
Non-commutative first-order EQ-logic

Martin Dyba

Centre of excellence IT4Innovations
Division of the University of Ostrava

Institute for Research and Applications of Fuzzy Modeling
Ostrava, Czech Republic

ISCAMI 2013, Malenovice

May 2–5, 2013

Non-commutative first-order EQ-logic

Outline

1 Motivation

2 EQ-algebras

3 Propositional EQ-logics
Basic EQ-logic
Extensions
Prelinear EQ∆∆∆-logic

4 Predicate EQ-logic

5 Conclusion

Non-commutative first-order EQ-logic

Motivation

Outline

1 Motivation

2 EQ-algebras

3 Propositional EQ-logics
Basic EQ-logic
Extensions
Prelinear EQ∆∆∆-logic

4 Predicate EQ-logic

5 Conclusion

Non-commutative first-order EQ-logic

Motivation

How did EQ-logic arise?

Motivation comes from G. W. Leibniz, L. Wittgenstein and
F. P. Ramsey. To develop logic on the basis of identity
(equality) as the principle connective.
Henkin’s type theory (higher ordered logic) was developed.
[L. Henkin, A theory of propositional types, Fundamenta
Math., 52: 323–344, (1963).]
A fully satisfactory logical calculus must be an equational
one.”

Classical equality-based logic:
[D. Gries, F. B. Schneider. Equational propositional logic.
Information Processing Letters, 53:145-152, 1995.]
[G. Tourlakis. Mathematical Logic. New York, J.Wiley &
Sons, 2008.]

Non-commutative first-order EQ-logic

Motivation

How did EQ-logic arise?

How could fuzzy logic be developed on the basis of fuzzy
equality?

Residuated lattice a↔ b = (a→ b) ∧ (b → a)
[V. Novák. On fuzzy type theory. Fuzzy Sets and Systems,
149:235-273, 2005.]
EQ-algebra
[M. Dyba and V. Novák. EQ-logics: Non-commutative
fuzzy logics based on fuzzy equality. Fuzzy Sets and
Systems, 2011, sv. 172, 13–32.]

[Dyba, M., Novák, V., EQ-logics with delta connective.
Iranian Journal of Fuzzy Systems, submitted.]

[V. Novák. EQ-algebra-based fuzzy type theory and ist
extensions. Logic Journal of the IGPL, 2011, 19, 512–542.]

Non-commutative first-order EQ-logic

EQ-algebras

Outline

1 Motivation

2 EQ-algebras

3 Propositional EQ-logics
Basic EQ-logic
Extensions
Prelinear EQ∆∆∆-logic

4 Predicate EQ-logic

5 Conclusion

Non-commutative first-order EQ-logic

EQ-algebras

Definition

Non-commutative EQ-algebra is the algebra

E = 〈E ,∧,⊗,∼,1〉

of type (2, 2, 2, 0)

(E1) 〈E ,∧,1〉 is a commutative idempotent monoid (i.e.
∧-semilattice with top element 1) with the ordering: a ≤ b
iff a ∧ b = a

(E2) 〈E ,⊗,1〉 is a monoid and ⊗ is isotone w.r.t. ≤

Non-commutative first-order EQ-logic

EQ-algebras

Definition

Non-commutative EQ-algebra is the algebra

E = 〈E ,∧,⊗,∼,1〉

of type (2, 2, 2, 0)

(E1) 〈E ,∧,1〉 is a commutative idempotent monoid (i.e.
∧-semilattice with top element 1) with the ordering: a ≤ b
iff a ∧ b = a

(E2) 〈E ,⊗,1〉 is a monoid and ⊗ is isotone w.r.t. ≤

Non-commutative first-order EQ-logic

EQ-algebras

Definition (continued)

(E3) a ∼ a = 1 (reflexivity)

(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) ≤ c ∼ (d ∧ b) (substitution)

(E5) (a ∼ b)⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d) (congruence)

(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a (monotonicity)

(E7) a⊗ b ≤ a ∼ b (boundedness)

Implication: a→ b = (a ∧ b) ∼ a

Non-commutative first-order EQ-logic

EQ-algebras

Definition (continued)

(E3) a ∼ a = 1 (reflexivity)

(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) ≤ c ∼ (d ∧ b) (substitution)

(E5) (a ∼ b)⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d) (congruence)

(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a (monotonicity)

(E7) a⊗ b ≤ a ∼ b (boundedness)

Implication: a→ b = (a ∧ b) ∼ a

Non-commutative first-order EQ-logic

EQ-algebras

Special EQ-algebras

EQ-algebra is
(a) good if a ∼ 1 = a
(b) residuated if

(a⊗ b) ∧ c = a⊗ b iff a ∧ ((b ∧ c) ∼ b) = a
(c) involutive if ¬¬a = a (IEQ-algebra)
(d) prelinear if for all a,b ∈ E sup{a→ b,b → a} = 1.
(e) lattice EQ-algebra if it is a lattice-ordered and for all

a,b, c,d ∈ E ((a ∨ b) ∼ c)⊗ (d ∼ a) ≤ (d ∨ b) ∼ c
(`EQ-algebra)

Non-commutative first-order EQ-logic

EQ-algebras

Special EQ-algebras

A lattice EQ∆-algebra (`EQ∆-algebra)
E∆ = 〈E ,∧,∨,⊗,∼,∆,0,1〉

〈E ,∧,∨,⊗,∼,0,1〉 is a good non-commutative and
bounded `EQ-algebra.

∆1 = 1
∆a ≤ ∆∆a
∆(a ∼ b) ≤ ∆a ∼ ∆b

∆(a ∧ b) = ∆a ∧∆b

∆a = ∆a⊗∆a
∆(a ∨ b) ≤ ∆a ∨∆b

∆a ∨ ¬∆a = 1
∆(a ∼ b) ≤ (a⊗ c) ∼ (b ⊗ c)

∆(a ∼ b) ≤ (c ⊗ a) ∼ (c ⊗ b)

Non-commutative first-order EQ-logic

EQ-algebras

Representation of `EQ∆-algebras

Lemma
If a good EQ-algebra E satisfies

(a→ b) ∨ (d → (d ⊗ (c → ((b → a)⊗ c)))) = 1 (1)

for all a,b, c,d ∈ E then it is prelinear.

Theorem
Let E∆ be `EQ∆-algebra. The following are equivalent:
(a) E∆ is subdirectly embeddable into a product of linearly

ordered good `EQ∆-algebras.
(b) E∆ satisfies (1).

Non-commutative first-order EQ-logic

Propositional EQ-logics

Outline

1 Motivation

2 EQ-algebras

3 Propositional EQ-logics
Basic EQ-logic
Extensions
Prelinear EQ∆∆∆-logic

4 Predicate EQ-logic

5 Conclusion

Non-commutative first-order EQ-logic

Propositional EQ-logics

Why EQ-logics

EQ-logics — special class of many-valued logics
truth values form an EQ-algebra

Equivalence as the basic connective instead of implication
Proofs in equational style
Even more general than MTL-logics

Non-commutative first-order EQ-logic

Propositional EQ-logics

Why EQ-logics

EQ-logics — special class of many-valued logics
truth values form an EQ-algebra

Equivalence as the basic connective instead of implication
Proofs in equational style
Even more general than MTL-logics

Non-commutative first-order EQ-logic

Propositional EQ-logics

Why EQ-logics

EQ-logics — special class of many-valued logics
truth values form an EQ-algebra

Equivalence as the basic connective instead of implication
Proofs in equational style
Even more general than MTL-logics

Non-commutative first-order EQ-logic

Propositional EQ-logics

Basic EQ-logic

Language

Propositional variables p1,p2, . . .

Connectives: ∧∧∧ (conjunction), &&& (fusion), ≡ (equivalence),
Logical constant > (true)

Implication:
A⇒⇒⇒ B := (A∧∧∧ B) ≡ A

Non-commutative first-order EQ-logic

Propositional EQ-logics

Basic EQ-logic

Language

Propositional variables p1,p2, . . .

Connectives: ∧∧∧ (conjunction), &&& (fusion), ≡ (equivalence),
Logical constant > (true)

Implication:
A⇒⇒⇒ B := (A∧∧∧ B) ≡ A

Non-commutative first-order EQ-logic

Propositional EQ-logics

Basic EQ-logic

Logical axioms

(EQ1) (A ≡ >) ≡ A
(EQ2) A∧∧∧ B ≡ B ∧∧∧ A
(EQ3) (A© B)© C ≡ A© (B© C), © ∈ {∧∧∧,&&&}
(EQ4) A∧∧∧ A ≡ A
(EQ5) A∧∧∧ > ≡ A
(EQ6) A&&&> ≡ A
(EQ7) >&&& A ≡ A

(EQ8a) ((A∧∧∧ B) &&& C)⇒⇒⇒ (B &&& C)

(EQ8b) (C &&&(A∧∧∧ B))⇒⇒⇒ (C &&& B)

(EQ9) ((A∧∧∧ B) ≡ C) &&&(D ≡ A)⇒⇒⇒ (C ≡ (D ∧∧∧ B)) (substitution)
(EQ10) (A ≡ B) &&&(C ≡ D)⇒⇒⇒ (A ≡ C) ≡ (B ≡ D) (congruence)
(EQ11) (A⇒⇒⇒ (B ∧∧∧ C))⇒⇒⇒ (A⇒⇒⇒ B) (monotonicity)

Non-commutative first-order EQ-logic

Propositional EQ-logics

Basic EQ-logic

Inference rules

Equanimity rule
From A and A ≡ B infer B

Leibniz rule
From A ≡ B infer C[p := A] ≡ C[p := B]

C[p := A] denotes a formula resulting from C by replacing all
occurrences of a variable p in C by the formula A.

Non-commutative first-order EQ-logic

Propositional EQ-logics

Basic EQ-logic

Semantics

Truth values
The set of truth values is a good non-commutative EQ-algebra
E = 〈E ,∧,⊗,∼,1〉

Theorem (Completeness)
For every formula A ∈ FJ the following is equivalent:
(a) ` A
(b) e(A) = 1 for every truth evaluation e : FJ −→ E and every

good non-commutative EQ-algebra E .

Non-commutative first-order EQ-logic

Propositional EQ-logics

Basic EQ-logic

Semantics

Truth values
The set of truth values is a good non-commutative EQ-algebra
E = 〈E ,∧,⊗,∼,1〉

Theorem (Completeness)
For every formula A ∈ FJ the following is equivalent:
(a) ` A
(b) e(A) = 1 for every truth evaluation e : FJ −→ E and every

good non-commutative EQ-algebra E .

Non-commutative first-order EQ-logic

Propositional EQ-logics

Extensions

Other EQ-logics

Involutive EQ-logic (with double negation)
Prelinear EQ-logic (stronger variant of the completeness
theorem)
EQ(MTL)-logic (equivalent with MTL-logic)

Not strong enough for development of the predicate EQ-logic!

Basic EQ∆∆∆-logic (weaker variant of the completeness
theorem)
Prelinear EQ∆∆∆-logic

Theorem (Deduction)
For each theory T and formulas A,B,C ∈ FJ :
T ∪ {A ≡ B} ` C iff T `∆∆∆(A ≡ B)⇒⇒⇒ C

Non-commutative first-order EQ-logic

Propositional EQ-logics

Extensions

Other EQ-logics

Involutive EQ-logic (with double negation)
Prelinear EQ-logic (stronger variant of the completeness
theorem)
EQ(MTL)-logic (equivalent with MTL-logic)

Not strong enough for development of the predicate EQ-logic!

Basic EQ∆∆∆-logic (weaker variant of the completeness
theorem)
Prelinear EQ∆∆∆-logic

Theorem (Deduction)
For each theory T and formulas A,B,C ∈ FJ :
T ∪ {A ≡ B} ` C iff T `∆∆∆(A ≡ B)⇒⇒⇒ C

Non-commutative first-order EQ-logic

Propositional EQ-logics

Extensions

Other EQ-logics

Involutive EQ-logic (with double negation)
Prelinear EQ-logic (stronger variant of the completeness
theorem)
EQ(MTL)-logic (equivalent with MTL-logic)

Not strong enough for development of the predicate EQ-logic!

Basic EQ∆∆∆-logic (weaker variant of the completeness
theorem)
Prelinear EQ∆∆∆-logic

Theorem (Deduction)
For each theory T and formulas A,B,C ∈ FJ :
T ∪ {A ≡ B} ` C iff T `∆∆∆(A ≡ B)⇒⇒⇒ C

Non-commutative first-order EQ-logic

Propositional EQ-logics

Prelinear EQ∆∆∆-logic

Prelinear EQ∆∆∆-logic

Language
The language of basic EQ-logic extended by unary connective
∆∆∆, binary connective ∨∨∨ and logical constant ⊥.
Negation ¬A := A ≡ ⊥

Axioms (EQ1)–(EQ11) and
((((A∧∧∧B)∨∨∨C) ≡ D) &&&(F ≡ C)) &&&(E ≡ A)⇒⇒⇒ (D ≡ (F∨∨∨(B∧∧∧E)))

(EQ12) (A∨∨∨ B)∨∨∨ C ≡ A∨∨∨ (B ∨∨∨ C)

(EQ13) A∨∨∨ (A∧∧∧ B) ≡ A

(EQ14) (A∧∧∧ ⊥) ≡ ⊥

(EQ15) (A⇒⇒⇒ B)∨∨∨ (D⇒⇒⇒ (D &&&(C⇒⇒⇒ ((B⇒⇒⇒ A) &&& C))))

Non-commutative first-order EQ-logic

Propositional EQ-logics

Prelinear EQ∆∆∆-logic

Prelinear EQ∆∆∆-logic

Language
The language of basic EQ-logic extended by unary connective
∆∆∆, binary connective ∨∨∨ and logical constant ⊥.
Negation ¬A := A ≡ ⊥

Axioms (EQ1)–(EQ11) and
((((A∧∧∧B)∨∨∨C) ≡ D) &&&(F ≡ C)) &&&(E ≡ A)⇒⇒⇒ (D ≡ (F∨∨∨(B∧∧∧E)))

(EQ12) (A∨∨∨ B)∨∨∨ C ≡ A∨∨∨ (B ∨∨∨ C)

(EQ13) A∨∨∨ (A∧∧∧ B) ≡ A

(EQ14) (A∧∧∧ ⊥) ≡ ⊥

(EQ15) (A⇒⇒⇒ B)∨∨∨ (D⇒⇒⇒ (D &&&(C⇒⇒⇒ ((B⇒⇒⇒ A) &&& C))))

Non-commutative first-order EQ-logic

Propositional EQ-logics

Prelinear EQ∆∆∆-logic

Prelinear EQ∆∆∆-logic

Axioms (continued)

(EQ∆∆∆1) ∆∆∆A⇒⇒⇒∆∆∆∆∆∆A

(EQ∆∆∆2) ∆∆∆(A ≡ B)⇒⇒⇒ (∆∆∆A ≡∆∆∆B)

(EQ∆∆∆3) ∆∆∆(A∧∧∧ B) ≡ (∆∆∆A∧∧∧∆∆∆B)

(EQ∆∆∆4) ∆∆∆A ≡ (∆∆∆A&&& ∆∆∆A)

(EQ∆∆∆5) ∆∆∆(A∨∨∨ B)⇒⇒⇒ (∆∆∆A∨∨∨∆∆∆B)

(EQ∆∆∆6) ∆∆∆A∨∨∨ ¬∆∆∆A

(EQ∆∆∆7) ∆∆∆(A ≡ B)⇒⇒⇒ ((A&&& C) ≡ (B &&& C))

(EQ∆∆∆8) ∆∆∆(A ≡ B)⇒⇒⇒ ((C &&& A) ≡ (C &&& B))

Non-commutative first-order EQ-logic

Propositional EQ-logics

Prelinear EQ∆∆∆-logic

Prelinear EQ∆∆∆-logic

Inference rules
Equanimity rule
Leibniz rule
Necessitation rule

From A infer ∆∆∆A

Semantics
An `EQ∆-algebras in which (1) is satisfied.

Non-commutative first-order EQ-logic

Propositional EQ-logics

Prelinear EQ∆∆∆-logic

Prelinear EQ∆∆∆-logic

Inference rules
Equanimity rule
Leibniz rule
Necessitation rule

From A infer ∆∆∆A

Semantics
An `EQ∆-algebras in which (1) is satisfied.

Non-commutative first-order EQ-logic

Propositional EQ-logics

Prelinear EQ∆∆∆-logic

Prelinear EQ∆∆∆-logic

Theorem (Completeness)
For every formula A ∈ FJ and every theory T the following is
equivalent:
(a) T ` A
(b) e(A) = 1 for every truth evaluation e : FJ −→ E and every

linearly ordered, `EQ∆-algebra E .
(c) e(A) = 1 for every truth evaluation e : FJ −→ E and every

`EQ∆-algebra E satisfying (1).

Non-commutative first-order EQ-logic

Predicate EQ-logic

Outline

1 Motivation

2 EQ-algebras

3 Propositional EQ-logics
Basic EQ-logic
Extensions
Prelinear EQ∆∆∆-logic

4 Predicate EQ-logic

5 Conclusion

Non-commutative first-order EQ-logic

Predicate EQ-logic

Syntax

Language
Object variables x , y ,
Set of object constants Const = {u,v, . . . }.
Non-empty set of n-ary predicate symbols
Pred = {P,Q, . . . }.
Binary connectives ∧∧∧,∨∨∨,&&&,≡ and unary connective ∆∆∆.
Logical (truth) constants > (true) and ⊥ (false).
Quantifiers ∀,∃.
Auxiliary symbols: brackets.

Non-commutative first-order EQ-logic

Predicate EQ-logic

Syntax

Terms
Object variables and object constants are terms.

Formulas
If P is an n-ary predicate symbol and t1, . . . , tn are terms
then P(t1, . . . , tn) is atomic formula.
Logical constants > and ⊥ are (atomic) formulas.
If A,B are formulas then A∧∧∧ B,A∨∨∨ B,A&&& B,A ≡ B,∆∆∆A are
formulas.
If A is formula and x is an object variable then (∀x)A, (∃x)A
are formulas.

Non-commutative first-order EQ-logic

Predicate EQ-logic

Semantics

Structure for language J

ME = 〈M, E , {rP}P∈Pred , {mu}u∈Const〉

E = 〈E ,∧,∨,⊗,∼,∆,0,1〉 is a non-commutative linearly
ordered `EQ∆-algebra,
rP : Mn −→ E is n-ary relation,
mu ∈ M.

Non-commutative first-order EQ-logic

Predicate EQ-logic

Interpretation of terms and formulas

v — assignment of elements from M to variables
ME

v (x) = v(x),ME
v (u) = mu,

ME
v (P(t1, . . . , tn)) = rP(ME(t1), . . . ,ME(tn)),

ME
v (A∧∧∧ B) =ME

v (A) ∧ME
v (B),

ME
v (A∨∨∨ B) =ME

v (A) ∨ME
v (B),

ME
v (A&&& B) =ME

v (A)⊗ME
v (B),

ME
v (A ≡ B) =ME

v (A) ∼ME
v (B),

ME
v (∆∆∆A) = ∆ME

v (A),ME
v (>) = 1,ME

v (⊥) = 0,

ME
v ((∀x)A) = inf{ME

v ′(A) | v ′ = v \ x},
ME

v ((∃x)A) = sup{ME
v ′(A) | v ′ = v \ x}

Non-commutative first-order EQ-logic

Predicate EQ-logic

Logical Axioms

(EQ1)–(EQ15), (EQ∆1)–(EQ∆8) plus

(EQ∀1) (∀x)A(x)⇒⇒⇒ A(t) (t substituable for x in A(x)),
(EQ∃1) A(t)⇒⇒⇒ (∃x)A(x) (t substituable for x in A(x)),
(EQ∀2) ∆∆∆(∀x)(A⇒⇒⇒ B)⇒⇒⇒ (A⇒⇒⇒ (∀x)B) (x not free in A),
(EQ∃2) (∀x)(A⇒⇒⇒ B)⇒⇒⇒ ((∃x)A⇒⇒⇒ B) (x not free in B),
(EQ∀3) (∀x)(A∨∨∨ B)⇒⇒⇒ ((∀x)A∨∨∨ B) (x not free in B),

Non-commutative first-order EQ-logic

Predicate EQ-logic

Inference Rules

Equanimity rule
Leibniz rule

From A ≡ B infer C[p := A] ≡ C[p := B],

provided that the subformula p is not in the scope of a
quantifier in C.
Necessitation rule
Rule of Generalization

From A infer (∀x)A

Non-commutative first-order EQ-logic

Predicate EQ-logic

Model

Definition

StructureME is a model of a theory T ifME
v (A) = 1 holds for

all axioms A of T .

Non-commutative first-order EQ-logic

Predicate EQ-logic

Main properties

Lemma
(i) ` (∀x)(A⇒⇒⇒ B) ≡ (A⇒⇒⇒ (∀x)B), x not free in A

(ii) ` (∀x)(B⇒⇒⇒ A) ≡ ((∃x)B⇒⇒⇒ A), x not free in A
(iii) `∆∆∆(∀x)(A⇒⇒⇒ B)⇒⇒⇒ ((∀x)A⇒⇒⇒ (∀x)B)

(iv) ` (∀x)(A⇒⇒⇒ B)⇒⇒⇒ ((∃x)A⇒⇒⇒ (∃x)B)

Theorem (Deduction)
For each theory T , closed formulas A,B and arbitrary formula
C:

T ∪ {A ≡ B} ` C iff T `∆∆∆(A ≡ B)⇒⇒⇒ C.

Non-commutative first-order EQ-logic

Predicate EQ-logic

Completeness

Definition

(i) Theory T is consistent if there is a formula A unprovable in
T .

(ii) T is linear (complete) if for every two formulas A,B,
T ` A⇒⇒⇒ B or T ` B⇒⇒⇒ A.

(iii) T is extensionally complete if for every closed formula
(∀x)(A(x) ≡ B(x)), T 6` (∀x)(A(x) ≡ B(x)) there is a
constant u such that T 6` (Ax [u] ≡ Bx [u])

Non-commutative first-order EQ-logic

Predicate EQ-logic

Completeness

Theorem
Every consistent theory T can be extended to a maximally
consistent linear theory.

Theorem
Every consistent theory T can be extended to an extensionally
complete consistent theory T .

Non-commutative first-order EQ-logic

Predicate EQ-logic

Completeness

Theorem (Completeness)
(a) A theory T of the predicate first-order EQ-logic is consistent

iff it has a safe modelM.
(b) T ` A iff T |= A

Non-commutative first-order EQ-logic

Conclusion

Outline

1 Motivation

2 EQ-algebras

3 Propositional EQ-logics
Basic EQ-logic
Extensions
Prelinear EQ∆∆∆-logic

4 Predicate EQ-logic

5 Conclusion

Non-commutative first-order EQ-logic

Conclusion

Conclusion

Formal system of predicate EQ-logic with equivalence as
main connective was developed.
∆-connective (deduction theorem) is indispensable for
development of the first-order EQ-logic.

Current and future work:
To extend the language of the predicate EQ-logic by the
functional symbols and symbol .

= for fuzzy equality
between objects.
To prepare a software (based on differential evolution) that
finds examples of EQ-algebras with given properties.

Non-commutative first-order EQ-logic

Conclusion

Thank you for your attention.

	Motivation
	EQ-algebras
	Propositional EQ-logics
	Basic EQ-logic
	Extensions
	Prelinear EQ- .4 -logic

	Predicate EQ-logic
	Conclusion

