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Introduction

How did EQ-logic arise?

@ Motivation comes from G. W. Leibniz, L. Wittgenstein and
F. P. Ramsey. To develop logic on the basis of identity
(equality) as the principle connective.

[H. Castaneda, Leibniz’s syllogistico-propositional calculus,
Notre Dame Journal of Formal Logic XVII (4) (1976)
338-384.]

[F. Ramsey, The foundations of mathematics, Proceedings
of the London Mathematical Society 25 (1926) 338-384.]

@ Implication-based logic X Equality-based logic
[D. Gries, F. B. Schneider. Equational propositional logic.
Information Processing Letters, 53:145-152, 1995.]
[G. Tourlakis. Mathematical Logic. New York, J.Wiley & K
Sons, 2008.] IRAFM



Introduction

How did EQ-logic arise?

Implication-based fuzzy
logic:

Structure of their truth values
is extension of the

MTL-algebra, implication is
interpreted by residuation

Equality-based fuzzy logic:

Structure of their values is
EQ-algebra, equivalence is
interpreted by fuzzy equality
not biresiduation!



Introduction

How did EQ-logic arise?

[M. Dyba and V. Novak. Non-commutative EQ-logics and their
extensions. Proc. of the Joint 2009 IFSA World Congress and
2009 EUSFLAT Contf., July 20-24, 2009, 1422—1427, Lisbon,
Portugal, 2009. University of Malaga.]

[M. Dyba and V. Novak. EQ-logics: Non-commutative fuzzy
logics based on fuzzy equality. Fuzzy Sets and Systems, 2011,
sv. 172, 13-32.]

[Dyba, M., Novak, V., EQ-logics with delta connective. Fuzzy

Sets and Systems, submitted.]
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Definition

Non-commutative EQ-algebra is the algebra
E=(E,N®,~,1)

of type (2, 2, 2, 0)



EQ-algebras

Definition

Non-commutative EQ-algebra is the algebra
E=(E,N®,~,1)
of type (2, 2, 2, 0)

(E1) (E, A, 1) is a commutative idempotent monoid (i.e.
A-semilattice with top element 1) with the ordering: a < b
iffanb=a

(E2) (E,®,1) is a monoid and ® is isotone w.r.t. <



EQ-algebras

Definition (continued)

(E3) a~a=1 (reflexivity)
(E4) ((anb)~c)e(d~a)<c~(dAb) (substitution)
(E5) (a~b)®(c~d)<(a~c)~(b~d) (congruence)
(E6) (anbArc)~a<(anb)~a (monotonicity)
(E8) avb<a~b (boundedness)



EQ-algebras

Definition (continued)

(E3) a~a=1 (reflexivity)
(E4) ((anb)~c)e(d~a)<c~(dAb) (substitution)
(E5) (a~b)®(c~d)<(a~c)~(b~d) (congruence)
(E6) (anbArc)~a<(anb)~a (monotonicity)
(E8) avb<a~b (boundedness)

Implication: a— b= (anb)~ a



EQ-algebras

Special EQ-algebras

EQ-algebra is
(@) goodifa~1=a
(b) residuated if
(aeb)nc=axb iff an((bAc)~b)=a
(c) involutive if ——a = a ( IEQ-algebra)
(d) prelinear if for all a,b € E sup{a— b,b — a} =1.

(e) lattice EQ-algebra if it is a lattice-ordered and for all
a,b,c,deE((avb)~c)®(d~a)<(dvb)~c
(’EQ-algebra)

v




EQ-algebras

Special EQ-algebras

A lattice EQa-algebra ((EQa-algebra)
En = <E,/\, V,Q, N,A,O, 1>
e (E,A,V,®,~,0,1) is a good non-commutative and
bounded ¢EQ-algebra.

A1 =1
Aa < AAa
A(a~ b) < Aa~ Ab
A(anb)=AanAb
Aa=Aa® Aa
A(av b) < Aav Ab
AavVv-Aa=1

Ala~b)<(a®c)~(b®c)
Ala~b) < (c®a)~ (c®b) mék



EQ-algebras

Representation of /EQ,-algebras

If a good EQ-algebra & satisfies
(@a—bv(d—(do(c—(b—awc))=1 (1)

forall a,b,c,d € £(Ep) then it is prelinear.

IRAFI\/I\



EQ-algebras

Representation of /EQ,-algebras

Lemma

If a good EQ-algebra & satisfies
(@a—bv(d—(do(c—(b—awc))=1 (1)

forall a,b,c,d € E(Ea) then it is prelinear.

| A\

Theorem (M. El Zekey)

Let En be LEQn-algebra. The following are equivalent:

(a) Ea is subdirectly embeddable into a product of linearly
ordered good {EQn -algebras.

(b) Ea satisfies (1).
IRAFM\
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Propositional EQ-logics

Why EQ-logics

EQ-logics — special class of many-valued logics
truth values form an EQ-algebra

@ Equivalence as the basic connective instead of implication
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Propositional EQ-logics

Why EQ-logics

EQ-logics — special class of many-valued logics
truth values form an EQ-algebra

@ Equivalence as the basic connective instead of implication
@ Proofs in equational style
@ Even more general than MTL-logics



Propositional EQ-logics
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Basic EQ-logic

Language

@ Propositional variables py, po, . ..
@ Connectives: A (conjunction), & (fusion), = (equivalence),
@ Logical constant T (true)



Propositional EQ-logics
[ eJele]e]

Basic EQ-logic

Language

@ Propositional variables py, po, . ..
@ Connectives: A (conjunction), & (fusion), = (equivalence),
@ Logical constant T (true)

Implication:
A= B:= (AAB)=A
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Basic EQ-logic

Logical axioms

(EQ1) (A=T)=A
(EQ2) AAB=BAA

(EQ3) (AOB)OC=A0O(BOO),

(EQ4) ANA=A
(EQ5) AAT = A
(EQ6) AL T = A
(EQ7) T& A=A
(EQ8a) ((AAB)&C)= (B&C)
(EQ8b) (C&(AA B)) = (c& B)
(EQ9) (AAB)=C)&(D=A)= (C
(EQ10) (
(

(EQ11) (A= (BAC)) = (A= B)

O e {A&}

= (D A B)) (substitution)
AEB)&(C_D)=>(A_ C)=

(B=D) (congruence&
(monotonicikpFm



Propositional EQ-logics
[e]e] lele]

Basic EQ-logic

Inference rules

Equanimity rule
From A and A = B infer B

Leibniz rule

From A= B infer C[p:= A] = C[p:= B]

C|p := A] denotes a formula resulting from C by replacing all
occurrences of a variable p in C by the formula A.



Propositional EQ-logics
[e]ele] o]

Basic EQ-logic

Semantics

The set of truth values is a good non-commutative EQ-algebra
E=(E,N®,~,1)

Truth evaluatione: F; — E

e(p) € E

e(A= B) =e(A) ~ e(B)
e(AA B) =e(A) A e(B)
(

e(A& B) = e(A) ® e(B) (non-commutative)




Propositional EQ-logics
[ee]e]e] ]

Basic EQ-logic

Completeness

Theorem (Completeness)

For every formula A € F, the following is equivalent:

(a) FA

(b) e(A) =1 for every truth evaluation e : F; — E and every
good non-commutative EQ-algebra £.




Propositional EQ-logics
@0000

Extensions

Other EQ-logics

@ Involutive EQ-logic (with double negation)

@ Prelinear EQ-logic (stronger variant of the completeness
theorem)

@ EQ(MTL)-logic (equivalent with MTL-logic)

Not strong enough for development of the predicate EQ-logic!
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Propositional EQ-logics
@0000

Extensions

Other EQ-logics

@ Involutive EQ-logic (with double negation)

@ Prelinear EQ-logic (stronger variant of the completeness
theorem)

@ EQ(MTL)-logic (equivalent with MTL-logic)
Not strong enough for development of the predicate EQ-logic!

@ Basic EQa-logic (weaker variant of the completeness
theorem)

@ Prelinear EQa-logic

Theorem (Deduction)

For each theory T and formulas A, B, C € F, :
TU{A=B}+-C iff TFAA=B)=C N




Propositional EQ-logics

0@000

Extensions

Prelinear EQx-logic

Language
The language of basic EQ-logic extended by unary connective

A, binary connective Vv and logical constant L.
Negation -A:= A= |

||</-\r|\/|\



Propositional EQ-logics
0e000

Extensions

Prelinear EQx-logic

Language

The language of basic EQ-logic extended by unary connective
A, binary connective Vv and logical constant L.

Negation -A:= A= |

Axioms (EQ1)—(EQ11) and

((IAAB)VC)=D)&(F=C))&(E=A)= (D= (FV(BAE)))

(EQ12) (AVB)V C=AV (BV C)

(EQ13) AV (AAB) = A

(EQ14) (AA L)= 1

(EQ15) (A= B)V (D= (D&(C = ((B= A)& C)))) N
xArvl




Propositional EQ-logics
00e00

Extensions

Prelinear EQx-logic

Axioms (continued)

(EQA1) AA=> AAA

(EQA2) A(A=B)= (AA=AB)
(EQA3) A(AA B) = (AAA AB)

(EQA4) AA= (AA&AA)

(EQA5) A(AV B) = (AAV AB)

(EQAB) AAV -AA

(EQA7) A(A= B) = ((A& C) = (B& C))
(EQA8) A(A=B)= ((C&A) = (C&B))

IRAI—'I\/I\‘
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Prelinear EQx-logic

Inference rules
@ Equanimity rule
@ Leibniz rule
@ Necessitation rule

From A infer AA



Propositional EQ-logics
00080

Extensions

Prelinear EQx-logic

Inference rules
@ Equanimity rule
@ Leibniz rule
@ Necessitation rule

From A infer AA

An (EQa-algebras in which (1) is satisfied.




Propositional EQ-logics
0000e

Extensions

Prelinear EQx-logic

Theorem (Completeness)

For every formula A € F,; and every theory T the following is
equivalent:

(@ THA
(b) e(A) =1 for every truth evaluation e : F; — E and every
linearly ordered, {EQa -algebra £ .

(c) e(A) =1 for every truth evaluation e : F; — E and every

(EQn-algebra £ satisfying (1).
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Predicate EQ-logic

@ Object variables x, y, .. ..
@ Set of object constants Const = {u, v, ... }.

@ Non-empty set of n-ary predicate symbols
Pred ={P,Q,...}.

@ Binary connectives A, V, &, = and unary connective A.
@ Logical (truth) constants T (true) and L (false).

@ Quantifiers Vv, 3.

@ Auxiliary symbols: brackets.




Predicate EQ-logic

Object variables and object constants are terms.

@ If Pis an n-ary predicate symbol and t;, ..., t, are terms
then P(t,...,t,) is atomic formula.

@ Logical constants T and L are formulas.

o If A, B are formulas then AAB,Av B,A& B,A= B,AAare
formulas.

@ If Ais formula and x is an object variable then (Vx)A, (3x)A

are formulas.
/
IRAFI\/I\




Predicate EQ-logic

Semantics

Structure for language J

ME = (M, E,{rp}Pepred: {Mu}ucconst)

E=(E,NV,®,~,A,0,1) is a non-commutative linearly
ordered /EQn-algebra,
re: M" — E is n-ary relation, m, € M.




Predicate EQ-logic

Interpretation of terms and formulas

v — assignment of elements from M to variables
ME(x) = v(x), ME(u) = my,

MG (P(ty, ... 1))
ME(AN ):M (A) A ME(B
B)

M§(A&

My(T) = 1,M‘3(L) =
My ((vx)A) = inH{M (Ac[m])| m € M},
M((3x)A) = sup{ My (Ac[m])| m € M}

IRAH\/I\‘




Predicate EQ-logic

Logical Axioms

(EQ1)—(EQ15), (EQA1-EQAS8) plus

(EQv1
(EQ31

) (Vx)A(x) = A(t) (t substituable for x in A(x)),

)
(EQV2)

)

)

A(t) = (3x)A(x) (t substituable for x in A(x)),
(Vx)(A= B) = (A= (¥x)B) (x not free in A),
(Vx)(A= B) = ((3x)A= B) (x not free in B),
(Vx)(AV B) = ((Yx)AV B) (x not free in B),

(EQ32
(EQV3




Predicate EQ-logic

Inference Rules

@ Equanimity rule

@ Leibniz rule

@ Necessitation rule

@ Rule of Generalization

From A infer (Vx)A




Predicate EQ-logic

Structure M¢ is a model of a theory T if ME(A) = 1 holds for
all axioms of T.

Theorem (Soundness)

| A

If T - A then M&(A) = 1 holds for every assignment v and
every model M€ of T.

A




Predicate EQ-logic

Main properties

Lemma

(i) - (Yx)(A= B)
(i) - (Vx)(B= A)
(iii) - (Vx)(A= B)
(iv) F (Vx)(A= B)

(vx)( )

= ((
= ((3x)A= (3Ix)B)
(V) F(Yx)(A= B) = ((

Theorem (Deduction theorem)

TU{A=B}+-C iff TFA(A=B)= C.




Predicate EQ-logic

Completeness

(i) Theory T is consistent if there is a formula A unprovable in
T.

(if) T is linear (complete) if for every two formulas A, B,
THA=BorTFB= A

(iii) T is extensionally complete if for every closed formula
(Vx)(A(x) = B(x)), T I/ (vx)(A(x) = B(x)) there is a
constant u such that T t/ (Ax[u] = Bx|u])




Predicate EQ-logic

Completeness

Every consistent theory T can be extended to a maximally
consistent linear theory.

Theorem

| A

Every consistent theory T can be extended to an extensionally

complete consistent theory T.




Predicate EQ-logic

Completeness

Theorem (Completeness)
(a) Atheory T is consistent iff it has a safe model M.
(b) THA iff TEA
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Conclusion

Conclusion

@ A-connective (deduction theorem) is indispensable for
development of the first-order EQ-logic.

@ Formal system of predicate EQ-logic with equivalence as
main connective.

@ Possible direction in the development of mathematical
fuzzy logics in which axioms are formed as identities and
proofs naturally have equational form.



Conclusion

Thank you for your attention. ]
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