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Preliminaries I

Let α be an algebraic number of degree n (root of p ∈ Z[x ] of
degree n).

conjugates
α1, . . . , αs ∈ R, αs+1, αs+1, . . . , αs+t , αs+t ∈ C \ R,
n = s + 2t

algebraic number field K = Q(α) = Q+ αQ+ . . .+ αn−1Q
· · · the smallest subfield of C containing Q and α

norm · · · N(β) = σ1(β) · · ·σs(β)|σs+1(β)|2 · · · |σs+t(β)|2,
where σi is the field isomorphism corresponding to αi

4 / 18



Preliminaries Sums of units Linear combinations of units Examples and references

Preliminaries I

Let α be an algebraic number of degree n (root of p ∈ Z[x ] of
degree n).

conjugates
α1, . . . , αs ∈ R, αs+1, αs+1, . . . , αs+t , αs+t ∈ C \ R,
n = s + 2t

algebraic number field K = Q(α) = Q+ αQ+ . . .+ αn−1Q
· · · the smallest subfield of C containing Q and α

norm · · · N(β) = σ1(β) · · ·σs(β)|σs+1(β)|2 · · · |σs+t(β)|2,
where σi is the field isomorphism corresponding to αi

4 / 18



Preliminaries Sums of units Linear combinations of units Examples and references

Preliminaries I

Let α be an algebraic number of degree n (root of p ∈ Z[x ] of
degree n).

conjugates
α1, . . . , αs ∈ R, αs+1, αs+1, . . . , αs+t , αs+t ∈ C \ R,
n = s + 2t

algebraic number field K = Q(α) = Q+ αQ+ . . .+ αn−1Q
· · · the smallest subfield of C containing Q and α

norm · · · N(β) = σ1(β) · · ·σs(β)|σs+1(β)|2 · · · |σs+t(β)|2,
where σi is the field isomorphism corresponding to αi

4 / 18



Preliminaries Sums of units Linear combinations of units Examples and references

Preliminaries I

Let α be an algebraic number of degree n (root of p ∈ Z[x ] of
degree n).

conjugates
α1, . . . , αs ∈ R, αs+1, αs+1, . . . , αs+t , αs+t ∈ C \ R,
n = s + 2t

algebraic number field K = Q(α) = Q+ αQ+ . . .+ αn−1Q
· · · the smallest subfield of C containing Q and α

norm · · · N(β) = σ1(β) · · ·σs(β)|σs+1(β)|2 · · · |σs+t(β)|2,
where σi is the field isomorphism corresponding to αi

4 / 18



Preliminaries Sums of units Linear combinations of units Examples and references

Preliminaries II

OK · · · the ring of algebraic integers in K (roots of p ∈ Z[x ]
monic)

one can map OK → lattice in Rn, its covolume equals the
discriminant of the field D(K )

UK · · · the group of units in OK (N(β) = ±1)

logarithmic projection: UK → lattice in Rs+t , its covolume
equals the regulator of the field R(K )

β ∈ UK is a root of unity, if βk = 1 for some k ∈ N
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Unit sum number

Unit sum number of ring R:

u(R) =


t ∈ N all β ∈ R are sums of at most t units
ω all β ∈ R are (possibly infinite) sums of units
∞ some β ∈ R is not a sum of units

Theorem 1 (Jarden, Narkiewicz)

Let K = Q(α) be an algebraic number field. Then there is no
t ∈ N, such that every element of OK is a sum of at most t units,
i.e. u(OK ) ≥ ω.
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Unit sum number · · · examples

Theorem 2 (Ashrafi, Vámos)

Let K = Q(
√

d), d ∈ Z squarefree. Then u(OK ) = ω iff
1 d ∈ {−1,−3}, or
2 d > 0, d 6≡ 1 mod 4, d + 1 or d − 1 is a perfect square, or
3 d > 0, d ≡ 1 mod 4, d + 4 or d − 4 is a perfect square.

Theorem 3 (Tichý, Ziegler)

Let K = Q( 3
√

d), d ∈ Z cubefree. Then u(OK ) = ω iff
1 d = 28, or
2 d squarefree, d 6≡ ±1 mod 9, d + 1 or d − 1 is a perfect cube.

Note:

⇒ u(OK ) =∞ for infinitely many algebraic number fields K
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Arithmetic progressions I

Useful step to show u(OK ) ≥ ω is to bound the length of APs in
UK :

Theorem 4 (Newman)

Let K = Q(α). Any nontrivial AP in UK is of length at most
n = deg(K ).

That can be generalized, let:

Nm = {β ∈ OK : N(β) = m, m > 0} ,

N ∗
m = {β ∈ OK : |N(β)| ≤ m, m > 0}

and
t ×N ∗

m = {β1 + . . .+ βt : βi ∈ N ∗
m} .
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Arithmetic progressions II

Theorem 5 (Bérczes, Hajdu, Pethő)

Let K = Q(α). Any nontrivial AP in Nm is of length at most
n = deg(K ).

Theorem 6 (D., Hajdu, Pethő)

Let K = Q(α). Any nontrivial AP in t ×N ∗
m is of length at most

c1 = c1(m, n, t,D(K )), where c1 is an explicitly computable
constant.
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Sums of small-norm elements I

Possible generalization of the unit sum number problem:

define the m-sum number um(OK ) as u(OK ), but with
elements of N ∗

m instead of UK

u1(OK ) = u(OK )

Theorem 7 (D., Hajdu, Pethő)

Let K = Q(α) be an algebraic number field. For any m, t ∈ N
there exists β ∈ OK which cannot be obtained as a sum of at most
t terms from N ∗

m, i.e. um(OK ) ≥ ω for any m > 0.

Note:

analogous to u(OK ) ≥ ω for all number fields
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Sums of small-norm elements II

u(OK ) =∞ for infinitely many K = Q(α)

for um(OK ), the situation changes:

Theorem 8 (D., Hajdu, Pethő)

For every number field K = Q(α) there exists a positive integer
m0 = m0(n,D(K )), such that for any m ≥ m0 we have
um(OK ) = ω, i.e. any β ∈ OK can be obtained as the sum of
elements from N ∗

m.
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Linear combinations of units

sum of elements from N ∗
m ∼ LC of units with bounded set of

coefficients ∈ OK

we want to express any β ∈ OK as LC of units with
coefficients ∈ Q

necessary to exclude the cases where UK contained in some
proper subfield of K
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Linear combinations of units · · · main result

K = Q(α) is called a CM-field, if it is a totally imaginary
quadratic extension of a totally real number field

Theorem 9 (D., Hajdu, Pethő)

Suppose that K = Q(α) is not a CM-field or it is a CM-field
containing a root of unity different from ±1. Then there exists a
positive integer k = ec2(n)R(K), such that any β ∈ OK can be
obtained as an LC of (not necessarily distinct) units of K with
coefficients {1, 1/2, 1/3, . . . , 1/k}.
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Examples

Example 10

Let K = Q(
√

d).

d = −3, K is a CM-field with non-real roots of unity:

OK =
{

a+b
(1 + i

√
3

2

)
: a, b ∈ Z

}
, UK =

{
±
(1 + i

√
3

2

)k
: k ∈ N

}
⇒ any β ∈ OK is a sum of units

d = 6, K is not a CM-field:

OK =
{

a + b
(√

6
)
: a, b ∈ Z

}
, UK =

{
± (5 + 2

√
6)k : k ∈ N

}
⇒ any β ∈ OK is LC of units with coefficients ∈ {1, 1/2}

d < 0, d /∈ {−1,−3}, K is a CM-field, without non-real roots of
unity:
⇒ units do not generate OK with any set of coefficients ∈ Q
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