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Topology, Uniformity and Proximity

Three important general topology categories:

Topological spaces and continuous mappings

Topology: T ⊆ 2X such that
1 ∅,X ∈ T;

2 U,V ∈ T⇒ U ∩V ∈ T;

3 Ui ∈ T∀i ∈ I⇒
⋃

iUi ∈ T
(X,T) and (Y,T′) topological spaces. Mapping f from X to Y is
called continuos, if f−1(U) ∈ T for all U ∈ T′.
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Topology, Uniformity and Proximity

Proximity spaces and proximally continuous mappings

Proximity: δ ⊆ 2X × 2X such that
1 (∅,X) 6∈ δ
2 (A,B) ∈ δ ⇐⇒ (B,A) ∈ δ;

3 (A,B ∪ C) ∈ δ ⇐⇒ (A,B) ∈ δ or (A,C) ∈ δ
4 (A,B) 6∈ δ then ∃C,D: (A,C) 6∈ δ, (B,D) 6∈ δ and
C ∪D = X.

(X, δ) and (Y, δ′) proximity spaces. Mapping f from X to Y is
called proximally continuous with respect to δ and δ′, if from
(A,B) ∈ δ (A,B ⊂ X) follows (f(A), f(B)) ∈ δ′ (f(A), f(B) ⊂ Y).
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Topology, Uniformity and Proximity

V ⊂ X×X an entourage of diagonal, if ∆ ⊂ V and V = −V,
where ∆ = {(x, x) : x ∈ X} and −V = {(x, y) : (y, x) ∈ V}.
DX family of all entourages of the diagonal.

Uniform space and uniformly continuous mappings
Uniformity: U ⊆ DX such that

1 If V ∈ U and V ⊂W ∈ DX, then W ∈ U
2 If V1,V2 ∈ U , then V1 ∩V2 ∈ U
3 For every V ∈ U exists W ∈ U such that 2W ⊂ V
4

⋂
U = ∆.

(X,U) and (Y,V) uniform spaces. Mapping f from X to Y is
called uniformly continuous with respect to U and V, if for
every V ∈ V exists U ∈ U such that for all x, x′ ∈ X it holds
(f(x), f(x′)) ∈ V, when ever (x, x′) ∈ U
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Syntopogeneous structures in Topology

Why we need syntopogeneous structures
Syntopogeneous structure is a concept which allows to develop
a unified approach to all three topological categories:

Topological spaces and continuous mappings;
Uniform spaces and uniformly continuous mappings;
Proximity spaces and proximally continuous mappings.

Syntopogeneous structures were introduced by A. Csaszar in
1963.
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Topogeneous orders (in crisp case)

Semi topogeneous order
Semi-topogeneous order on a set X is a relation σ on it powerset
2X such that

(∅, ∅), (X,X) ∈ σ
If M′ ≤ M and N ≤ N′ and (M,N) ∈ σ then (M′,N′) ∈ σ.
If (M,N) ∈ σ then M ⊆ N

Topogeneous order
Semi-topogeneous order on a set X is called a topogeneous
order if

(M1 ∪M2,N) ∈ σ ⇐⇒ (M1,N), (M2,N) ∈ σ.
(M,N1 ∩N2) ∈ σ ⇐⇒ (M,N1), (M,N2) ∈ σ.
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Syntopogeneous structures

Syntopogeneous structures
A family S of topogeneous orders on a set X is called a
syntopogeneous structure if

1 S is directed, that is
σ1, σ2 ∈ S =⇒ ∃σ ∈ S such that σ1 ∪ σ2 ⊆ σ;

2 ∀σ ∈ S ∃σ′ ∈ S such that σ′ ◦ σ′ ⊇ σ,
where (M,N) ∈ σ1 ◦ σ2, if ∃P ∈ 2X such that (M,P) ∈ σ1
and (P,N) ∈ σ2.
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Situation in fuzzy Topology

In fuzzy topology we have developed theories of
1 Fuzzy topologies;
2 Fuzzy proximities;
3 Fuzzy uniformities

Problem
Find the appropriate concepts for fuzzy syntopogeneous
structures.

Dace Èimoka On fuzzy topogeneous orders on powersets of fuzzy sets



Introduction and motivation
Context and tools

Fuzzy syntopogeneous structures
Conclusion

Approach to the fuzzy version

How to define fuzzy semi-topogeneous order
L-fuzzy semi-topogeneous order on a set X is a L-fuzzy relation
σ on its L powerset LX, that is σ : LX × LX → L such that

σ(0L, 0L) = σ(1L, 1L) = 1L
If M′ ≤ M and N ≤ N′ then σ(M,N) ≤ σ(M′,N′).
If σ(M,N) then M⊆̃N

As the substitute for the last property we take

σ(M,N) ≤ M⊆̃N
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Next problem

How to define fuzzy inclusion ?

M⊆̃N

Inclusion of ordinary sets

In crisp case M ⊂ N
For all x ∈ X if x ∈ M then x ∈ N

Realization of this idea in fuzzy case

Realization in fuzzy case

M⊆̃N = inf
x∈X

(M(x) 7→ N(x))

where 7→ is an implicator on L
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Implicator generally is a mapping

7→ L× L→ L

satisfying certain conditions which are extracted from the basic
properties of an Implication in classical logic. However different
authors axiomatize different properties. There is done much
work comparing different properties taken in the definition of
an implicator. In particular:
S. Gotwald: Many-valued logic, Chapter I in Mathematics of
fuzzy sets: Logic, Topology and Measure Theory, Kluwer Acad.
Publ. 1999; S. Gotwald, Mehrwertige Logic: Eine Einfurung in
Theorie und Anwendungen, Akademie Verlag, Berlin, 1989.
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Implicator

For our merits we take the following axioms for 7→ L× L→ L:
a 7→ b is non-increasing on the first argument;
a 7→ b is non-decreasing on the second argument;
0 7→ a = 1L for every a ∈ L (left boundary condition);
1 7→ a = a for every a ∈ L (left neutrality)
(a 7→ 0) 7→ (b 7→ 0) = b 7→ a.

Remark: Note that properties (1) - (4) are assumed (as far
as we know) by most researches in this subject, while (5) is
specific for our merits.
Remark: From (5) and (4) we have the following important
double negation property: (a 7→ 0) 7→ 0 = a for every a ∈ L.
Thus a 7→ 0 is an order reversing involution and we write
ac = a 7→ 0.
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Implicator

Examples of appropriate implicators
Implication 7→ 2× 2→ 2 in the classical logic;
If (L,∧,∨, ∗) is an MV-algebra and 7→ is the corresponding
residuation.
In particular if L = [0, 1] with Łukasiewcz conjunction ∗ the
corrersponding residium is implication:

a 7→ b = max{1− a + b, 0}.

If L = [0, 1] and a 7→ b is Kleene-Dienes implication:

a 7→ b = max{1− a,b}.
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Definitions and properties
L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders

Fuzzy semi-topogeneous orders

Thus let X be a set, L a complete lattice and 7→: L× L→ L
Semi-topogeneous order on a set X is a L-fuzzy relation σ on its
L-powerset LX, that is σ : LX × LX → L such that

(1to) σ(0L, 0L)) = σ(1L, 1L) = 1L
(2to) If M′ ≤ M and N ≤ N′ then σ(M,N) ≤ σ(M′,N′).
(3to) σ(M,N) ≤ M⊆̃N where M⊆̃N = infx∈X(M(x) 7→ N(x)),

where 7→ is an implicator.
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Definitions and properties
L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders

Special properties of fuzzy semi-topogeneous orders

Fuzzy semitopogeneous order is called topogeneous if
(4to) σ(M1 ∨M2,N) = σ(M1N) ∧ σ(M2,N).
(5to) σ(M,N1 ∧N2) = σ(M,N1) ∧ σ(M,N2)

Fuzzy topogeneous order is called perfect if
(6to) σ(

∨
i
Mi,N) =

∧
i
σ(Mi,N).

Fuzzy topogeneous order is called biperfect if it is perfect
and
(7to) σ(M,

∧
i
Ni) =

∧
i
σ(M,Ni)

Fuzzy semitopogeneous order is called symmetric if
(8to) σ(M,N) = σ(Nc,Mc)
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Definitions and properties
L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders

L-fuzzy syntopogeneous structures

Definition
An L-fuzzy syntopogeneous structure on a set X is a family S of
L-fuzzy topogeneous orders on X such that

S is directed, that is given two L-fuzzy topogeneous orders
σ1, σ2 ∈ S there exists σ ∈ S such that σ1 ∨ σ2 ≤ σ;
For every σ ∈ S there exists σ′ ∈ S such that σ ≤ σ′ ◦ σ′,
where σ1 ◦ σ2 = {

∨
(σ1(M,P) ∧ σ2(P,N) : P ∈ LX}.
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Definitions and properties
L-fuzzy topologies and perfect L-fuzzy topogeneous orders
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Comments regarding the position of our research

If L = 2 and 7→ is the classical implication, then we obtain
A. Csaszar's syntopogeneous structures (crisp-crisp)
A. Csaszar, Foundations of General Topology, Pergamon Press,
1963.
If 7→ [0, 1]× [0, 1]→ 2 we obtain Katsaras-Petalas
syntopogeneous structure (fuzzy-crisp)
A.K. Katsaras, C.G Petalas, On fuzzy syntopogeneous
structures, J. Math. Anal. Appl., 99 (1984), 219-236.
If 7→ [0, 1]× [0, 1]→ [0, 1] Łukasiewicz implication
(fuzzy-fuzzy)
A.Ð. Fuzzy Syntopogeneoius structures, Quaestiones Math., 20
(1997), 431-461
New: fuzzy syntopogeneous structures based on different
implicators (L1-fuzzy - L2-fuzzy).
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Definitions and properties
L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders

L-fuzzy topologies and perfect L-fuzzy topogeneous
orders

Theorem

Let σ : LX × LX → L be a perfect topogeneous fuzzy order.
Then the mapping : T : LX → L defined by
Tσ(M) = σ(M,M),M ∈ LX is an L-fuzzy topology.
Conversely, given an L-fuzzy topology T : LX → L on X, the
mapping σT : LX × LX → L defined by the equality

σT (M,N) =
∨
{T (P) : M ≤ P ≤ N,P ∈ LX}

is a perfect topogeneous fuzzy order. Besides
TσT = T and σTσ = σ for every L-fuzzy topology T and every
perfect L-fuzzy topogeneous order σ.
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Definitions and properties
L-fuzzy topologies and perfect L-fuzzy topogeneous orders
L-fuzzy proximities and L-fuzzy symmetric topogeneous orders

L-fuzzy proximities and L-fuzzy symmetric topogeneous
orders

Theorem
Let σ : LX × LX → L be a symmetric L-fuzzy topogeneous order on X.
Then the mapping δσ : LX × LX → L defined by

δ(A,B) = σ(A,Bc) 7→ 0

is an L-fuzzy proximity on X. Conversely, let δ : LX × LX → L be an
L-fuzzy proximity. Then with following equality we gain

σ(A,B) = δ(A,Bc) 7→ 0

a symmetric L-fuzzy topogeneous order on X. Besides δσδ
= δ and

σδσ = σ for every symmetric L-fuzzy topogeneous order σ and for any
L-fuzzy proximity δ.
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Some directions for further research

Find a natural bijection between the family of all L-fuzzy
uniformities on a set X and the set of all biperfect L-fuzzy
syntopogeneous structures.
Develop categorical framing of the theory of L-fuzzy
syntopogeneous structures
Analyse relations between categories of syntopogeneous
structures for different implicators
Develop the theory of L-fuzzy syntopogeneous structures
for varied lattices L in order to be coherent with
variable-bases fuzzy topologies.
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Thank you for your attention!
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