Cluster Analysis

Methods and Open Problems

Frank Klawonn

Institute of Applied Informatics, Department of Computer Science
Ostfalia University of Applied Sciences
Wolfenbuettel, Germany
f.klawonn@ostfalia.de

Bioinformatics & Statistics
Helmholtz Centre for Infection Research
Braunschweig, Germany
frank.klawonn@helmholtz-hzi.de

Frank Klawonn Cluster Analysis



v

What is cluster analysis?

v

Clustering Algorithms

v

Distance Measures

v

High-Dimensional Data

Frank Klawonn Cluster Analysis



What is cluster analysis?

Percentage of points achieved by students in mathematics (x) and
physics (y) exams
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What is cluster analysis?

Percentage of points achieved by students in mathematics (x) and
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What is cluster analysis?

A cluster (in a given data set) is a subset of data, so that the data
» within the cluster are “similar”

» and differ from the data outside the cluster.

Data inside a cluster should be homogeneous, data from different
clusters heterogeneous.
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What is cluster analysis?

Cluster Dendrogram
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What is cluster analysis?
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Goals of cluster analysis

v

Partition a given data set into clusters

v

Check whether related objects cluster together

v

Classify unknown objects

v

Find single “meaningful” clusters (and do not care about the
rest of the data)
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Clusters with noise
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Noise with clusters
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Hierarchical clustering

» Hierarchical clustering builds clusters step by step.

v

Usually a bottom up strategy is applied by first considering
each data object as a separate cluster and then step by step
joining clusters together that are close to each other. This
approach is called agglomerative hierarchical clustering.

> In contrast to agglomerative hierarchical clustering, divisive
hierarchical clustering starts with the whole data set as a
single cluster and then divides clusters step by step into
smaller clusters.

> In order to decide which data objects should belong to the
same cluster, a (dis-)similarity measure is needed.

» All that is needed for hierarchical clustering is an n x n-matrix
[di j], where d;; is the dissimilarity of data objects i and j. (n
is the number of data objects.)
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Hierarchical clustering: Dissimilarity matrix

The dissimilarity matrix [d; ;] should at least satisfy the following
conditions.
» d;j >0, i.e. dissimilarity cannot be negative.
» d; i =0, i.e. each data object is completely similar to itself.
» d;j = d;;, i.e. data object i is (dis-)similar to data object j to
the same degree as data object j is (dis-)similar to data object
I.

It is often useful if the dissimilarity is a (pseudo-)metric, satisfying
also the

» triangle inequality d; x < d;; + dj .
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Agglomerative hierarchical clustering: Algorithm

Input: n x n dissimilarity matrix [d; ].
1. Start with n clusters, each data objects forms a single cluster.

2. Reduce the number of clusters by joining those two clusters
that are most similar (least dissimilar).

3. Repeat step 3 until there is only one cluster left containing all
data objects.
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Measuring dissimilarity between clusters

» The dissimilarity between two clusters containing only one
data objects each is simply the dissimilarity of the two data
objects specified in the dissimilarity matrix [d} ;].

» How do we compute the dissimilarity between clusters that
contain more than one data object?
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Measuring dissimilarity between clusters

» Centroid (red)
Distance between the centroids (mean value vectors) of the
two clusters. (Requires that the data objects are numerical
vectors and that the distance matrix is based on the Euclidean
distance.)

» Average Linkage
Average dissimilarity between two points of the two clusters.

» Single Linkage (green)
Dissimilarity between the two most similar data objects of the
two clusters.

» Complete Linkage (blue)
Dissimilarity between the two most dissimilar data objects of
the two clusters.
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Measuring dissimilarity between clusters
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Measuring dissimilarity between clusters

» Single linkage can “follow chains” in the data
(may be desirable in certain applications).

» Complete linkage leads to very compact clusters.

> Average linkage also tends clearly towards compact clusters.
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Measuring dissimilarity between clusters
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Measuring dissimilarity between clusters

Ward's method is another strategy for merging clusters.

In contrast to single, complete or average linkage, it takes the
number of data objects in each cluster into account.
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Measuring dissimilarity between clusters

The updated dissimilarity between the newly formed cluster
{CUC'} and the cluster C” is computed in the follwing way.

d{cuc’h,c”y = ..

single linkage = min{d’(C,C"),d"(C’,C")}
complete linkage = max{d’(C,C"),d"(C’,C")}

/ " / ! / 11
average linkage = Cld'(¢,C7) + |C]d'(C,CT)

ICl +IC’]
Ward _ (elf+1e"hd'(c,c”) + (I + 1€ Dd"(c’,€") — |c"]d"(C, C")
- ICl+C'[+ |
. . 1
centroid (metric) = o Z Z d(x,y)
xeCUC’ yec””
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» The cluster merging process arranges the data points in a
binary tree.

» Draw the data tuples at the bottom or on the left
(equally spaced if they are multi-dimensional).

» Draw a connection between clusters that are merged, with the
distance to the data points representing the distance between
the clusters.
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Hierarchical clustering

» Example: Clustering of the 1-dimensional data set
{2,12,16,25,29,45}.

> All three approaches to measure the distance between clusters
lead to different dendrograms.
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Hierarchical clustering
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Dendrograms
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Choosing the clusters

» Simplest Approach:

o Specify a minimum desired distance between clusters.
o Stop merging clusters if the closest two clusters are farther
apart than this distance.

» Visual Approach:
o Merge clusters until all data points are combined into one

cluster.
o Draw the dendrogram and find a good cut level.
o Advantage: Cut need not be strictly horizontal.
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Choosing the clusters

» More Sophisticated Approaches:

o Analyze the sequence of distances in the merging process.

o Try to find a step in which the distance between the two
clusters merged is considerably larger than the distance of the
previous step.

o Several heuristic criteria exist for this step selection.
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A heatmap combines

» a dendrogram resulting from clustering the data,
» a dendrogram resulting from clustering the attributes and

» colours to indicate the values of the attributes.
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Hierarchical clustering
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Heatmap and dendrogram
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Heatmap and dendrogram
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Heatmap and dendrogram
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Hierarchical clustering
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Divisive hierarchical clustering

The top-down approach of divisive hierarchical clustering is seldom
used.

> In agglomerative clustering the minimum of the pairwise
dissimilarities has to be determined, leading to a quadratic
complexity in each step (quadratic in the number of clusters
still present in the corresponding step).

» In divisive clustering for each cluster all possible splits would
have to be considered.

» In the first step, there are 2"~! — 1 possible splits, where n is
the number of data objects.
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k-Means clustering

» Choose a number k of clusters to be found (user input).

» Initialize the cluster centres randomly
(for instance, by randomly selecting k data points).

» Data point assignment:
Assign each data point to the cluster centre that is closest to
it (i.e. closer than any other cluster centre).

» Cluster centre update:
Compute new cluster centres as the mean vectors of the
assigned data points. (Intuitively: centre of gravity if each
data point has unit weight.)
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k-Means clustering

> Repeat these two steps (data point assignment and cluster
centre update) until the clusters centres do not change
anymore.

» It can be shown that this scheme must converge,
i.e., the update of the cluster centres cannot go on forever.
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k-Means clustering

Aim: Minimize the objective function

k n
f = ZZ”’Jd’J

i=1 j=1
under the constraints uj; € {0,1} and

k
duj =1 forallj=1,...,n
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Alternating optimization

» Assuming the cluster centres to be fixed, ujj = 1 should be
chosen for the cluster i to which data object x; has the
smallest distance in order to minimize the objective function.

» Assuming the assignments to the clusters to be fixed, each
cluster centre should be chosen as the mean vector of the
data objects assigned to the cluster in order to minimize the
objective function.

This is a greedy algorithm.
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k-Means clustering: Example
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k-Means clustering: Local minima

» Clustering is successful in this example:
The clusters found are those that would have been formed
intuitively.

» Convergence is achieved after only 5 steps.
(This is typical: convergence is usually very fast.)

» However: The clustering result is fairly sensitive to the
initial positions of the cluster centres.

» With a bad initialisation clustering may fail
(the alternating update process gets stuck in a local
minimum).
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k-Means clustering: Local minima
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Gaussian mixture models

Two normal distributions
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Gaussian mixture models

Mixture model (both normal distrubutions contribute 50%)
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Gaussian mixture models
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Mixture model (one normal distrubutions contributes 10%, the
other 90%)
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Gaussian mixture models

pdfigm.[x.y])
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Gaussian mixture models — EM clustering

» Assumption: Data were generated by sampling a set of
normal distributions.
(The probability density is a mixture of normal distributions.)

» Aim: Find the parameters for the normal distributions and
how much each normal distribution contributes to the data.

» Algorithm: EM clustering (expectation maximisation).
Alternating scheme in which the parameters of the normal
distributions and the likelihoods of the data points to be
generated by the corresponding normal distributions are
estimated.
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Density-based clustering

For numerical data, density-based clustering algorithm often yield
the best results.

Principle: A connected region with high data density corresponds
to one cluster.

DBScan is one of the density-based clustering algorithms.
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Density-based clustering: DBScan

Principle idea of DBScan:

1. Find a data point where the data density is high, i.e. in whose
e-neighbourhood are at least ¢ other points. (¢ and ¢ are
parameters of the algorithm to be chosen by the user.)

2. All the points in the e-neighbourhood are considered to
belong to one cluster.

3. Expand this e-neighbourhood (the cluster) as long as the high
density criterion is satisfied.

4. Remove the cluster (all data points assigned to the cluster)
from the data set and continue with 1. as long as data points
with a high data density around them can be found.
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Density-based clustering: DBScan
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How to cluster these objects?
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How to cluster these objects?
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How to cluster these objects?
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Clustering example
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Clustering example
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The previous three slides show the same data set.

> In the second slide, the unit on the x-axis was changed to
milli-units.

> In the third slide, the unit on the y-axis was changed to
milli-units.

Clusters should not depend on the measurement unit!

Therefore, some kind of normalisation should be carried out before
clustering.
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Normalisation /Standardisation

min-max normalization. For a numerical attribute X with minx
and maxx being the minimum and maximum value in
the sample, the min-max normalization is defined as

n:domX — [0, 1], x o X
maXyx —miny
z-score standardization. For a numerical attribute X with sample
mean [ix and empirical standard deviation &, the
z-score standardization is defined as
s :domX — IR, X Xjﬂ
ox
robust z-score standardization. The sample mean and empirical
standard deviation are easily affected by outliers. A

more robust alternative is (see also boxplots):
X —X
IQRx

s :domX — IR, X




Normalisation /Standardisation

decimal scaling. For a numerical attribute X and the smallest
integer value s larger than log;o(maxx), the decimal
scaling is defined as

d :domX — [0, 1], X
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Notion of (dis-)similarity: Numerical attributes

There are various ways to measure the dissimilarity between two
numerical vectors.

Minkowksi Ly | dolx,y) = &/, % — yilP
Euclidean Ly | de(x,y)=+/0a—y1)2+ ...+ (X0 — yn)?
Manhattan Li | du(x,y)=|x1 —y1| + ...+ |Xn — yal
Tschebyschew Lo | doo(Xx,y) = max{|x1 — y1|,. .., |Xn — yn|}
. _ . XTy
Cosine de(x,y)=1 TR
- _ XTy
Tanimoto dr(%y) = MEir—Ty
Pearson Euclidean of z-score transformed x, y

/ " Pearson
- Manhatten
/ Euclidean
- Tschebyschew
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Notion of (dis-)similarity: Binary attributes

The two values (e.g. 0 and 1) of a binary attribute can be
interpreted as some property being absent (0) or present (1).

In this sense, a vector of binary attribute can be interpreted as a
set of properties that the corresponding object has.

Example.

» The binary vector (0,1,1,0,1) corresponds to the set of
properties {ap, as, as }.
» The binary vector (0,0,0,0,0) corresponds to the empty set.

» The binary vector (1,1,1,1,1) corresponds to the set
{317 dp, ds, a4, 35}-
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Notion of (dis-)similarity: Binary attributes

Dissimilarity measures for two vectors of binary attributes.
Each data object is represent by the corresponding set of properties

that are present.

binary attributes | sets of properties
simple match | ds =1 — 3210
Russel & Rao | dp =1 — b+72+x 1-— ‘X|S|Y|
Jaccard d;=1- be 1-— KB\\:I
i _ 2b 2IXNY|
no. of predicates that...
b= ...hold in both records
= ...do not hold in both records
x = ...hold in only one of both records

X y ‘ set X set Y

b n x‘ du dr dy dp
2

101000 111000‘{31,33} {31,32,33}‘ 3 1‘0.16 0.66 0.33 0.20
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Notion of (dis-)similarity: Nominal attributes

» Nominal attributes may be transformed into a set of binary
attributes, each of them indicating one particular feature of
the attribute. Only one of the introduced binary attributes
may be active at a time.

Example. . Attribute Manufacturer with the values BMW,
Chrysler, Dacia, Ford, Volkswagen.

manufacturer ... binary vector
Volkswagen ... . 00001
Dacia 00100
Ford 00010
Then one of the dissimilarity measures for binary attribute can
be applied.

> Another way to measure similarity between two vectors of
nominal attributes is to compute the proportion of attributes
where both vectors have the same value, leading to the Russel
& Rao dissimilarity measure.
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k-means clustering: 25% failure
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k-Means clustering

Objective function

k n
f = ZZ”’Jd’J

i=1 j=1
under the constraints uj; € {0,1} and

k
duj =1 forallj=1,...,n

Frank Klawonn Cluster Analysis



k-Means clustering

Objective function

k n
f = ZZ”’Jd’J

i=1 j=1
under the constraints uj; € [0, 1] and

k
duj =1 forallj=1,...,n
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Fuzzy c-means clustering (FCM)

Objective function
c n
f=2_2 ujd
i=1 j=1
under the constraints uj; € [0. 1] and

k
duj =1 forallj=1,...,n
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FCM update equations
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Effects of the fuzzifier
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Cluster separation for fuzzifier values m =2 and m = 1.5.
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Effects of the fuzzifier
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Noise clustering

Introduce an additional noise cluster.

All data objects have the same (large) distance to the noise cluster.

ne Um
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k-means clustering: 25% failure rate, FCM 0%
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k-means clustering: 25% failure rate, FCM 0%
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Does the “fuzzification” of the objective function let local minima
vanish?
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FCM objective function

C n
f=2 > ujd

i=1 j=1
under the constraints uj; € [0, 1] and

k
Zu,-jzl forallj=1,...,n.
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FCM objective function

C n
f=2 > ujd

i=1 j=1
under the constraints uj; € [0, 1] and

k
Zu,-jzl forallj=1,...,n.

Find the (local) minima!
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FCM objective function

C n
f=2 > ujd

i=1 j=1
under the constraints uj; € [0, 1] and

k
Zu,-jzl forallj=1,...,n.

Find the (local) minima!?7?

Frank Klawonn Cluster Analysis



FCM objective function

C n
f=2 > ujd

i=1 j=1
under the constraints uj; € [0, 1] and

k
Zu,-jzl forallj=1,...,n.

Find the (local) minima!?7?

Try to show it at least with some examples.
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FCM objective function

How to visualise a function with so many parameters?

¢ - #dimensions + ¢ - #data
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FCM objective function

How to visualise a function with so many parameters?

¢ - #dimensions + ¢ - #data

Replace the membership degree by the optinal values:
m

=Y | @

=1 j= c djj -1
i=1 j=1 k=1 (dikj>
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FCM objective function

How to visualise a function with so many parameters?

¢ - #dimensions + ¢ - #data

Replace the membership degree by the optinal values:
m

c n 1
f= ZZ N\ oo dij
AN\ (@)

Number of parameters: ¢ - #dimensions
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FCM objective function

How to visualise a function with so many parameters?

¢ - #dimensions + ¢ - #data

Replace the membership degree by the optinal values:
m

c n 1
f= ZZ N\ oo dij
AN\ (@)

Number of parameters: ¢ - #dimensions

Visualisation for two clusters in one dimension as a 3D plot
possible.
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FCM objective function visualisation

Gain an extra cluster by adding a noise cluster.

Simple one-dimensional data set:

» k points at 0.
» One outlier at u.

» One cluster (at v = 0) and one outlier (at u).

Objective function:

o v O
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FCM objective function visualisation
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FCM objective function visualisation

» One clusters at v = 2 with 10 points.
» One clusters at w = 10 with 10 points.

» 3 “noise” points at x = 0.
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FCM objective function visualisation: m = 2
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ective function visualisation: m
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FCM objective function visualisation: m = 4
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High-dimensional data are different

Attribute with values from a uniform distribution on [0, 1].
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High-dimensional data are different

Data at the edge (distance < 0.05, ca. 10% of the data)

Frank Klawonn Cluster Analysis



High-dimensional data are dif

Two attributes with values in [0, 1].
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High-dimensional data are dif
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High-dimensional data are different

Typical point and its neighbours
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High-dimensional data are different

Points at the edge (distance < 0.05)
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High-dimensional data are different

Typical point at the edge
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High-dimensional data are di

Typical point at the edge and its neighbours
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High-dimensional data are different

Three attributes with values in [0, 1].

Frank Klawonn Cluster Analysis



High-dimensional data are different

Points at the edge (distance < 0.05)
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High-dimensional data are different

538 of 2000 data points (26,9%) are close to the edge.
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High-dimensional data are different

How many data points close to the edge would we expect?
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High-dimensional data are different

How many data points close to the edge would we expect?

» For one dimension: 10%
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High-dimensional data are different

How many data points close to the edge would we expect?

» For one dimension: 10%

» For two dimensions 1 — (0.9)? = 0.19 = 19% .
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High-dimensional data are different

How many data points close to the edge would we expect?

» For one dimension: 10%

» For two dimensions 1 — (0.9)? = 0.19 = 19% .

» For three dimensions 1 — (0.9)% = 0.271 = 27,1%
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High-dimensional data are different

How many data points close to the edge would we expect?

For one dimension: 10%

For two dimensions 1 — (0.9)% = 0.19 = 19% .

For three dimensions 1 — (0.9)3 = 0.271 = 27,1%

v

v

v

For 50 dimensions 1 — (0.9)%0 = 0.995 = 99, 5%

v
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High-dimensional data are different

How many data points close to the edge would we expect?

For one dimension: 10%

» For two dimensions 1 — (0.9)? = 0.19 = 19% .

» For three dimensions 1 — (0.9)% = 0.271 = 27,1%

v

» For 50 dimensions 1 — (0.9)%° = 0.995 = 99,5%

» Defining points close to the edge by a distance less than 0.005
instead of 0.05, in 50 dimensions there are still
1 —(0.99)5° = 0.395 = 39,5% points close to the edge.
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High-dimensional data are different

Distribution of the (absolute) distances to the mean for a standard
normal distribution.
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High-dimensional data are different

Distribution of the (absolute) distances to the mean for 2
independent normal distribution (scaled by the factor v/2).

Frequency
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High-dimensional data are different

Distribution of the (absolute) distances to the mean for 3
independent normal distribution (scaled by the factor v/3).
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High-dimensional data are different

Distribution of the (absolute) distances to the mean for 4
independent normal distribution (scaled by the factor v/4).

4000

3000

Frequency

2000
I

0 1000
I

Frank Klawonn Cluster Analysis



High-dimensional data are different

Distribution of the (absolute) distances to the mean for 5
independent normal distribution (scaled by the factor v/5).
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High-dimensional data are different

Distribution of the (absolute) distances to the mean for 10
independent normal distribution (scaled by the factor v/10).
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High-dimensional data are different

Distribution of the (absolute) distances to the mean for 20
independent normal distribution (scaled by the factor 1/20).
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High-dimensional data are different

Distribution of the (absolute) distances to the mean for 50
independent normal distribution (scaled by the factor v/50).
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High-dimensional data are different

Distribution of the (absolute) distances to the mean for 100
independent normal distribution (scaled by the factor 1/100).
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FCM problems with high-dimensional data
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FCM problems with high-dimensional data
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What | have not talked about ...

v

Solutions for the problems with high-dimensional data,

v

Fitting to cluster of different shape and size,

» Determining the number of clusters,

v

Clustering of large data sets

» ... and many other important aspects of cluster analysis.
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Thank you for your kind attention!

and thanks to

Balasubramaniam Jayaram

&
Roland Winkler




