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Half-linear Euler differential equations in the critical case Hana Haladová
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Introduction
Term half-linear is motivated by the fact that the solution space of half-linear
equation has just one half of the properties which characterize linearity,
namely homogenity (but not aditivity).

General second order half-linear differential equation is in the form of

(1) (r(t)Φ(x′))′ + c(t)Φ(x) = 0,

where r, c are continuous functions and r(t) > 0.

The half-linear Euler differential equation

(2)
(
Φ(x′)

)′
+
γ

tp Φ(x) = 0, Φ(x) := |x|p−2x,

p > 1, γ ∈ R.

The second order Sturm-Liouville linear differential equation

(3)
(
r(t)x′

)′
+ c(t)x = 0

is a special case for p = 2 in (1).
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Then, given t0, x0, x1 ∈ R, there exists the unique solution of (3) satisfying
initial conditions x(t0) = x0, x′(t0) = x1, which is extensible over the whole
interval where the functions r, c are continuous and r(t) > 0.

If we rewrite (2) into the first order system (substituting u = rΦ(x′)), we get
the system

(4) x′ = r1−q(t)Φ−1(u), u′ = −c(t)Φ(x),

where q is the conjugate number of p ( 1
p + 1

q = 1), and Φ−1 is the inverse
funciton of Φ. The right hand-side of (4) is no longer LIpschitzian in x, u,
hence the standard existence and uniqueness theorems do not apply directly
to this system.
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Introduction Auxiliary results Equation in the limiting case References

The half-linear Euler differential equation (2) can be solved explicitly.

If we look for a solution of (2) in the form x(t) = tλ, substituting into (2) we find
that λ has to be a solution of the algebraic equation

(p− 1)Φ(λ)(λ− 1) + γ = 0.

F(λ) := (p− 1)Φ(λ)(λ− 1) has a global minimum at λ∗ = p−1
p and its value is

F(λ∗) = −γp := −
(

p−1
p

)p
.

The equation F(λ) + γ = 0 has two real roots if γ < γp, one double real root if
γ = γp, and no real root if γ > γp.
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Equation (2) is a particular case of the general half-linear second order
differential equation (1)

(2) is nonoscillatory if and only if γ ≤ γp.
(2) with the critical coefficient γ = γp serves as a comparison equation for the
Kneser-type (non)oscillation test.
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(1) with r(t) = 1 is oscillatory provided

lim inf
t→∞

tpc(t) > γp

and nonoscillatory if
lim sup

t→∞
tpc(t) < γp

The Kneser test does not apply when limt→∞ tpc(t) = γp.
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Auxiliary results
We suppose that equation (1) is nonoscillatory and we consider its
perturbation

(5) [(r(t) + r̃(t))Φ(x′)]′ + (c(t) + c̃(t))Φ(x) = 0,

r̃, c̃ are continuous functions such that r(t) + r̃(t) > 0 for large t.

Let x be a solution of (1), x(t) 6= 0, then w = rΦ(x′/x) is a solution of the
Riccati type differential equation

w′ + c(t) + (p− 1)r1−q(t)|w|q = 0, q :=
p

p− 1
.

Equation (1) with λc(t) is said to be conditionally oscillatory if there exists a
constant λ0 such that this equation is oscillatory for λ > λ0 and nonoscillatory
for λ < λ0.

λ0 is called the oscillation constant of (1).
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We consider the equation

(6) [(r(t) + λr̃(t))Φ(x′)]′ + (c(t) + µc̃(t))Φ(x) = 0.

We say that (6) is conditionally oscillatory if there exist constants α, β, ω ∈ R,
α 6= 0, β 6= 0, such that (6) is oscillatory for αλ+ βµ > ω and nonoscillatory
for αλ+ βµ < ω.

Example

(7)
[(

1 +
λ

log2 t

)
Φ(x′)

]′
+

[
γp

tp +
µ

tp log2 t

]
Φ(x) = 0

(7) is oscillatory if µ− λγp > µp := 1
2

(
p−1

p

)p−1
and nonoscillatory if

µ− λγp < µp. (7) is nonoscillatory also in the limiting case

(8) µ− λγp = µp.
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We derive the modified Riccati equation. Let h(t) 6= 0 be a differentiable
function, denote

(9) G(t) := r(t)h(t)Φ(h′(t))

and let Ω(t) :=
(
1 + r(t)

r̃(t)

)
G(t) . Define the function

(10) G(t, z) := |z + Ω(t)|q − qΦ−1(Ω(t))z + |Ω(t)|q

and put

z := hp(w− wh)−
r̃
r

G = hpw− G− G̃,

where w is a solution of the Riccati equation associated with (5)

w′ + c(t) + c̃(t) + (p− 1)(r(t) + r̃(t))1−q|w|q = 0,

wh = rΦ(h′/h), and G̃ = r̃hΦ(h′). Then z is a solution of the so-called
modified Riccati equation

(11) z′ + C(t) + (p− 1)(r(t) + r̃(t))1−qh−q(t)G(t, z) = 0,

where

(12) C(t) = h(t)
[(

(r(t) + r̃(t))Φ(h′(t))
)′

+ (c(t) + c̃(t))Φ(h(t))].
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Theorem 1

Let h be a positive differentiable function such that h′(t) 6= 0 for large t.
Denote

(13) R(t) =
(
r(t) + r̃(t)

)
h2(t)|h′(t)|p−2,

and suppose that∫ ∞ dt
R(t)

=∞,
∫ ∞

C(t) dt is convergent,

where C is given by (12), and lim inft→∞ (r(t) + r̃(t)) h(t)|h′(t)|p−1 > 0.
If

(14) lim sup
t→∞

∫ t ds
R(s)

∫ ∞
t

C(s) ds <
1

2q

and

(15) lim inf
t→∞

∫ t ds
R(s)

∫ ∞
t

C(s) ds > − 3
2q

then equation (5) is nonoscillatory.
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Equation (7) in the limiting case

Theorem 2

Suppose that (8) holds. Then the perturbed Euler equation with the critical
coefficient [(

1 +
λ

log2 t

)
Φ(x′)

]′
+

[
γp

tp +
µ

tp log2 t

]
Φ(x) = 0.

is nonoscillatory.
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Proof.

We rewrite (7) into the form

(16)
[(

1 +
λ

log2 t

)
Φ(x′)

]′
+

[
γp

tp +
µp

tp log2 t
+
µ− µp

tp log2 t

]
Φ(x) = 0

and we use the previous computation with r(t) = 1, r̃(t) = λ
log2 t ,

c(t) =
γp
tp +

µp
tp log2 t , c̃(t) =

µ−µp
tp log2 t , h(t) = t

p−1
p log

1
p t.

We have

h′ =
p− 1

p
t−

1
p log

1
p t
(

1 +
1

(p− 1) log t

)
,

Φ(h′) =

(
p− 1

p

)p−1

t−
p−1

p log
p−1

p t
(

1 +
1

(p− 1) log t

)p−1

,

(
Φ(h′)

)′
= t−2+ 1

p log
p−1

p t
[
−γp −

µp

log2 t
+ O

(
log−3 t

)]
.
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Proof.

Similarly,(
λ

log2 t
Φ(h′)

)′
= λ

(
p− 1

p

)p−1

t−2+ 1
p log−1− 1

p t
[
−p− 1

p
− 2

log t
+ o
(
log−1 t

)]
.

Hence, in the limiting case (8) it holds

[(r̃Φ(h′))′ + c̃Φ(h)] = − 2γp

p− 1
t−2+ 1

p log−2− 1
p t(1 + o(1))

as t→∞. Consequently,

h[(r̃Φ(h′))′ + c̃Φ(h)] = O
(
t−1 log−2 t

)
as t→∞.
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Proof.

Now we use Theorem 1. In this theorem

R = (r + r̃)h2|h′|p−2 = t log t(1 + o(1)) ∼ t log t

(here f (t) ∼ g(t) for a pair of functions f , g means limt→∞
f (t)
g(t) = 1),

G = rhΦ(h′) =

(
p− 1

p

)p−1

log t
(

1 +
1

(p− 1) log t

)p−1

and using the previous computations

C = h
[(

(r + r̃)Φ(h′)
)′

+ (c + c̃)Φ(h)
]

= O
(
t−1 log−2 t

)
as t→∞, i.e., there exists a constant M > 0 such that |C(t)| ≤ M.
Now, by a direct computation

lim
t→∞

∣∣∣∣∫ t

R−1(s) ds
∫ ∞

t
C(s) ds

∣∣∣∣ ≤ M lim
t→∞

log(log t)
log t

= 0,

so by Theorem 1 equation (7) with λ and µ satisfying (8) is nonoscillatory.
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Á. ELBERT, Asymptotic behaviour of autonomous half-linear differential systems on the plane, Studia Sci.
Math. Hungar. 19 (1984), 447–464.
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