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PRESENTATION  PLAN 
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 Theory of Elastica 

 Equation  

 - derivation of equation describing the beam  

 - derivation of equation of motion for  

   mathematical pendulum 

  - equations analogy 

 Solution 

  - analytic solution of linearized equation  

 - numerical solution 

  - categories of solution 

   

 Application in tension 



THEORY OF ELASTICA 
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 James Bernouli 1691 

 Leonard Euler 1744 

 Equation of Elastica:     x´´ + c.sin(x) = 0 

 

 Number of different aspects: 

 Mechanical equilibrium 

 Problem of the calculus of variations 

 Solution to elliptic integrals 

 Analogies with physical systems: 

 Bending beam 

 Motion of mathematic pendulum 

 Surface of capillary curve 

 



ORIGINAL PURPOSE 

Describe behavior of straight elastic 

column of length AB=L 

End is A fixed and end B is loaded by 

force F  

 

Assuming: 

 - bending stiffness EI is constant 

 - force F is constant  and works only in 

vertical direction 

 - self weight of beam is insignificant 
 

In contrast to theory of linear elasticity 

we allow unlimited deformation of 

beam. 
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DERIVATION OF EQUATION DESCRIBING THE 

BEAM 
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start from definition of derivative of bending moment: 

𝜕𝑀(𝑠)

𝜕𝑠
=

𝑀 𝑠+𝑑𝑠 −𝑀(𝑠)

𝑑𝑠
=

𝐹. 𝑟−𝑑𝑦  −𝐹𝑟

𝑑𝑠
= −𝐹

𝜕𝑦

𝜕𝑠
 

Where bending moment cam be expressed: 𝑀 = 𝐸𝐼𝜅 = 𝐸𝐼
𝜕𝜑

𝜕𝑠
,    

from geometrical situation  
𝜕𝑦

𝜕𝑠
= sin(𝜑) 

  
𝜕2𝜑

𝜕𝑠2 + 𝑐1 sin 𝜑 = 0    

Where  𝑐1 =
𝐹

𝐸𝐼
= 𝑐𝑜𝑛𝑠𝑡. 

conditions:  

𝜑 0 = 0   no angular rotation in fixed end 

𝑀 𝐿 = 0 ⇒  𝜕𝜑

𝜕𝑠
 

(𝐿)
= 0  no moment in free end 

   For numerical solution we need to have initial conditions. We set initial 

curvature   
𝜕𝜑

𝜕𝑠
 

(0)
= 𝜑′0 = 𝜅0. 



 

THE SAME BY USING GÂTEAUX’S DIFERENTIAL: 

6 

Potential energy: 

 E𝑃 𝜑 =
1

2
 𝐸𝐼(𝜑′)2d𝑠

𝐿

0
+ F  cos 𝜑 d𝑠

𝐿

0
 

Gâteaux’s diferential: 

 δE𝑃 𝜑, δ𝜑 = 0     ∀𝜑 𝑠 ;  𝜑(0) = 0 

 

  
𝜕2𝜑

𝜕𝑠2 + 𝑐1 sin 𝜑 = 0    

Where  𝑐1 =
𝐹

𝐸𝐼
= 𝑐𝑜𝑛𝑠𝑡. 

conditions:  

𝜑 0 = 0  

 𝜕𝜑

𝜕𝑠
 

(𝐿)
= 0  

 

 



DERIVATION OF EQUATION OF MOTION FOR 

MATHEMATICAL PENDULUM 

7 

 

Gravity force 𝐺  

→ force in the rope 𝑇 

→ force in the direction of motion 𝐹 

       𝐹 = −𝑚𝑔 sin(𝜑) 

 

Application of 2nd Newton’s law: 

     
𝑑2𝜑

𝑑𝑡2 + 𝑐2 sin 𝜑 = 0  

Where  𝑐2 =
𝑔

𝑙
= 𝑐𝑜𝑛𝑠𝑡. 

Initial conditions:  

 𝜑 0 = 𝜑0 = 0 

 𝑣 0 =  𝜕𝜑

𝜕𝑡
 

(0)
= 𝑣0 



 

THE SAME BY ENERGY BALANCE: 

8 

       𝐸𝑘𝑚𝑎𝑥
= 𝐸𝑝𝑚𝑎𝑥

  

   
1

 2
𝑚𝑣𝑚𝑎𝑥 = 𝑚𝑔ℎ 

   ⇒ 𝑙
𝑑𝜑

𝑑𝑡
= 𝑣 = ± 2𝑔ℎ ,  ℎ = 𝑙 cos𝜑0 − cos𝜑  

   ⇒
𝑑𝜑

𝑑𝑡
=  

2𝑔

𝑙
 cos𝜑0 − cos𝜑    

   
𝑑2𝜑

𝑑𝑡2 =
−

2𝑔

𝑙
sin 𝜑

2 
2𝑔

𝑙
 cos 𝜑0−cos 𝜑 

.
𝑑𝜑

𝑑𝑡
  

     
𝑑2𝜑

𝑑𝑡2 +
𝑔

𝑙
sin𝜑 = 0  

Initial conditions:  

  𝜑 0 = 𝜑0 = 0 

  𝑣 0 =  𝜕𝜑

𝜕𝑡
 

(0)
= 𝑣0 

 



EQUATIONS ANALOGY : 
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Bending beam: 
 

Equation: 
𝜕2𝜑(𝑠)

𝜕𝑠2
+ 𝑐1 sin 𝜑 = 0 

 
Constant: 

𝑐1 =
𝑚𝑔

𝐸𝐼
         𝑚−2  

 
Initial conditions: 

𝜑 0 = 0 
 

 𝜕𝜑

𝜕𝑠
 

(0)
= 𝜅0 

 

Mathematical pendulum: 
 

Equation: 
𝑑2𝜑(𝑡)

𝑑𝑡2
+ 𝑐2 sin 𝜑 = 0 

 
Constant: 

𝑐2 =
𝑔

𝑙
         𝑠−2  

 
Initial conditions: 

𝜑 0 = 0 
 

 𝜕𝜑

𝜕𝑡
 

(0)
= 𝑣0 

 

 



SOLUTION OF LINEARIZED EQUATION: 
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 𝜑 → 0 

sin 𝜑 ≅ 𝜑      

 

 𝜑′ ′ + 𝑐 sin𝜑 = 0       →           𝜑′′ + 𝑐𝜑 = 0 

 

 → Equation of harmonic oscillator 

     Analytic solution: 𝜑 𝑥 = 𝐴1cos  𝑐 𝑥 + 𝐴2sin  𝑐 𝑥 .  

 

 



NUMERICAL SOLUTION 
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1st Caregory 

𝜅0 = 0,01 𝜅0 = 0,1 𝜅0 = 0,14 
 

2nd Caregory 

𝜅0 = 0,16 𝜅0 = 0,18 𝜅0 = 0,19 
 

3rd Caregory 

𝜅0 = 0,201 𝜅0 = 0,25 

 
𝜅0 > 𝜅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  

 
 beam of infinite length 

 



SUMMARY OF SOLUTION CATEGORIES 

12 

1st Caregory 
𝜅0

2 < 2𝑐 
 

𝜑 𝐿 <
𝜋

2
 

  

1-2: 
𝜅0

2 = 2𝑐 
 

𝜑 𝐿 =
𝜋

2
 

 

2nd Caregory 
𝜅0

2 ∈  2𝑐, 4𝑐  
 

𝜑 𝐿 ∈  
𝜋

2
, 𝜋  

 
2-3: 

𝜅0
2 = 4𝑐 

 
𝜑 𝐿 = 𝜋 

 
infinite length  

3rd Caregory 
𝜅0

2 > 4𝑐 
 

infinite length 
 

 



COLAPS UNDER TENSILE LOAD: 
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[1] Zaccaria, D.; Bigoni, D.; Noselli, G.; Misseroni, D.:  

Structures buckling under tensile dead load. Proceedings of 

the Royal Society A, 2011 
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SYSTEM INSTABILITY IN TENSION: 
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Totally stiff bars with rotation spring: 

 

𝐸 𝜑 =
1

2
𝑘𝜑2 − 2𝐿𝐹  

1

cos 𝜑
− 1   

 

when 
𝑑𝐸 𝜑 

𝑑𝜑
= 0 ⇒ 𝐹 =

𝑘

2𝐿

𝜑cos 2𝜑

sin 𝜑
 

 

Critical force: 𝐹𝐶𝑅 =
𝑘

2𝐿
 



ELASTICA IN TENSION : 
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Bars with bending stiffness 𝐸𝐼 

Coordinate origin in a 

 

      
𝜕2𝜑(𝑠)

𝜕𝑠2 −
 𝑅 

𝐸𝐼
sin 𝜑 = 0   𝑅 = 𝐹cos 𝜑 𝑙   

 

Conditions:  𝜑 0 = 0  but 𝜑′ (𝑙) ≠ 0 

 

From the moment equilibrium: 

 𝑀 0 + 𝑀 𝑙 + 𝑅𝑦 𝑙 = 0  

   ⇒ 𝜑′ (𝑙) = 𝜅 𝑙 = −𝜅0 −
𝐹

𝐸𝐼
cos 𝜑 𝑙   

 



SOFTENING: 
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Rotation of slider 𝜑 𝑙        relative displacement 𝜀 =
∆𝑙

2𝑙
=

𝑥(𝑙)

𝑙 cos (𝜑)
  



CONCLUSION: 
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 New phenomenon – instability and collapse in tension 

 

 Theory of elascica can be applied to solve this problem 
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Thank you for your attention 

 

 

 

 

 

 

 


