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® 1975 1. Kramosil and J. Michalek fuzzy metric

@ 1994 A. George and P. Veeramani modification of the fuzzy metric
definition



Definition of a metric

A metric on a (nonempty) set X is a function d : X x X — R satisfying
the following conditions Vz,y, z € X:

Al d(z,y) > 0 (nonnegativity);

A2 d(z,y) = 0 < z = y (identity);

A3 d(z,y) = d(y,z) (symmetry);

A4 d(z,z) <

d(z,y) + d(y, z) (triangle inequality).




t-norm

A t-norm is a function % : [0,1] x [0,1] — [0,1] which satisfies the
following properties (z,vy, 2z € [0,1]):

Al zxy=y=*x (symmetry);

A2 (z*y)*z=uxx*(y*2z) (associativity);

A3 x1 < 29 = 21 xy < 29 * y (monotonicity);
Ad zx1=ux.

(Examples)

©® Minimum z A y = min{z, y}

® Product z -y = zy

® Lukasiewicz x Ly = max{z +y — 1,0}
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| A\

A t-norm x : [0,1] x [0, 1] — [0, 1] is called continuous if it is continuous
as the first argument function.

v

A t-norm *: [0,1] x [0,1] — [0, 1] is continuous < lim x,xy=axy
Tn—ra
= Qa

Va € [0,1],Y(xn)nen : 1i_>m Tn,

A\




Definition of a fuzzy metric

A. George and P. Veeramani: On some results in fuzzy metric spaces.
Fuzzy Sets and Systems. 64 (1994) 395-399.

Definition

A fuzzy metric on a (nonempty) set X is an ordered pair (M, *) such that
* is a continuous t-norm and M is a function M : X x X x (0,+o00) —
(0, 1] satisfying the following conditions Vz,y,z € X:

Ml M(z,y,t)=1ex=y (identity);

M2 M(z,y,t) = M(y,z,t) (symmetry)'

M3 M(xz,y,t) * M(y,z s) < M(z,z,t+ s) (triangle inequality);

M4 M(z,y,o): (0,

o) — [0, 1] is continuous.

From axioms M3, M1 = M(z,y, o) is nondecreasing function
Vr,y € X.
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Some examples of fuzzy metrics

(X,d) is a metric space, M : X x X x (0,400) is a function of a fuzzy
set M

eneN
t’n
M )= ————
= (M, ) is a fuzzy metric
° M(x t) = #
T (e y)
= (M, ") is a fuzzy metric (called standard)
e X =RT
i t
Mz, y.t) = min{x,y} +
max{z,y} + ¢

= (M,-) is a fuzzy metric



Comparison of axioms

M(x,y,t) = M(y,x,t)

]\/‘[(Ia Y, t) * Af(ya 2, S) S
< M(x,z,s+1)



J.A. PaiikoB: Mnozomepnuiti mamemamuveckut arnanus.(1989)

Definition

A metric on a (nonempty) set X is a function d : X x X — R satisfying
the following conditions Vz,y, z € X:

Al d(z,y) < d(z,z) +d(y, 2);
A2 d(z,y) =0z =y.

v
Definition

A metric on a (nonempty) set X is a function d : X x X — R satisfying
the following conditions Vz,y, z € X:

A2 d(z,y) =0 x =y,
A3 d(z,y) = d(y, v);
Ad d(z,z) <d(z,y)+ d(y, 2)




An alternative description

A fuzzy metric on a (nonempty) set X is an ordered pair (M, *) such that
* is a continuous t-norm and M is a function M : X x X x (0,+00) —
(0, 1] satisfying the following conditions Vz,y,z € X:
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coloured image processing
(image compression, reconstruction, recognition)

diagnostics

robotechnics

clustering



Thank you
for attention!
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