion
into Ergodic

Theory

Ladislav
Mišı́k
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Measure spaces

Basic definitions and examples

Measure space is a triplet (X ,A, µ) where X is a
nonempty set, A a σ-algebra on X and µ a σ-additive
measure on A. A measure is finite if µ(X ) < ∞ and
normalized (or probability measure) if µ(X ) = 1.
Unit interval, unit circle, unit ball, bounded subset of Rn

with corresponding Borel measurable sets (i.e.
σ-algebra generated by open sets) and Lebesgue
(often normalized) measure.
A locally compact topological group with a countable
base, with Borel measurability and Haar measure (i.e.
shift invariant measure µ(gE) = µ(E) for all g ∈ G and
Borel E).
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Measure spaces

Basic examples

The set of all sequences x = {xn} of 0’s and 1’s, where
n ranges either over the set of all positive integers or
over the set of all integers. The measurable sets are
the elements of the σ-algebra of generated by sets of
the form {x | xn = 1}. The measure is uniquely
determined by the condition that its value on each
intersection of k generating sets is always 2−k .
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Measurable transformations

Basic definitions

A measurable transformation is a mapping T from a
measure space (X ,A, µ) into a measure space
(Y ,B, ν) such that T−1(E) ∈ A for all E ∈ B. It is
measure preserving if µ(T−1(E)) = ν(E) for all E ∈ B.
We always identify all transformations differing on a set
of measure 0, thus speaking about a transformation we
will always mean its equivalence class. Notice that if a
measure preserving transformation is invertible (i.e. its
inverse transformation exists), then its inverse is also
measure preserving.
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Measurable transformations

Basic examples

Transformation of the real line given by Tx = 2x is
invertible, measurable, but not measure preserving. In
fact, λ(T−1E) = 1

2λ(E) holds for all Borel sets E .
A closely related transformation of [0, 1) is defined by
T x = 2x (mod 1). Notice that Tx = 2x if x ∈ [0, 1

2) and
Tx = 2x − 1 otherwise. It is not invertible (it is
everywhere two - to - one), it is measurable and also
measure preserving. For example
T−1[1

4 , 5
8) = [1

8 , 5
16) ∪ [1

8 + 1
2 , 5

16 + 1
2). Similar

considerations prove that λ(T−1E) = λ(E) holds for
each half-open interval with dyadically rational
endpoints and from there it follows that T is measure
preserving. On the other side, notice that
λ(T E) 6= λ(E) in general.
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Measurable transformations

Basic examples

An isomorphic transform is obtained as follows.
Consider the unit circle with Borel measurability and
with the normalized Lebesgue measure λ/2π and
define T z = z2 for a complex unit z.
Now consider the two-dimensional Euclid space with
the transform given by T (x , y) = (2x , 1

2y). It is measure
preserving as the inverse image of any rectangle is a
rectangle with the same area. This example can be
generalized to arbitrary finitely dimensional Euclid
spaces and linear mapping with determinant with
absolute value equal to 1.
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Measurable transformations

Basic examples

Let X be the space of all unilateral sequences (xn)
∞
n=0

such that xn ∈ {0, 1} as described before. Let T be the
transformation described by a unit shift on the indices,
i.e. T x = y = (yn), where yn = xn+1. This
transformation is measure preserving, but not invertible.
Denote by Y the space of all bilateral sequences
(yn)n∈Z such that yn ∈ {0, 1} as described before. Let
U be the transformation described by a unit shift on the
indices, i.e. U x = y = (yn), where yn = xn+1. This
transformation is measure preserving and invertible.
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Measurable transformations

Basic examples

There is a natural mapping S of X onto [0, 1] assigning

to x = x0, x1, x2, . . . the number
∞∑

n=0

xn
2n+1 . This mapping

is measure preserving and essentially one-to-one. Only
dyadically rational numbers have two different
pre-images. As this set is countable and of measure 0,
it plays no role from the point of view of measure theory
in further investigations and, consequently, the
measure-theoretic structure of both spaces are
isomorphic. The isomorphism S carries the unilateral
shift T onto a measure preserving transformation T ′ on
the unit interval defined (mod sets of measure 0) by
T ′ = STS−1. An examination shows that T ′ is an old
friend: T ′ x = 2x(mod 1) almost everywhere.
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Measurable transformations

Basic examples

There is a natural correspondence P between the
bilateral sequence space Y and X × X sending
(. . . x−2, x−1, x0, x1, x2, . . . ) to the couple
({x0, x1, x2, . . . }, {x−1, x−2, . . . )}. Again, this
transformation is measure preserving. Denoting
Q(x , y) = (S x , S y) for x , y ∈ X we have that QP is an
isomorphism of Y onto [0, 1)2. This isomorphism sends
the bilateral shift onto a invertible and measure
preserving transformation T ′′ of [0, 1)2.
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Measurable transformations

Basic examples

An examination of the definition shows that the
isomorphic image of the bilateral shift is the mapping
T ′′ defined (mod 1) by

T ′′(x , y) = (2x ,
1
2

y) when x ∈ [0,
1
2
)

and

T ′′(x , y) = (2x ,
1
2
(y + 1)) when x ∈ [

1
2
, 1).
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Mišı́k

Introduction

Main objects
of Ergodic
Theory

Main
theorems of
Ergodic
Theory

Ergodicity

Some
applications

Measurable transformations

Basic examples

The transformation T ′′ can be geometrically described
as follows. It first transforms the unit square by a linear
transform onto the rectangle with bottom edge the
interval [0, 2) and the left edge [0, 1

2) and then cut off
the right half of this rectangle (with bottom edge [1, 2))
and move it, by translation, to the top half of the unit
square. Because of its geometric nature, T ′′ is called
Baker’s transform.
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Recurrence theorem

Poincaré’s theorem

Let T be a measure preserving transformation on a
measure space (X ,A, µ) and x ∈ E ∈ A be given. The
point x is called recurrent (with respect to E and T ) if
T n(x) ∈ E for at least one n ∈ N.
Recurrence theorem (Poincaré). If T is a measure
preserving transformation on a space of finite measure,
and if E is a measurable set, then almost every point of
E is recurrent.
We will show that a stronger version of this theorem
holds. In fact, it is easy to show that for almost every
x ∈ E there are infinitely many values of n ∈ N such
that T n(x) ∈ E .
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Poincaré’s theorem

Let T be a measure preserving transformation on a
measure space (X ,A, µ) and x ∈ E ∈ A be given. The
point x is called recurrent (with respect to E and T ) if
T n(x) ∈ E for at least one n ∈ N.
Recurrence theorem (Poincaré). If T is a measure
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Recurrence theorem

Stronger version of Poincaré’s theorem

As each T n is measure preserving, for all sets Fn of
non-recurrent points of T n we have µ(Fn) = 0,

consequently µ(
∞⋃

n=1
Fn) = 0.

Suppose x ∈ E \
∞⋃

n=1
Fn. Then for every n ∈ N there is a

k ∈ N such that T kn(x) ∈ E .
Thus the conclusion of the Recurrence theorem can be
formulated in terms of the characteristic function as
follows: for almost all x ∈ E the series

∞∑
n=1

χE(T n(x))

diverges.
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Recurrence theorem

Generalized theorem

This conclusion can be generalized: if f is an arbitrary
non-negative measurable function, then for almost

every x ∈ {x | f (x) > 0} the series
∞∑

n=1
f (T n(x))

diverges.
The proof is easy: for each k ∈ N consider the set
Ek = {x | f (x) > 1

k }. Then, by Recurrence theorem, the

series
∞∑

n=1
χEk (T

n(x)) diverges except a set of measure

zero, say Fn. Consequently, the series
∞∑

n=1
f (T n(x))

diverges except the set of measure zero
∞⋃

n=1
Fn.
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An addition to Recurrence theorem

Index of recurrence

Let T be an ergodic transformation on a space X with
probability measure µ and let E ⊂ X be measurable.
For x ∈ E denote by n(x) the smallest integer such that
T n(x) ∈ E . Then, by Recurrence theorem, n is defined
almost everywhere in E . It is easy to see that n is
measurable.
M.Kac (Bull. A.M.S. 1947, p. 1006) showed that∫
E

n(x) dx = 1. It can be expressed in the form

1
µ(E)

∫
E

n(x) dx = 1
µ(E) . The last equation says that the

average length of the time that it takes a point of E to
return to E is the reciprocal of the measure of E .
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Mean convergence

Mean Ergodic Theorem

We already know that almost all points of E infinitely
many times turn back to E under the repeated action of
measure preserving transformation T . It is natural to
ask for some more precise characteristics of the set of
all indices {n ∈ N | T n(x) ∈ E}.
There is a natural ”measure” on subsets of N called
asymptotic density. For A ⊂ N it is defined by

d(A) = lim
n→∞

1
n

n∑
i=0

χA(i) provided the limit exists.

We will be interested in asymptotic behaviour of

Sn (E , T , x) = 1
n

n−1∑
i=0

χE(T i(x)).
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Mišı́k

Introduction

Main objects
of Ergodic
Theory

Main
theorems of
Ergodic
Theory

Ergodicity

Some
applications

Mean convergence

Mean Ergodic Theorem

We already know that almost all points of E infinitely
many times turn back to E under the repeated action of
measure preserving transformation T . It is natural to
ask for some more precise characteristics of the set of
all indices {n ∈ N | T n(x) ∈ E}.
There is a natural ”measure” on subsets of N called
asymptotic density. For A ⊂ N it is defined by

d(A) = lim
n→∞

1
n

n∑
i=0

χA(i) provided the limit exists.

We will be interested in asymptotic behaviour of

Sn (E , T , x) = 1
n

n−1∑
i=0

χE(T i(x)).



An excursion
into Ergodic

Theory

Ladislav
Mišı́k
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Mean convergence

Mean Ergodic Theorem

We will set the problem in a more general frame. Given
a measure preserving transformation T on X , consider
the mapping U = U(T ) operating on functions on X by
Uf = f ◦ T i.e. Uf (x) = f (T (x)). Notice that
Unf (x) = f (T n(x)) for all n ∈ N.

We will be interested in Sn (U) = 1
n

n−1∑
i=0

U i . Notice that

Sn (U)χE(x) = Sn (E , T , x).
It is easy to see that U is a linear operator and, for
measure preserving T , it is not difficult to show that U
is an isometry on L1. It is based on the fact that if E is a
set of finite measure, then
UχE(x) = χE(T (x)) = χT−1E(x).



An excursion
into Ergodic

Theory

Ladislav
Mišı́k
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Mean convergence

Mean Ergodic Theorem

Mean Ergodic Theorem (von Neumann). If U is an
isometry on a complex Hilbert space H and if P is the
projection on the space of all vectors invariant under U,

then 1
n

n−1∑
i=0

U i f converges to Pf for every f ∈ H.

The proof is trivial in dimension one. In this case
Uz = uz, where u is a complex unit. If u = 1, each
Sn (U) = idH and, as U = idH , also P = idH ,
consequently lim

n→∞Sn (U) = P. In other case

Sn (U) = 1−un

n(1−u) → 0 and, as 0 is the only invariant
element in H, also Pz = lim

n→∞Sn (U)z = 0.
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Mean convergence

Mean Ergodic Theorem

In the finite-dimensional case U can be represented by
a diagonal matrix with only complex units on the
diagonal. It follows that each Sn (U) is also diagonal
and, by one-dimensional case, it tends to a diagonal
matrix with only 0’s and 1’s one the diagonal. The limit
matrix is therefore a projection, in fact the projection on
the space of all vectors f such that Uf = f .
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Pointwise convergence

Individual Ergodic Theorem

The adjective ”Mean” in the previous theorem is due to
convergence in the L2 norm. In this section we will be
interested in the pointwise convergence.
Individual Ergodic Theorem (Birkhoff). If T is a
measure preserving transformation on a space X (with
possibly infinity measure) and if f ∈ L1, then
1
n

n−1∑
i=0

f (T i(x)) converges for almost all x ∈ X . The limit

function f ∗ is integrable and invariant (i.e.
f ∗(T (x)) = f ∗(x) almost everywhere). Moreover, if
µ(X ) < ∞, then

∫
f ∗ dµ =

∫
f dµ.
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Pointwise convergence

Individual Ergodic Theorem

Notice that the condition µ(X ) < ∞ is necessary for∫
f ∗ dµ =

∫
f dµ. Consider the translation T (x) = x + 1

in R and choose f = χ[0,1). Then
∫

f (x) dx = 1, while
f ∗(x) = 0 for all x ∈ R as f (T i(x)) = 0 for all i ∈ N with
one possible exception.
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Ergodicity

Decomposability of a mapping

Suppose that T is a measure preserving transformation
on X and X is the union of two disjoint measurable
subsets E and F of positive measures, each of which is
invariant under T (i.e. T−1E = E). Then the study of
any property of T on X reduces to the separate studies
of the corresponding properties of T on E and F .
In such a case we call T decomposable. The most
significant transformations are the indecomposable
ones, they are called ergodic.
Informally, ergodicity means that the transformation
does a good job of stirring up the points of the space it
acts on.
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Equivalent conditions

It is often useful to work with some conditions
equivalent to ergodicity. Trivially, T is ergodic iff it has
only trivial invariant subsets, i.e. if E is invariant, then
either µ(E) = 0, or µ(X \ E) = 0.
A function f is invariant under T iff T does not effect the
value of f (x), i.e. iff f (T (x)) = f (x) for (almost) all x .
A useful reformulation of ergodicity is this: T is ergodic
if and only if every measurable invariant function is a
constant. To see this, notice that a measurable set is
invariant iff its characteristic function is invariant.
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Mišı́k

Introduction

Main objects
of Ergodic
Theory

Main
theorems of
Ergodic
Theory

Ergodicity

Some
applications

Ergodicity

Equivalent conditions

Consequently, the ”if” statement is trivial.
To see the ”only if” statement, assume that f is
measurable. For every n ∈ N consider the system of
sets

X (k , n) =

{
x ∈ X | k

2n ≤ f (x) <
k + 1

2n

}

end observe that all they are invariant. Ergodicity
implies that for every n there is a unique k(n) such that
µ(X (k , n)) = 1, while all the others are of measure 0.
Then f (x) = c almost everywhere, where c = lim

n→∞
k(n)
2n .
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Examples

Translations in Z and R

For a ∈ Z, the translation T (x) = x + a on the space of
integers is ergodic if and only if |a| = 1.
If |a| = 1, then the only invariant sets are ∅ and Z.
If a = 0, then all A ⊂ Z are invariant.
If |a| > 1, all sets {n ∈ Z | n ≡ b (mod |a|)} are
invariant.
No translation T (x) = x + a on the space of reals is
ergodic.
More generally, there is no ergodic linear transformation
on a finite dimensional real Euclidean space.
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Rotation of the unit circle

Let X be the unit circle (as a subset of the complex
plane). If c ∈ X and T is defined by T (x) = cx , then T
is ergodic iff c is not a root of unity.
If cn = 1, then f (x) = xn is a non-constant measurable
invariant function.
If c is not a root of unity, then no fn(x) = xn, n ∈ Z is
ergodic. The rest of proof follows from the fact that
{fn | n ∈ Z} forms a complete orthogonal system in L2.
If f =

∑
n∈Z

anfn, then f (T (x)) =
∑
n∈Z

ancnxn If f is

invariant, then an = cnan for all n ∈ Z, hence an = 0 for
all n 6= 0, i.e. f is a constant function.
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Multiplication in compact abelian groups

The preceding example can be generalized as follows.
Let X be a compact abelian group with a countable
base and T (x) = cx for some c ∈ X . Then T is ergodic
if and only if the set {cn | n ∈ Z} is dense in X .
The proof is based on the following self-interesting
lemma: If the measure space X is a topological space
with a countable base, such that each non-empty open
set has positive measure, and if T is an ergodic
transformation on X , then for almost all x ∈ X the orbit
of x (i.e. the sequence {T n(x) | n ∈ N} is dense in X .
Remark: The condition of denseness is not sufficient.
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Rotation on torus and linear transformations in
Euclidean spaces

Torus is the Cartesian product of two circles and it can
be represented as [0, 1)2, with operations on each
coordinate taken (mod 1). For two complex units b, c
define the transformation of rotation on the torus by
T (x , y) = (bx , cy), where x and y are complex units,
i.e. (x , y) is a point on the torus.
A rotation on the torus is ergodic if and only if the
numbers b and c are integrally independent, i.e. for any
integers m, n the relation bmcn = 1 implies m = n = 0.
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Mišı́k

Introduction

Main objects
of Ergodic
Theory

Main
theorems of
Ergodic
Theory

Ergodicity

Some
applications

Examples

Shifts

Both the unilateral and the bilateral shifts are ergodic.
Main idea of the proof follows.
Let E be a measurable invariant set. As the measure
on the space {0, 1}Z (or {0, 1}Z) is almost determined
by its values on sets that depend on a finite numbers of
coordinates, there exists such a ”finitely-dimensional”
set A that is an arbitrary close approximation of E . For
n large enough is the set B = T−nA determined by a
disjoint set of coordinates, therefore
µ(A ∩ B) = µ(A)µ(B). Since all powers of T are
measure preserving and E is invariant, B is also very
close to E and, consequently also A ∩ B is so. Thus
µ(E) ≈ µ(A ∩ B) ≈ µ2(E). Thus µ(E) is either 0 or 1.
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Birkhoff Theorem for ergodic
transformations

Space and time means

Recall that Birkhoff’s theorem holds for any measure
preserving transformation. Suppose now, that T is also
ergodic. Firstly, ergodicity yields that f ∗, being invariant
under T , has to be constant. Secondly, integrability of
f ∗ and the relation

∫
f ∗ dµ =

∫
f dµ imply that this

constant is equal to 1
µ(X)

∫
f dµ (especially, 0 if

µ(X ) = ∞). Thus we have:
A transformation T on X with µ(X ) < ∞ is ergodic iff

lim
n→∞

1
n

n−1∑

i=0

f (T i(x)) =
1

µ(X )

∫
f dµ.

holds for every integrable f and for almost all x ∈ X .
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Birkhoff Theorem for ergodic
transformations

Space and time means

For a moment, let us turn back to the continuous
version of the model. Remember that the sequence
{T n(x)}n∈N has been chosen as a discrete
approximation of the continuous model {Tt(x)}t∈[0,∞).
In the continuous case the ”time term” of the space-time

means equation is replaced by lim
T→∞

1
T

T∫
0

f (Tt(x)) dx .

Thus, for ergodic T and integrable f on X , we have:

lim
T→∞

1
T

T∫

0

f (Tt(x)) dt =
1

µ(X )

∫
f dµ.
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Uniform distribution mod 1

Uniform distribution and Birkhoff’s theorem

A sequence (xn) in R is said to be uniformly distributed
mod 1 (u.d) if for every a < b ∈ [0, 1) the limit

lim
N→∞

1
N

N∑
n=1

χ[a,b)(xn) exists and is equal to b − a.

Informally, the time that (xn) ”spends in [a, b)” is
asymptotically equal to the relative mass of [a, b) in
[0, 1) (i.e. the time mean equals to the space mean).
Remark: For an ergodic T on [0, 1) and for almost all
x ∈ [0, 1) is the sequence {T n(x)} uniformly distributed.
Example: The sequence {nα} is u.d. mod 1 if and only
if α is irrational.
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Example: The sequence {nα} is u.d. mod 1 if and only
if α is irrational.
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Uniform distribution mod 1

The importance of u.d. sequences follows from the
following statement. A sequence (xn) is u.d. mod 1 if
and only if

1∫

0

f (x) dx = lim
N→∞

1
N

N∑

n=1

f ({xn})

holds for all continuous functions f : [0, 1) → R
The right-hand term allows to compute integrals with an
arbitrary precision by simple arithmetic operations.
Analogously are the u.d. mod 1 sequences defined in
Rd and are used for evaluation of multidimensional
integrals (Method Quasi Monte Carlo).
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Combinatorics

Szemerédi’s Theorem

Szemerédi’s theorem is a generalization of the famous
Van der Waerden’s theorem (1927), one of the
fundamental result of Ramsey theory, and it is a
milestone of combinatorial mathematics. It proves that
if the set of positive integers is partitioned into finitely
many subsets, then at least one of them contains
arbitrary long arithmetic progression. In 1936 Turán
and Erdös conjectured that an arbitrary long arithmetic
progression exists in any set of positive integers with
positive density.
Szemerédi (1974) Let k be a positive integer and δ > 0.
Then there exists a positive integer N = N(k , δ), such
that every subset of the set {1, 2, . . . , N} of size at least
δN contains an arithmetic progression of length k .
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Szemerédi’s Theorem

The original proof by Szemerédi was very intricate and
long. In 1977 Furstenberg used the ergodic theory to
prove the theorem in much more simple and
inspirational way. Furstenberg’s techniques have been
extended to prove many natural generalizations of the
theorem which do not follow from Szemerédi’ approach.


