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Visual Loss is the Most Feared Disease
in the Elderly

tunnel vision

hemianopia

• 19% of persons > 70 yrs
have visual impairments

• causes:
• age-related macular

degeneration (AMD)
• glaucoma
• diabetic retinopathy
• stroke and trauma
• optic nerve damage
• retinitis pigmentosa
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Schematic Overview of Visual Field Defects
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Visual Pathway
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Low Vision after Brain Damage
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Low Vision after Brain Damage
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Visualization of Residual Functions
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Stimulation-induced Synchronization
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Repetitive Transorbital AC Stimulation (rtACS)

• placing non-invasive electrodes at eye or skull
• rtACS with low current stimulation (< 1 mA, 10− 30 Hz)
• 20-40 min daily for approx. 10 days
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Synaptic Transmission after Partial Damage
Before rtACS
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Synaptic Transmission after Partial Damage
After rtACS
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Visual Fields in Optic Nerve Lesion after rtACS
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Challenge: Electroencephalogram (EEG)

Figure: Left: Vision restoration therapy using alternating current.
Right: Typical raw data (28 EEG channel).

• 25 subjects: each EEG has been filtered by common filters
• hypothesis: pairwise channel similarity contains useful

information (Sporns 2010)
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Scope and Goal of my Work

• scope: complex networks in real-world applications

• status quo: data mining and network theory studied separately

• research goal: interdisciplinary research by combining
techniques

• focus: analysis of dynamic neuroimaging networks

• applications: clinical decision support systems, exploration of
dynamic in complex networks
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Cortical Connectivity Maps
Stephan et al. 2000
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fMRI Graphs
Bullmore, Barnes, et al. 2009
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Brain Network Analysis
Bullmore and Sporns 2009
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Brain Connectivity
Sporns 2007

• anatomical links vs. statistical dependencies vs. causal
interactionsChristian Moewes Graph Analysis of Brain Networks Malenovice, May 11, 2012 15 / 65
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Data

• today: companies/institutes maintain huge databases

⇒ gigantic archives of tables, documents, images, sounds

• “If you have enough data, you can solve any problem!”

• in large databases: can’t see the wood for the trees

• patterns, structures, regularities stay undetected

• finding patterns and exploit information is fairly difficult

We are drowning in information but starved for
knowledge. [John Naisbitt]
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Knowledge Discovery in Databases

• actually, abundance of data

• lack of tools transforming data
into knowledge

⇒ research area: knowledge
discovery in databases (KDD)

• nontrivial process of identifying
valid, novel, potentially useful,
and ultimately understandable
patterns in data

• one step in KDD: data mining Miner VGA (1989) screenshot
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Data Mining Tasks
• classification

Is this patient a responder or non-responder?

• segmentation, clustering
What groups of patients do I have?

• concept description
Which properties characterize verum patients?

• prediction
How much will the patient improve his/her vision?
Which current and frequency must be applied?

• dependence/association analysis
Which EEG waves of verum patients occur together
frequently?
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CRISP-DM
CRoss Industry Standard Process for Data Mining
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Outlook: Find Frequent Patterns in Raw EEG

Which EEG waves occur together frequently?

• every wave = shopping item

• EEG recording = market basket

• frequent patterns = frequent item sets

• association rule learning
c© (2008) Rapid-I GmbH
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EEG Similarity: Synchronization likelihood
Stam and Dijk (2002); Montez et al. (2006)

time-delay embedding: Xi,k =
(

xi,k , xi+L,k , xi+2·L,k , . . . , xi+(m−1)·L,k

)
• consider only 2 channels A,B
• probability that Xi,k ≤ ε:

Pε
i,k =

1
2(W2 −W1)

N∑
j

W1<|i−j|W2

θ(ε− d(Xi,k ,Xj,k ))

Hi,j = θ(εi,A − d(Xi,A,Xj,A)) + θ(εi,B − d(Xi,B ,Xj,B))

SLi =
1

2pref(W2 −W1)

N∑
j

W1<|i−j|W2

(Hi,j − 1)

• parameters m, L,W1,W2, pref can be estimated
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State Vectors and SL Parameters
Montez et al. (2006)
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SL of 2 Channels
Montez et al. (ibid.)
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From EEG to Dynamic Graphs
δ: deep sleep θ: drowsiness/arousalα: relaxed/reflecting

β: alert/working γ: cognitive functionsµ: RS motor function

• dynamic graphs of common human EEG frequency bands
• edge width/color represents SL ∈ [0,1]
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Dynamic Graphs

Q: What can change over time?

A: Everything ;-)

four categories (Harary and Gupta 1997):
• vertex-dynamic graph: vertices can be added/removed
• edge-dynamic graph: edges can be added/deleted
• vertex weighted dynamic graph: weights on vertices can

change
• edge weighted dynamic graph: edge weights can change

needed: informative graph measures
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Graph Measures
(Steen 2010)

• degree of v ∈ V : δ(v)
def
= |N(v)|

for weighted G: δ(v)
def
=
∑

u∈N(v) w(〈u, v〉)

• gu↔v : shortest path (geodesic) between u, v

• distance d between u, v : d(u, v)
def
=
∑

e∈gu↔v
w(e)

• diameter �(G) = maxu,v∈V (G) d(u, v)
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Graph Measures
(Latora and Marchiori 2001)

• efficiency of vertex u:

η(u) =
∑

v∈V ,v 6=u

1/d(u,v)

• global efficiency of G:

η̄(G)
def
=

1
|V |

∑
u∈V

η(u)

• local efficiency of G:

η̄loc(G)
def
=

1
|V |

∑
u∈V

η̄(G[{u} ∪ N(u)])
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Neural Networks of C. Elegans
(Watts and Strogatz 1998)
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source: http://blog.neuinfo.org

• Caenorhabditis elegans
• 302 neurons, approx. 7.000 synapses
• Sydney Brenner (Nobel Prize in Medicine 2002)
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Example: C. elegans
(ibid.)

dactual drandom cactual crandom

C. elegans 2.65 2.25 0.28 0.05
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Dynamic Graph Analysis

source: (Desikan and Srivastava 2004)

• ARMA models of graphs:
anomaly detection
(Pincombe 2005),
feature selection (Moewes,
Kruse, et al. 2012)

• VAR models of graphs:
feature selection (Moewes
and Kruse 2012)
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Graph Models
(Erdős and Rényi 1960)

regular small-world random
high L, high C low L, high C low L, low C

increasingly random connectivity

• edge is added with prob. p independently from other edge
• graphs with n vertices and m edges have equal probability of

pm(1− p)(n
2)−m

• algorithmic models to construct graphs: (Watts and Strogatz
1998) and (Barabási and Albert 1999)
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Time Series Model for Graph Measures

goal: find coherence between dynamic functional networks and
clinical variables from patients with visual field defects

• networks have been created by synchronization likelihood
⇒ series of weighted networks
• every graph was described by several graph measures
⇒ time series of graph measures
• fitted time series model for each patient
• model parameters have been correlated to clinical variables
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(Vector) Autoregressive Model
Box, Jenkins, Reinsel (2008)

AR(p) model
xt = εt +

p∑
i=1

aixt−i

multivariate case: VAR(p)

~xt = ~c +
p∑

i=1

Ai~xt−i + ~εt
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Example: Time Series of Graph Measures

Figure: Blue: Original graph measures. Red: Fitted graph measures.

measures for VAR(1) model: density, global efficiency, diameter
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Experiment

given:
• VAR models for each subject (and for each frequency band)
• 6 clinical variables

goal:
• VAR coefficients↔ clinical variables
• e.g. linear regression
• here, ridge regression with α ∈ [0.1,0.2, . . . ,0.9,1]

• parameter search: leave-one-out cross-validation
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Results
evaluated by score coefficient

R2 = 1− MSE
res

whereas MSE =
∑n

i=1(xi − x ′i )2 and res =∑n
i=1(xi − x̄)2

best score R2 = 1 (the lower, the worse)

variable δ θ α β γ µ

# white .198 .727 .715 .276 .207 .370
# gray .193 .101 .156 .240 .273 .189

# black .226 .605 .692 .328 .269 .400
# white (CMF) .179 .698 .608 .288 .232 .338
# gray (CMF) .177 .105 .183 .446 .185 .226

# black (CMF) .206 .630 .696 .311 .273 .364
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Summary

• still unknown: whether EEG features can describe damages of
human visual system

• goal of this study: find suitable network measures and clinical
features

• static analysis (Held et al. 2012), dynamic analysis (Moewes,
Kruse, et al. 2012)

• most informative frequency bands: δ and αband
• most informative clinical variables: proportion of intact and

absolutely defected sectors
• features will be used in future work
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Periodic Subgraph Mining
Lahiri and Berger-Wolf (2010)

• periodic subgraph mining: discovery of all interactions that
occur at regular intervals in dynamic networks

• interactions occur at discrete instances over period of time
• objects of interest: graph edges and how they change over

time
• focus: finding periodically occurring interaction patterns in

dynamic networks
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Approach

• synthesis of two different data mining problems:
• frequent pattern mining in transactional DB
• periodic pattern mining in n-dimensional sequence

• combination characterizes periodic behavior in dynamic
networks
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Some Definitions

• dynamic network G of T points in time
• for arbitrary graph F = (V ,E), its support set S(F ) in G is set

of points in time t in G where F is subgraph of Gt , F ⊆ Gt

• support of F is cardinality of its support set, |S(F )|:

S(F ) = {ti , . . . , tj} s.t. ∀(t ∈ S(F )⇔ F ⊆ Gt )

• F is frequent subgraph of G if |S(F )| ≥ σ where 1 ≤ σ ≤ T
• F (σ) is set of all frequent subgraphs at minimum support σ
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Maximal and Closed Subgraphs

• subgraph is maximal if there is no subgraph that can be
derived from it

• subgraph F ∈ F (σ) is closed if it is maximal at some support
σ′ > σ

• closed and maximal subgraphs reduce size of F (σ)
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Frequent and Periodic Subgraphs
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Figure: using σ = 3,
{(1,2), (1,3)} is frequent but not periodic while {(1,4), (1,5)} is both
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Periodic Subgraph Embedding

• PSE of arbitrary subgraph F ⊆ G is maximal, ordered set of
points in time s.t. difference between points in time is constant

SP(F ) = 〈t : F ⊆ Gt〉 whereas ∀i : ti+1 − ti = p

• p is period of F whereas F is periodic subgraph |SP(F )| ≥ σ
• every subgraph can have multiple periodic embeddings in G

with different positions, supports, etc.
• overlap can exist as long as support set is maximal
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Noisy Subgraphs

• noisy subgraph has some jitter for given period
• given jitter value of J ≥ 0

SP(F ) = 〈t : F ⊆ Gt〉 whereas ∀i : |t+1 − ti − p| ≤ J
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Purity Measure

• periodically recurring subgraph does not fully represent
interaction pattern that occurs periodically

• purity measure: how likely does periodic subgraph embedding
occur within its periodically predictable point in time

• ratio of periodic support to total support in [i , i + p(s − 1)]

purity(F ) =
s

|{t : F ⊆ Gt , i ≤ t ≤ i + p(s − 1)}|
• given subgraph F = (V ,E), average purity

avgPurity(F ) =
1
|E |

∑
e∈E

purity(e)
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Purity Measure
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Figure: periodic subgraph embedding with non-periodic occurrences,
purity = 3/5, average purity = 1/2(3/7 + 3/5) ≈ 0.51
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The Algorithm

• single-pass, polynomial time and space
• parameterless but accepts following:

• minimum support threshold σ ≥ 2 (default: 2)
• min and max period (Pmin and Pmax)
• max jitter in period J ≥ 0

• natural bound on max period if number of points in time is
finite and known beforehand
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Mining PSE Using a Pattern Tree

• crux of algorithm is pattern tree (record of what patterns are
periodic and could become periodic)

• pattern tree is updated on-the-fly after each point in time
• anything no longer periodic is removed
• each node in tree contains subgraph and descriptor for each

closed PSE
• descriptors are ordered pairs D = 〈S = SP(F ),p〉 where S is

periodic support set of embedding of F and p the period
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Pattern Tree

• pattern trees are subject to all descendants of node N
representing proper subgraphs of F

• pattern tree is traversed for each new observation
• so, if given node does not have common subgraph with any

other nodes, it will be removed
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Subgraph Hash Map

• associates arbitrary subgraph with its node in tree
• utilized by update algorithm
• offers efficient constant look-up time since each node label is

unique in each subgraph
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Update Algorithm

• start with empty pattern tree at time t , read next graph Gt from
input stream

• traverse pattern tree to update nodes with new info
• complete list of periodic subgraphs can be obtained from tree

at any point
• breadth first traversal of tree
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Details of the Algorithm

• update descriptors: if N is a subgraph of Gt , then N has
appeared in its entirety at point t

• for all descriptors D, if next(D) = t , then t is added to support
set

• if next(D) < t , descriptor is removed from tree
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Details of the Algorithm

• propagate descriptors: let C be subgraph of both N and Gt

• subgraph C of N is present at point t , and if N has any
descriptors D s.t. next(D) = t , then node for C receives copy
of D

• if node for C already exists, then child is created
• dead subtree: if C is empty, then Gt and N have no common

subgraph
• therefore, no child of N will have any common subgraph with

Gt either
• then, subtree at N can be removed
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Example: Pattern Tree
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Datasets

Dataset Vertices Length Avg. Density
Enron 82,614 2,588 0.028 ± 0.064
IMDB 15,011 13,967 0.22 ± 0.23

• Enron e-mails
• IMDB celebs: collect photographs of two or more people on

site ((1 d sampling rate)).
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Inherent Periodicity and Algorithm Tractability

• Enron and IMDB: attention is diverted to patterns with high
average purity (patterns which are likely to exhibit truly
periodic behavior)

• Enron: peak at 7 (weekly patterns)
• IMDB: peak at 364 (annual events)

• algorithm manages space and execution time easily
• however, unable to mine subgraphs with σ < 25 for Enron
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Examples of Interesting Periodic Subgraphs

• complex pattern from IMDB
photo database

• repeated approximately
every week (p = 7± 2)

• support is relatively low (3)
• non-trivial grouping of

people
• all contestants on weekly

reality TV show
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Examples of Interesting Periodic Subgraphs

• IMDB database: approx.
annually repeating pattern

• actresses in popular TV
show, fourth vertex is
spouse of one of actresses

• low average purity (0.4)
• non-trivial links indicate

show’s progression other
than co-starring
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Examples of Interesting Periodic Subgraphs

• highest periodic support in Enron dataset
• repeating every day for 84 consecutive days, including

weekends
• ∃ large number of similar periodic patterns in Enron:

one person emails group of people with periods from 1− 14 d
• weekly emails very popular
• can be used to infer functional communities
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Summary

• formalized solution for tackling periodic subgraph problem
• One pass, efficient algorithm
• demonstrated effectiveness on two real-world social networks
• all periodic patterns are mined
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Open Research

• probabilistic models of periodicity instead of strictly
combinatorial ones

• weighted edges instead of binary ones
• change of edge weight must be greater than some threshold
• application for brain networks

• interestingness of frequent patterns: usually
application-dependent

Christian Moewes Graph Analysis of Brain Networks Malenovice, May 11, 2012 61 / 65



Outline

1. Vision Restoration

2. Brain Connectivity

3. Data Mining

4. Model-based Analysis of Dynamic Brain Networks

5. Periodic Subgraph Mining

6. Conclusions and Future Work



Conclusions

• complex dynamic networks are ubiquitous

• usually, graphs are treated in static way

• networks typically change their structures in time

• focus: analysis of dynamic brain activity networks from EEG

• global approach: AR model for series of graph measurements

• local approach: periodic subgraph mining of dynamic networks
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Difficulties and Controversies
data preprocessing:

• removal of biological artifacts (electromyographic (EMG),
electrocardiograph (EKG))

• frequency bands (parallel graphs)

signal similarity: hundreds of methods possible...
same for graph similarity:

• edit distance
• maximum common subgraph distance
• kernel methods

time series representations:
• symbolic approximations (Moewes and Kruse 2009)
• pattern mining (Moewes and Mörchen 2012)
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Open Research Directions

• robust graph measures

• weighted subgraph mining

• association rule learning based on mined subgraphs

• rule-based systems for CDSS

• other social networks, e.g. Facebook, Twitter, functional
Magnetic Resonance Imaging (fMRI)
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Thank you very much for
your indulgence :-)
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