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Introduction

Consider the fourth-order difference equation

∆
(

an

(

∆
(

bn (∆ (cn (∆xn)γ))β
))α)

± dnx
δ
n+3 = 0,

where α, β, γ, δ are the ratios of odd positive integers and
{an}, {bn}, {cn}, {dn} are positive real sequences defined for all n ∈ N.

∆ is the forward difference operator defined by ∆xn = xn+1 − xn.

The solution xn is said to be oscillatory if for any n0 ≥ 1 there exists n > n0

such that xn+1xn ≤ 0.

The equation is said to be oscillatory if all its solutions are oscillatory.
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We study the nonoscillatory solutions depending on positive or negative
perturbation dn.
We assume

∞
∑

n=n0

a
−

1

α
n =

∞
∑

n=n0

b
−

1

β
n =

∞
∑

n=n0

c
−

1

γ
n = ∞

(canonical form of the operator L4).
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If we denote yn = cn (∆xn)γ
zn = bn (∆yn)β

wn = an (∆zn)α
, then the

equation can be written as a four-dimensional nonlinear system

∆xn = Cn · y
1

γ
n

∆yn = Bn · z
1

β
n

∆zn = An · w
1

α
n

∆wn = ∓Dn · xδ
n+3,

(S)

where

An = a
−

1

α
n Bn = b

−
1

β
n Cn = c

−
1

γ
n Dn = dn,

and the solution of system is

(xn, yn, zn, wn) .

Oscillation of the fourth-order nonlinear difference equations Jana Krejčová
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Historical survey

Tanigawa [2000]
Thandapani and Selvaraj [2004]
Marini, Matucci, Řehák [2004, 2007]
Agarwal, Grace and Wong [2007]
Agarwal and Manojlovič [2009]
Schmeidel [2010]

Thandapani and Selvaraj; Agarwal and Manojlovič

∆2
(

pn

(

∆2
yn

)α
)

+ qny
β
n+3 = 0

Tanigawa; Marini, Matucci, Řehák

Coupled system
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Introduction Historical survey Negative perturbation Positive perturbation References

Coupled system

∆ (rn (∆xn)γ) = −ϕnz
1

β

n+1

∆ (qn (∆zn)α) = ψnx
δ
n+1

Denote yn = rn (∆xn)γ
wn = qn (∆ (−zn+1))

α
z̄k = −zk+1.

∆xn = r
−

1

γ
n · y

1

γ
n

∆yn = ϕn · z̄
1

β
n

∆z̄n = q
−

1

α
n · w

1

α
n

∆wn = −ψn · xδ
n+2

∆
(

qn

(

∆
(

ϕ
−β
n (∆ (rn (∆xn)γ))β

))α)

+ ψnx
δ
n+2 = 0

∞
∑

n=n0

q
−

1

α
n =

∞
∑

n=n0

ϕn =
∞
∑

n=n0

r
−

1

γ
n = ∞
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Negative perturbation

(1) ∆
(

an

(

∆
(

bn (∆ (cn (∆xn)γ))β
))α)

− dnx
δ
n+3 = 0

We investigate when the equation has property B, that means that all
nonoscillatory solutions are either Kneser solutions or strongly monotone
solutions.

Lemma

Any nonoscillatory solution (x, y, z, w) of system (S) such that xn > 0 is one
of the following types:
type(a) xn > 0 yn > 0 zn > 0 wn > 0 for all large n,
type(b) xn > 0 yn > 0 zn > 0 wn < 0 for all large n,
type(c) xn > 0 yn < 0 zn > 0 wn < 0 for all large n.
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Theorem 1

If one of the following assumptions holds:

∞
∑

n=n0

dn = ∞,

∞
∑

n=n0

dn <∞ and
∞
∑

k=n0





1

bk

k−1
∑

n=n0

(

1

an

∞
∑

j=n

dj

) 1

α





1

β

= ∞,

then every bounded nonoscillatory solution (x, z, y, w) of system (S) is type (c)
and satisfies

lim
n→∞

xn = 0, lim
n→∞

yn = 0, lim
n→∞

zn = 0, lim
n→∞

wn = 0.

Kneser solution
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Theorem 2

Any type (a) solution (x, y, z, w) of system (S) satisfies
limn→∞ |xn| = ∞, limn→∞ |zn| = ∞. If

∞
∑

n=n0

dn







n−1
∑

r=n0





1

cr

r−1
∑

t=n0

(

1

bt

t−1
∑

i=n0

(

1

ai

) 1

α

)
1

β





1

γ







δ

= ∞,

then limn→∞ |wn| = ∞. If in addition

∞
∑

n=n0

(

1

bn

n−1
∑

i=n0

(

1

ai

) 1

α

)
1

β

= ∞,

then limn→∞ |yn| = ∞.

Strongly monotone solution

Oscillation of the fourth-order nonlinear difference equations Jana Krejčová
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Theorem 3

If

∞
∑

n=n0

dn









n−1
∑

r=n0







1

cr

r−1
∑

t=n0





1

bt

t−1
∑

i=n0

(

1

ai

) 1

α





1

β







1

γ









δ

= ∞

and

∞
∑

k=n0







1

bk

k−1
∑

n=n0





1

an

∞
∑

j=n

dj





1

α







1

β

= ∞,

then the equation (1) has property B, that means that all nonoscillatory
solutions are either type (a) or (c) and solutions satisfy either

lim
n→∞

|xn| = ∞, lim
n→∞

|yn| = ∞, lim
n→∞

|zn| = ∞, lim
n→∞

|wn| = ∞,

or lim
n→∞

|xn| = 0, lim
n→∞

|yn| = 0, lim
n→∞

|zn| = 0, lim
n→∞

|wn| = 0.
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Došlá Z., Krejčová J.:
Nonoscillatory solutions of the four-dimensional difference system,
E. J. Qualitative Theory of Diff. Equ., Proc. 9’th Coll. Qualitative Theory of
Diff. Equ., No. 4 (2011), pp. 1-11
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Positive perturbation

(2) ∆
(

an

(

∆
(

bn (∆ (cn (∆xn)γ))β
))α)

+ dnx
δ
n+3 = 0

We establish necessary and sufficient conditions for equation to have
nonoscillatory solutions with specific asymptotic behavior. We give conditions
that (2) is oscillatory, has property A, that means there are only oscillatory
solutions of the equation.

Lemma

Any nonoscillatory solution (x, y, z, w) of system (S) such that xn > 0 is one
of the following types:
Type(a) xn > 0 yn > 0 zn > 0 wn > 0 for all large n,
Type(b) xn > 0 yn > 0 zn < 0 wn > 0 for all large n.
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Theorem 4

A necessary and sufficient condition for equation (2) to have a nonoscillatory
solution xn which satisfies

lim
n→∞

xn

ρn
= R,

0 < R <∞, where

ρn =

n−1
∑

s=n0





1

cs

s−1
∑

r=n0

(

1

br

r−1
∑

t=n0

(

1

at

) 1

α

)
1

β





1

γ

is that
∞
∑

n=n0

dnρ
δ
n+3 <∞.
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Introduction Historical survey Negative perturbation Positive perturbation References

Theorem 5

A necessary and sufficient condition for equation (2) to have a nonoscillatory
solution xn which satisfies

lim
n→∞

xn = x0,

0 < x0 < ∞, is that

∞
∑

s=n0







1

cs

∞
∑

r=s





1

br

∞
∑

l=r

[

1

al

∞
∑

m=l

dm

] 1

α





1

β







1

γ

<∞.
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Theorem 6

Let any of the following conditions hold
(i)

∞
∑

n=n0

dn = ∞

(ii)

∞
∑

n=n0

(

1

an

∞
∑

k=n

dk

) 1

α

= ∞ and

∞
∑

n=n0

dn

(

n+2
∑

i=n0

(

1

ci

) 1

γ

)δ

= ∞,

then all solutions of the equation (2) are oscillatory.

Property A

Oscillation of the fourth-order nonlinear difference equations Jana Krejčová
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Open problems

the role of the shift τ ∈ Z in the equation

(3) ∆
(

an

(

∆
(

bn (∆ (cn (∆xn)γ))β
))α)

+ dnx
δ
n+τ = 0
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Theorem 7

Equation (3) has no solution of type (a) if any of the following conditions hold:

(i)
∞
∑

n=n0

dn

(

n+τ−1
∑

i=n0

1

c
1/γ
i

)λ

= ∞;

(ii)

∞
∑

n=n0

dn





n+τ−1
∑

i=n0

1

c
1/γ
i

(

i−1
∑

j=n0

1

b
1/β
j

)1/γ




λ

= ∞;

(iii) λ < αβγ and

∞
∑

n=n0

dn







n+τ−1
∑

i=n0

1

c
1/γ
i







i−1
∑

j=n0

1

b
1/β
j





j−1
∑

k=n0

1

a
1/α
k





1/β






1/γ





λ

= ∞.
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Theorem 8

Equation (3) has no solution of type (b) if any of the following conditions hold:

(i)

T :=
∞
∑

n=n0

1

a
1/α
n

(

∞
∑

k=n

dk

)1/α

= ∞,

(ii) T <∞ and

∞
∑

n=n0

1

b
1/β
n





∞
∑

k=n

1

a
1/α
k

(

∞
∑

i=n

di

)1/α




1/β

= ∞,

(iii) λ < αβγ, T <∞ and

∞
∑

n=n0

1

b
1/β
n





n+τ−1
∑

k=n0

1

c
1/γ
k





λ/(αβ)



∞
∑

k=n

1

a
1/α
k

(

∞
∑

i=n

di

)1/α




1/β

= ∞.
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Open problems

∞
∑

n=n0

a
−

1

α
n ,

∞
∑

n=n0

b
−

1

β
n ,

∞
∑

n=n0

c
−

1

γ
n

∆
(

an

(

∆
(

bn (∆ (cn (∆xn)γ))β
))α)

+ dnx
δ
n+τ = 0
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Cyclic permutation

Lemma

The following statements are equivalent:

(i) x is a solution of (3).

(ii) y = {yn}, where yn = cn (∆xn)γ , is a solution of

(R1) ∆

(

1

d
1/λ
n

(

∆ an

(

∆ bn (∆yn)β
)α)1/λ

)

+
1

c
1/γ
n+τ

y
1/γ
n+τ = 0.

(iii) z = {zn}, where zn = bn (∆yn)β , is a solution of

(R2) ∆

(

cn+τ

(

∆
1

d
1/λ
n

(∆an (∆zn)α)1/λ

)γ)

+
1

b
1/β
n+τ

z
1/β
n+τ = 0.

(iv) w = {wn}, where wn = an (∆zn)α is a solution of

(R3) ∆

(

bn+τ

(

∆ cn+τ

(

∆
1

dn
(∆wn)1/λ

)γ)β
)

+
1

a
1/α
n+τ

w
1/α
n+τ = 0.
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Theorem 9

Equation (3) is oscillatory if and only if equation (Ri) is oscillatory for
i ∈ {1, 2, 3}.

Example 1

Equation

∆2
(

bn
(

∆2
xn

)β
)

+ dnx
λ
n+3 = 0.

is oscillatory if and only if the equation

∆2

(

1

d
1/λ
n

(

∆2
zn

)1/λ
)

+
1

b
1/β
n+3

z
1/β
n+3 = 0

is oscillatory.
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Došlá Z., Krejčová J.:
Oscillation of a class of the fourth-order nonlinear difference equations,
submitted to Advances Diff. Equ.

Oscillation of the fourth-order nonlinear difference equations Jana Krejčová
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Thank you for your attention!
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