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Biological control

the deliberate use of one organism (natural enemy, bioagent) to regulate the
population size of a pest organism

m classical

importation from a native range; the aim is to establish a sustained
population of bioagents

m conservation
environmental manipulation
® augmentation

periodic release of a small number of individuals (inoculation); massive
release of a vast number of individuals (inundantion)

Integrated pest control = biological + chemical



A mite Acarus siro is a one of the most important pests
of stored products (grain, cereals, oilseeds, cheese).
Biological control was developed 40 years ago using a
predatory mite Cheyletus eruditus:
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A mite Acarus siro is a one of the most important pests
of stored products (grain, cereals, oilseeds, cheese).
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g(@)z — f(z,y)y
y = af(z,y)y—dy

z abundance of prey (Acarus)
y abundance of predator (Cheyletus)
g(z) rate of increase
f(z,y) functional response of the predator
« conversion efficiency

d mortality rate
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A mite Acarus siro is a one of the most important pests
of stored products (grain, cereals, oilseeds, cheese).
Biological control was developed 40 years ago using a
predatory mite Cheyletus eruditus:
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abundance of prey (Acarus)
abundance of predator (Cheyletus)

conversion efficiency

Q L w 8

mortality rate

r intrinsic growth rate

=

carrying capacity of the environment

a predation rate (capture efficiency, search
rate)

T handling time (chasing, killing, eating,
digesting)
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r=0.4, K =500,d=0.08, f=0.8,a=0.001, T =05
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Questions: Are we able to reduce Acarus population density below economic
injury level only by release of bioagent Cheyletus? If it is possible, how many
individuals of bioagent should be introduced?
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- Optimal control problem

General nonlinear dynamic model of n interacting populations

;. = wmifi(r1,®2,...,20), i=1,...,n
F(x)

-
I
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General nonlinear dynamic model of n interacting populations

T = zifi@,T2,...,20), i=1,...,n
x = F(x)
x = Ax+g(x)

Pest control strategy — we are finding optimal control function, such that the
system will drive to the desired steady state x* = [z},...,2}] in which the pest
density is stable without causing economic damages and the bioagents density is
stabilized at a level sufficient to control the pest:
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system will drive to the desired steady state x* = [z},...,2}] in which the pest
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= Ax+g(x)+BU 1)
0 = Ax*+g(x*)+ Bu* (2)
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Optimal control problem

General nonlinear dynamic model of n interacting populations

T = zifi@,T2,...,20), i=1,...,n
x = F(x)
x = Ax+g(x)

Pest control strategy — we are finding optimal control function, such that the
system will drive to the desired steady state x* = [z},...,2}] in which the pest
density is stable without causing economic damages and the bioagents density is
stabilized at a level sufficient to control the pest:

= Ax+g(x)+BU 1)
0 = Ax*+g(x*)+ Bu* (2)

In general the desired steady state can be unstable. In such case U = u* + u.
Define

y = x-x" 3)
u = U—-u* (4)

Substituing into (1) we get the error system

y = Ay + h(y) + Bu
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1 control problem

Theorem

If there exist PD matriz R and symmetric PD matriz Q, such as the function
(y)=y'Qy — ¥ (y)Ky — y'Kh(y)
is positive definite, then the linear feedback control
u=-R 'B'Ky (5)

is optimal in order to transfer the nonlinear error system from initial state
y(0) = yo to the final state y(oco) = 0 and minimizing the functional

J:/O [i(y) + u'Ru] dt,

where symmetric PD matriz K is the solution of the matrix algebraic Riccati
equation
KA+ AK—-KBR 'BK+Q=0 (6)
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Acarus — Cheyletus:
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& = m(1—3) Y (7)

K/ 1+ aTx

fazy

WY gya U 8
Trars Wt (8)

y =
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Acarus — Cheyletus:

. x axy

= -2y Y 7
¥ m( K) 1+aTz ™
. fazxy

= — 7 _d U 8
Y Ttars W7 (®)

Substituing parameters and desired state #* = 18 into (7) and (8) we obtain
y* = 389.0704, u* = 25.57299:

z — xTr — x* = — 18
= y—y* =y —389.0704
u = U—u*=U— 2557299
4 2 0.389z + 7.003
5 = 037122 — 2+ 6.9408 — v (2— ) . s
5000 5.10-42+ 1.009) 5-10—%z + 1.009

. 1.6 0.3112z + 5.6024
v = —008v+4+wv (1.6 +u — 5.55

© 5-10~4z + 1.009 5-10~%z + 1.009
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4 2 0.3892 + 7.003
5 = 0.37122 — 2 +6.9408 — v (2 _ ) - Zt
5000 5.10-42+1.009)  5-10-4z + 1.009
1.6 0.31122 + 5.6024
b = —0.08v+v<1.6— ) G +u—555
5.10-%2+1.009) ' 5.10-%z + 1.009

Choosing matrices A, B, @, R we obtain K as solution of Riccati equation:

A:<o.3gl2 &z) BZ(?) Q:((l) ?) R=(1)

o ( 18773 —1.5472
T\ —1.5472 35980

Finally

z

u = —Ple’K< . ) = 1.54722 — 3.5980v =

= 1.5472(z — 18) — 3.5980(y — 389.0704)
U = wu+u*=1.5472z — 3.5980y + 1397.599
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Thank you for your attention
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