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Centre of Excellence IT4Innovations - Division University of Ostrava Institute for
Research and Applications of Fuzzy Modeling

University of Ostrava
Czech Republic

petra.murinova@osu.cz

ISCAMI 2012



logo

Motivation and main goals Łukasiewicz fuzzy type theory Intermediate Generalized Quantifiers Valid generalized syllogisms Results

Outline

1 Motivation and main goals

2 Łukasiewicz fuzzy type theory

3 Intermediate Generalized Quantifiers

4 Valid generalized syllogisms

5 Results



logo

Motivation and main goals Łukasiewicz fuzzy type theory Intermediate Generalized Quantifiers Valid generalized syllogisms Results

Motivation and main goals

Motivation for this research
• Elaboration of theory of intermediate quantifiers from

Peterson’s book Intermediate Quantifiers - where Peterson
analyzed the main intermediate quantifiers.

• In the book of Peterson is no formal mathematical system.
• Application of Łukasewicz fuzzy type theory.
• The first goal is to define new intermediate quantifier ”more

then half“ and also to prove 19 new intermediate
generalized syllogisms with this quantifier.

• The second goal is to find the main strongly valid
syllogisms for every Figure and to show that all the 144
intermediate generalized syllogisms are strongly valid in
our theory.
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Structure of truth values-MV∆∆∆-algebra

MV∆∆∆-algebra

L· = 〈L,∨,∧,⊗,→, 0, 1,∆〉, (1)

1 〈L,∨,∧,⊗,→, 0, 1, 〉 is an MV-algebra with involutive
negation,

where
• ∆a∨∨∨¬¬¬∆a = 1,
• ∆(a∨∨∨ b) ≤ ∆a∨∨∨∆b,
• ∆a ≤ a, ∆a ≤ ∆∆a,
• ∆(a→ b) ≤ ∆a→ ∆b,
• ∆1 = 1.
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Example of MV∆∆∆-algebra

Standard Łukasiewicz algebra

L = 〈[0, 1],∨,∧,⊗,→, 0, 1,∆〉 (2)

1 ∨ = max

2 ∧ = min

3 a⊗ b = max(0, a + b− 1)

4 a→ b = 1 ∧ (1− a + b)

5 ¬a = a→ 0 = 1− a
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Basic syntactical elements

The language of Ł-FTTdenoted by J consists of:
• variables xα, . . .
• special constants cα, . . . (α ∈ Types)

• λ and brackets

• E(oα)α for every α ∈ Types for fuzzy equality,
• C(oo)o for conjunction,
• D(oo) for delta operation.
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Basic definitions

1 Equivalence: ≡ := λxαλyα(E(oα)α yα)xα, α ∈ Types.
2 Conjunction: ∧∧∧ := λxoλyo(C(oo)o yo)xo.
3 Delta connective: ∆∆∆ := λxoDooxo.
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Derived connectives

1 Representation of truth: > := λxoxo ≡ λxoxo.
2 Representation of falsity: ⊥ := λxoxo ≡ λxo>.
3 Negation: ¬¬¬ := λxo(xo ≡ ⊥).
4 Implication:⇒⇒⇒ := λxoλyo (xo ∧∧∧ yo) ≡ xo

5 &&&,∇∇∇,∨∨∨ are defined as in Łukasiewicz logic.
6 General quantifier: (∀xα)Ao := (λxαAo ≡ λxα>),
7 Existential quantifier: (∃xα)Ao := ¬¬¬(∀xα)¬¬¬Ao.
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Axioms and inference rules in Ł-FTT

• 17 axioms
• two inference rules where the rules modus ponens and

generalization are the rules derivative.
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Semantics in Ł-FTT

• A frame is a tuple

M = 〈(Mα,=α)α∈Types ,L∆〉

1 (Mα)α∈Types is a basic frame
2 L∆ is MV-algebra with ∆∆∆

3 =α is a fuzzy equality on Mα.

• We say that a frameM is a model of a theory T if all
axioms are true in the degree 1 inM.
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Trichotomous evaluative linguistic expressions

TEE
• are special expressions of natural language, e.g., small,

big, about fourteen, very short, more or less deep, not
thick.

• Linguistic hedge can be
• narrowing — extremely, significantly, very
• widening — more or less, roughly, quite roughly, very

roughly
• empty hedge

• We will work with expressions: extremely big, very big,
very roughly, not small.

• TEv has 11 axioms.
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Theory of intermediate quantifiers T IQ

1 is a special theory of Ł-FTT extending the theory TEv of
evaluative linguistic expressions

2 we consider a special formula µ of type o(oα)(oα) such
that values of the measure are taken from the set of truth
values

3 µ has four axioms
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Definition of intermediate generalized quantifiers

Definitions of intermediate generalized quantifiers of the
form “Quantifier B’s are A”

(a) (Q∀Ev x)(B,A) := (∃z)((∆∆∆(z ⊆ B)&&&(∀x)(z x⇒⇒⇒
Ax))∧∧∧ Ev((µB)z)),

(b) (Q∃Ev x)(B,A) := (∃z)((∆∆∆(z ⊆ B)&&&(∃x)(zx∧∧∧Ax))∧∧∧Ev((µB)z)).
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Definition of intermediate generalized quantifiers

Explanation of definition of IGQ
Each formula above consists of three parts:

(∃z)((∆∆∆(z ⊆ B)︸ ︷︷ ︸
“the greatest” part of B’s

&&&

(∀x)(z x⇒⇒⇒ Ax))︸ ︷︷ ︸
each z’s has A

∧∧∧

Ev((µB)z))︸ ︷︷ ︸
size of z is evaluated by Ev

(3)
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Definition of intermediate generalized quantifiers
with presupposition

Interpretation of “Quantifier B’s are A” with presupposition

(a) (∗Q∀Ev x)(B,A) ≡ (∃z)((∆∆∆(z ⊆ B)&&&(∃x)zx&&&(∀x)(z x⇒⇒⇒
Ax))∧∧∧ Ev((µB)z)),

(b) (∗Q∃Ev x)(B,A) := (∃z)((∆∆∆(z ⊆
B)&&&(∃x)zx&&&(∃x)(zx∧∧∧ Ax))∧∧∧ Ev((µB)z)).

where only non-empty subsets of B are considered.
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“All”, “No”, “Almost all”, “Few”, “Most”

A: All B are A := Q∀Bi∆∆∆(B,A) ≡ (∀x)(Bx⇒⇒⇒ Ax),

E: No B are A := Q∀Bi∆∆∆(B,¬¬¬A) ≡ (∀x)(Bx⇒⇒⇒¬¬¬Ax),

P: Almost all B are A := Q∀Bi Ex(B,A) ≡
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒ Ax))∧∧∧ ( Bi Ex)((µB)z)),

B: Few B are A (:= Almost all B are not A) := Q∀Bi Ex(B,¬¬¬A) ≡
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒¬¬¬Ax))∧∧∧ ( Bi Ex)((µB)z)),

T: Most B are A := Q∀Bi Ve(B,A) ≡
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒ Ax))∧∧∧ ( Bi Ve)((µB)z)),

D: Most B are not A := Q∀Bi Ve(B,¬¬¬A) ≡
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒¬¬¬Ax))∧∧∧ ( Bi Ve)((µB)z)),
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“Many”,“More then half”, “Some”

F: More then half B are A := Q∀Bi VR(B,A) ≡
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒ Ax))∧∧∧ ( Bi VR)((µB)z)),

V: More then half B are not A := Q∀Bi VR(B,¬¬¬A) ≡
(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒¬¬¬Ax))∧∧∧ ( Bi VR)((µB)z)),

K: Many B are A := Q∀¬¬¬(Sm ν̄νν)(B,A) ≡

(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒ Ax))∧∧∧¬¬¬(Sm ν̄νν)((µB)z)),

G: Many B are not A := Q∀¬¬¬(Sm ν̄νν)(B,¬¬¬A) ≡

(∃z)((∆∆∆(z ⊆ B)&&&(∀x)(zx⇒⇒⇒¬¬¬Ax))∧∧∧¬¬¬(Sm ν̄νν)((µB)z)),

I: Some B are A := Q∃Bi∆∆∆(B,A) ≡ (∃x)(Bx∧∧∧ Ax),

O: Some B are not A := Q∃Bi∆∆∆(B,¬¬¬A) ≡ (∃x)(Bx∧∧∧¬¬¬Ax).
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Syllogism, validity

• A syllogism denoted by 〈P1,P2,C〉 is a kind of logical
argument in which the conclusion C is inferred from two
premises — major P1 and minor P2.

• By intermediate syllogism we mean traditional syllogism
where we replace one or more of its formulas with some
containing intermediate quantifiers.

• The syllogism is strongly valid if T IQ ` P1 &&& P2⇒⇒⇒ C, or
equivalently, if T IQ ` P1⇒⇒⇒ (P2⇒⇒⇒ C)
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Classification of IGS

Suppose that Q1,Q2,Q3 are intermediate quantifiers and
X,Y,M ∈ Formoα

Figure I
Q1 M is Y

Q2 X is M
Q3 X is Y

Figure II
Q1 Y is M

Q2 X is M
Q3 X is Y

Figure III
Q1 M is Y

Q2 M is X
Q3 X is Y

Figure IV
Q1 Y is M

Q2 M is X
Q3 X is Y
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Example of strongly valid syllogism of Figure I

ATT-I:
P1:All women are well dressed
P2:Most people in the party are women
C:Most people in the party are well dressed

The syllogism above is strongly valid. This means that if there
is a modelM |= T IQ such thatM(P1) = a andM(P1) = b then
a⊗ b ≤M(C).
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0

1

1

0.5

0.5
0.910.67 0.79

VeBi

0.970.75 0.86

ExBi

0.1 0.360.24

Sm ¬Sm

Figure: Shapes of the extensions of evaluative expressions in the
context [0, 1] used in the example above.
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Valid implications

Valid implications in T IQ

(a) T IQ ` A⇒⇒⇒ P, T IQ ` P⇒⇒⇒ T, T IQ ` T⇒⇒⇒ F,
T IQ ` F⇒⇒⇒ K.

(a) T IQ ` E⇒⇒⇒ B, T IQ ` B⇒⇒⇒ D, T IQ ` D⇒⇒⇒ V,
T IQ ` V⇒⇒⇒ G.

Valid implications with presupposition in T IQ

(a) T IQ ` ∗A⇒⇒⇒ I, T IQ ` ∗P⇒⇒⇒ I, T IQ ` ∗T⇒⇒⇒ I,
T IQ ` ∗F⇒⇒⇒ I, T IQ ` ∗K⇒⇒⇒ I.

(b) T IQ ` ∗E⇒⇒⇒ O, T IQ ` ∗B⇒⇒⇒ O, T IQ ` ∗D⇒⇒⇒ O,
T IQ ` ∗V⇒⇒⇒ O, T IQ ` ∗G⇒⇒⇒ O.
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Affirmative syllogisms of Figure-I.

Let AAA,APP,ATT,AFF,AKK,AII be strongly valid in T IQ.
Then the following syllogisms are strongly valid in T IQ:

AAA
AAP APP

AAT APT ATT

AAF APF ATF AFF

AAK APK ATK AFK AKK

A∗AI A∗PI A∗TI A∗FI A∗KI AII
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Negative syllogisms of Figure-I.

Let EAE,EPB,ETD,EFV,EKG,EIO be strongly valid in T IQ.
Then the following syllogisms are strongly valid in T IQ:

EAE
EAB EPB

EAD EPD ETD

EAV EPV ETV EFV

EAG EPG ETG EFG EKG

E∗AO E∗PO E∗TO E∗FO E∗KO EIO
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Negative syllogisms of Figure-II.

Let AEE,ABB,ADD,AVV,AGG,AOO be strongly valid in T IQ.
Then the following syllogisms are strongly valid in T IQ:

AEE
AEB ABB

AED ABD ADD

AEV ABV ADV AVV

AEG ABG APG AVG AGG

A∗EO A∗BO A∗DO A∗VO A∗GO AOO
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Relationship between Figure-I and Figure-II.

Let 〈Q1,Q2〉 be the following pairs of quantifiers: 〈A,E〉, 〈A,B〉,
〈A,D〉, 〈A,V〉, 〈A,G〉, 〈P,B〉, 〈P,D〉, 〈P,V〉, 〈P,G〉, 〈T,D〉,
〈T,V〉, 〈T,G〉, 〈F,V〉, 〈F,G〉, 〈K,G〉. Then every negative
syllogism EQ1Q2-I is strongly valid in T IQ if and only if EQ1Q2-II
is strongly valid in T IQ.

Let ∗Q be one of the following quantifiers with presupposition:
∗A,∗P,∗T, ∗F, ∗K. Then every negative syllogism E∗QO-I is
strongly valid in T IQ if and only if E∗QO-II is strongly valid in T IQ.
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Definition of a theory T[B,B′]

Let B,B′ ∈ Formoα. The theory T[B,B′] is a consistent extension
of of T IQ such that
(a) T[B,B′] ` B ≡ B′,
(b) T[B,B′] ` (∃xα)∆∆∆Bx and T[B,B′] ` (∃xα)∆∆∆B′x.
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Affirmative syllogisms of Figure-III.

Let AII, IAI be strongly valid in T IQ and PKI,TFI,FTI,KPI, be
strongly valid in T[B,B′]. Then the following is true:
(a) all the syllogisms denoted by the dashed line are strongly

valid in T[B,B′]-non-trivial syllogisms,
(b) the others syllogisms are strongly valid in T IQ.

∗AAI ∗PAI ∗TAI ∗FAI ∗KAI IAI

A∗PI PPI TPI FPI KPI

A∗TI PTI TTI FTI

A∗FI PFI TFI

A∗KI PKI
AII
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Negative syllogisms of Figure-III.

Let EIO,OAO be strongly valid in T IQ and
BKO,DFO,VTO,GPO, be strongly valid in T[B,B′].
(a) all the syllogisms denoted by the dashed line are strongly

valid in T[B,B′]-non-trivial syllogisms,
(b) the others syllogisms are strongly valid in T IQ.

E∗AO ∗BAO ∗DAO ∗VAO ∗GAO OAO

E∗PO BPO DPO VPO GPO

E∗TO BTO DTO VTO

E∗FO BFO DFO

E∗KO BKO
EIO
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All syllogisms of Figure-IV.

Using the main three classical syllogisms IAI-IV, AEE-IV and
EIO-IV we can prove strong validity of all the intermediate
generalized syllogisms from Figure-IV.

∗AAI AEE E∗AO
∗PAI AEB E∗PO
∗TAI AED E∗TO
∗FAI AEV E∗FO
∗KAI AEG E∗KO
IAI A∗EO EIO
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Relationships between Figure-III and Figure-IV.

Let ∗Q be the following quantifiers with presupposition: ∗A,∗P,∗T,
∗F, ∗K. Then every negative syllogism E∗QO-III is strongly valid
in T IQ if and only if E∗QO-IV is strongly valid in T IQ.
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Results

Results
• We introduced new intermediate generalized quantifier

”more then half“ and also 19 new intermediate generalized
syllogisms.

• We found for every Figure-I-IV the main strongly valid
syllogisms using them we may prove the strong validity of
the all 144 intermediate generalized syllogisms.
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Thank you for your attention.
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