LFLC 2000 Help

University of Ostrava
Institute for Research and Applications of Fuzzy Modeling
30. dubio 22, Ostrava, Czech Republic
tel. +420-59-6160218, fax +420-59-6120 478
email: viktor.pavliska@osu.cz
web: http://irafm.osu.cz/irafm

Description of LFLC 2000

Work with Linguistic Description

Testing Linguistic Description

LFLC 2000 Server

LFLC 2000 Clients

Description of LFLC 2000

LFLC 2000 (Linguistic Fuzzy Logic Controller) is a specialized software, which is based
on fuzzy set theory and fuzzy logic to enable to deduce conclusions on the basis of
imprecise description of the given situation using the linguistically formulated fuzzy
IF-THEN rules. 1t is specific for this software that it enables to work with genuine lin-
guistically defined rules forming a linguistic description of the given process, decision or
classification situation. The user thus may work only with expressions of natural lan-
guage without necessity to think how they are implemented. Thus, computer behaves
as if “partner” understanding the language of human user.

By a fuzzy set A in the universe U (in symbols A C U) we understand a special
function
A:U—[0,1]

where the value A(z) € [0, 1] is a membership degree of the element x € U in the fuzzy
set A. This can also be understood as the truth degree stating, how much it is true
that the element = € U belongs to the fuzzy set A.

Literature helpful in understanding this software is:

References

Novék, V.: Fuzzy mnozZiny a jejich aplikace. SNTL, Praha 1986 and 1990.
(Fuzzy Sets and Their Applications; in Czech)

Novak, V.: Fuzzy Sets and Their Applications. Adam Hilger, Bristol 1989.

Novak, V., Perfilieva I. and J. Mockot: Mathematical Principles of Fuzzy
Logic. Kluwer, Boston/Dordrecht 1999.

Novak, V.: Zaklady fuzzy modelovani. BEN, Praha 2000. (Foundations of fuzzy
modeling; in Czech)

Hijek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht 1998.

Klir, G.J. and Bo Yuan: Fuzzy Sets and Fuzzy Logic. Theory and Appli-
catations. Prentice Hall, Englewood Cliffs 1995.

Fuzzy IF-THEN rules

The main task of LELC 2000 is to work (design and test) behavior of linguistic de-
scriptions. These are sets of fuzzy IF-THEN rules of the form either

IF X;is Ay AND --- AND X, is A, THEN Y is B
(linguistic rule), or
IF X;is A AND --- AND X, is A, THEN Y is ¢

(Takagi-Sugeno singleton rule), where Ay, ..., A, and B are certain predicates char-
acterizing the variables Xi,..., X, and Y. They are often specified linguistically. In
case of Takagi-Sugeno singleton rule (TS singleton for short), ¢ is a real number. The
software enables to work with specific kind of linguistic expressions, or the user may
specify his own ones.

Example

An example fuzzy IF-THEN rule is

IF the obstacle is near AND the speed of the car is high
THEN the breaking force is very strong.

The “obstacle”, “speed” and “breaking force” are variables while “near”, “high” and
“very strong” are expressions characterizing vaguely the magnitude of the variable.

The part before THEN is called the antecedent and the part after it the succedent.
The variables Xy, ..., X,, are called input, or independent variables. The variable Y is
called output, or dependent variable.

The fuzzy IF-THEN rules are usually put together to form the linguistic description
Ri:= IF X;is A;; AND --- AND X, is A, THEN Y is BB,

Ry = IF Xyis A,,; AND --- AND X,, is A,,,, THEN Y is 3,

Besides sophisticated tools for the design of the linguistic descriptions, the soft-
ware also provides several kinds of approximate reasoning mechanisms, using which a
conclusion on the basis of the linguistic description can be obtained. This depends on
the user’s requirements and specification in relation with the following fundamental
approaches to the explication of IF-THEN rules.

(i) Logical explication — the rules are treated as linguistically characterized logical
implications.

(ii) Functional explication — the rules are treated as parts of description of some func-
tional dependence in a model.

Logical explication

This is based on the assumption that the fuzzy IF-THEN rules are genuine linguisti-
cally characterized logical implications. Let us remark that logical explication of fuzzy
[F-THEN rules together with fuzzy logic deduction described further is specific for
LFLC 2000 and (according to the authors’ knowledge) has no counterpart in other
software packages for fuzzy logic.

Functional explication

This is a more traditional possibility. The linguistic description is in this case used for
characterization of functional dependency, the existence of which is assumed, but which
is not precisely known. The result of inference on the basis of the specified linguistic
description is some function approximating the latter dependence.

The linguistic description is as a whole assigned one of the normal forms:
disjunctive normal form

(Aji(z) A=A Aj(n) A Bj(y)),

-

1

J

or conjunctive normal form
AN Az A A Agu(2a)) = Bi(y)).

J=1

Linguistic expressions

The expressions A, ..., A,, B inside of the fuzzy IF-THEN rules can be either the, so
called, evaluating linguistic expressions or simply labels of some concepts. In the first
case, the leading idea is to make computer as if human partner who “understands”
descriptions formulated in natural language and whose behavior corresponds to their
meaning. The user deals with them exactly as he/she is accustomed to use natural
language assuming that the computer “understands” them and thus, without specifi-
cation of the corresponding fuzzy sets (of course, these can be modified if one wishes
to do it).

In the second case, the expressions A and B are not explicitly formulated in natural
language and are only labels (set by the user) of fuzzy sets representing the meaning of
certain concepts in the user’s mind. The fuzzy sets can be modified to obtain as close
approximation of the user’s idea as possible.

Approximate reasoning
The linguistic description is designed to enable approximate reasoning, i.e. a procedure

on the basis of which given some information, we derive a conclusion. The general
approximate reasoning scheme is depicted on the following figure:

Input
values

Y

Linguistic Approximate
description reasoning
method

Fuzzy set

Y

Defuzzification

Output

The input values are specific values of the input variables. They are further used by
the chosen approximate reasoning method together with the specified linguistic descrip-
tion to produce the output fuzzy set. In most cases, we need one specific value, which
should be derived from the output fuzzy set. This is realized using some defuzzification
method.

Go to Main Menu

Work with Linguistic Descriptions

Open or New linguistic description

Click on either of:

File — New or press | Ctrl N
File — Open or press | Ctrl O

and choose the file (its extension is “.rb”). If you choose New, dialog window appears
and you choose either linguistic or T'S-Singleton type of linguistic description. This
opens a window, in which global information about the concrete linguistic description
is specified. The window has the following Tab-pages:

e General settings of the linguistic description

e Input variables

Output variables
Rules

Input/Output

General settings of the linguistic description

In this Tab-page, the following main characteristics of the linguistic description are set.

Name of unit

The name of the linguistic description is specified. This name is identical with the
name of the file in which the description is stored.

Type of unit

Either Linguistic or T'S-Singleton type is displayed. It is not possible to change type of
linguistic descriptions, because different type of expressions is included in the succedent
side of rules.

Type of inference

Specification of type of says, how fuzzy [F-THEN rules should be explicated and what
kind of approximate reasoning method should used. The following options are available:

e For linguistic type of unit:

(a) Logical deduction
In this case, the linguistic description is translated into a set of logical
implications of the form
Ay x,,..x, = By
Ale,...,Xn = Bm’y
where A; x, . x,., Bjy are formal fuzzy representations (we can see them as
special formulas) of the corresponding linguistic expressions.
If some input values g, ..., 2,0 are given then they are transformed into
the most appropriate formula, say Ay x, . x,. This formula takes the role
of perception of the given value. Then the logical modus ponens

Apxi, X Arxi,x, = Bry
Bm,Y

is realized, the result of which is the formula B,, y. This is transformed into
a fuzzy set B, C V. This is finally defuzzified to obtain the output value
yo. Logical deduction should be used especially with evaluating linguistic
expressions and either DEE or SDEE defuzzification method.

Remark: In fact, the real procedure is a slight modification of the above one
since both the input Ay x, . x, as well as the output B,, y can be slightly
modified.

Example

Given the linguistic description

Ry : IF X is very small THEN Y is very small

Ry : IF X is small THEN Y is small

Let the linguistic context for the variables X, Y be the interval [0, 1]. For
example, the values 0.22 and 0.09 are both small, but 0.09 is at the same
time very small while 0.22 is not. Hence, if the input value is xq = 0.09,
according to the given linguistic description, we expect the output value
Yo to be also very small, i.e. something around y, = 0.09 because of the
presence of the rule Ry. Similarly, for the input value xqg = 0.22 we expect
Yo small but not very small, i.e. around yy, = 0.22. Such behavior is assured

7

by the logical deduction and DEE (SDEE) defuzzification method. Make
experiments with the linguistic description MONOTONE.rb to see how this
kind of approximate reasoning works.

Fuzzy approximation with conjunctions

This is the well known Mamdani-Assilian method. The antecedent of each
rule is specified as a fuzzy set A; x---x A, - U; x - -+ x U, and the succedent
as a fuzzy set B C V. The disjunctive normal form assigned to the linguistic
description is transformed into a fuzzy relation

R=RU---UR,

where each R; is a fuzzy relation obtained from the antecedent fuzzy set
Aj1, ..., Aj, and succedent fuzzy set Bj, j = 1,..., m using the formula

Rj(l‘l, e ,In,y> = Ajl(ZL’l) A A Ajn(fl,’n) A Bj<y)

because the fuzzy IF-THEN rules characterize some functional dependence
and thus, they can be taken as conjunctions.

Now, given input values xy = xy9,...,T, = T,o the output fuzzy set is
computed as projection of the fuzzy relation R according to the formula

m

Biro,.ino(Y) = R(T10, - -+ s Tno, y) = \/(Ajl(xlo) Ao N Ajn(xno) A Bi(y))-

j=1

The goal is to approximate some function f hidden inside the fuzzy relation
R. Thus, the shapes of the fuzzy sets A; and B; and the defuzzification
method should be modified in such a way to fit f as best as possible. The
best behavior of the functional fuzzy approximation can be obtained when
the fuzzy sets are specified as fuzzy numbers together with the Center of
Gravity defuzzification method.

The whole situation can be well seen from the following picture.

(¢) Fuzzy approximation with implications
This method keeps interpretation of the rules as logical implications but its
goal is approximation of a function.
The antecedent of each rule is specified by a fuzzy set A C U and succe-
dent by a fuzzy set B C V. The conjunctive normal form assigned to the
linguistic description is thus transformed into a fuzzy relation

R=RiN---NR,

where each R; is a fuzzy relation obtained from the antecedent fuzzy sets
Aji, ..., A;, and succedent fuzzy set B;, j = 1,...,m using the formula

Rj(z,y) = (Aj (@) A+ A Ajn(2,)) — Bi(y)

where — is the Lukasiewicz implication (realized using the formula a — b =
min(1,1 —a +b), a,b € [0,1]). Now, given input values z; = z1q,..., T, =
Zno, the output fuzzy set is computed as projection of the fuzzy relation R
according to the formula

m

Big,o o (Y) = R(T10, -, Tno, y) = /\(Ajl(l"lo) A N Ajn(no) — Bj(y)).

Jj=1

The role of this method for the practice is somewhat marginal because it is
quite difficult to set right shapes of the fuzzy sets and defuzzification method
to obtain convincing results.

e In case of T'S-Singleton type of unit, there is one inference method, Takagi-Sugeno
inference, available. Generally, we can characterize Takagi-Sugeno rules as rules,

which describe functional dependencies in vaguely characterized regions. The
system of Takagi-Sugeno rules describes the course of some function f4. We can
understand f# as function approximating some function f. Hence this method
fall into the group of fuzzy approrimation methods.

Suppose we have a system of T'S-Singleton rules

Ry:= IF Xyis A;; AND --- AND X,, is Ay, THEN Y is ¢;

R, := IF X;is A,; AND --- AND X, is A,,, THEN Y is c,,.
Then the formula for the computation of the value of function f# at the point
X104 - . .y Tpo 18:
> e (Aji (i) A A Aj(@no)) - ¢
> iei (A (@i0) Ao A Ajn ()

Note that in this case we compute directly the value of f4(zy,...,Zn) (nO
defuzzification is needed).

fA(iUlo, S 7xn0) =

Let us remark that in all cases we can understand that the linguistic description can
be used to generate some function

g:Uyx---xU, —V.

Defuzzification

This determines the way of defuzzification of the fuzzy set obtained as a result of
approximate reasoning. The following defuzzification methods are available:

(a) Simple defuzzification of Evaluating Expressions (SDEE - SimpDefuzzLingEx-
pression)

This method is based on the assumption that the shapes of the fuzzy sets inter-
preting the evaluating linguistic expressions are of the form of S and II curves.
The defuzzification method defuzzifies according to the given type of the fuzzy
set. The defuzzified value is taken as the edge of the kernel of the fuzzy set
if it corresponds to “small” or “big” and center of gravity, if it corresponds to
“medium” (see the figure below)

I
medium

10

(b) Defuzzification of Evaluating Expressions (DEE - DefuzzLingExpression)

This is a slight modification of the SDEE method; the defuzzified value is found
in the surroundings of the edge of the kernel of the S-fuzzy set.

(¢) Center of Gravity Method (COG - SimpleCenterOfGravity)

This is classical method according to the formula

ineU A(xl)xz
ZmieU Alzi)

The result is depicted on the following figure.

DEF(A) =

1.0

0.0 \

(d) Modified Center of Gravity Method (MCOG - ModifiedCenterOfGravity)
This is a slight modification of the previous method when only upper part of the
fuzzy set is taken into account.

(e) Mean of Maxima Method (MOM - MeanOfMaxima)
This is another classical method which takes the defuzzified values as the mean
of all the values with maximal membership.

(f) Smooth Defuzzification of Linguistic Expression (SDLE - SmoothDeffuzling-
Expr)

This is a method based on the theory of Smooth Logical Deduction which ap-
plies the fuzzy transform (F-transform) technic on the outputs obtaining using
Logical deduction. Let us remind that logical deduction gives a partially con-
tinuous function. However, the course of the output using SDLE is smooth and
continuous, this immediately follows from the properties of F-transform.

Description

In this window, the user can write down his/her comment to the linguistic description
in concern.

11

Input and output variables

These tab-pages are used for specification of variables used in the linguistic description.
The variables in the antecedent of IF-THEN rules are input variables and variables in
the succedent are output variables.

Each variable is characterized by the following information.

e Name of the variable. Except for the full name, it is also possible to specify its
short, which is used in headers of the IF-THEN rules.

e Upper and Lower bound — specification of the interval (universe), in which fuzzy
sets interpreting the linguistic expressions will be defined. When the evaluating
linguistic expressions are used, we speak about linguistic context, because these
bounds mean the smallest and highest thinkable values in the given context. Note
that in fuzzy control, still another term is often used, namely scaling.

In principle, there are two possibilities. Either we specify the symmetric interval
[—u,u] where u is some real number, or we specify some interval [u;,us| where
U1, ug are real numbers fulfilling the condition uq, us > 0. The symmetric universe
case is used mostly in fuzzy control.

If lower or upper bound is changed, and there are fuzzy numbers of the form
about(number), dialog window appears with question, whether the numbers
(number) have to be recomputed according to the new context. The same win-
dow appears if you are changing context of the succedent variable of T'S-Singleton
unit.

e Discretization of the universe. This information specifies number of points on the
universe, in which the membership functions are computed. The higher is this
number, the higher is the precision of the computation but the longer computation
time. If symmetric context is specified then discretization must be odd to have
precise center at disposal. Discretization has no sense for succedent variable in
TS-Singleton unit.

The above information can be specified for each variable after pressing either of the
buttons | Edit variable|or | Add variable| The specified variable can be deleted by

pressing | Delete variable |

This window makes also possible to edit expressions used for each variable in the
fuzzy IF-THEN rules. It is activated by pressing the button | Edit expressions |

Recall that fuzzy logic enables to work with the linguistic variables, i.e. variables
whose values are, in general, linguistic expressions such as “small”, “very big”, “roughly
medium” etc. In LFLC 2000 they can be either the preset evaluating linguistic expres-
sions, or arbitrary expressions set by the user. The evaluating linguistic expressions

12

are preset according to the linguistic analysis and some psychological investigations.
However, they can be modified if necessary.

The other possibility is to set own user expressions. In principle, the user specifies
only shapes of the membership functions and assigns them his/her own labels.

Editing expressions

Pressing this button opens the window for editing all the linguistic expressions used
for characterization of the values of the given variable. It has no sense for succedent
variable in T'S-Singleton unit, hence this button is not visible there. There are two
tab-pages.

User

On this tab-page, we can specify shapes of membership functions of user defined labels.
These shapes are in general given by the function

(0, r<a;orx>as
1 r—ay 2
5(@), a1<ﬂf<b1
2
1-3(22) m<e<a

F<x7a17b1761702)b27a2) - 9
1—%(M> , < x < by

bo—co
1 2
1 a2—%
5 <a2—b2> , b2 <z <a
(L, c1 <z <o,

Using this function it is possible to construct three standard types of membership func-
tions usually considered in fuzzy set theory, namely S, S~ and II. The first two types
are special cases of the third one, namely when setting a; = b; = ¢1, we obtain a fuzzy
set of type S~ and ¢y = by = ay gives the fuzzy set of type ST. All three fuzzy sets are
basis for the meaning of the standard linguistic expressions and are depicted on the
following figure:

13

L0k () T
! I
: LS 5+ : :
0544 0.5{ - - - - 1
S L
‘ [\ I
‘ | | L
01‘02 272 a9 U aq 271 C1Co U
LOp - - o
yam
.-"/ : : ‘\ 11
0.5} - - - - S .Y
/1 I I N
N [[[
1 o 1
ai ??1 '01 éz z?z as U

This function can be simplified into trapezoidal (given by the parameters ay, c1, ¢z, as
or even only triangular one (¢; = ¢3).

To set one of the above possibilities, one must push any of the buttons ’ Add Quadratic|,
Add Trapezoid ‘, ’Add Triangular ‘ First, the name of the expression should be
set, which will then be used when specifying the linguistic description on the tab-page
Rules.

The shape of the fuzzy set can be specified either graphically by dragging any of
the parameters (small squares on the curve) using mouse, or explicitly in the following
columns:

Left support ay
Left Equilibrium by
Left Kernel cy
Right Kernel c
Right Equilibrium 0,
Right support as

The specified fuzzy set can be copied using the ’ Ctrl C \ and ’ Ctrl V\ keys. To do
it, point by mouse the number of the fuzzy set on the left side. This action marks all

its parameters. Then press | Ctrl V | key. The parameters of fuzzy sets can be copied
also from one variable to another one. This can be done in two ways:

14

e Mark one or more fuzzy sets (by pressing | Shift | key at the same time), press

, change the variable and press .

o All fuzzy sets are automatically copied from the variable specified as option “Copy
from variable” after pressing] Add variable ‘

The already specified fuzzy sets can be deleted by pressing button.

A specific possibility is the button ’Add Uniform ‘ This is widely used especially
in fuzzy control. The result is n-triangular fuzzy sets (n specified by the user), which
uniformly cover the universe. The typical number is 7, which are in symmetric context
usually assigned the labels negative big (NB), negative medium (NM), negative small
(NS), zero (ZE), positive small (PS), positive medium (PM) and positive big (PB)

The active fuzzy set is depicted in red and it can be modified in the same way as
above. The other fuzzy sets are depicted in gray to enable the user to see the layout
of all the possible values.

Standard

On this tab-page, shapes of the fuzzy sets of the standard linguistic expressions, which
belong among evaluating linguistic expressions can be displayed. They are modeled
using the standard membership function. LFLC 2000 does not make possible to modify
them so far.

Go to Main Menu

Rules

This tab window enables to edit the fuzzy IF-THEN rules forming the linguistic de-
scription in concern. The window has the following columns:

o Number of the rule

In the column, also a check box is present. This may be used for toggling the given
rule as active/inactive. If the rule is made inactive then it is not deleted but it is
not used in inference. This makes possible to realize various kinds of experiments
when the influence of some rules on the result can be tested without necessity to
delete them from the description. The information about active/inactive rules
is saved, when Save command is used and reloaded again by means of Open
command.

e Separate columns for each Independent (antecedent) and Dependent (succedent)
variable where the rule is written down using the expressions of natural language
(see editing the rules).

15

e Group This column contains information about rules that are equal (if they exist).

e [nconsistency This column contains information about inconsistency of rules, i.e.
the rules that have the same antecedent but different succedent.

e Redundancy These are two separate columns for antecedent and succedent, where
the user is informed that some rules are redundant. This may happen in two
situations:

(a)

The succedent of both rules is the same but the antecedent of the first one
is narrower than the antecedent of the second one. In this case, the former
rule is redundant and it can be deleted from the description.

For example, let us consider two rules
RuleNo | X X, | Y

1 sm bi | me
2 ve sm | si bi | me

Then Rule 2 is redundant since if X is very small and X5 is significantly
big then X; is also small and X5 is also big. Since both rules have the same
succedent, the first one does the job of the second one as well.

The antecedent of both rules is the same but the succedent of the first one
is narrower than the succedent of the second one. Since the latter is more
precise, the first rule is redundant.

For example, let us consider two rules
RuleNo X1 X2 Y

1 sm | bi bi
2 sm | bi | ve bi

Then Rule 1 is redundant since very big Y is more precise than big Y.

Decision whether the rules should be deleted or not depends on the user and it is
not done automatically. Redundancy fields are not visible for T'S-Singleton units.

The linguistic description is defined using the available linguistic expressions. For

this, either the evaluating linguistic expressions (these are the standard ones) or the
user defined ones can be used.

Evaluating linguistic expressions

The structure of the evaluating linguistic expressions, which can be used inside the
fuzzy IF-THEN rules, is the following:

[(sign)](linguistic modifier) (basic expression)

16

Sign is + or —. This should be used when the corresponding variable has symmetric
context.

Basic expressions are

‘ expression ‘ short ‘

small sm

medium me

big bi

The linguistic modifiers are
modifier short

extremely ex
significantly si
very ve
rather ra
more or less ml
roughly ro
quite roughly | qr
very roughly vr

The expressions can also be joined using the connectives and and or to make the
complex ones.

Specific expressions, which can be used in the linguistic description, are fuzzy num-
bers. They can be set by
about(number)

where (number) is any number which falls within the linguistic context of the given
variable. Moreover, a fuzzy zero ze is included together with its positive +ze and
negative -ze parts. +ze and -ze have sense only for symmetric contexts. It is also
possible to use linguistic modifier roughly with expression ze, +ze and -ze.

Additionally, we have special expressions

‘ expression ‘ short ‘
undefined | undef
ignore ignor

Value undef means, that a value of a given variable is not defined, i.e. it can attain
arbitrary value. A rule, which includes variable with undefined value, is used when
there are no other rules with the same combination of values of remaining variables.

17

Consider e.g. linguistic description

R1:= IF Xy is small AND X is very big THEN Y is big
Ro := IF X1 is small AND X is undef THEN Y is small.

Then, rule R; will be used if X; is small and X, is very big and rule Ry will be used
is X is small and X5 s not very big.

Value ignor is similar to undef, but now the variable is completely ignored for the
given combination of values of remaining variables. Hence, if the value of X5 in rule
R, in the previous example is ignor instead of undef, the rule R, will be never used
(and hence it is is superfluous). The difference between undef and ignor is in place
only for Logical deduction inference method.

Moreover, it is possible to use negation of atomic expressions small, medium, big
and zero (and its signed variants in symmetric contexts.) It is interpreted by operation
notA(z) = 1 — A(x). The syntax of negation operator is

not(atomic expression).

Editing the rules

The above expressions may be used anywhere in the fuzzy IF-THEN rules. An excep-
tion is succedent part of TS-singleton unit, where only real numbers can be used. To
help the user, it is possible to view all the labels of the defined expressions (including
the user ones) by making them visible after checking the appropriate box in the View
submenu of the main menu. The expressions inside the rules can be then set by clicking
the appropriate item of this menu.

Example

Let us consider a linguistic description with two independent variables temperature and
pressure, and the dependent variable position (of the control cock). We suppose that
the universe of all these variables is symmetric. Let the following two rules be given.

IF temperature is positive small and pressure is negative big
THEN position is positive medium

IF temperature is negative very small and pressure is positive
significantly big THEN position is positive roughly small

Then this description can be written down in the Rules editing window as follows:
‘ temperature ‘ pressure ‘ position ‘
+sm — bi +me
+si bi | +ro sm

—Ve S1n

18

It is possible to copy, cut, and paste the rules. To do it, mark one or more rules

(using the key)) by clicking on the number of the rule. To copy, press | Ctrl C|
to cut press and to paste press .

In a lot of situations, we need separate rules for positive and negative cases. For
example, in fuzzy control we need the values below and above the set point. The
corresponding linguistic expressions are usually symmetric and differ only by opposite
signs. To simplify the work, we can use the Invert sign 4+, — option in the Edit submenu
of the main menu. Then mark appropriate rules (and possibly copy them) and press
. All the described actions can also be done using the Edit submenu of the

main menu.

Sorting the rules

To get better orientation in the linguistic description, it is possible to sort it. This is
achieved by clicking on the name of the corresponding variable. Clicking more variables
sorts them in the given order. The values are sorted according to the value (from small
to big) and sharpness of the linguistic hedge (from extremely to very roughly).

Go to Main Menu

19

Testing Linguistic Descriptions

This function makes possible to test behavior of the designed linguistic descriptions. If
a file with linguistic description is open, press the button . The testing window
is divided into four areas.

Upper left area

This is input area, on which input of each defined antecedent (independent) variable
can be set in one of two ways:

e The input value is set graphically on the horizontal line defined for each an-
tecedent variable. Drag a small red triangle along the line and drop it on the
required position.

e The concrete value of each variable is specified explicitly in the input field. This
should be used if the graphical input is not sufficiently precise due to screen
resolution.

To each given value, the corresponding most typical evaluating expression is dis-
played, i.e. the linguistic expressions which best characterizes the given value in the
given linguistic context.

Lower left area

On this area, the text form of the elaborated linguistic description is displayed. Note
that the saved linguistic description can be viewed or edited using an ordinary editor
(this is not recommended).

Upper right area

This is the output area where the result of inference is continuously displayed depend-
ing on the chosen inference and defuzzification method. Namely, the shape of the
resulting fuzzy set with the marked defuzzified value, the concrete value and the most
typical evaluating expression and finally, all the fired rules are displayed. Note that
defuzzification is not performed for TS-Singleton units.

It is also possible to change both the inference as well as the defuzzification and
see, how the result changes.

20

Lower right area

This global output area where the result of inference for all the possible values of the
chosen antecedent variable are depicted.

e In case of more than one antecedent variable, we obtain two-dimensional projec-
tion of the function g generated by the linguistic description (see section Type
of inference) for all the values of the chosen projection variable and some fixed
values of the other ones.

The projection variable can be specified in the corresponding choice field. Since,
of course, we cannot go through all the possible values of the projection variable,
we must specify number of equidistant points over the set of all possible values
of the projection variable. This is set in the field Enabled steps.

e [t is also possible to display three-dimensional projection of g by clicking the
button . Two projection variables as well as the number of steps are
specified analogously as above. The depicted surface can be turned using mouse
by draging the colored dots at the end of each axis.

Input /Output

On this tab page, it is possible to work with data stored in a text file. T'wo possibilities
are available.

e Computing values of the function g generated by the linguistic description (see
section Type of inference).

e Learning linguistic description from the data.

Computing function values

Before using this option, the linguistic description must be defined. Then press the

button | Import file | to import the text file. Its structure is the following:

Text line1 Var X; Var X, - Var X,, VarY
Text line 2 XXXX XXXX XXXX XXXX XXXX
Datalinel 999.99 999.99 999.99 999.99 999.99

Data linem 999.99 999.99 999.99 999.99 999.99

21

Each column corresponds to one variable including the independent one. Their number
depends on the definition of the linguistic description and on the definition of the
variables on the tab-page input and output variables.

Text lines are arbitrary and are ignored. The data are in the fixed point format of
arbitrary length but they must be separated by at least one space. If the file contains
more columns than is the number of the defined variables in the linguistic description
then the additional ones are ignored.

The dependent variable contained in the file is supposed to be used only for com-
parison and is displayed in the column headed by “est.” (estimation). The column
headed by Y is used for computation of the functional values of the function ¢g in each
data line of the imported file. The computation is realized after pressing the button
. Note that the values should fall into the defined linguistic context. If
not, the corresponding bound (lower or upper one) is automatically taken instead of
the value exceeding it.

The imported file can be modified using the buttons ’ Add Row ‘ and ’ Delete Row ‘

The file including the computed values can be saved using the button | Save File| The
file is added the extension ‘.out’.

Learning linguistic description

Before using this option, define all the antecedent and succedent variables including the
linguistic context. Then press button to import the text file as above.
Let us stress that the number of columns in the file must not be smaller than the
number of all defined variables. Finally press | Learn/Linguistic learning | button.
The new learned rules are added to the existing linguistic description, which is saved
under the prompted name.

Linguistic learning method

This is based on special method for finding an evaluating linguistic expression, which
is typical for a given value z(in the linguistic context of some variable. This means
that the interval [uj,us] of all its possible values is fuzzily divided into “extremely
small”, “very small”, “roughly small”, etc. values, and similarly for “medium” and
“big”. If the value x(falls into such area, it is considered as typical representative of
the corresponding expression.

During the learning procedure, each item in the file is replaced by the linguistic
expression using the above method. Hence, each line of the imported file leads to one
linguistically characterized fuzzy IF-THEN rule.

22

Example

Let the defined variables be Xj, X5, Y with the respective linguistic contexts [1,10],
[—5,5], [0,1]. Let the data line be

1.7 —3.25 0.83

The typical linguistic expressions found by the above method are in the following table:

context ‘ value ‘ typical expression

[1,10] 1.7 very small
[—5,5] | -3.25 roughly big
0, 1] 0.83 big

Thus, the new learned rule is

IF X1 is very small AND X5 is roughly big THEN Y is big

Duplicate rules are automatically deleted. Other reduction of the description should
be done either manually or semi-automatically using special buttons in the Rules tab-

page.
Note that other learning method is in preparation.

Go to Main Menu

LFLC 2000 COM Server

A special COM object RuleBaseCOM is prepared, which provides inference mechanism
on the basis of the linguistic description designed using LFLC 2000 for user-written
client applications. Before writing the application, the object must be registered into
the Windows system. This is normally automatically performed during the installation
process.

The RuleBaseCOM object is installed into RBaseCOM subdirectory of the LE'LC 2000
root directory. This subdirectory contains the following files:

23

register.bat

Batch file which registers the RuleBaseCOM
object into Windows system. It uses the
“tregsvr.exe” Borland Inprise utility. The
registration must be done before using the
object in any applications. To register, just
run this file.

RBaseCOM.d11

File containg the RuleBaseCOM object.

RBaseCOM.t1lb

Type library for importing object into the
programming development IDE.

tregsvr.exe

Borland Turbo Register Server — COM
Server Registration utility. Version 1.1.
Copyright (¢) 1997, 2000 Inprise Corporation

In case that the COM object has not been registered during installation, run

“register.bat” file.

After successful registration, the RuleBaseCOM object can be used in own appli-
cations. The object communication interface is as follows:

LoadFromFile(BSTR FileName)

Loads rulebase with specified FileName

int NumInputVars()

Returns number of input variables of the
loaded rulebase

double HiBoundOfVar (int VarIndex)

Returns upper bound of the Varlndezr vari-
able context

double LoBoundOfVar (int VarIndex)

Returns lower bound of the Varindex vari-
able context

BSTR VarName (int Varlndex)

Returns the name of the VarIndez variable

double Inference (TVariantInParam Inputs)

Performs inference on Inputs values

To understand the use of the COM object, the following two examples are placed
in the LFLC 2000\RBaseCOM\examples directory. They demonstrate the use of Rule-
BaseCOM object in Borland C++ Builder 5.0 development environment.

ConsoleApp | Shows how to use RuleBaseCOM object in
console application
Shows how to use RuleBaseCOM object in

WinGUIApp

Windows GUI application

LFLC 2000 MATLAB/Simulink client

This is a special MATLAB/Simulink S-Function which can be used in Simulink schemes.
The S-Function forming a new block “LFLC Inference” is contained in LFLCLibrary.mdl

24

file which is installed in the LFLC 2000\matlab directory.

Before simulation, it must be instructed to read the name of the file containing
the linguistic description (file “xxx.rb”) and the number of orders of the elaborated
rules from the actual linguistic description to be displayed. This should be done in the
dialog window “Block Parameters” for S-Function “Inference”.

Let us remind that with different inputs the numbers of elaborated rules differs.
If you set the value to 0 then no order will be displayed. Any other higher settings
will increase the dimension of output array. Then, “LFLC Inference” S-Function is
returning the orders of used rules and filling all others free fields of the array by value
0.

Several demonstration examples are provided in the directory LFLC 2000\LFLCDemo.

LFLC 2000 MATLAB client

This is a special MATLAB mex-function which can be used in MATLAB programs.
The name of this function is LFLCInfer. The main purpose of this function is to
compute inference based on the given input values and display the number of elaborated
rule (or rules). The LFLClInfer mex-function satisfies the following calling conventions.
Before computing inference result it must be initialized by loading appropriate linguistic
description (“xxx.rb” file). The LFLClnfer function expects two input arguments.

e The first parameter is the ID number of the description. Thanks to this 1D
number it is possible to work with several linguistic descriptions at the same
time. The ID number can range from 0 to 9, so up to ten descriptions can be
loaded simultaneously. When only one linguistic description is loaded then this
parameter can be omitted the default value 0 will be used in this case.

e The second input argument has two distinct purposes which are recognized de-
pending on its type. The string value is used for saying the filename with the full
path, for loading and initializing the appropriate linguistic description. When
the second parameter is one dimensional array of double number values, it is
recognized as an input into inference and its value is returned as output value of
calling LFLClInfer mex-Function.

A short illustration of calling the LFLClInfer function in MATLAB environment
follows:

% loading of linguistic description
% note that the ID number of description is omitted
LFLCInfer(’twovar.rb’)

25

% computing inference value
result = LFLCInfer([-0.5, -0.5])

% the same result will be obtained in this case when ID is specified
result = LFLCInfer(0, [-0.5, -0.5])

% when using more than one description at the same time there must be
% used the ID number of linguistic description
LFLCInfer(1, ’monotone.rb’)

% output from one inferention can be directly used as input to another one
result = LFLCInfer(1, LFLCInfer([-0.5, -0.5]))

% for obtaining information about fired rules it is necessary to change
% the type of required result into an array
[result, rule] = LFLCInfer([-0.5, -0.5])

% sometimes more than one rule is used during inference method and
% information about them could be obtained in similar way
[result, rulel, rule2, rule3] = LFLCInfer([-0.5, -0.5])

% in previous example when rule2 and rule3 is set to 0 it
% means that only one rule were used during inference

Note that both LFLC 2000 MATLAB/Simulink client and LFLC 2000 MATLAB
client uses the LFLC 2000 COM Server RuleBaseCOM, so it must be registered into
Windows system before using this special-written clients for MATLAB environment.

Go to Main Menu

26

