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The degree-diameter problem

The problem:

Find the largest order n(d, k) of a graph of maximum degree d and
diameter k (the (d, k)-graphs) and characterize the extremal graphs.

Two mainstreams of research:

Proofs of non-existence of (d, k)-graphs of order ‘close’ to the
Moore bound

M(d, k) = 1 + d+ d(d− 1) + . . .+ d(d− 1)k−1

(except sporadic examples).

Construction methods for lower bounds on n(d, k).
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Non-existence - general information

For d ≥ 3, k ≥ 2 we have n(d, k) = M(d, k) only if (d, k) is equal to

(3, 2) – the Petersen graph, or

(7, 2) – the Hoffman-Singleton graph, or possibly

(57, 2) – ???

For other d, k we have n(d, k) ≤M(d, k)− 2 and n(3, k) ≤M(3, k)− 4.
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Construction method - Voltage assignments

G - an undirected graph; Γ - an arbitrary finite group.

D(G) - set of all arcs of G

A mapping α : D(G)→ Γ is a voltage assignment if

α(e−1) = (α(e))−1 for each e ∈ D(G).

A graph Gα with V (Gα) = V (G)× Γ and D(Gα) = D(G)× Γ
is called a lift of G.

A vertex (u, g) of Gα is connected with (v, h) iff
gα(e) = h and e is an edge from u to v in the base graph.

The set {(u, g), g ∈ Γ} forms a fiber above u.
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Example of a lift:
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McKay-Miller-Širáň graphs

The largest currently known vertex-transitive non-Cayley graphs of
diameter two and given degree are the McKay-Miller-Širáň graphs
MMS(q).

These graphs were constructed as lifts of dipoles in Abelian groups. They
are defined for any prime power q such that q ≡ 1 mod 4,
and have order 2q2, degree d = (3q − 1)/2, and diameter 2.

In terms of degree, the order of MMS(q) is 8
9(d+ 1

2)2.

An interesting aside: MMS(5) is the Hoffman-Singleton graph.

Dávid Mesežnikov Slovak University of Technology ()Upper bound on Abelian lifts of complete graphs 12. 5. 2012 6 / 14



McKay-Miller-Širáň graphs
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MMS(q).

These graphs were constructed as lifts of dipoles in Abelian groups. They
are defined for any prime power q such that q ≡ 1 mod 4,
and have order 2q2, degree d = (3q − 1)/2, and diameter 2.

In terms of degree, the order of MMS(q) is 8
9(d+ 1

2)2.

An interesting aside: MMS(5) is the Hoffman-Singleton graph.
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Lifts of dipoles using Abelian groups

A dipole lift construction of MMS graphs motivates the study of largest
possible graphs of diameter 2 obtained as lifts of dipoles using voltages in
Abelian groups.

In this case the upper bound can be improved as follows.

Theorem

[J. Šiagiová ’02] For an arbitrary d ≥ 3 let D be a dipole of degree d, and
let α be a voltage assignment on D in an Abelian group such that the lift
Dα is of diamter two. Then

|V (Dα)| ≤ 4(10 +
√

2)
49

(d+ 0.34)2 ≈ 0.932d2
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Lifting regular graphs

Let Kn(m, l) denote a complete graph of order n ≥ 2 with l ≥ 0 loops on
each vertex and m ≥ 1 parallel edges between each pair of vertices.

Lemma

Let α be an ordinary voltage assignment on a connected graph G in a
group H and let k be a positive integer, and let u be a vertex of G. Then,
the lift Gα has diameter at most k if and only if for every vertex v of G
and for every element h of the group H there is a u→ v path in G of
length at most k such that α(W ) = h.

Proposition

Let α be a voltage assignment on an n-pole Kn(m, l) in an Abelian group
A and suppose that the lift Kα

n (m, l) has diameter two. Then the number
of vertices of Kα

n (m, l) is at most ω(m, l), where

ω(m, l) = n ·min{1+(n−1)m(m−1)+2l(l+1), (n−2)m2 +4ml+m} .

Dávid Mesežnikov Slovak University of Technology ()Upper bound on Abelian lifts of complete graphs 12. 5. 2012 8 / 14



Lifting regular graphs

Let Kn(m, l) denote a complete graph of order n ≥ 2 with l ≥ 0 loops on
each vertex and m ≥ 1 parallel edges between each pair of vertices.

Lemma

Let α be an ordinary voltage assignment on a connected graph G in a
group H and let k be a positive integer, and let u be a vertex of G. Then,
the lift Gα has diameter at most k if and only if for every vertex v of G
and for every element h of the group H there is a u→ v path in G of
length at most k such that α(W ) = h.

Proposition

Let α be a voltage assignment on an n-pole Kn(m, l) in an Abelian group
A and suppose that the lift Kα

n (m, l) has diameter two. Then the number
of vertices of Kα

n (m, l) is at most ω(m, l), where

ω(m, l) = n ·min{1+(n−1)m(m−1)+2l(l+1), (n−2)m2 +4ml+m} .
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Theorem

Let d ≥ 3 and n ≥ 2 be integers and let α be a voltage assignment on an
n-pole G of degree d in an Abelian group such that the lift Gα is of
diameter 2. Then, for any fixed n ≥ 2 the number of vertices of Gα is
bounded above by

n4 + 4n3 + (2
√

2− 1)n2 − (2
√

2 + 2)n
(n2 + 2n− 1)2

d2 +O(d3/2)

as d→∞.

Sketch of proof:
We can express the polynomials from the Proposition in terms of degree d.

p1(m) = (
n2

2
− 1

2
)m2 + (−dn− 2n+ d+ 2)m+

d2

2
+ d+ 1 , and

p2(m) = −nm2 + (2d+ 1)m, where in both cases 1 ≤ m ≤ d/(n− 1) .
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Since we need to find

M = max
m

min {p1(m), p2(m)}

we have two possibilities of intersection of the parabolas.
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Considering the x-coordinates of the vertices of parabolas p1(m), p2(m)
we get that

M = max
m

min {p1(m), p2(m)}

is attained at x2. Therefore

M = max
m

min {p1(m), p2(m)} = p1(x2) = p2(x2)

If we substitute x2 (expressed in terms of d, n) for m in p1(m) or p2(m)
we gain the requesting result.
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The upper bound for a diameter-two lift of Kn(m, l) for some values of n:

n Order of lift of n-pole

2 0.932d2 +O(d)
3 0.974d2 +O(d)
4 0.987d2 +O(d)
5 0.992d2 +O(d)
6 0.995d2 +O(d)
7 0.996d2 +O(d)
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Conclusion

Our aim now is to investigate diameter-two lifts of other regular graphs on
n vertices. We wish either to show that the upper bound obtained from
the lifts of Kn(m, l) is the best possible or to find a new regular graph on
n vertices the lift of which has bigger order than presented.
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THANK YOU FOR YOUR ATTENTION
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