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Rules of the game

Rules of the classic version of Penney’s game:
2 players;
each player selects a three-bit long sequence of heads and tails;
a coin is tossed until one of those sequences appears
as a subsequence of the coin toss outcomes;
the coin is fair;
the player whose sequence appears first wins.

There are 8 different three-bit long sequences of heads and tails:
HHH, HHT, HTH, THH, HTT, THT, TTH, TTT(8

2
)
= 28 classic games
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Example of the game

Do the players have the same chances of winning in this game?


Penney.wmv
Media File (video/x-ms-wmv)
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Stochastic graph’s definition

We call a stochastic graph an ordered pair (S,Q), where:
1 S - a finite set of vertices;
2 Q - a function from SxS into R such that the following conditions

are satisfied:
Q(i , j) ≥ 0 for all i , j ∈ S;∑

j∈S Q(i , j) = 1 for all i ∈ S.

Q(i , j) is the probability of transition between states i and j in one
step. We use the notation pij .
A pair (i , j) is an edge of the graph, if pij > 0.
If pjj = 1, then j is a boundary vertice.
The set B of all boundary vertices is called the boundary
of the graph.
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The rules of reduction

P(A ∩ B) = P(A) · P(B), A,B − independent events
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The rules of reduction

P(A ∪ B) = P(A) + P(B), A,B −mutually exclusive events
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The rules of reduction

a→ b, a→a→ b, a→ a→ a→ b, . . . ⇒

q + p · q + p · p · q + . . . = q · 1
1− p
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The rules of reduction
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Game HHT-THH
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Game HHT-THH

P(HHT ) = 1
4 , P(THH) = 3

4

Among 28 classic Penney’s games only 10 are fair!
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Relations between 3-bit long sequences

There is no the best sequence in the classic Penney Game.
Therefore priority of selection isn’t a privilege in this game.
The property of being better than in Penney’s game isn’t transitive.
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Games with sequences of different lengths -
Game HHH-TTHH
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Games with sequences of different lengths -
Game HHH-TTHH

P(TTHH) =
7
12 >

1
2
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Algorithm of calculating mean time of random walk
on a stochastic graph with a nonempty boundary

Let (S,Q) be a stochastic graph with a nonempty boundary B ⊆ S
and Tj a random variable defined as the time of random walk begun
in vertice j ∈ S (and ending in the boundary B). Let us call:

E (Tj) = ej

for j /∈ B we define Kj - the set of vertices attained directly from
the vertice j (k ∈ Kj ⇔ pjk > 0)

Then:
1 ej = 0 for j ∈ B
2 ej =

∑
k∈Kj

pjk · ek + 1 for j /∈ B.
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Mean time of waiting for sequence HHH


eS = 1+ 1

2 · eS + 1
2 · eH ⇒ eS = 14

eH = 1+ 1
2 · eS + 1

2 · eHH ⇒ eH = 12
eHH = 1+ 1

2 · eS + 1
2 · eHHH ⇒ eHH = 8

eHHH = 0 ⇒ eHHH = 0

ETHHH = 14, ETTTHH = 16

TA - time of waiting until pattern A appears the first time
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Notation

A,B - arbitrary sequences of heads and tails, |A| = k, |B| = m,
for k,m > 0;

A(i) - first i elements of A, A(i) - last i elements of A, i ≤ k;

f (n) - the number of n-bit long sequences, which do not include
pattern A, n > 0;

fA(n) - the number of n-bit long sequences, which include pattern A
at the end, and A doesn’t appear before;

for i = 1, 2, ...,min(k,m) we define

δi(A,B) =

{
2i if A(i) = B(i),
0 otherwise. = 2i · [A(i) = B(i)]
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Derivation of the formula for the mean time of waiting for
a sequence

the set of n-bit long
sequences without
pattern A

= the set of (n + k)-bit long sequences with
pattern A at the end, in which A doesn’t
appear before n-th position

A = HTH, n = 4, TTHT ⇒ TTHT HTH (A(1) = A(1))

f (n) = fA(n + 1) · [A(1) = A(1)] + · · ·+ fA(n + k) · [A(k) = A(k)]

f (n)
2n =

fA(n + 1)
2n+1 ·2 · [A(1) = A(1)]︸ ︷︷ ︸

δ1(A,A)

+ · · ·+ fA(n + k)
2n+k ·2k · [A(k) = A(k)]︸ ︷︷ ︸

δk (A,A)

TA - time of waiting until pattern A appears the first time

P(TA > n) = P(TA = n+1)·δ1(A,A)+· · ·+P(TA = n+k)·δk(A,A)
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Derivation of formula of mean time of waiting for the
sequence...

P(TA > n) = P(TA = n+1)·δ1(A,A)+· · ·+P(TA = n+k)·δk(A,A)

∞∑
n=0

P(TA > n) = δ1(A,A) ·
∞∑

n=0
P(TA = n + 1)︸ ︷︷ ︸

1

+ · · ·+

+ δk(A,A) ·
∞∑

n=0
P(TA = n + k)︸ ︷︷ ︸

1

ETA = δ1(A,A) + · · ·+ δk(A,A) =: A : A
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P(TA > n) = δ1(A,A) ·
∞∑

n=0
P(TA = n + 1)︸ ︷︷ ︸

1

+ · · ·+

+ δk(A,A) ·
∞∑

n=0
P(TA = n + k)︸ ︷︷ ︸

1

ETA = δ1(A,A) + · · ·+ δk(A,A) =: A : A



References Introduction Classic paradoxes Conway’s Formula Conclusion

—

Conway’s Formula:

pB
pA

=
A : A− A : B
B : B − B : A , where A : B =

min(|A|,|B|)∑
i=1

δi(A,B)

for any n > 0 longer sequence T ...T︸ ︷︷ ︸
n

H...H︸ ︷︷ ︸
n

is better than

shorter one - H...H︸ ︷︷ ︸
2n−1

for sequences of any length there is no best sequence:
we know even more - for arbitrary sequence a1 . . . am one of
sequences of the form ba1 . . . am−1, where b is H or T , is the best in
the game with a1 . . . am;
Penney’s game with sequences of any length n > 4 isn’t transitive.
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Why Penney’s game is interesting for us?

The simplicity of the game and the its surprising results make it
an interesting tool for mathematics popularization.

We can prove an analogous version of the Conway’s formula
for a game with a countable set of results obtained by tossing an
arbitrary die instead of a symmetric coin. We can obtain set of linear
equations equivalent to Conway’s Formula for games with several
players.

This general theory will perhaps find some applications i.e. in:
mathematical modeling of gene mutations;
game theory and its applications i.e. on stock exchange.
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Thank You
for your attention!
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