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Introduction

Rules of the game

Rules of the classic version of Penney's game:
m 2 players;
m each player selects a three-bit long sequence of heads and tails;

m a coin is tossed until one of those sequences appears
as a subsequence of the coin toss outcomes;

m the coin is fair;
m the player whose sequence appears first wins.
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m each player selects a three-bit long sequence of heads and tails;
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as a subsequence of the coin toss outcomes;
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the player whose sequence appears first wins.

There are 8 different three-bit long sequences of heads and tails:
HHH, HHT, HTH, THH, HTT, THT, TTH, TTT

(g) = 28 classic games
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Example of the game

Do the players have the same chances of winning in this game?
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Stochastic graph’s definition

We call a stochastic graph an ordered pair (S, Q), where:

S - a finite set of vertices;
Q - a function from SxS into R such that the following conditions
are satisfied:
m Q(i,j) >0 forallij€Ss;
m Zjes Q(i,j)=1 foralli€s.
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Stochastic graph’s definition

We call a stochastic graph an ordered pair (S, Q), where:

S - a finite set of vertices;
Q - a function from SxS into R such that the following conditions
are satisfied:
m Q(i,j) >0 forallij€Ss;
m Zjes Q(i,j)=1 foralli€s.

Q(i,j) is the probability of transition between states / and j in one
step. We use the notation pj;.

A pair (i, /) is an edge of the graph, if p; > 0.

If pj =1, then j is a boundary vertice.

The set B of all boundary vertices is called the boundary
of the graph.
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P(ANB) = P(A)- P(B), A, B — independent events
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The rules of reduction
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The rules of reduction
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Classic paradoxes

Game HHT-THH
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Classic paradoxes

Game HHT-THH
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Classic paradoxes

Game HHT-THH
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Game HHT-THH

P(HHT)=1  P(THH)=32
1 4



Game HHT-THH

P(HHT) =%, P(THH)=3

Among 28 classic Penney’s games only 10 are fair!






Classic paradoxes
Relations between 3-bit long sequences
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m There is no the best sequence in the classic Penney Game.
Therefore priority of selection isn't a privilege in this game.
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Relations between 3-bit long sequences

TTT HHH
R
HHT HTT
/ \ } f
TTH

m There is no the best sequence in the classic Penney Game.
Therefore priority of selection isn't a privilege in this game.

m The property of being better than in Penney's game isn't transitive.
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Games with sequences of different lengths -

Game HHH-TTHH
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Games with sequences of different lengths -

Game HHH-TTHH
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Games with sequences of different lengths -

Game HHH-TTHH
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Classic paradoxes

Algorithm of calculating mean time of random walk

on a stochastic graph with a nonempty boundary

Let (S, Q) be a stochastic graph with a nonempty boundary B C S
and T; a random variable defined as the time of random walk begun
in vertice j € S (and ending in the boundary B). Let us call:

m E(T))=¢
m for j ¢ B we define K; - the set of vertices attained directly from
the vertice j (k € K; < pj > 0)
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Algorithm of calculating mean time of random walk

on a stochastic graph with a nonempty boundary

Let (S, Q) be a stochastic graph with a nonempty boundary B C S
and T; a random variable defined as the time of random walk begun
in vertice j € S (and ending in the boundary B). Let us call:

m E(T))=¢
m for j ¢ B we define K; - the set of vertices attained directly from
the vertice j (k € K; < pj > 0)

Then:
=0 forjeB
ejzzkeijjk-ekle for j ¢ B.
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Classic paradoxes

Mean time of waiting for sequence HHH

es =1+3-es+1-ey = es = 14
eH :1+%-e5+?eHH =ey=12
eHH :1+§'65+§'6HHH = eyy = 8
e =0 = eppH =0

EThun = 14, ET7rHn = 16

T4 - time of waiting until pattern A appears the first time
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Notation

m A, B - arbitrary sequences of heads and tails, |A| = k, |B| = m,
for k,m > 0;

m A _ first i elements of A, A(,-) - last i elements of A, i < k;

m f(n) - the number of n-bit long sequences, which do not include
pattern A, n > 0;

m fa(n) - the number of n-bit long sequences, which include pattern A
at the end, and A doesn't appear before;

m for i = 1,2, ..., min(k, m) we define

21 if Agy = BU,

. — — i, ~ — R
0i(A, B)_{ 0 otherwise. =2 [Ap=B"]
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Derivation of the formula for the mean time of waiting for

a sequence
the set of n-bit long | = | the set of (n + k)-bit long sequences with
sequences without pattern A at the end, in which A doesn't
pattern A appear before n-th position

A= HTH,n =4, TTHT = TTHT HTH (Aq) = AD)

f(n) = fa(n+1)- [A(1) = A(l)] + o fa(n 4 k) - [A(k) — A(k)]

f(n) _ fa(n+1) 1 fa(n+ k) « K
o = o 2-[Ag) = Al )]+...+W.2 A = A]
51(A,A) 5k (AA)

T4 - time of waiting until pattern A appears the first time

P(TA > n) = P(TA = n+1)51(A7A)++P(TA = n+k)5k(A7A)
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Derivation of formula of mean time of waiting for the
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P(Ta>n)=P(Ta=n+1)-01(A,A)+---+P(Ta = n+k)-0k(A, A)
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Conway's Formula:

min(|A[,|B])
pg A:A-A:B
—=_—————-—, where A:B= Z i(A, B)
pa B:B—-B:A —

m for any n > 0 longer sequence T...T H...H is better than
S

n n
shorter one - H...H
——

2n—1
m for sequences of any length there is no best sequence:
we know even more - for arbitrary sequence aj ... a, one of
sequences of the form baj ... an_1, where bis H or T, is the best in
the game with a; ... ap;

m Penney’s game with sequences of any length n > 4 isn't transitive.
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Why Penney’'s game is interesting for us?

m The simplicity of the game and the its surprising results make it
an interesting tool for mathematics popularization.

m We can prove an analogous version of the Conway's formula
for a game with a countable set of results obtained by tossing an
arbitrary die instead of a symmetric coin. We can obtain set of linear
equations equivalent to Conway's Formula for games with several
players.

m This general theory will perhaps find some applications i.e. in:

m mathematical modeling of gene mutations;
m game theory and its applications i.e. on stock exchange.
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