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Abstrakt

Cilem préce je vybudovat teorii integralnich transformaci pro funkce ohodnocené v
uplnych reziduovanych svazech, zkracené svazovych integralnich transformaci, ktera
zahrnuje svazové fuzzy transformace vyuzivané pro horni a dolni aproximace funkei.
Integralni transformace jsou zavedeny podobné jako v klasickém pripadé realnych
funkci, kdy se integruje souc¢in mezi funkci a integralnim jadrem mezi vhodnymi
Sugentuv integral definovany pro funkce s funkénimi hodnotami lezici v iplném rezi-
duovaném svazu, a integralni jadro je ve tvaru specialni binarni fuzzy relace. Prace
uvadi vybrané vlastnosti svazovych integralnich transformaci a mimo jiné ukazuje, ze
svazové fuzzy transformace jsou jejich specidlnim pripadem. Déle jsou prezentovany
zakladni aproximacni vlastnosti kompozic svazovych integralnich transformaci, které
rekonstruuji ptivodni funkce. Teoretické vysledky jsou ilustrovany a diskutovany na
prikladu zpracovani signélu véetné odstranéni ndhodného sumu. Vedle teoretickych
poznatkl jsou v praci uvedeny dvé aplikace svazovych integralnich transformaci,
konkrétné ve vicekriterialnim rozhodovani a zpracovani obrazu. Ve druhém pripadé
jsou svazové integralni transformace pouzity k zavedeni nékolika novych typu filtri
odtranujici Sum typu sul a pepr a rozsiruji tak medidnovy filtr, dale pak je uka-
zana moznost komprese a dekomprese obrazu a v neposledni fadé je predstaveno
zobecnéni fuzzy morfologickych operatorti eroze a dilatace.

Klicova slova: Integralni transformace, Fuzzy transformace, Residuovany svaz,
Fuzzy integral, Vicekriterialni rozhodovani, Zpracovani obrazu.

Abstract

The aim of the thesis is to develop a theory of integral transforms for complete
residuated lattice-valued functions, lattice integral transforms for short, which in-
cludes lattice fuzzy transforms that are used for upper and lower approximations of
functions. The integral transforms are introduced similarly as in the classical case
of real functions, when the product of a function and an integral kernel is integrated
between suitable limits. In the present theory, the integration is given by fuzzy
integrals that extend the Sugeno integral for functions with function values in a
complete residuated lattice and the integral kernel has the form of a binary fuzzy
relation. The thesis presents selected properties of lattice integral transforms and
shows, among other things, that lattice fuzzy transforms are special cases of them.
The basic approximation properties of compositions of lattice integral transforms
that reconstruct the original functions are also given. In addition to the theoretical
findings, the thesis presents two applications of lattice integral transforms, namely,
in multi-criteria decision making and image processing. In the second case, lattice
integral transforms are used to introduce several new types of filters that filter out
salt-and-pepper noise and thus extend the median filter, the possibility of compres-
sion and decompression of the image is shown, and finally a generalization of the
fuzzy morphological operators of erosion and dilation is presented.

Keywords: Integral transforms, Fuzzy transforms, Residuated lattice,
Fuzzy integral, Multicriteria decision making, Image processing.
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Foreword

Integral transforms are mathematical operators that produce a new function g(y)
by integrating the product of a given function f(z) and an integral kernel function
K(x,y) between suitable limits. An integral kernel function forms a link between
the domains of functions f(z) and g(y). The Fourier and Laplace transforms belong
among the most popular integral transforms and are applied for real or complex
valued functions. Integral transforms are very useful in solving practical problems
from different areas of science and engineering as solving (partial) differential equa-
tions, signal and image processing, spectral analysis of stochastic processes (see, e.g.,
8, 43 148]).

In fuzzy set theory, we usually deal with functions whose function values be-
long to an appropriate algebra of truth values as a residuated lattice and its special
variants as the BL-algebra, MV-algebra, IMTL-algebra (see, e.g., [6, 35, [16]). For
this type of (residuated) lattice-valued functions, we can recognize a type of “inte-
gral” transforms which are hidden under the name lattice-valued upper and lower
fuzzy transforms (lattice fuzzy transforms for short). These lattice fuzzy trans-
forms were proposed by Perfilieva in [36] and further developed in several papers
[441 133, [30] 31, 34, 132} [37]. Tt is known that the key concept for lattice fuzzy trans-
forms is the fuzzy partition of the domain of transformed functions, which is a
system of fuzzy subsets defined on the domain that generalizes the classical (set)
partition of the domain in a natural way (see, e.g., [36]). Using the fuzzy partition
the direct and inverse lower and upper fuzzy transforms are introduced whose par-
ticular composition can be used to approximate the original functions from below
and above. The quality of the approximation is then controlled by the setting of the
fuzzy partition.

The analysis of the formulas introducing lattice fuzzy transforms leads to the
interesting observation that both the direct and inverse transforms can be expressed
as integral transforms using Sugeno-like fuzzy integrals introduced in [12] and fuzzy
relations as integral kernels. More precisely, the fuzzy integrals used to interpret
the direct and inverse lattice fuzzy transforms are defined using the least and high-
est fuzzy measure on the respective measurable space. This observation raises the
very natural question of whether it is also possible, in the spirit of standard integral
transforms, to develop a theory of integral transforms for functions valued in com-
plete residuated lattices that works with different types of fuzzy integrals for these
functions and with more general fuzzy measures.

The goal of this thesis is to provide an affirmative answer to this question and
to introduce a theory of integral transforms for functions valued in complete resid-
uated lattices, which we will call lattice integral transforms for short, and to show



that the provided theory can be used to solve practical problems. To achieve this
goal we consider fuzzy and complementary fuzzy measure spaces and three types of
Sugeno-like fuzzy integrals, namely, one that uses multiplication in its definition [12]
and two others that are defined using the residuum [10} [11]. These fuzzy integrals
are then used to introduce three types of lattice integral transforms whose prop-
erties are studied. Among the most important properties belong the preservation
(reverseration) of constant functions which turns out to be essential for approxi-
mating functions. As noted above, compositions of direct and inverse lattice fuzzy
transforms lead to upper and lower approximations of the original functions, and
the natural question was whether a similar property would hold for compositions of
the corresponding lattice integral transforms. To solve this problem, we introduce
inverse kernels, which we use to show several approximation theorems for compo-
sitions of lattice integral transforms that, among other things, also estimate the
quality of the approximation. Interestingly, in addition to constant functions, as a
consequence of these theorems, it can be shown that compositions of lattice integral
transforms preserve extensional functions with respect to specific fuzzy relations
that slightly generalize the similarity relation. To show that the proposed theory
can be applied in practice, we use lattice integral transforms to solve a multi-criteria
decision problem and also in image processing, where we introduce new types of fil-
ters for noise reduction, a compression/decompression method, and generalize the
fuzzy morphological operators of erosion and dilation and the related operators of
opening and closing. The work is supplemented with examples that illustrate the
newly introduced concepts and their properties.

The thesis is formally divided into seven chapters. The organization of the
chapters may be briefly summarized as follows. We also add the author’s published
works related to the content of individual chapters.

Chapter (1} is a preliminary chapter devoted to the basic notions and properties
of the truth values algebras and fuzzy set theory, which are used in the thesis.

In Chapter [2| we recall basic notions from the theory of fuzzy measure spaces
and three types of Sugeno-like fuzzy integrals for functions with function values
in a complete residuated lattice (lattice-valued functions for short), namely, one
fuzzy integral based on the multiplication operation and two fuzzy integrals based
on the residuum operation introduced in [10} 11}, [12]. Furthermore, we analyze the
measurability of lattice-valued functions and provide some other properties of fuzzy
integrals.

In Chapter [3, we introduce the concept of integral kernel, which generalizes
the fuzzy partition used in lattice fuzzy transforms, and three types of integral
transforms based on the above mentioned fuzzy integrals. We present their basic
properties, including the property of preservation (reversation) of constant functions,
which is necessary for successful reconstruction of the original function. The theory
is demonstrated on signal processing. The content of this chapter was partially
published in [25] 24].

In Chapter [4] we analyze the approximation properties of compositions of re-
spective lattice integral transforms. For this purpose, we introduce an inverse and
dually inverse kernel, whose properties are studied. We show that the composition
of lattice integral transforms that use the kernel and its (dual) inverse and preserve
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constant functions gives an upper or lower approximation of the “smoothed” original
function. This property generalizes the upper and lower approximation properties
of the composition of the direct and inverse lattice fuzzy transform. Further, we
introduce a modulus of continuity for lattice-valued functions which we use to es-
timate the quality of the approximation for lattice integral transforms and their
compositions. The theory is demonstrated on signal reconstruction without and
with present noise. Some of the presented results were published in [27].

Chapter |p| is devoted to the application of lattice integral transforms to mul-
ticriteria decision making, where we propose a new approach to the evaluation of
alternatives with respect to global criteria and demonstrate it on the selection of a
car from several alternatives. The content of this chapter is a part of [22].

In Chapter [6] we present the application of lattice integral transforms in image
processing. We show that the lattice integral transforms can be used to filter out
salt-and-pepper noise similarly to the median filter, which is a special case of them.
We also provide a method for image compression and decompression and generalize
the fuzzy morphological operators of dilation and erosion and the derived operators
of opening and closing. The content of this chapter was partially published in [23].

The last chapter is a conclusion.






Chapter 1

Preliminaries

This chapter presents the basic concept used in the thesis. The first section is
devoted to a brief overview of the algebraic structures in which the function values
are interpreted. We chose the complete residuated lattice as the basic algebraic
structure because it allows us to model a wide range of lattice integral transforms
for the functions evaluated in the lattices. In particular, multiplication and residuum
operations are powerful tools for combining lattice integral transforms that lead to a
successful reconstruction of functions. This fact has been recognized in the seminal
paper on fuzzy transforms [36]. The second section contains a review of concepts
from fuzzy set theory. More details can be found in [6, B5] for residuated lattices
and [29] for fuzzy sets.

1.1 Algebras of truth values

In this thesis, we deal with functions whose function values belong to a residuated
lattice.

Definition 1.1. A residuated lattice is an algebra
L=(L,AV,® —, L1 T) (1.1)
with four binary operations and two constants such that

(i) (L,A,V, L, T)is a bounded lattice, where L, T denote the least and the great-
est elements , respectively,

(ii) (L,®, T) is a commutative monoid, i.e., ® is associative, commutative and the
identity a ® T = a holds for any a € L,

(iii) the adjointness property is satisfied, i.e.,
a<b—c iff a®b<c (1.2)
for any a,b,c € L, where < denotes the corresponding lattice ordering.

A pair (®,—) of operations is called the adjoint pair. The operations ® and
— are called the multiplication and residuum. A residuated lattice is said to be

7



complete (linearly ordered) if (L, \,V, L, T) is a complete (linearly ordered) lattice.
A residuated lattice is divisible if a ® (a — b) = a A'b for any a,b € L, and satisfies
the low of double negation if (a — L) — L = a for any a € L. A residuated
lattice is called the Heyting algebra if the multiplication is the meet operation of
the corresponding lattice, i.e., a @ b =a A b for any a,b € L. A divisible residuated
lattice satisfying the law of double negation is called the MV —algebra.

Before we present examples of complete residuated lattices, we recall the defini-
tion of the t-norm (triangular norm) operation.

Definition 1.2. A binary function 7" : [0, 1] x [0, 1] — [0, 1] is called a ¢-norm if the
following properties hold for all a, b, ¢ € [0, 1]:

(i) associativity, i.e., T'(a, T'(b,c)) = T(T(a,b),c),

(ii) commutativity, i.e., T'(a,b) = T'(b, a),
(iii) monotonicity, i.e., b < ¢ implies T(a,b) < T(a,c),
(iv) boundary condition, i.e., T'(a,1) = a.

Among the important residuated lattices, which are used in many valued logic,
belong the residuate lattices defined by the left-continuous t-norm [18]. Recall that
a t-norm is left-continuous provided that

lim T'(a,,b) =T (lim a,,b)

n—o0 n—ro0
for any non-decreasing sequence ay, as, ... in [0, 1] (see, [6 28]).
Example 1.1. Let T be a left-continuous ¢-norm. Then the algebra
Ly = ([0, 1], min, max, T, =7, 0, 1),
where
a—rb=\/{ce€0,1]|T(a,c)<b} (1.3)

is a complete linearly ordered residuated lattice. The most important examples of
complete residuated lattices on [0, 1] are obtained from the minimum, product, and
FLukasiewicz t-norms:

Tc(a,b) = min(a, b),

Te(a,b) =a-b,
Tt.(a,b) = max(a + b —1,0),

respectively. Their residua are as follows

b= 1, ifa <0,
@76 b= b, otherwise,

4o b — 1, ifa <0,
PP L, otherwise,

a’

a—p b=min(1,1 —a+0b).



The complete residuated lattices Ly, , Ly, and Ly, on [0, 1] are called the Gddel
algebra, product algebra, and fukasiewicz algebra, respectively. It should be noted
that the fukasiewicz algebra is a canonical example of the MV-algebra.

The following example presents the Schweizer-Sklar class of t-norms from which
complete residuated lattices can be introduced according to Example Note that
the Schweizer-Sklar class of t-norms provides a broad family of continuous t-norms
except one (the drastic product), and therefore is appropriate for the application of
lattice integral transforms on complete residuated lattices on [0, 1], i.e., in signal or
image processing.

Example 1.2. The Schweizer-Sklar class of t-norms is defined for any a,b € [0, 1]
and A € [—o0, 00| as

min(a, b), A = —00,
(a* 4+ b — 1)7, A € (—00,0),
T55(a,b) = { a-b, =0, (1.4)
(max(0, (a* +b* —1))x, A€ (0,00),
a ‘D b7 )\ — OO,
where
b 0, a,be€0,1),
@Y= min(a,b), 1€ {a,b}.

Obviously, T°% | T and TP are the minimum, product and Lukasiewicz t-norms
introduced in Example respectively. The t-norm T is called the drastic prod-
uct. For A\ € [—00,00), the t-norm T%* is continuous, and the drastic product is only
right-continuous, i.e., lim, o T'(a,,b) = T(lim,_, ay,,b) for any non-increasing se-
quence {a, € [0,1] | n = 1,2,3,...} (see, [28]). According to Example we can
determine the residuum for the Schweizer-Sklar t-norms (except A = 0o0) as follows.
Let a,b € [0,1]. For a <, there is a —pss b =1, and for b < a, there is

b, A= —00,
a _>Tf5 b= g, A=0, (1'5)
(1—a*+b)x, \e (—00,0)U(0,00),
where we use % = o0, é =0, A\+00 =004+ A= o0 for any A\ € (—00,0), and

o0o* = oo for any A € (0,00). Note that a —pss b = min(L, (1 — a* + b*)3) for any
1),

A € (0,00) and a,b € [0,
Example 1.3. Let a,b € [0, 00] be such that a < b. The algebra
L, = ([a, b], min, max, min, =, a, b),

where

i <
c%d:{b’ﬁc—¢ (1.6)

d, otherwise,

is a complete residuated lattice. Note that Ly, is a Heyting algebra.



On residuated lattices, we can introduce additional operations using the basic
ones. An example of such operations are a unary operation of —: L — L called the
negation and a binary operation «+: L? — L called the biresiduum given by

—a=a— L,
a<b=(a—=b)A((b—a). (1.8)

for any a,b € L. The following example presents the negation for residuated lattices
from Example [I.1]

Example 1.4. The negation in the Lukasiewicz, Godel, and product algebras are
given as

—a=1-—a, (Lukasiewicz algebra) (1.9)

1, ifa=0, .
—a = { 0. ifa>0. (Godel and product algebra) (1.10)

Note that the presented negations are well-established in fuzzy logic (see, [18]35]).
A generalization of the concept of negation on L is as follows (see, [3]).

Definition 1.3. A unary operation N : L. — L is called a generalized negation
(negation for short) on L if N is a non-increasing map such that N(L) = T and
N(T) = L.

A canonical example of the generalized negation is the residuum based negation
given as Nyes(a) = —a for a € L. We say that a generalized negation N is involutive
if N(N(a)) =a for any a € L.

Example 1.5. For the Schweizer-Sklar class of t-norms with A € [—o0,00), the

canonical negation NY° = Ni‘i/\ has the following form. For a = 0, there is

NZ5(0) = 1, for a # 0, there is

o= {4 s Ak o

Note that for A € (—o0,0), according to (1.5), we have (1—a*+0")x = (1— (1) +
oo_)‘ﬁ = 0ox = 0~x = 0. Obviously, for \ € (0, 00), it is sufficient to consider only
one formula to express the negation, namely, N¥5(a) = (1 —a*) for a € [0,1]. The
negation N{° is continuous, and as a particular case, we obtain the negation N¥

in the Lukasiewicz algebra Lpss = Ly .

A generalized negation can be obtain, for example, as N /{’SS(a) = NY%(a) ®
N25(a) for any a € L.

The following example presents the biresiduum for residuated lattices from Ex-

ample [1.1]

10
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04 0.6 0.8 1.0

Figure 1.1: The negations N{¥ for A = 0.4 (blue), A = 1 (green), A = 2 (yellow),
and A =5 (orange) from Example

Example 1.6. The biresiduum in the fukasiewicz, Goédel, and product algebras
are given as

a+>b=1—la—10|, (Lukasiewicz algebra) (1.12)

a <> b =min(a,b), (Godel algebra) (1.13)
b

a <> b = min (% a) : (product algebra) (1.14)

where we put ¢ = 1 for any a € [0, 1].

The following theorems summarize some basic properties of the residuated lattice
and the distributivity of ®, — over A , V that are used in the thesis.

Theorem 1.1. Let L be a residuated lattice. Then the following statements hold for
every a,b,c,d € L:

(i) a®(a—0)<b a<a—(a®b), a<(a—b)—=Db,
(i) a<b iff a—b=T,
(iii) a >a=T, a—=T=T,L—=a=T,
(v) a@ L=1, T —=a=a,
(v) a®b<aAb,
(vi) (a®b) —c=a— (b—c),
(vii) (a = b)® (b—c¢) <a—c,
(b®c),
(ir) a = c< (a®b) = (c@b),
(z) (a—=b)@(c—d)<(a®c) = (b®d),

(xzi) a — (b—¢c)=b— (a— c),

(viii) b® (a — ¢) < a —

(zii) a ® —b < =(a —b),

11



(ziit) a — b < —=b — —a,
(ziv) a < —=(—a).

Proof. The proof of statements (i)—(vii) can be found in [6]. For (viii), using (i) and
the commutativity and associativity of ®, we get a® (b® (a = ¢)) =bR® (a® (a —
¢)) < b® c. The statement is a consequence of the adjointness property. For
(ix), using (viii), the associativity of ® and the adjointness property, we find that
(a®b)® (a = ¢) < b® c, therefore, a - ¢ < (a®b) — (b® c). For (x), using
(i), the commutativity and the associativity of ® and the adjointness property, we
have (a®c¢)®@ (a 2 b)®(c—=d) = (a®(a—0)®(c®(c = d) <b®c. The
statement is a consequence of the adjointness property. The statement (xi) is a
straightforward consequence of (vi) and the commutativity of ®. For (xii), using (i)
and the adjointness property, we have a® ~0® (a — b) < =bRb=bx(b — L) < L,
therefore, a ® =0 < (a — b) - L = =(a — b). The statement (xiii) follows from
“b®(a—b)=(a—>b&(b— L) <a— L, where we used (vii). Hence, using
the adjointness property, we get the desired inequality. The last statement follows
from a ® (a — L) < L due to (i), therefore, a < (a — L) — L = —(—a) by the
adjointness property. 0

Theorem 1.2. Let L be a complete residuated lattice, a € L and {b; | i € I} is a
set of elements from L over a non-empty index set I. Then it holds that

(i) @ (Vierbi) = Vies(a @ bi),
(i1) @ = Niey bi = Niygla = by),
(iii) (Vierbi) = a = Nigs(bi = a),
(i) a® Nicr b < Nier(a @ by),
(V) Viesla—=b) <a— Vb,
(vi) Ve (bi = a) < N\;ep bi — a.

If L is an MV —algebra, then the inequalities (iv)-(vi) may be replaced by the equalities
and it holds that

(vii) a A \/ie] bi = Viel(a A bi),
(viii) aV /\ie] bi = /\ie[ (aVby).

Proof. See, [6]. O

The following theorem lists the basic properties of biresiduum used in our work.
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Theorem 1.3. Let L be a residuated lattice, and let a,b,c,d € L. Then it holds
that

a<ra=T, (1.15)

a<>b=>b<a, (1.16)
(@< b)®@ (b4 c)<a<+re, (1.17)
(a+b)@(cd < (a®c)+ (bad), (1.18)
(a+b)@(c+d) < (a—c)+ (b—d), (1.19)
(@< b)A(c>d) < (aNc)+ (bAA), (1.20)
(a<>b)A(cd)<(aVe)« (bVa). (1.21)
Moreover, let L be a complete residuated lattice. Then the following items hold for

arbitrary sets {a; | i € I}, {b; | i € I} of elements from L over an arbitrary set of
indices I :

Alai < b)) < (N ai) < (N\bi), (1.22)

iel iel iel
/\(ai b)) < (\/ a;) <> (\/ bi). (1.23)
iel iel iel

Proof. See, [6]. O

1.2 Fuzzy sets

We assume that L is a fixed complete residuated lattice.
Definition 1.4. Let X be a non-empty set. A fuzzy set in X is a function
A: X — L. (1.24)

The set X is called a universe of discourse (universe for short). The function A
is called the membership function of the fuzzy set A and the value A(z) for z € X
is called the membership degree of x in A . The set of all fuzzy sets in X is denoted
by F(X) . Let A € F(X). The fuzzy set A is called the singleton if there is exactly
one x € X whose membership degree is greater that L, i.e., A(x) > L for some
r € X, and A(x) = L, otherwise, and the constant fuzzy set if there is a € L such
that A(x) = a for any x € X. Such constant fuzzy set in X is also denote as ay.
The fuzzy set A is said to be empty if A(x) = L for any x € X. The empty fuzzy
set is denoted as (). The fuzzy set A is said to be crisp if A(z) € {L, T}. Obviously,
the membership function of a crisp fuzzy set in X is nothing but the characteristic
function of a subset of X. The characteristic function of a subset A of X is denoted
as 14. The set of all crisp fuzzy sets (i.e., subsets) of X is denoted as P(X). The
following definition presents three important sets determined from a fuzzy set.

Definition 1.5. Let A € F(X).

(i) The support of A is a subset of X whose elements have the membership degree
greater than L, i.e.,

Supp(A) ={r € X | A(x) > L}. (1.25)
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(ii) The core of A is a subset of X whose elements have the membership degree
equal to T, i.e.,

Core(A) ={z e X | A(x) =T} (1.26)

(iii) The a-cut of A is a subset of X whose elements have the membership degree
greater than a, i.e.,

A, ={z € X | A(x) > a}. (1.27)

A fuzzy set A in X is said to be normal if Core(A) # T. Residuated lattice
operations can be used to introduce operations between fuzzy sets. In the following
definition, we recall the elementary operations for fuzzy sets.

Definition 1.6. Let A,B € F(X), {A;|ie I} C F(X) and 2 € X. Then

(AN B)(x) = A(x) A B(x), (1.28)
(AU B)(z) = A(z) V B(x), (1.29)
(A® B)(z) = A(z) ® B(z), (1.30)
(A— B)(z) = A(z) — B(x), (1.31)
(A @) = A Ait), (1.32)
J4)@) =V Aiw), (1.33)
(X\A)(z) = —A(x). (1.34)

Let A,B € F(X). We say that a fuzzy set A is less than or equal to B and
denote it as A < B if A(z) < B(z) for any x € X.

Let X, Y be non-empty universes. A fuzzy set K : X x Y — L is called a
(binary) fuzzy relation. The transpose of a fuzzy relation K is a fuzzy relation
KT :Y x X — L given by KT (y,2) = K(z,y) for any (y,z) €Y x X. For X =Y,
we say that K is a fuzzy relation on X. A special fuzzy relation on X is a similarity,
which is defined as follows.

Definition 1.7. A fuzzy relation on X is called the similarity if it satisfies the
following properties for any x,y,z € X:

1. K(z,x) =T (reflexivity),
2. K(z,y) = K(y,z) (symmetry),
3. K(z,y) ® K(y,2) < K(x, z) (transitivity).

For a fuzzy relation K : X xY — L and z € X, a fuzzy set K, : ¥ — L
given as K,(y) = K(x,y) for y € Y is called the z—projection of K to Y. Similarly
a y-projection of K to X for y € Y is given as K,(v) = K(z,y) for z € X. A
fuzzy relation K is said to be normal, whenever Core(K) # 0, normal in the first
coordinate, whenever Core(K,) # () for any x € X, and similarly normal in the
second coordinate, whenever Core(K,) # ) for any y € Y.
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Chapter 2

Fuzzy measure spaces
and fuzzy integrals

In this chapter, we introduce basic concepts from fuzzy measure theory and three
types of fuzzy integrals for functions whose function values belong to a complete
residuated lattice, which extends in some way the well-known Sugeno fuzzy integral
introduced in [41]. The first two sections are devoted to fuzzy measure spaces and
measurable functions, where we study the conditions under which the operations
of a residuated lattice preserve the measurability of functions. The third section
presents Sugeno-like fuzzy integrals based on the multiplication operation, which
were introduced by Dvorék and Holéapek in [11] and Dubois, Prade and Rico in [10],
and two types of Sugeno-like fuzzy integrals based on the residuum operation in a
complete residuated lattice. The first type of these residuum-based fuzzy integrals
was introduced by Dvoték and Hol¢apek in [11] to model natural language quantifiers
as “no”, “little” or “few”, and a second type, also called qualitative desintegral, was
proposed by Dubois, Prade and Rico in [10] for reasoning in the case of a decreasing
evaluation scale for data (i.e., the least value is the best evaluation) while the global
evaluation has the standard ordering. A comparison of all three types of fuzzy
integrals can be found in [24] and we will not present them here. In addition to
basic definitions, we present several new results for these fuzzy integrals, which are
used in the next part.

Throughout this chapter, we assume that the complete residuated lattice L is
given, and we will not mention it explicitly except when we want to specify its form.
To respect the notation used in measure and integral theory, we prefer f,g,... to
denote the fuzzy sets A, B, ... that will be integrated by a fuzzy integral.

2.1 Fuzzy measure spaces

In this work, we deal with fuzzy measures on algebras of sets. It should be noted
that fuzzy measures can also be introduced for algebras of fuzzy subsets (see, [12]),
but the computation of fuzzy integrals that use this type of fuzzy measure is rather
difficult and impractical, especially if the computation is repeated many times and
the result has to be obtained in real time (e.g. filtering or image compression). The
complement of a subset A in X is denoted as X \ A, i.e., in the same way as the
complement of a fuzzy set.
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Definition 2.1. Let X be a non-empty set. A subset F of P(X) is an algebra of
sets on X provided that

(i) X € F,
(i) if A€ F, then X \ A € F,
(iii) if A,B € F, then AUB € F.

A pair (X, F) is called a measurable space (on X) if F is an algebra of sets on
X. The sets from F are called F-measurable. As a simple consequence of (i), (ii)
of the previous definition and De Morgan’s law, we find that the intersection of a
finite number of F—measurable sets is again F—measurable.

Let (X, F) be a measurable space and A € P(X). We say that a set A is
F-meaurable if A € F. If there can be no confusion, we use measurable for short.
It is easy to see that a finite intersection of measurable sets is a measurable set. A
useful tool to introduce an algebra of sets on X is an algebra generated by a family
of sets.

Definition 2.2. Let H C P(X) be a non-empty family of sets. The smallest algebra
on X containing #H is denoted by Alg(#H) and is called the generated algebra by H.

Note that the intersection of algebras of sets is again an algebra of sets, and there-
fore the smallest algebra of sets on X containing H always exists and its unique.
Moreover, the generated algebra Alg(H) can be easily constructed from the elements
H as the set which consists of all finite unions applied on the set of all finite in-
tersections over the elements of H and their complements. We now present some
examples of algebras of sets.

Example 2.1. The sets {(), X} and P(X) are trivial algebras of fuzzy sets on X.

Example 2.2. Let 7x be a topology on X. The algebra of sets Alg(rx) is a gen-
erated algebra by a topology 7x on X. Note that continuity and measurability (see
the next section) are interrelated in algebras generated from topologies.

Example 2.3. Let (L, <) be a partially ordered set, and let u : P(L) — P(L) be
given as

uw(S)={reL|Ja€e S, a<a}, (2.1)

for any S € P(L). Obviously, S C u(S). A set S € P(L) such that u(S) = S is
called the upper set or upset for short. The set of all upsets in L is denoted by U (L).
Trivially, we have (), S € U(L). Moreover, it is easy to see that the intersection and
the union of a non-empty family of upsets is an upset. Indeed, let us show that
the claim is true for the intersection; analogously, the claim can be verified for the
union. Let {S;}ic; CU(L) and put T = (), S;. If T = 0, the claim is trivially true.
In addition, we show that w(7') C T. Let € u(T"). Then, there exists a € T such
that a < z. Since a € S; for any ¢ € I and S; is an upset, we find that x € S; for any
¢ € I, and therefore x € T. Since the opposite inclusion is trivially true from the
definition of u, we obtain u(7') = T and T' € U(L). Obviously, U (L) is an example
of Alexander topology. The algebra of sets generated by all upsets in L is denoted
as B*(L) or simply B" if there can be no confusion, i.e., B*(L) = Alg(U(L)).
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Example 2.4. Similarly to the previous example, let ¢ : P(L) — P(L) be defined
as

(S)y={x€L|JacsS, z<a}l, (2.2)

for any S € P(L). A set S € P(L) for which £(S) = S holds is called the lower
set or loset for short. The set of all losets in L is denoted £(L) and the algebra of

sets generated by all losets in L is denoted as Bf or simply B’ if there can be no
confusion, i.e., B(L) = Alg(L(L)).

Example 2.5. Let L be a residuated lattice on [0,1], and H = {[0,a] | a € [0, 1]},
where [0,0] = {0} is a hybrid interval. Obviously, Alg(#) is a proper subset of the
powerset of [0, 1]. For example, there is [a, 1] ¢ Alg(#H) for any a € (0, 1].

In the following part, we introduce three types of set functions, namely, fuzzy
measure, complementary fuzzy measure and conjugate fuzzy measure, with values
in a complete residuated lattice. In addition to the well-known fuzzy measure, the
notion of complementary fuzzy measure was introduced in [11] to define a residuum-
based integral for modelling fuzzy quantifiers, and the conjugate fuzzy measure to
a given fuzzy measure was proposed in [10] to define a residuum-based integral
(qualitative desintegral) for decreasing local evaluation scales.

Definition 2.3. A function p : F — L is called a fuzzy measure on a measurable
space (X, F) if

(i) u(@) =L and p(X) =T,
(ii) if A, B € F such that A C B, then u(A) < u(B).

A triplet (X, F, u) is called a fuzzy measure space whenever (X, F) is a measurable
space and p is a fuzzy measure on (X, F).

It should be noted that the term “fuzzy measure” was introduced by Sugeno
n [41], but in the literature one can find the equivalent names for u as a capacity
or a non-additive measure. The following lemma shows an easy way to determine
another fuzzy measure from a given fuzzy measure using a transformation function
on [0, 1].

Lemma 2.1. Let p be a fuzzy measure on (X, F), and let ¢ : L — L be a mono-
tonically non-decreasing function with (L) = L and o(T) = T. Then the function
ty o F = L given by p1,(A) = @((A)) for any A € F is a fuzzy measure on (X, F).

Proof. Obvious. m

Definition 2.4. A map v : F — L is called a complementary fuzzy measure on a
measurable space (X, F) if

(i) v(0) =T and v(X) = L,

(ii) if A, B € F such that A C B, then v(A) > v(B).

17



A triplet (X, F,v) is called the complementary fuzzy measure space whenever (X, F)
is a measurable space and v is a complementary fuzzy measure on (X, F).

The following lemma shows two ways in which a complementary fuzzy measure
can be introduced from a fuzzy measure.

Lemma 2.2. Let u be a fuzzy measure on (X, F), and let N be a generalized negation
on L. Then a function v : F — L given by v(A) = p(A) = p(X \ A) or v(A) =
pN(A) = N(u(A)) for any A € F is the complementary fuzzy measure.

Proof. Obvious. O]

A dual statement can be formulated for fuzzy measures determined from comple-
mentary fuzzy measures. Using Lemmas and we can introduce a broad class
of fuzzy and complementary fuzzy measures. Finally, a conjugate fuzzy measure to
a given fuzzy measure is introduced as follows.

Definition 2.5. Let p be a fuzzy measure on (X, F), and let N be a generalized
negation on L. A function p®" : F — L given by pu®N(A) = N o pu¢(A) = uN(X '\
A) = N(u(X \ A)) for any A € F is called the N -conjugate fuzzy measure to p.

Clearly, the N-conjugated fuzzy measure to p is again a fuzzy measure, but
constructed using two specific operations, namely generalized negation and set com-
plement. For the negation N{* in the Lukasiewicz algebra (see, Example , we
obtain the definition of the conjugate fuzzy measure in [10]. An N —conjugate comple-
mentary fuzzy measure to a complementary fuzzy measure v is defined analogously
as V9N(A) = Nov¢(A) =vN(X \ A) = N(v(X \ A)) for any A € F.

Since in our illustration of integral transforms we work with a finite number of
data, we restrict our presentation of examples to (complementary, N—conjugate)
fuzzy measures defined over measurable spaces with X = {z,...,z,}.

Example 2.6. Let (X, F) be a finite measurable space. For two fuzzy measures
1, o on (X, F), we say that py is less than or equal to o (denoted as iy < po) if
p1(A) < pa(A) for any A € F. The least and the highest fuzzy measure on (X, F)
with respect to < is given by

1, A#X 1L, A=10
1 A) = ) ) d T A) = 5 5 9.3
A {T, otherwise, o e (A) T, otherwise, (2:3)

for any A € F, respectively.

Assume that L is a residuated lattice on [0,1]. The following fuzzy measure
belongs among the fundamental fuzzy measures.

Example 2.7. The relative fuzzy measure p” on (X, F) is given as
_#4

=%

for all A € F, where #A and #X denote the number of elements in A and X,
respectively.

p(A) (2.4)
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Figure 2.1: The functions ¢, (orange), ¢g,04 (blue), o, 05 (vellow), and o1,
(green) from Example that are used to determine fuzzy measures.

By Lemmal/[2.1] the relative fuzzy measure " can be modified by a non-decreasing
function ¢ with ¢(0) = 0 and (1) = 1 to get a fuzzy measure y,. In the following
example, we introduce a class of functions ¢ that determines a class of fuzzy measures
on L = [0, 1] from the relative fuzzy measure.

Example 2.8. Let 0 < / < u < 1 and 0 < p be a natural number. Define
Vs Pow - [0,1] = 10, 1] as follows:

0, a=0 or a</,
» - ep(2%_€71)
Uy (a) = FICr=EnI ¢ <a<u, (2.5)
1, a=1or u<a,

and

eP—1 ’

f,u (a), otherwise.

VP (a)(eP+1)~1
{— l<a<u, (2.6)

It could be simply verified that, for £ < wu, ¢ (a) modifies ¢y, (a) to obtain a
continuous function on [0, 1]. For ¢ = u, however, gaizu(a) achieves only two values
0 and 1 with the jump at the point a = ¢. For example, if / = u = 0, then
©ho(a) = Y5o(0) = 0 and ¢fy(a) = Py(a) = 1 for a > 0. Examples of the
function ¢y, for the parameters (¢, u,p) € {(0,0,1),(0.2,0.4,5),(0.4,0.8,3), (1,1,1)}
are shown in Figure . The function gpﬁu obviously satisfies the assumptions of
Lemma [2.1] so it can be used to modify any fuzzy measure. Hence, we can introduce

a class of fuzzy measures on (X, F) derived from the relative fuzzy measure p"
introduced in Example [2.7] as follows:

MT:{u;zg | {,ue0,1], ¢ <u,peN, p>0}. (2.7)

It is easy to see that put = ,ugl TR uz;l and u" = ,u;1 .
1,1 0,0 0,1

Example 2.9. By ¢}, from the previous example, we can introduce two additional
functions using which the complementary and conjugate fuzzy measures can be
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0.2 04 0.6 0.8 1.0

Figure 2.2: The functions gpé:S’N (orange), @Sjg’ﬁ4 (blue), gpgﬁ’ﬁs (yellow), and go}ﬁ’N

(green) from Example that are used to determine conjugate fuzzy measures.

determined from the relative fuzzy measure. Let N be a negation on [0,1] and
define ¢y, gp%v :[0,1] — [0, 1] as follows

Prala) =y, (1—a) and ¢}, (a) = N(gp,(a)), (2.8)

for any @ € [0,1]. By Lemma , it is easy to check that ,u;g,c and ,u;pw are
sU L

N :
complementary fuzzy measures on (X, F). Define ;™" = N o ¢y, then u;pycy N 18
l,u

the N-conjugate fuzzy measure to the fuzzy measure yi7, on (X, F). Indeed, put
= ,u;,; . Then, for any A € F, we have Y

poN(A) = N(u(X \ A) = N}, (1" (X \ A))) = N(¢) (1 — " (A))) =
N(ghe(ur(A)) = o™ (W (A)) = 1’ pen (A).

In Figure we show the functions g%’Z’N for the same parameters as in Exam-
ple2.8/and N(a) = 1—a for a € [0, 1] (i.e., the negation in the Lukasiewicz algebra).
It is easy to see that the conjugate fuzzy measure to pt (u') is p' (ut); it is suf-
ficient to compare green (orange) functions in Figure and Figure 2.2] Fuzzy
measures ,u;g’l are self-conjugate, which follows immediately from ¢f ; = gogﬁ’N.

Remark 2.1. One can see that all fuzzy measures (and similarly complementary and
conjugate fuzzy measures) in the above examples are invariant with respect to the
cardinality of sets, i.e., u(A) = p(B), whenever A and B has the same number
of elements, i.e., #4 = #B. Such fuzzy measures are referred to symmetric fuzzy
measures.

Remark 2.2 (Notation). Let n > 0 and p > 0 be natural numbers, L,U € [0,n] be
real numbers such that L < U, and let (X, F) be a finite measurable space with
X ={z1,...,2,}. A fuzzy measure on (X, F) determined by the triplet (L, U, p) is
denoted by fi, ;; and defined as

/fi,U = M;g/n,wn- (2.9)
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Obviously, /ﬁLU € M", where M" is the class of fuzzy measure spaces introduced in
Example 2.8 Similarly, we denote and define other fuzzy measures, namely,
p,c,N

p,c T p,N T T
= p,c and = N and = N
IuL’U IUSOL/”«U/” IuL’U ILL(PZ/'IL,U/n IUL7U u@if7z,U/n’

N . .
where p7" is the N—conjugate fuzzy measure to pf ;.

2.2 Measurable functions

An important concept in fuzzy measure theory is the measurability of functions.
As we will see later, in general the definitions of Sugeno-like fuzzy integrals do not
assume measurability of the functions being integrated, but under this assumption
the original definition can be expressed in a more convenient way.

Definition 2.6. Let (X, F) and (Y,G) be measurable spaces, and let f : X — YV
be a function. We say that f is F-G—measurable if f~1(Z) € F for any Z € G.

In the case that G is a generated algebra, the verification of F-G-measurability
of the function can be simplified as follows.

Lemma 2.3. Let H C P(Y) be a non-empty family of sets, and let (X, F) be a
measurable space. A function f : X — Y is F-Alg(G)-measurable if and only if
fYZ) e F forany Z € G.

Proof. (=) The implication is a simple consequence of G C Alg(G).

(<) Let Q={Z| f~'(Z) € F}. Note that Q is called the preimage algebra on
Y and G C Q. From the definition of the generated algebra Alg(G) by the family G,
we find that Alg(G) C Q. Hence, we obtain that f~}(Z) € F for any Z € Alg(G),
which means that f is F-Alg(G)-measurable. [

In the following, we discuss the conditions under which the operations of a
residuated lattice extended to fuzzy sets (see, Definition preserve their mea-
surability. More specifically, we show some conditions under which if f and ¢ are
F-B'—measurable, then f x g is also F-B“—measurable, where x = {V,A, ®,—}
and B* = Alg(U(L)) is the generated algebra by all upsets in the support L of a
residuated lattice L (see, Example [2.3)).

Theorem 2.4. Let (X, F) be a measurable space, and let A C F(X) be a set of all
F-B'—measurable fuzzy sets. If L is linearly ordered, then

fAng fvgeA fgeA

Proof. Since the proofs for both operations are analogous, here we verify only the
case of A. By Lemma , we have to prove that for any f,g € Aand Y € U(L), we
obtain (fAg)~'(Y) € F. Put h = f Ag. We show that h=(Y) = f~1(Y)ng (V).
Let # € h™}(Y). Then h(x) € Y. Since f(x) > h(z) and g(z) > h(x) and h(z) € Y,
we find that f(x),g(x) € Y. Hence, we obtain x € f~1(Y) and simultaneously
z € g~} (Y); therefore, z € f~1(Y)N g '(Y), and thus A~(Y) C f~1(Y)ng (V).
Conversely, let z € f~1(Y)N g *(Y). Then f(z) € Y and g(z) € Y. Since L is
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linearly ordered, we find that h(x) = ( ) or h(x) = g(z); therefore, h(z) € Y.
Hence, we obtain f~'(Y) N g (Y) C h7'(Y), and the equality is proved. Since
YY), g (V) € F, we find thath Vy=71'(Y)ng (YY) e F. O

The previous result for non-linear residual lattices does not hold in general, but
can be obtained under a different assumption. Moreover, this assumption is also
sufficient for the multiplication operation.

Theorem 2.5. Let (X, F) be a measurable space, and let A C F(X) be a set of all
F-B*—measurable fuzzy sets. If F is closed over arbitrary unions, then

fAhNg. fVg fegeA fgeA

Proof. Here we prove only the case of ®, since the proofs of A and V are a complete
analogy to the proof of ®.

Let f,g € A. We show that f ® g € A. Following the proof of Theorem [2.4]
we have to prove that for any Y € U(L), we obtain (f ® g)~(Y) € F. Put
h = f®g. We know that z € h=1(Y) if and only if h(z) € Y. Put U, = [f(z), T]
and V, = [g(z), T]. Obviously, U,,V, € U(L) and U, C Y and V,, C Y. Moreover,
a®beY forany a € U, and b € V,,, that is, U, ®V, = {a®b|ac U, be V,} CY.
Indeed, we have a® b > f(z) ® g(xz) = h(z) and h(z) € Y. Since f and g are F-B"-
measurable, we find that f~1(U,),¢ (V) € F and thus f~Y(U,) Nng~*(V,) € F
(recall that the intersection of a finite number of F-measurable sets is again F-
measurable), where z € f~1(U,) N g~*(V,). Moreover, f~H(U,)Ng ' (V,) C h=1(Y).
Indeed, if y € f~1(U,) N g~ *(V,), then f(y) € U, and g(y) € V,, which implies
h(y) = f(y)®g(y) € U, @V, CY,and thusy € h~1(Y). Sincex € f~1(U,)Ng~*(V,),
we trivially obtain

= | s ().

zeh—1(Y)
Since F is closed over arbitrary unions, we find that A~1(Y) € F. O

The two previous assumptions together are sufficient to ensure that the residuum
operation remains measurable, being monotonically non-increasing in its first argu-
ment and monotonically non-decreasing in its second argument.

Theorem 2.6. Let (X, F) be a measurable space, and let A C F(X) be a set of all
F-B*-measurable fuzzy sets. If L is linearly ordered and F is closed over arbitrary
unions, then

f—geA fge A

Proof. Let f,g € A. We show that f — g € A. Obviously, (a, T| € U(L) for
any a € L. Indeed, if € wu((a, T]), then there is b € (a, T| such that b < =z,
which implies @ < b < z and = € (a, T]. Since L is linearly ordered, we find that
[L,a] = L\ (a, T] € B* Similarly to the previous cases, consider Y € U(L), and
we show that (f — ¢)"(Y) € F. Put h = f — g, and let x € h™1(Y). Put
U, = [L, f(z)] and V, = [g(x), T]. By the previous remark, we have U,,V, € B

22



In addition, a — b € Y for any a € U, and b € V,, ie., U, - V, = {a — b |
a € Uyb € V,} CVY. Indeed, recall that a — b < o/ — V' for any a,d’,b,b' € L
such that ¢’ < a and b < /. Hence, for any a € U, and b € V,, we obtain that
h(z) = f(z) = g(x) < a — b, which implies a — b € Y. Analogously to the proof of
Theorem 2.5, we have f~(V,), ¢ '(U,) € F and f~1(V,) Ng~(U,) € F. Moreover,
(V) ng ™ (U,) C f1(Y). Since z € f~(V,) N g ' (U,), we trivially obtain

YY) = U f U,) Mg (V).

rEh™
Since F is closed over arbitrary unions, we find that h='(Y') € F. O

Remark 2.3. The previous theorems remain true if the algebra of sets B is replaced
by B’ and the F-Bf measurability is considered. Note that B* = B for a linearly
ordered residuated lattice, which is a simple consequence of the fact that £(L) =

(L\ S| S eU(L)}.

2.3 Multiplication-based fuzzy integral

The multiplication-based fuzzy integral is a direct generalization of Sugeno fuzzy
integral introduced in [41] and further developed by many researchers (see, [45] for a
review) for integrated functions evaluated in a residuated lattice, where the original
meet (infimum) operation is replaced by a more general multiplication operation
[10, [11]. The following definition of the fuzzy integral was proposed in [10] and
coincides with the definition given in [11] (see also [12]) if the multiplication is
distributive over the infimum in a given residual lattice (e.g. if L is an MV—-algebra).

Definition 2.7. Let (X, F, u) be a fuzzy measure space, and let f : X — L. The
®—fuzzy integral of f on X is given by

[ ran=V (M@®Af@>~ (2.10)
AeF

TEA

The next theorem presents the basic properties of the ®—fuzzy integral. Recall
that the characteristic function of a subset Z of X is denoted by 1.

Theorem 2.7. Let a, € F(X) be a constant function. For any f,g € F(X) and
a € L, we have

() J* fdu< [“gdpif f<g,

(i) [*axdy=a,
(iii) a® [* fdp < [“ay © fdp,

(i) [“ax — fdu<a— [°fdpn,

(W) [“axy®1z du=a® u(Z) for any Z € F.

If L is an MV—-algebra, then inequality (iii) can be replaced by equality.
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Proof. See [11],12]. O

One can see and may be surprised that we do not assume the F-B“—measurability
(or F-Bf-measurability) of the function f in the formula . Assuming the
measurability of f, we obtain a very convenient formula for calculating the ®—fuzzy
integral (see, [45] for the Sugeno fuzzy integral).

Theorem 2.8. Let (X, F,u) be a fuzzy measure space, and let f : X — L be
F-B*-measurable. Then

[ 1=\ awntie e x| 5@ > ) (211)

a€l

Proof. Let a € L and denote L, = {z € L | x > a}. Note that u({a}) = L,, where
u is introduced in Example 2.3l By the assumption on the F-B“—measurability
of f, we have f~'(L,) € F, where f71(L,) = {z € X | f(z) > a}. Put I =

Viaer ((A) @ Nyeq f(2) and J =V, (@@ pu(f~(L,))). First, we show that
I < J. Let Ay : F — L be a map given by A\f(A) = A .4 f(z). Obviously,

A C 7L, (a)), and thus p(A) < pu(f~'(La,4))), where we used the fact that f is
F-measurable. Since A¢(F) C L, we obtain

I< \/ Ap(A) @ u(f (L)) < .

AeF

Further, let of : L — F be given by g¢(a) = f~'(L,). From the F-B“~measurability
of f, the map oy is well defined. Obviously, /\Ieg (@ )f(:v) > a for any a € L and
or(L) C F. Then, we obtain

J<\/ | ulera)e N\ fl)| <L

acL x€os(a)
Hence, we obtain I = J which concludes the proof. O]

As a corollary, we get a simple computational formula for measurable functions
defined on a finite set X = {z1,...,z,} assuming that the residuated lattice is
linearly ordered. Denote [n] = {1,...,n} (see, |17, 28] for real functions).

Corollary 2.9. Let L be linearly ordered, (X, F,u) be a finite fuzzy measure space,
ie., X ={x1,...,2,}, and let f : X — L be F-B“—measurable. Then

/ f d:u = \/ (fa(z) ® Mz)» (212)
i€[n]

where o is a permutation on [n]| such that f,q) < fo@) < -+ < fom), where fou) =
f(@o@y) fori € [n], and p; = p({Zog@), - Tom)})-

Proof. 1t follows immediately from Theorem where we restrict the calculation
froma € Ltoa € {f,a),..., fom)}- Indeed, for a = L or f,,) <a < T, we trivially
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get a @ p({z € X | f(x) > a}) = L. If fooony < a < fogpy for i € [n] (we put
fg(o) = J_), then

a@pu{re X | f(z)>a}) =a®pu < for) ® wi,

where we used the fact that the multiplication is non-decreasing in both variables.
Hence, we find that

V (@@p(fre X | f2)2a}) <\ (fow ® ).

a€l0,1] i€[n]
Since the opposite inequality is trivially true, we obtain the desired equality. O

Remark 2.4. Note that for F = P(X), and any function f : X — L is measurable,
hence, formula can be applied. Note that the calculation by formula
can even be simplified for fuzzy symmetric measures, because it is sufficient to define
wi = p({xi, ..., x,}) for i € [n].

We now introduce the notion of comonotonicity, which is a sufficient condition
ensuring the maxzitivity and minitivity of the A—fuzzy integral. Note that maxitivity
(minitivity) means that the A—fuzzy integral preserves the join (meet) of the lattice.
Unfortunately, the comonotonicity is not a sufficient condition for the preservation
of the join or meet for more general ®—fuzzy integrals.

Definition 2.8. Let (X, F) be a measurable space. We say that f,g € F are
comonotonic if and only if there is no pair zy,z9 € X such that f(z1) < f(z2) and

g(w1) > g(x2).

Lemma 2.10. Let L be linearly ordered, and let f,g € F(X). Denote Cy = {C{(a) |
a € L}, where C¢(a) = {x € X | f(x) > a}. Then C; is a chain with respect to C,
and if f and g are comonotonic, then Crey4(a) = Cr(a) or Creg(a) = Cy(a) for any
a € L, where ® € {A,V}.

Proof. The first statement is trivial. To proof the second statement, we restrict
ourselves to the case ® = A. The second case can be verified analogously.

First, let us show that Cf(a) N Cy(a) = Cipg(a) holds for any a € L. Let
z € Crla) N Cy(a). Then f(xz) > a and g(x) > a. Hence, f(x) A g(z) > a, which
implies © € Cypg(a). Now, let © € Cypg(a). Since f(z) A g(x) > a, we immediately
get © € Cf(a) and z € Cy(a). Hence, z € Cf(a) N Cy(a). Further, we show
that Cyag(a) = Cp(a) or Cypg(a) = Cy(a) for any a € L, whenever f and g are
comonotonic. Assume that C¢(a) ¢ Cy(a) and simultaneously Cy(a) ¢ Cy(a) for
some a € L. From Cf(a) ¢ C,(a) there exists x € Cy(a) and = ¢ Cy(a), which
implies ¢g(x) < a < f(z), and similarly, from Cj(a) ¢ C(a) there exists y € X such
that y € Cy(a) and y & Cf(a), which implies f(y) < a < g(y), where we used the
linearity of L. But this is a contradiction with the comonotonicity of f and g, since
there exist z,y € X with f(x) < f(y) and simultaneously g(y) < g(x). O

The following theorem shows that A—fuzzy integral is comonotonically minitive
and comonotonically maxitive (see, [17, Theorem 4.44]).
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Theorem 2.11. Let L be linearly ordered complete Heyting algebra, and let f,g €
F(X) be comonotonic maps that are F-B*—measurable. Then

[Gogdi= [ saue [ g

for ® € {A,V}.

Proof. We restrict ourselves to the proof of the case ® = A, the second case can be
proved analogously. According to Theorem [2.5] the map f A g is F-B“-measurable.
Hence, we can use formula (2.11]) to compute the A—fuzzy integral, i.e.,

[ n9) du=\(@nut € X | 1) ngle) = b)) = V(@A u(Crry(@),

where we used the notation from Lemma Since Ctpg(a) = Cy(a) C Cy(a) or
Cingla) = Cy(a) C Cy(a) for any a € L, we obtain

(Crpgla)) = p(Crla)) A p(Cyla)),

where we used the monotonicity of . Hence, we obtain

[ (79 du= (@A uCrrp(@)) = V@ (0(Crla)) A n(Cyfa))

a€l a€L

<\/a/\,uC'f /\\/b/\,u ))):/Afdu/\/Agd,u.

a€el bel

On the other hand, we have

/fdu/\/gdu—\/(a/\u(;’f /\\/b/\u

\ V(@nu(Cra)) A (b A p(Cy(b)) <
\ V(@anb) A (u(Cpland)) A p(Cyla nb)))
=\ V@A) AulCruglant) =\ anuCrnla) = [ (7 ) di
acL beEL a€L

where we used the distributivity of A over \/, which holds in each Heyting algebra,
and the fact that Cy(a) < Cf(b) for any a,b € L such that b < a. O

2.4 DH-residuum-based fuzzy integral

The residuum-based fuzzy integral was first proposed by Dvorak and Holcapek in
[11] for modelling natural language quantifiers. Later, Dubois, Prade and Rico in [10]
introduced another type of residuum-based fuzzy integral, which will be introduced
in the next section.
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Definition 2.9. Let (X, F,v) be a complementary fuzzy measure space, and let
f: X — L. The —py—fuzzy integral of f on X is given by

/ fdy— (/\ fz) = V(A)> | (2.13)

€A
The basic properties of —py—fuzzy integral are summarized in the following
theorem (for the proof, see, [11]).

Theorem 2.12. Let ay € F(X) be a constant function. For any f,g € F(X) and
a € L, we have

(i) [ fdv> [ gdvif f<g,
(i) [, axdv=—a,
(iii) [ ax® fdv<a— [ fdv,
(w) [ax = fdv>a® [ fdv,
(v) [ ax®1y dv=a—v(Z) forany Z € F.
If L is an MV-algebra, then inequality (iii) can be replaced by equality.
Similarly to the multiplication-based fuzzy integral, we have an equivalent ex-

pression for —p;—fuzzy integral assuming F-B“-measurability of functions, which
is very useful from a practical point of view.

Theorem 2.13. Let (X, F,v) be a complementary fuzzy measure space, and let
f: X — L be F-B*-measurable. Then

/ fdv= (a —v({x e X | f(x) > a})). (2.14)

Proof. Similarly to the proof of Theorem 2.8 denote L, = {z € L | z > a}
for any a € L, and recall that f~'(L,) € F for any a € L as a consequence of
F — Alg(U(L))-measurability. Put I = A, . ((Ayea f(@)) = v(A)) and J =
Noer (@ = v (f'(Lg))). First, we show that I > J. Let )\f F — L be a
map given by Ap(A) = A 4 f(x). Obviously, we have A C f~'(Ly,(4)), and thus
v(f~H (L)) < v(A). Since A\g(F) C L, we get

I= N\ Oy(A) = () = N\ Ap(A) = v(f " (Lay) = .
AeF AeF

where we used the fact that the residuum is non-decreasing in its second component.

Further, we show that I < J. Let oy : L — F be given by os(a) = f~*(La).
From the F-Alg(U(L))-measurability of f, the map oy is well defined. Obviously,
we have /\megf o) f(x) = afor any a € L and ¢f(L) C F. Then, we obtain

r< A /\f = v(or(a)) | < Nla—=w(f (L) = J,

acl xEQf acL

where we used the fact that the residuum is non-increasing in its first component.
Hence, we obtain I = J and the proof is finished. O]
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As a corollary we get a simple computational formula for measurable functions
defined on a finite set assuming that the residuated lattice is linearly ordered.

Corollary 2.14. Let L be a linearly ordered, let (X, F,v) be a finite complementary
fuzzy measure space, i.e., X = {x1,...,x,}, and let f : X — L be F-B“—measurable.
Then

/ﬁ Jfdv= /\ (fo) = Vi), (2.15)

i€[n]

where o is a permutation on [n] such that fyqy < fo) < - - < fom), where fyq) =
f(xo@)) fori € [n], and v; = v({To@), - - - Tom)})-

Proof. Analogously to the proof of Corollary [2.9] for a = L, we trivially get a —
v({x € X | f(z) > a}) =T, and for fo) < a < T, we find that a = v({z € X |
flz)>a})=a—=v0)=a—T=T. If fru_1) < a < fou for i € [n] (we put
fg(o) = J_), then

a—v({re X | f(x)>a})=a—=v; > fou) = Vi

where we used the fact that the residuum is non-increasing in its first variable.
Hence, we get

A (@—=v({zeX|f@)=a}) = N\ (fow = 1)

a€l0,1] i€[n]

Since the opposite inequality is trivially true, we obtain the desired equality. O

Now we will present the comonotonic property of —y;—fuzzy integral in the
following theorem.

Theorem 2.15. Let L be linearly ordered, and let f,g € F(X) be comonotonic
functions that are F-B"—measurable. Then

/D:(ng) dy:/[):fdy/\/D:gdy.

Proof. According to Theorem 2.5 we have f V g is F-B“—measurable. Hence, we
can use formula (2.14) to compute the —,—fuzzy integral, i.e., we have

/%(f vg)dv= N\ (a—=v{{r e X | f(2)Vg(z) = a})) = )\ (a = v(Cpyla)),

H a€Ll a€el

where we used the notation from Lemma Since Cyq(a) = Cr(a)UCy(a), where
Crvg(a) = Cy(a) or Cpyy(a) = Cy(a) for any a € L, we obtain

v(Crugla)) = v(Cr(a)) Av(Cy(a)),
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where we apply the fact that v is a non-increasing set mapping. Hence, we obtain

/ TV gy dv= N (@ v(Cpula))

= )\ (a = ((Cs(a)) Av(Cy(a))) = \ (a = v(Cr(a)) A (a = v(Cyla)))
= Na= s A N = viCya) = [ avn [ g
where we used the distributivity of — over A. O]

2.5 DPR-residuum-based fuzzy integral

Another type of fuzzy integrals based on the operation of residuum was proposed
by Dubois, Prade and Rico in [10] under the name desintegral for reasoning with
a decreasing evaluation scale. The following definition slightly modifies the original
definition, where the conjugate fuzzy measure is replaced by N—conjugate fuzzy
measure introduced in Definition 2.5

Definition 2.10. Let (X, F,u) be a fuzzy measure space, let u“Y denote the
N—conjugate fuzzy measure to u, and let f : X — L. The —ppr—fuzzy integral
of f on X is given by

[ra-p

AeF

(M(A) -\ f(x)> . (2.16)

z€EA

Note that we use the original notation where the fuzzy measure p is used in the
integral, but its N—conjugate fuzzy measure is employed in the computational for-
mula. The following theorem presents some basic properties of —ppz—fuzzy integral.

Theorem 2.16. Let ax € F(X) be a constant function. For any f,g € F(X) and
a € L, we have

(i) [0 fdu< [ gduif f<g,
(ii) oo axdp=a,
(i) a® [ fdu < [ ax® fdp.
() [oppax = fdu<a— [ fdu,

—

(v) If N = Nyes is the involutive negation, then f

oon@x @ 1z dp = a A p(Z) for
any Z € F.

Moreover, if L is an MV-algebra, then inequality (iv) can be replaced by equality.
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Proof. 1t is easy to check that the N-conjugate fuzzy measure " to a fuzzy mea-
sure p is again a fuzzy measure.

(i) This is a straightforward consequence of the fact that the residuum is mono-
tonically non-decreasing in the second argument.

(ii) Let @ € L. Then

/H axdp= [\ (#C’N(A) -\ Qx(iv)> =

AeF €A
A (15(A) = a) = N (X) > a=a,
AeF

where we used the fact that the residuum is monotonically non-increasing in the
first component and T — a = a (see, Theorem [L.1[iv)).
(iii) Let a € L. Then

| axerdi= A (M(A) - \/<a®f<x>>> -

A (uC’N(A) — (@@ \/ f(@)) > A a® (u"”N(A) -\ f(@) >
a® [\ (MC’N(A) -\ f(fv)> =a®/ﬁ fdp,

where we used b ® (a — ¢) < a — (b® ¢) (Theorem [L.|(viii)), and A,.;(a ® b;) >
a® ;e bi for any a,b, ¢ € L (Theorem |1.2{iv)).
(iv) Let a € L. Then

/ Cax o fdu= N\ <mN<A> =\ (a— f<:c>>) <

A (mN(A) S (a—\/ f(x))) =N\ a- (/f’N(A) -V f<~”€>> =
a — /\ (/f’N(A)—> \/f(@) :a%/% fap,

where we used a — (b = ¢) = b — (a = ¢) (Theorem |1.1{(ix)), and A,.,(a = b;) =
a = Ny bi and V(@ = b) < a = ;b for any a,b,c € L ((ii) and (v) of
Theorem |1.2)).

(v) Since the negation N = N,os = — is a residuum-based negation, see (|1.7)),
and — is involutive, i.e., =(—a) = a for any a € L, we get

/ Cay®lsdi= N (W(A) -\ (ax(@) @ 1Z<x>>> -

i€l

A<WW%V@mmmﬁAA<WW%V%@WNﬁ
e A&



=W (X) = (@@ T) A (p"7(X\2) = (a® 1))
=(T=a) A" (X\Z) = L) =a A (u*"(X\2) = 1)
= a A (H(X\(X\Z)) = L) = aA=(=(u(2))) = a A p(Z),

where we used the fact that the residuum is monotonically non-increasing in the
first component, T - a=a,and a® 1L = L.

If L is an MV-algebra, then we have \/,_,(a = b;) = a = \/,.; b; (see, Theo-
rem for an MV-algebra), which turns the inequality in the previous proof into
equality. O]

Again, the formula can be simplified under the assumption of measur-
ability of functions, where we now use F-B‘ measurability of functions, i.e., the
algebra of sets on L is generated by losets (see, Example . Note that a similar
result has been presented in [10] (Proposition 4) for Godel and contrapositive Godel
implication.

Theorem 2.17. Let (X, F, i) be a fuzzy measure space, p<~ be a N —conjugate fuzzy
measure to p and let f : X — L be F-B~measurable. Then

/ Fdu= N\ "z € X | f(z) < a}) = a). (2.17)

Proof. Let a € L and denote L, = {x € L | < a}. Note that (({a}) = L,,
where £ is given in formula (2.2). By the assumption on the F-B‘-measurability
of f, we have f~'(L,) € F, where f7Y(L,) = {z € X | f(z) < a}. Put I =
Aucr (1N (A) = Vioea f(a:)) and J = /\aeL (1N (f'(La)) — a). First, we show
that I > J. Let Ay : F — L be a map given by Af(A) = \/,., f(x). Obviously,
A C f7Y (L)), and thus poN(A) < poN(f~'(Lx,(a))), where we used the fact
that f is F- BZ measurable. Since Af(F) C L, we obtain

1= A </f’N<A> - \/f<x>> > A\ BN ) = A () 2

AeF €A AeF

Furthermore, let o : L — F be given by o¢(a) = f~1(L,). From the F-B~measura-
bility of f, the map oy is well defined. Obviously, we have \/ ot (z) < a for any

a € L and pf(L) C F. Then, we obtain

xE_Q

TN\ @) =V f@) ] < N\ (e (L) 5 a) =

acL xz€py(a) acL

Hence, we obtain I = J which concludes the proof. O]

As a corollary, we get a simple computational formula for measurable functions
defined on a finite set assuming that the residuated lattice is linearly ordered.
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Corollary 2.18. Let L be a linearly ordered, let (X, F,u) be a finite fuzzy measure
space, i.e., X = {xy,...,x,}, uo~ be the N—-conjugate fuzzy measure to p, and let
f: X — L be F-B'~measurable. Then

[ tdu= A= fo), (2.18)

PR i€[n]
where o is a permutation on [n] such that f,qy > fr@) = -+ > fom), where fou) =
f(xo)) fori € [n], and poN = LN oy, -, Tom) })-
Proof. Analogously to the proof of Corollary [2.14] for a = T, we trivially get
pN{z € X | f(z) < a}) — a =T, and for L < a < fyn), we find that

pN{rz e X | f(z) <a}) wa=pN0) wa=1 —a=T.If fot) L a < fouo)
for i € [n] (we put fy) = T), then

pN{r e X | flx) <a}) = a=pN = a> N = fou,

where we used the fact that the residuum is non-decreasing in its second variable.
Hence, we get

N N {zeX | flx)<a}) »a) = N WY = fom).

a€l0,1] i€[n]
Since the opposite inequality is trivially true, we obtain the desired equality. O]

In the following part, we show that —pr—fuzzy integral is commonotonic mini-
tive.

Lemma 2.19. Let L be linearly ordered, and let f,g € F(X). Denote By = {By(a) |
a € L}, where By(a) = {x € X | f(x) < a}. Then By is a chain with respect to C,
and if f and g are comonotonic, then Bogy(a) = By(a) or Bsoy(a) = By(a) for any
a € L, where ® € {A,V}.

Proof. Tt is easy to show that Lemma [2.10| remains true if C(a) = {z € X | f(z) >
ab. Put Cyla) = X \ By(a), Cyla) = X\ Byfa) and Croy(a) = X \ Bpey(a).
Since Cyo4(a) = C(a) or Creg(a) = Cy(a), we obtain X \ Byey(a) = X \ By(a) or
X\ Bfeg(a) = X \ B,y(a), which implies the desired equalities. O

Theorem 2.20. Let L be linearly ordered, and let f,g € F(X) be comonotonic
F-Bf ~measurable functions. Then

— — —
/ (ng)du:/ fd/M/ g du.
DPR DPR DPR

Proof. According to Remark , we find that fAg is F-Bmeasurable. Considering
the notation from Lemma [2.19] we obtain

/ T Ag = N (5 (Byagla) = a)

PR a€L
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Due to Lemma we have Bya,(a) = By(a) U By(a), where Bypg(a) = By(a) or

Bypg(a) = By(a) for any a € L. Hence, we obtain

N (Byng(a)) = N (By(a)) v u™ (By(a)),

and using (iii) of Theorem [1.2] we find that

| T g dp= N\ (1N (Brag(a) > a)

= A (N VN (By(a)) — a) =

/\ (1N (By(a)) = a) A (1N (By(a)) — a)
= ( C’N( a) A CN b) fduN ’ du,
A u ) /\ ) / ” /D g du

and the proof is finished.
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Chapter 3

Lattice integral transforms

In this chapter, we introduce several types of integral transforms for residuated
lattice-valued functions based on the Sugeno like fuzzy integrals presented in the
previous chapter. We show some of their basic properties that will be used in the
next part. The integral transforms were first proposed in papers [26] 25] and here we
present slightly modified versions of them that are useful in practical tasks such as
signal or image processing. Throughout this chapter, we assume that the complete
residuated lattice L is given, and we will not mention it explicitly except when we
want to specify its form.

3.1 Motivation

In [36], Perfilieva introduced, among others, upper and lower lattice fuzzy transforms
to approximate functions whose function values belong to a complete residuated
lattice. Lattice integral transforms are designed to generalize these two transforms
naturally. To give a better idea, we briefly recall their definitions and show what
the generalization consists of.

Let X,Y be non-empty sets, and let A = {4, | y € Y} be a family of fuzzy
sets A, © X — L such that (J, ., 4, = X and Core(4,) N Core(A,) = 0 for any
y,z € Y with y # z. The family A is referred to as a fuzzy partition of X. The
direct upper lattice fuzzy transform with respect to a fuzzy partition A is a map
Fl: F(X) — F(Y) given by

FA(N) =V fl@)© Ay(), (3.1)

zeX

for any f € F(X) and y € Y, and the direct lower lattice fuzzy transform with
respect to a fuzzy partition A is a map F : F(X) — F(Y) given by

Ex(Ny) = N\ Ayz) = f(x), (3:2)

rzeX

for any f € F(X) and y € Y. Note that Perfilieva also proposed an inverse version
for these two types of lattice fuzzy transforms, which have the same form and will
be introduced in the next chapter. In Figure[3.1 we can see the results of the lower
and upper lattice fuzzy transform applied on a signal given on X = {1,...,205}
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Figure 3.1: Upper (green diamonds) and lower (red squares) lattice fuzzy transforms.

and transformed to Y = {1,18,35,...,205}. We can see that the upper lattice
fuzzy transform approximates the original signal from above and lower lattice fuzzy
transform from below at the points of the set Y. Note that the composition of these
lattice fuzzy transforms lead to the upper and lower approximation of the original
signal, which will be discussed in the next chapter.

Now define a fuzzy relation K : X x Y — L as K(z,y) = A,(z) for any x € X
and y € Y, and assume that F = P(X) and p = p' is the highest measure on
(X, F) (see, Example . It is easy to see that the upper lattice fuzzy transform
Fj\ can be expressed as follows

Huw - [ i) ® K(a,y) dp (3.3)

where [ “ is the multiplication-based integral introduced in Section . Similarly,
assuming F = P(X) and p = pt is the least fuzzy measure on (X, F), the lower
lattice fuzzy transform FX can be expressed as follows

FKU)0) = [ Kw) = 1@ (3.4)

We see that both lattice fuzzy transform can be introduced using a multiplication-
based integral applied to the multiplication or residuum operation between the func-
tion f and the fuzzy relation (integral kernel) K, which is an identical scheme known
for standard integral transforms for real and complex-valued functions. This mo-
tivates us to introduce a general framework for lattice fuzzy transforms, which we
will call lattice integral transforms to keep the notation from the theory of integral
transforms. The generalization consists in the use of more general fuzzy integrals
and integral kernels that extends the concept of fuzzy partition. Since the lower
and upper lattice fuzzy transforms have valuable approximation properties, a natu-
ral question is whether these approximation properties will also be achieved in the
general framework of lattice integral transforms, which will be the subject of the
next chapter.
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3.2 Integral kernel

In this section, we generalize the fuzzy partition which is a key concept in lattice
fuzzy transform (see, [36]). The following lemma characterizes a fuzzy partition of
X in terms of an equivalence of sets.

Lemma 3.1. A family A C F(X) is a fuzzy partition of X if and only if
R={(z,y) e X x X |JAcA: Alx)=Aly) =T} (3.5)
is an equivalence on X.

Proof. Let A C F(X) be a family of fuzzy sets.

(=) Denote [z] ={y € X | (z,y) € R}. Since Core(A) = {Core(A4) | A € A}
is a partition of X, we find that x € Core(A) for some A € A. Moreover, if
y € Core(A), then A(z) = A(y) = T, which implies y € [z], and thus Core(A) C [z].
Conversely, if y € [z], then A(x) = A(y) = T by the definition of R, which implies
y € Core(A), and thus [z] = Core(A). Hence, {[z] | x € X} is a partition of X;
therefore, R is an equivalence on X.

(<) The reflexivity of R ensures that each fuzzy set A € A is normal. We
have shown above that [z] = Core(A), and moreover, A € A is the unique fuzzy
set for which this equality holds. Hence, there exists a bijection between Core(A)
and {[z] | # € X}, which implies that Core(A) is a partition of X and A a fuzzy
partition of X. O

In [32], there is pointed out that a fuzzy partition of X can be equivalently
expressed in terms of a fuzzy relation. In our notation, each fuzzy partition can be
expressed as, for example, a fuzzy relation K : X x A — L given by K (z, A) = A(z)
for any x € X and A € A such that for any A € A thereisx € X with K(z,A) =T
and vice verse, i.e., the A—projection K 4 and the z—projection K, are normal fuzzy
sets. This motivates us to introduce the integral kernel, which is the key concept
for integral transforms as follows.

Definition 3.1. A fuzzy relation K : X x Y — L is said to be an integral kernel

provided that K is normal in both arguments, i.e., for any x € X there is y € Y
such that K(z,y) = T and vice verse, for any y € Y there is x € X such that
K(z,y)=T.

Equivalently, we could say that a fuzzy relation K on X x Y is an integral kernel
if and only if the z—projection and y—projection of K are normal fuzzy sets for any
x € X and y € Y. Obviously, the transpose of an integral kernel K is again an
integral kernel K7 : Y x X — L. It should be noted that the original definition of
integral kernel provided in [26] is weaker in the sense that K(z,y) = T is weakened
by K(z,y) > L, reflecting a more general fuzzy partition introduced and discussed
in [30]. However, the analysis of integral kernels related to the reconstruction of
lattice-valued functions led us to assume the normality of integral kernels. We say
that an integral kernel K : X x Y — L determines a fuzzy partition Ax of X if
Ax ={K, |y € Y} is a fuzzy partition. The following lemma shows a necessary
and sufficient condition for an integral kernel to determine a fuzzy partition of X.
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Lemma 3.2. An integral kernel K : X xY — L determines a fuzzy partition of X
if and only if the core of K, is a singleton for any x € X.

Proof. First, assume that an integral kernel K is a fuzzy partition of X. Since
Core(K,) N Core(K,) = 0 for any y,z € Y such that y # z, we find that to each
z € X there is exactly one y € Y such that K(z,y) = T, i.e., Core(K,) = {y}.
Furthermore, let Core(K,) be a singleton for any « € X. Then Core(K,) N
Core(K,) = 0 for any y,z € X such that y # z, otherwise, there exists x €
Core(K,) N Core(K,) for which {y,z} C K, and this is a contradiction to the
assumption. If € X such that z & |J, o, Core(K,), then K(x,y) < T for any
y € Y, and thus Core(K,) = (), which is again a contradiction with the assumption.
Hence, the family {K, | y € Y} is a fuzzy partition of X. O

From the previous lemma, one can see that an integral kernel K determines a
family A = {K, | y € Y} of fuzzy sets whose cores only cover X, i.e., | JCore(A) =
X, but generally Core(K,) N Core(K,) # 0 for y,z € Y such that y # z. The
family A can be called a fuzzy covering of X. Note that an integral kernel K also
determines a family B = { K, | x € X} of fuzzy sets on Y, which is a fuzzy covering
of Y. Obviously, both families A and B are fuzzy partitions only in a very specific
case, particularly, the cardinalities of X and Y coincide and K(z,y) = T holds
exactly for one pair (z,y) € X x Y (i.e., obviously, a function f : X — Y defined
as f(z) =y if K(x,y) = T defines a bijection of sets X and Y).

In the following statement, we show that a similarity on X determines a fuzzy
partition of X, and hence an integral kernel. We assume that the axiom of choice
is true in our consideration.

Lemma 3.3. Let R be a similarity on X. Then there exists a set' Y C X such
A ={A, |y eY}, where Ay(z) = R(x,y) for any (z,y) € X XY, is a fuzzy
partition of X and K(x,y) = R(x,y) is an integral kernel.

Proof. Denote R* = {(z,y) € XxX | R(xz,y) = T}. Obviously, R* is an equivalence
on X. Further, consider a choice function A : X\z+ — X such that A\([z]) € [x]
holds for any [z] € X\ g+, where X\ g« is the set of all equivalence classes on X with
respect to the equivalence R* and [z] denotes the class for z. Put Y = {\([z]) |
[z] € X\g~}. Obviously, we have ¥ C X. Now, consider A = {A, | y € Y},
where A,(z) = R(x,y). Define a relation S on X by (3.5). To prove that A is a
fuzzy partition of X, it is sufficient to show that S is an equivalence on X. We will
demonstrate that S = R*. If (z,y) € 9, then there exists a unique z € Y such
that A,(z) = A.(y) = T. Hence, R(z,z) = R(y,z) = T, and by the symmetry
and transitivity of R we find that R(x,z) ® R(z,y) = T < R(z,y); therefore,
(x,y) € R*. Conversely, if (z,y) € R*, then {z} = Y N [z] by the definition of Y,
and thus R(z,2) = A.(x) = A.(y) = R(y,z) = T. Since z is the unique element
from Y that belongs to [z], we obtain that (z,y) € S, and thus S is an equivalence
on X.

The second statement is a straightforward consequence of the fact that the

r—projection and y—projection of K are normal fuzzy sets for any x € X and
yey. O
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Remark 3.1. Note that a similarity on X is also an integral kernel on X x X. As
a consequence of Lemma [3.2] we find that a similarity R on X determines a fuzzy
partition of X if and only if R(z,y) = T implies z = y for any x,y € X.

3.3 Multiplication-based lattice integral transforms

In this section, we introduce two types of lattice integral transforms that natu-
rally generalize the lower and upper lattice fuzzy transforms for the residuated
lattice-valued functions. The lattice integral transforms are constructed using the
multiplication-based fuzzy integral, whose integrand is the transformed function
multiplied by the integral kernel, where the multiplication  is one of the operations
of ® and —. A lattice integral transform of fuzzy sets from F(X) to a fuzzy sets
from F(Y') is defined as follows.

Definition 3.2. Let (X, F, u) be a fuzzy measure space, let K : X x Y — L be an
integral kernel, and let » = {®, »}. A map Fj ,: F(X) — F(Y) defined by

Focn(N)®) = [ Klo)« fa)du (3.6)

is called a (K, p, x)—M-lattice integral transform.

It should be noted that the original definition of the (K, i, x)-M-lattice integral
transform (see, [26]) considers only a semi-normality of the integral kernel in the
second argument, which means that for any y € Y thereis z € X such that K (z,y) >
L (i.e., it is not necessary that K(x,y) = T as assumed in this work). However,
practical applications have shown that semi-normality is too weak to obtain good
results, which motivated us to assume the normality of the integral kernel in both
arguments. Moreover, we add the letter “M” to the notation to emphasize that
the lattice integral transform is based on the multiplication. If the pair (K, pu) is
known we simplify the notation of multiplication-based lattice integral transform to
“M-lattice integral transform” or “M*—lattice integral transform”, where * is used
to emphasize the operation used, or we express it using symbols such as “M-LIT”
or “M*~LIT".

The following theorem shows that (K, , x)-M-lattice integral transforms indeed
generalize the upper and lower lattice fuzzy transforms.

Theorem 3.4. Let (X, F,pu) be a fuzzy measure space such that F = P(X), and
let K : X XY — L be an integral kernel that determines a fuzzy partition Ak of X.
Assume that FL@ FXK : F(X) = F(Y) are upper and lower lattice fuzzy transforms
from F(X) to F(Y), respectively, and let f € F(X).

(i) If uw= " is the highest fuzzy measure on (X, F), then FXK(f) = F(%(;F)(f)‘

(ii) If p = p* is the least fuzzy measure on (X, F), then F}&K(f) = F(?wl)(f).

Proof. Let K be an integral kernel such that Ax = {K, | y € Y'} is a fuzzy partition,
and y €Y.
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(i) If p = p", then

Fge,my(Ny) = V' @e N\ K@y o f@)=\ N\E@zry e fl)

AceF €A AeF z€A

= \/ (,9) @ f(2)) = \/ (K, (x) ® f(2)) = F}, (/) (w).

zeX

(ii) If p = p*, then

Feoy(DW) =V (A @ N\ (K(z,y) = f(2)))

AeF T€A
= N\ (K(x,y) = f(2) = N\ (K@) = f(z) = Fx, ()(y),
and the proof is finished. n

Remark 3.2. Note that F = P(X) in the previous theorem can be generalized by
assuming that the algebra F contains all singletons in X, i.e., {{z} |2z € X} C F.
Obviously, the fuzzy measure is an additional parameter (K, u, x)-M-lattice integral
transforms in contrast to the upper or lower lattice fuzzy transforms.

The following theorem presents the basic properties of (K, u, x)-M-lattice inte-
gral transforms (see, also [26]). We assume that a fuzzy measure space (X, F, u) is
given and K : X x Y — L is an integral kernel.

Theorem 3.5. For any f,g € F(X), x={®,—} and for any a € L, we have
(1) Fi(f) < Fie w(9) if f <9,
(i) Flic .y (F N g) < Fie oy (F) AN Fi 1 (9),
(i) Fge o (F)V Fic9(9) < Flic 1y (fU9),
(iv) a® Fig () < Figylax ® f),
(v) Flgwlax = f) <a— F ) (f).
If L is an MV—-algebra, then inequality (iv) can be replaced by equality.

Proof. We prove only the first case x = ®, the second case x =— can be proved
analogously.

(i)-(iii) This is a trivial consequence of the monotonicity of ®—fuzzy integral
(Theorem 2.7)(i)) and the fact that

K(x,y)® f(r) < K(z,y) ® g(x) for f <y,
K(z,y) @ (fNg)(z) < (K(z,y) ® f(2)) AM(K(z,y) @ g(z)),
(K(z,y) @ f(2)) V (K(z,y) @ g(z) < K(z,y) ® (f Ug)(x),

forany xr € X and y € Y.
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(iv) By Theorem [2.7)(iii), we find that

®
Flax® N = [ Ky ® e f@)du= [ as (K)o f() do 2
=a®/ K(z,y) ® f(z)dp = a ® F ,(f)(y).

Moreover, if L is an MV-algebra, then the previous inequality can be replaced by
the equality according to Theorem [2.7(iii) for an MV-algebra.
(v) By Theorem [2.7|iv), we have

Fik, )(ax%f / K(z,y) @ (a — f(z))dp
®
[ oo K@ s@ndisas [ K@ f)dn=a B, (W),
where we used b ® (@ — ¢) < a — (b® ¢) (see, the proof of Theorem for

details). O

As a straightforward consequence of the definition of multiplication-based lattice
integral transform is the following statement.

Theorem 3.6. Let (X, F) be a measurable space and p, i’ be fuzzy measures on
(X, F), and let K, K' : X XY — L be integral kernels.

(i) If p =2 p', then e (f) < Fli i (f) for any f € F(X).
(i) If K < K', then F(*Ku)(f) < Fier (f) for any f € F(X).

The next theorem shows conditions under which a constant function (fuzzy set)
ay is transformed to a constant function ay, i.e., Fig (ax) = ay. Recall that K,
denotes the y-projection of K to X.

Theorem 3.7. Let (X, F,pu) be a fuzzy measure space, let K be an integral kernel,
and let a € L.

(i) If for any y € Y there exists A, € F such that A, C Core(K,) and pu(A,) =T,
then Fy (ax) = ay.

(it) If for any y € Y and for any A € F with A C X \ Core(K,) it holds that
1(A) < a, then Fg. (ax) = ay.

Proof. (i) Let a € L and y € Y. By the assumption of (i), we assume that there is
A, C Core(K,) such that u(A,) = T. Then

Fienax)) = [ K@ axodn =\ () A(Kr) ©ax(e)

=\ W) e \E@y)oa>uA)o \ (Kzy)eae=Tea=a
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On the other side, we trivially have pu(A) ® A, c4(K(z,y) ® a) < a for any A € F.
Hence, we find F{3 (ax)(y) < a, which proves the desired equality.
(ii) Let @ € L and y € Y. By the assumption of (ii), for any A € F such

that A C X \ Core(K,), it holds that u(A) < a. Since Core(K,) # 0, we get
X ¢ X \ Core(K,). Then
®
Fiean(@)) = [ Klo.) > ax(o) du=

\V (A e N\(K@y) —a)v \/ (n(A) @ N (K(z,y) = a))

AeF r€A AcF €A
AZ X\ Core(Ky) ACX\Core(Ky)
<V @eaapv N a
AeF AeF
AZ X\ Core(Ky) ACX\Core(Ky)

<@e \/  wA)Vva=(eouX))Va=aq,

AeF
AZ X\ Core(Ky)

where we used the distributivity of ® over \/, the equality

N\ (E(z,y) = a) = a,

z€EA

for any A € X \ Core(K,), which follows from the fact that K(z,y) = T for some
r €A T —a=a,and b — a > a for any b € L, and the assumption stating that
p(A) < a for any A € F such that A C X \ Core(K,). Conversely, we have

Fliew(ax)y) 2 N\ K(z,y) = ax(@) = N\ (K(x,y) = o) =q,

zeX zeX
where we used the same arguments as above, which proves the desired equality. [

It is worth noting that the standard real-valued fuzzy transforms as well as lower
and upper lattice fuzzy transforms preserve constant functions; therefore, it seems
to be natural to assume that integral kernels and fuzzy measures as the parameters
of the lattice integral transforms satisfy the conditions under which the constant
functions are preserved. In addition, the preservation of constant functions proved
to be an essential condition for the successful reconstruction of the original functions
using lattice integral transforms, so we will discuss this property in more detail.

Definition 3.3. Let (X, F, 1) be a fuzzy measure space, let K be an integral kernel,
and let a € L. The sufficient condition in Theorem [3.7(i) is denoted by (C1) and we
say that (K, p) satisfies (C1). The sufficient condition in Theorem [3.7](ii) is denoted
by (C2) and we say that (K, i) satisfies (C2) for a, where a € L. If (K, u) satisfies
(C2) for any a € L, then we say that (K, p) satisfies (C2).

It is easy to see that (K, u) satisfies (C2) if and only if (K, ) satisfies (C2) for
a = L. The following example shows that if (C1) is not satisfied for a fuzzy measure
and an integral kernel, the preservation of constant functions may fail.
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Example 3.1. Let (X, F, u) be a fuzzy measure space, and assume that K : X X
Y — L is given such that K (z,y) € {1, T}, and K determines a fuzzy partition of
X. Let a,d’ € L, y € Y, and assume that u(A) < @’ < T for any A € F such that
A C Core(K,), where a ® @’ < a. Note that K(x,y) = L for any ¢ Core(K,).
Then

Fiewa) @) = \/ (wA) e \(K(z,y)@a)
AeF z€A
=V w@e NE@yeayv \/  wA)e \Exy) ea)
AeF zeA AeF zeA
ACCore(Ky) AZCore(Ky)
= \/ (A ®a)VL<d®a<a.
AeF
ACCore(Ky)

Note that we assume p(A) < o’ < T for any F-measurable set A C Core(K,),
because if

AcF
ACCore(Ky)

the equality Fi7. , (ax)(y) = a would hold even when the assumption of the previous
theorem is not satisfied.

It is rather difficult to establish a necessary and sufficient condition for the
preservation of constant functions using (K, u, ®)-M-lattice integral transforms in
a general case, but we can do it for finite sets, where we assume that L is linearly
ordered and ® satisfies the conditional cancellation law, ie., a ® b =a®c > L
implies b = ¢ for any a,b,c € L.

Theorem 3.8. Let L be linearly ordered and & satisfy the conditional cancellation
law, and assume that X is a finite non-empty set. A (K, u, ®)-M-lattice integral
transform preserves non-zero constant functions if and only if (K, ) satisfies (C1).

Proof. Let ay € F(X) such that a # L, and let y € Y. Due to Theorem [3.7]1), it
is sufficient to prove the sufficient condition. As a consequence of the conditional
cancellation law, we find that K(z,y) ® a = a for some (z,y) € X x Y if and only
it K(y,z) =T, ie., x € K,. Since X is a finite set, we get

a=F  (ax)y) =\ wA)e \ Ky a)

AeF €A

if and only if there is B € F such that u(B) ® A,.z(K(z,y) ® a) = a. From the
conditional cancellation law, we obtain that u(B) = T and A, z(K(z,y) ® a) = a.
Indeed, we have A, z(K(z,y) ®a) < a and to ensure the previous equality, it must
be \,cp(K(z,y) ®a) > a, which implies the desired equality. The equality p(B) =
T immediately follows from the conditional cancellation law (u(B) ® a = T ® a).
In addition, we have K(z,y) ® a = a for any # € B, which implies B C Core(k,).
Hence, there exists B € F such that B C Core(K,) and pu(B) = T. O
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Note that F7 (0x) = 0y holds for arbitrary parameters of (K, y, ®)-M-lattice

integral transforms, i.e., fuzzy measure spaces and integral kernels, which immedi-
ately follows from [0y dp = 0 (see, Theorem (11))

The following example shows that if (C2) is not satisfied, we can find a fuzzy
measure and an integral kernel such that the constant function is not preserved.

Example 3.2. Let (X, F, u) be a fuzzy measure space, and assume that K : X x
Y — L is given such that K(z,y) € {L, T} and determines a fuzzy partition of X.
Let a € L, y € Y, and assume that pu(B) > a for some B C X \ Core(K,). Note
that K(z,y) = L for any x € B, otherwise, x € Core(K,), which is a contradiction.
Then

Fieplax)w) >\ (A @ N\ (K(x,y) = a))

AcF z€A
ACX\Core(Ky)

> p(B)@ /\ (K(z,y) = a)

z€B

=u(B)® (L —a)=uB)®@T =uB)>a,
where we used that 1 — a =T for any a € L.

The next example shows that condition (C2) need not be satisfied to ensure the
preservation of a constant function.

Example 3.3. Assume that L is the Lukasiewicz algebra on [0, 1]. It is easy to
demonstrate that b ® (b — a) = a for any a,b € L such that a < b. Let a,b € L
with a < b. Let K : X XY — L be an integral transform such that K(z,y) € {b,1}
for any (z,y) € X xY and Core(K,) # X for any y € Y. Consider a fuzzy measure
pon (X,P(X)) for a non-empty set X, where (X \ Core(K,)) =0b for any y € Y.
Then, for any y € Y, we have

Fipla)w =\ (e \K@y) =)V

AeF z€A
AZ X\ Core(Ky)

Vo @) e \E@y) »a)= \ (Kzy) = aV

AcF x€A zeX
ACX\Core(Ky)

pX\Core(K))® N\ (K(z,y) = a)
z€X\Core(Ky)
=aVb®(b—a)=a,

but for any A C X \ Core(K,) we have pu(A) > a.

Note that Fi7 ,(1x) = 1y holds for arbitrary parameters of (K, u, —)-M-lattice

integral transforms, i.e., fuzzy measure spaces and integral kernels, which immedi-
ately follows from [*(K(z,y) — 1x(z))dp = [ 1x du =1 (see (ii) of Theorem.
Recall that p“" denotes the N-conjugate fuzzy measure to . The next theorem
shows a useful relation between the satisfaction of conditions (C1) and (C2) for u
and its N—conjugate fuzzy measure.

44



Theorem 3.9. Let (X, F,pu) be a fuzzy measure space, let K be an integral kernel.
(i) If (K, i) satisfies (C1), then (K, uY) satisfies (C2).

(i) If (K,p) satisfies (C2) and Core(K,) € F for any y € Y, then (K,u>")
satisfies (C1).

Proof. (i) Assume that (K, u) satisfies (C1), and let y € Y and A € F such that
A C X \Core(K,). By the assumption there exists A, € F such that A, C Core(K,)
and p(A,) = T. Hence, we find that A, C Core(K,) C X\ A4, and thus T = p(A4,) <
w(X \ A), which implies u"(A) = N(u(X \ A)) = N(T) = L. Therefore, (C2) is
satisfied by (K, usV).

(ii) Assume that (I, pu) satisfies (C2), let y € Y and put A, = Core(K,) € F.
Then trivially X\ A, C X\Core(kK,), and by the assumption, we have u(X\A4,) = L
(recall that (C2) is satisfied for all a € L, which is equivalent to (C2) is satisfied for
a = 1). Hence, we find that pu*"(A4,) = N(u(X \ 4,)) = N(L) = T. Therefore,
peN satisfies (C1). O

In the next example, we give a class of fuzzy measures that, together with a
given integral kernel, satisfy (C1). In addition, we introduce the N—conjugate fuzzy
measures to them, which satisfy (C2).

Example 3.4. Let (X, F) be a measurable space with X = {zy,...,2,}, L =0, 1]
and F = P(X), and let M" be the class of fuzzy measures on (X, F) introduced in
Example . Let K : X xY — [0,1] be an integral kernel, where Y = {y1,...,ymn}
and put v = min{# Core(K,,) | y; € Y'}/n. Then the class

M, ={uy |01, (<u,peN, p>0} (3.7)

consists of all fuzzy measures, for which the (K, u, ®)-M-lattice integral transform
preserves constant functions. Indeed, we trivially have Core(K, ) € F for any
y; € Y. By the definition of u, we find that for any y; € Y it holds

ity (Core(K,,)) = @l (# Core(J5,,) /n) = 1

for any ¢ < wand p > 0, since u < # Core(K,,)/n. Hence, condition (C1) is satisfied
and thus (K, p, ®)-M-lattice integral transform preserves constant functions for any
€ M. In addition, the class

M = (e [ £€[0,1], £ S u, p €N, p>0} (3:8)

consists of all N—conjugate fuzzy measures to fuzzy measures from M! (see, Ex-
ample . By Theorem [3.9] we get that the (K, u;p,C,N,%)—M—lattice integral
l,u

transform preserves constant functions.

In the following example, we demonstrate a multiplication-based lattice integral
transform on a real function that imitates a part of a discrete signal.
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Example 3.5. Assume that L is the Lukasiewicz algebra on [0, 1] (see, Example|1.1]),
and the discrete signal is given by the formula

f(z) = 0.3 - cos(x/36)? - sin(z/5) + 0.5 (3.9)

on X ={1,2,3,...,204}. Let Y = {1,8,15,...,204} be a subset of X such that the
difference between two consecutive elements in Y is 7. In what follows, we present
three cases to demonstrate the effect of

a) different fuzzy measures for the same integral kernel,
b) different integral kernels for the same fuzzy measure, and

¢) “fuzziness”, which means the fuzzy part of the integral kernel (i.e., the member-
ship degrees different from 0 and 1),

to the output of the multiplication-based lattice integral transform. In all cases, the
integral kernel K and the fuzzy measure p are introduced in such a way that (K, p)
satisfies condition (C1) for x = ®, and as a consequence of Theorem we get that
(K, u>N) satisfies condition (C2) for x =—. More specifically, we consider p € M",
for x = ® and its N—conjugate fuzzy measure uY € M"Y for x =— (see, Exam-
ple [3.4)), where N(a) = Nyes(a) = 1 — a for any a € [0,1]. This assumption ensures
that the (K, u, ®)-M-lattice integral transform and the (K, u®", —)-M-lattice in-
tegral transform preserve an arbitrary constant function.

Case a) Consider the following integral kernel K : X x Y — [0, 1]:

17 |*T - y| < 87

0.8, |z—y|e€{9,10},
0.6, |z—y|e {1112},
0, otherwise,

K(z,y) =

and define two fuzzy measures py = pj¢ and pg = p2 1, on the measurable space
(X, P(X))[] Intuitively, the fuzzy measure i, is set to choose a higher value from
values f(z) ® K(z,y), v € Supp(kK,), but not the highest or second highest value,
which follows from the setting U = 2. The result of the (K, ®)-lattice integral
transform is a (transformed) signal described by the green diamonds and shown
in Figure (a) together with the original signal f. Obviously, the result of this
transform is very similar to the upper lattice fuzzy transform (p = pu' = Ng,o) and
the values of the original signal f(x) at the points from Y are very similar or less than
the values of the transformed signal. The fuzzy measure pus is set to be smaller than
p (i.e., o = pp), which shifts the transformed signal down a bit (a consequence of
Theorem [3.6(1)), as seen in Figure [3.2fa), where the transformed signal is described

'Recall that u? y denotes the fuzzy measure p ,

PL/n,U/n
Remark

2Note that the kernel K does not determined a fuzzy partition of X, but the interpretation
of the direct upper and lower lattice fuzzy transforms remains the same even in this more general
case.

from Example For details, see
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by the red squares. Obviously, the latter and similar fuzzy measures are suitable
for filtering out high frequencies, which will be demonstrated in the next chapter.
On the other hand, the first and similar fuzzy measures can be suppressed high
frequencies only in their “negative” parts, i.e., in the parts where the waves reach a
local minimum.
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Figure 3.2: M*-lattice integral transforms for a fixed integral kernel K and two
different fuzzy measures 3 ¢ (green diamonds) and 13 1, (red squares).

The results of the (K, uf’N, —)-lattice integral transforms, i = 1,2, are shown in
Figure (b), where the transformed signal described by the green diamonds (red
squares) is related to /Li’N (,ug’N). The shape of both transformed signals is somehow
dual to the shape of signals obtained by the previous integral transform (x = ®),
ie., /ffN and similar fuzzy measures can be used to suppress high frequencies only
in their “positive” parts, i.e., in the parts where the waves reach a local maximum.
Note that the lower fuzzy transform also has this property.

It should be noted that the near-constant parts of the original signal are trans-
formed to near-constant parts of the transformed signal, with all lattice integral
transforms resulting in nearly identical outputs. This is a consequence of the as-
sumption that the fuzzy measure satisfies condition (C1) for x = ® and condition
(C2) for x =—.

Case b) Now let us consider two integral kernels K7, Ko : X x Y — [0, 1]:

17 |'I_y| < 167 17 Ix_yl §77
Ki(z,y) =108, |zv—y|=17, K(z,y)=40.6, |z—y|le{8, 9},
0, otherwise, 0, otherwise,

and the fuzzy measure y = p3¢ on the measurable space (X,P(X)). The fuzzy
measure 4 is set to satisfy condition (C1) for the integral kernel K, and take a
value that is not far from the “middle” among the values f(z) ® Ky(z,y), = €
Supp(Ks,). Unlike K5, the fuzzy measure y in the relationship to the integral kernel
K behaves as the fuzzy measure close to ;. The transformed signal obtained by the
(K;, 1, ®)-lattice integral transform, ¢ = 1,2, is shown in Figure[3.3|(a) together with
the original signal, where the green diamonds (red squares) describe the transformed
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signal related to K; (K3). Since p with respect to Ky introduces a fuzzy integral
that aggregates the values so they are not far from the “middle” value and the size
of the support of K, is not high (#Supp(Ks,)) = 19), the transformed signal is
close to the original signal at the points from Y. In contrast, the transformed signal
for ;1 with respect to K7 is similar to the transformed signal from case a) described
by green diamonds in Figure (a), which suppresses or even removes the negative
parts of higher frequencies.
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Figure 3.3: M*-lattice integral transforms for a fixed fuzzy measure 34 and two
different integral kernels K7 (green diamonds) and K, (red squares).

The transformed signal for the (Kj, u>", —)-M-lattice integral transform, i =
1,2, is displayed in Figure 3.3(b). Similarly to case a), the results for this type of
the lattice integral transform are somehow dual to the results for the previous type,
leading to the suppression of the positive parts of higher frequencies. Again, the
near-constant parts of the original signal are transformed to the near-constant parts
of the transformed signal.

Case c) Finally, let us consider integral kernels K, K K%*F : X x Y — [0, 1]:

1, lz—y| <7,
0.9, |z—yleds,..., 11},
Kizy)= {00 (070 1T
0, otherwise.
ore 17 r—=y S77 u ]-, r—vY §137
K (z,y) = | |. K (z,y) = | |.
0, otherwise, 0, otherwise,

and the fuzzy measure p = p2 ), on the measurable space (X, P(X)). The fuzzy
measure /i is set to aggregate the values f(z) ® K°*(z,y), * € Supp(K,;**) to
a value that is not far from the “middle” value. In relation to K and K®'P, the
fuzzy measure p is shifted to higher values. In Figure [3.4, we demonstrate that
even if one integral kernel is the core or support of another, we obtain different
transformed signals. More specifically, the transformed signal for the integral kernel
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K with a fuzzy part is described by green diamonds. The crisp integral kernels K “°*°
determines the signal described by the red squares and K*®"P the signal described by
the blue stars. All transformed signals differ from each other for both types of lattice
integral transforms * = ® and x =—. We should note that the higher size of the
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Figure 3.4: M*-lattice integral transforms for a fixed fuzzy measure /L%H and one
integral kernel K with a fuzzy part (green diamonds) and two crisp integral kernels
K°re (red squares) and K*"* (blue stars).

support of K5 (#Supp(K®"?) = 27) than in case of K (#Supp(K ) = 15)
leads to a smoother output, which is mainly visible in Figure (a). However,
appropriate setting of the fuzzy measure p can lead to smoother output even in the
case of x =—. Generally, integral kernels with a higher size of the support together
with fuzzy measures using which the fuzzy integrals aggregate the values to a middle
value are suitable for suppressing high frequencies in the signal, and thus we can
obtain a smooth signal.

As a simple consequence of the comonotone property of the ®-fuzzy integral
(see, Theorems , we can obtain an analogous result for the multiplication-
based lattice integrals. Let K be an integral kernel, and let x = {®, —}. We say
that functions f,g € F(X) are (K, x)-comonotonic (or comonotonically compatible
with K and *) if f* K(-,y) and g x K(+,y) are comonotonic.

Theorem 3.10. Let L be a linearly ordered complete Heyting algebra, let f, g, K (-, y)
be F-B"—measurable for any y € Y, and let ® € {A, V}.

(i) If f and g are (K, \)-comonotonic, then
Flyepy(f ©9) = Flic oy (f) © Flic ) (9)- (3.10)

(i) If F is closed under arbitrary union and f and g are (K,—)—-comonotonic,
then

Fay(f ©9) = Fig,)(f) O Fig,(9) (3.11)

Proof. (i) It is a simple consequence of Theorems and and the fact that
fAK(-,y) and g A K(+,y) are comonotonic for any y € L and A is distributive over
V.
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(ii) From Theorems and by the assumption, we have that the fuzzy sets
f — K(,y) and ¢ — K(-,y) are F-B“—measurable and (K, —)-comonotonic for
any y € Y. Using Theorem [1.2(ii), the fact that a — (bAc) = (a = b) A (a — ¢)
holds in any linearly ordered residuated lattice and Theorem we simply obtain
the statement. ]

3.4 DH-residuum-based lattice integral transforms

In this section, we introduce another type of lattice integral transforms that is based
on the DH-residuum-based fuzzy integral. This type of integral transform was de-
signed as a “negative” version of the multiplication-based lattice integral transform,
whose output function reverses the values of the original functionﬁ For example, the
output of this lattice integral transform applied to an image is a negative (see, Sub-
section on page . Nevertheless, its definition is completely analogous to the
lattice integral transform based on multiplication, only the type of fuzzy integrals
is changed.

Definition 3.4. Let (X, F,v) be a complementary fuzzy measure space. Let K :
X xY — L be an integral kernel, and x = {®, —}. A map G{y,, : F(X) = F(Y)
defined by

Girn (D) = [ H K(e,y)* f(z) dv (3.12)

is called a (K, v, x)-R,,—lattice integral transform.

If the pair (K, v) is known we simplify the notation of the DH-residuum based
lattice integral transform to “RY  —lattice integral transform” or express it using
symbols “Ry,~LIT".

The following theorem summarizes basic properties of (K, v, *)-Rpy—lattice in-
tegral transform (see, also [25]). We assume that a complementary fuzzy measure
space (X, F,v) is given and K : X X Y — L is an integral kernel.

Theorem 3.11. For any f,g € F(X) and a € L, we have
(i) Gixoy(f) = Gix)(9) if f <9,
(ii) Gigo)(f Ng) 2 Gly ) (F)V Gl (9),
(i) Gly ) (f) N Glxc)(9) = Gl (fV 9),
(i) Gix,)lax ® f) < a— Gl (f),

(v) Gigylax = f) 2 a® G, (f).

If L is an MV-algebra, then inequality (iv) can be replaced by equality.

3Note that the negative output of the DH-residuum-based lattice integral transforms is a
consequence of the relation between the multiplication and DH-residuum based fuzzy integrals
where one is the (canonical) negation of the second one under certain conditions (e.g., in MV-
algebra). For details, we refer to [11], [24].
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Proof. We prove only the first case x = ®, the second case x =— can be proved
analogously.

(i)-(iii) Similarly to the proof of Theorem [3.5|(i)-(iii), it is a straightforward conse-
quences of the monotonicity of the operation ® (i.e. monotonically non-decreasing)
and the —p;—fuzzy integral, which reverses the ordering (Theorem i)).

(iv) Using Theorem iii) and the commutativity of ®, for any y € Y, we
have

Moreover, if L is a complete MV—-algebra, then the previous inequality can be re-
placed by the equality according to Theorem [2.12(iii) for an MV-algebra.
(v) Using (i) and (iv) of Theorem [2.12] we have

o (ax = Py /Ka:w (a— f(x))dv >

[ = e @i zas [ Ko@) -as G, ()

H

where we used K(z,y) ® (a = f(z)) < a = (K(z,y) ® f(z)) (see the proof of
Theorem for details). O

Again a straightforward consequence of the definition of the DH-residuum-based
lattice integral transform is the following statement. We define the ordering of
complementary fuzzy measures analogously to the ordering of fuzzy measures, i.e.,
1 2y if 11 (A) < 1y(A) for any A € F.

Theorem 3.12. Let (X, F) be a measurable space and v,V be complementary fuzzy
measures on (X, F), and let K, K’ : X x Y — L be integral kernels.

(i) If v 2V, then Giy , (f) < Gl (f) for any | € F(X).
(it) If K < K, then Gy, (f) = Ger ) (f) for any f € F(X).

Similarly to Theorem we are interested in sufficient conditions under which
(K, v,x)-Rpy—lattice integral transform ensure the reversation of constant functions,

Le., Gl (ax) = nay.

Theorem 3.13. Let (X, F,v) be a complementary fuzzy measure space, let K be
an integral kernel, and let a € L.

(1) If for anyy € Y there exists A, € F such that A, C Core(K,) and v(A4,) = L,
then G, (ax) = 2ay.

(it) If for any y € Y and for any A € F with A C X \ Core(K,) it holds that
v(A) = —a, then Gj (ax) = —ay.
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Proof. (i) Let y € Y, and ay € F(X). Assume that there is A, C Core(kK,) such
that v(A,) = L. Then

Gl (a)) = | TK ) ®ax@de= N (N (K(zy) ©a) - v(4))

AceF z€A

< /\(T@a)—>J_:a—>J_:—|a:—|_aY(y).
TEAy

On the other side, for any A € F, we trivially have A _ (K (z,y)®a) = v(A) > a —
1 = =ay(y), where we used the monotonically non-increasing in the first argument
and the monotonically non-decreasing in the second argument of residuum. Hence,
we find Gy, (ax)(y) = 2ay (y), which proves the desired equality.

(ii) Let y € Y. Since Core(K,) # 0, so X € X \ Core(K,). Then

Glnlax)(y) =
/K(:n,y)ﬂX(x)du: A (AE @) —a) = v(A)

AeF x€A
ACX\Core(Ky)

AN ANE@y =) =rA) > N\ (T = (4)
ved AQXégéfe(Ky)

A /\ (a = v(A)>—aA(a— L)=-a=20ay(y),

AcF
AZ X\ Core(Ky)

AcF
AZ X\ Core(K,)

where we used that the residuum is monotonically non-increasing in the first compo-
nent and the monotonically non-decreasing in the second component, i.e., trivially
K(z,y) — a < T, therefore, (K(z,y) — a) > v(A) > T — v(A) = v(A) > —a for
A C X \ Core(K,) by the assumption in (ii). Contrary, we have

Glewlax) ) < N\ (K(z,y) = a) = v(X) =a— L =-a==ay(y),

where we used the fact that K(z,y) — a > a for any (z,y) € X xY and K(z,y) —
a=T —a=a for any x € Core(K,), which proves the desired equality. O

Definition 3.5. Let (X, F,v) be a complementary fuzzy measure space, let K be
an integral kernel. The sufficient condition in Theorem [3.13(i) is denoted by (C3)
and we say that (K, v) satisfies (C3). The sufficient condition in Theorem [3.13[(ii) is
denoted by (C4) and we say that (K,v) satisfies (C4) for a, where a € L. If (K, v)
satisfies (C4) for any a € L, then we say that (K,v) satisfies (C4).

Obviously, (K,v) satisfies (C4) if and only if (K, v) satisfies (C4) for a = T.
Recall that the N-conjugate complementary fuzzy measure to v is denoted by vV
and defined as vV (A) = N(v(X \ A)) for any A € F. The next theorem provides
an analogous statement as in Theorem [3.9| expressing the relation between the sat-

isfaction of conditions (C3) and (C4) and the complementary fuzzy measures v and
c,N
7
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Theorem 3.14. Let (X, F,v) be a complementary fuzzy measure space, let K be
an integral kernel.

(i) If (K,v) satisfies (C3), then (K,veN) satisfies (C4).

(ii) If (K,v) satisfies (C4) and Core(K,) € F for anyy € Y, then (K,v*V)
satisfies (C3).

Proof. (i) Let y € Y and A, € F be such that A, C Core(K,) and v(4,) = L.
Let A € F be such that A C X \ Core(kK,). Since A, C Core(K,) C X \ A and
v(A,) = L, we get that v(X \ A) = L, since v is a monotonically non-increasing set
map, which implies vV (A) = N(v(X \ A)) = N(L) = T. Hence, we obtain that
v satisfies (C4).

(ii) Let y € Y and assume that for any A € F such that A C X \ Core(K))
there is v(A) = T. Since Core(K,) € F, put A, = Core(K,). Then trivially
X\ 4, € X\ Core(K,), and thus v(X \ A,) = T, which implies v*V(A4,) =
N(w(X \ A4,)) = N(T)= L. Hence, (K,v%") satisfies (C3). O

Remark 3.3. From Lemmal[2.2] we know that a complementary fuzzy measure can be
introduced from a given fuzzy measure using a negation N on L as v(A) = p¥ (A) =
N(u(A)) for any A € F (see, Lemma [2.2)). It is easy to observe that if K is an
integral kernel and p a fuzzy measure such that condition (C1) (or (C2)) is satisfied,
then v = ;i is a complementary fuzzy measure that satisfies (C3) (or (C4)), where
we assume that N > N = — (i.e., N(a) > —a for any a € L) for condition
(C4). Indeed, if pu(A,) = T for some A, C Core(kK,), then v(A,) = N(u(4,)) =
N(T) = L. Similarly, if for any A C X \ Core(K,), we have ;(A) < a, then v(A) =
N(u(A)) = N(a) = —a. Obviously, if G}, ) has to reverse an arbitrary constant
function, i.e., (C4) holds for any a € L, which is equivalent to v(A) = T holds for
any A € F with A C X \ Core(K,), then we can consider an arbitrary negation N
on L to get the desired reversation. Using this observation and Theorem we can
can simply construct fuzzy measures and complementary fuzzy measures satisfying
the corresponding sufficient conditions for a given integral kernel K from a fuzzy
measure p which, together with K, satisfies (C1).

The following example demonstrates the DH-residuum-based lattice integral
transform on a real function that imitates a part of a discrete signal.

Example 3.6. We use the same residuated lattice, fuzzy measures (i.e., p € M)
and integral kernels as in Example [3.5| and present the results of DH-residuum-
based lattice integral transforms applied on the signal f given by formula on
{z1,...,2,) for cases a) and b). We consider the complementary fuzzy measure
defined as v = p, where N = N, is the negation in the Lukasiewicz algebra, i.e.,
N(a) = 1—afor any a € [0, 1]. Since (K, p1) satisfies (C1) for all integral kernels used
in Example we get that (K, v) satisfies (C3) by Remark [3.3] The N-conjugate
complementary fuzzy measure to v is given by vV = p¢ (see, Lemma , ie.,
veN(A) = (X \ A)J Since the N-conjugate fuzzy measure " together with all

4Note that the definition of v is a consequence of the fact that N is involutive. Indeed, for
A€ F, we have vV (A) = N(v(X \ A)) = N(N(u(X \ A))) = p(X \ 4) = p°(A).
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Figure 3.5: R}, -lattice integral transforms for a fixed integral kernel K and two
different complementary fuzzy measures v; (green diamonds) and v, (red squares).

integral kernels used in Example satisfies condition (C2) for any a € L and the
negation of u“% is the complementary fuzzy measure p¢, we know from Remark
that p¢ together with all integral kernels used in Example satisfies (C4) for any
a € L. Hence, the setting of v and v“" ensures that the (K, v, ®)-lattice inte-
gral transform and the (K, %Y, —)-lattice integral transform reverse any constant
function.

Case a) We consider one integral kernel K : X x Y — [0,1] and two comple-
mentary fuzzy measures vy and vy defined from the fuzzy measures p; = ngﬁ and
pi2 = 113 15 Figure (a) shows the resulting signals for the (K, vy, ®)-lattice inte-
gral transform described by the green diamonds and for (K, vy, ®)-lattice integral
transform described by the red squares together with the original signal f. In con-
trast to the transformed signals in case a) of Example , these signals naturally
reverse the ordering, i.e., higher values of the original signal are transformed to lower
values and vice versa. This can also be understood that the DH-residuum based
lattice integral transform is the multiplication-based lattice integral transform ap-
plied to the negation of the signal f, but it should be emphasized that the results
of the two approaches coincide only in the special case. One could be surprised that
the nearly-constant parts of the original signal are again transformed to the nearly-
constant parts, but this is a consequence of the fact that the nearly constant parts
are closed to the value 0.5 and N(0.5) = 0.5. However, the outputs here show simi-
lar behavior as for multiplication-based integral transform with respect to the fuzzy
measures, only in the reverse ordering. For example, in case of v, we obtain a signal
where higher frequencies are suppressed (cf. the signals described by red squares in
Figures (a) and (a)). The transformed signals for the (K, 7", —)-lattice inte-
gral transforms, i = 1,2, are displayed in Figure [3.5[b). Their analysis is analogous
to * =— in case a) of Example only in the reverse ordering.

Case b) We consider two integral kernels K7, Ky : X XY — [0, 1] and one comple-
mentary fuzzy measure v defined from the fuzzy measure p = ,ugﬁ. Resulting signals
of the (K, v, ®)-lattice integral transforms, i = 1,2, are shown in Figure (a).
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Again these signals are in the reverse ordering, but have similar behaviour as the
transformed signals in case b) of Example for x = ®. For example, the signal
described by the red squares is close (approximates) the negation of the original
function at the points from Y, while the signal described by the green diamonds
approximates only lower part of the negation of the the original function. Result-
ing signals of the (K;,v®Y, —)-lattice integral transforms, i = 1,2, are shown in
Figure [3.6{(b).
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Figure 3.6: R}, —lattice integral transforms for a fixed complementary fuzzy measure
v and two different integral kernels K (green diamonds) and K> (red squares).

We conclude this section with the statement similar to Theorem [3.10] which
shows the linearity property of the DH-residuum-based lattice integral transform for
comonotonic functions. In this case, the linearity of the transform means reversing
the join operation into a meet operation.

Theorem 3.15. Let L be a linearly ordered and assume that the algebra F is closed
over arbitrary unions. Let f, g, K(-,y) be F-B“-measurable for any y € Y. If
K(-,y)~ f and K(-,y) * g are comonotonic for x € {®,—}, then

Proof. As a consequence of Theorem and Theorem we find that K(-,y) % f
and K(-,y) * g are F-B“-measurable. Since K(z,y) x (f(x) V g(z) = (K(x,y) *
f(z)) vV (K(x,y) * g(z)) for any z € X and y € Y holds in any linearly ordered
residuated lattice, we get by Theorem the statement. O

3.5 DPR-residuum-based lattice integral transforms

The last type of lattice integral transforms presented in this chapter is defined using
the DPR-residuum based fuzzy integral. The motivation for introducing this type
of transform was to create an alternative version of the multiplication-based lattice
integral transformation, where the input values are processed in the reverse order,
i.e., the smallest value gives the best evaluation in decision making, but the final
evaluation has a standard order.
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Definition 3.6. let (X, F, u) be a fuzzy measure space, let K : X x Y — L be an
integral kernel, and let x = {®, =}. A map Hj , : F(X) = F(Y) defined by

Hi(N0) = [ H K(a,y)* f(x) dy (3.13)

is called a (K, u, *x)—Rppr—lattice integral transform.

If the pair (K,pu) is known we simplify the notation of the DPR-residuum

based lattice integral transform to “R}_.-lattice integral transform” or express it

using symbols “R; . —LIT”. The following theorem presents the basic properties of
(K, p, x)-Rppr—lattice integral transforms (see, also [25]).

Theorem 3.16. For any f,g € F(X), x={®,—} and a € L, we have
(i) Hiy ,(f) < Hig,y(9) if f < g,
(it) H(*K,u)(f Ag) < H(*K,u)(f) A H(*K,u)(g);
(iti) H(*K,”)(f Vyg) > H(*K#)(f) v H(*K,u)(g);
(iv) Hig,y(ax ® f) 2 a®@ H ,(f),
(v) Hiyylax = f) < a— Hee (f).
If L is an MV—-algebra, then inequality (v) can be replaced by equality.

Proof. The theorem can be proved completely analogously to Theorem using the
properties of —ppr—fuzzy integral (Theorem [2.16]), so we omit its proof here. H

The next theorem is analogous to Theorem [3.6] and is a straightforward conse-
quence of the definition of the DPR-residuum-based lattice integral transform and
the fact that 5™ < & whenever g < po.

Theorem 3.17. Let (X, F) be a measurable space and u, ' be fuzzy measures on
(X, F), and let K, K' : X XY — L be integral kernels.

(i) If p 2 g’ then Hiye \(f) < Hig i (f) for any [ € F(X).

(it) If K < K', then Hy (f) < Higr (f) for any f € F(X).

(K',p)

Similarly to Theorem [3.7]and Theorem [3.13] we are interested in sufficient condi-
tions under which (K, i, x)-Rppr—lattice integral transforms ensure the preservation
of constant functions, i.e., Hiy ,(ax) = ay for any constant function ay € F(X).
The following theorem shows that conditions (C1) and (C2) introduced in Subsec-
tion [3.3] are the sufficient conditions for the preservation of constant functions.

Theorem 3.18. Let (X, F, ) be a fuzzy measure space, let u©~ be the N —conjugate
fuzzy measure to u, let K be an integral kernel, and let a € L.

(i) If (K, u™) satisfies (C2) for —a, then Hie oy (ax) = ay.
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(ii) If (K, uoN) satisfies (C1), then H y(ax) = ay-

Proof. (i) Let y € Y. Assume that for any A € F such that A C X \ Core(K,), we
have p™(A) < —a. Hence, we get

Higplan)) = [ % Kep) @ vt dn= A6 =V (Ke) @ arie)

— /\ (uN(A) — \/ (K(z,y) ®a))A

AeF z€A
AZ X \Core(Ky)

A A =\ (E(2y) © a))

AeF €A
ACX\Core(Ky)

> A (T VE@yeag)r AN (e \(K@y) ©a) >
AcF €A AcF €A
AZ X \Core(Ky) ACX\Core(Ky)

=(T—=a)A(-a—L)=aAn--(a)>a=ay(y),

where we used the fact that the residuum is non-increasing in the first argument
and pN(A) < T for A € X \ Core(K,) and puV(A) < —a for A C X \ Core(K,),
the residuum is non-decreasing in the second argument and \/,_,(K(z,y) ® a)) =
a®@ Ve K(z,y) =a® T =afor AZ X\ Core(k,), i.e., AN Core(K,) # 0, and
Vaoea(K(z,y) ® a)) > L for A C X \ Core(K,), and T — a = a (Theorem [L.1]iv))
and a < —=(—a) (Theorem (Xiv)). Hence, we get H7 (ax)(y) = ay(y). On the
other side, we have

Higylan)) = [ % K(x,y) @ ax(@)dp= N (1N (A) = \/ (K(2.9) @ ax(2))

AeF €A
<uNX) =V (Kay) e =T = @o | K@y) =T > a=a=ay(y)

where we used \/, . x K(z,y) = T. Thus, H ,(ax)(y) < ay(y), which implies the
desired equality.

(ii) Let y € Y. Assume that there is A, C Core(K,) such that pu“(A,) = T.
Then

Hieplax)) = [ T K(ey) - ax@du= N N4 =\ () - a)
DPR AeF zEA

Sluc,N(Ay)_) \/ (K(;p’y) —>a) :T—>a=azgy(y),

TEAy

where we used K(z,y) - a = T — a = a for any x € A,. Hence, we get
H g y(ax)(y) < ay(y). On the other hand, for any A € F, we have

poN(A) =\ (K(z,y) = a) > T = \/ (K(2,9) = a) =

TEA €A

V (K(z,y) = a) > a=ay(y),

T€EA
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where we used the fact that the residuum is non-increasing in the first argument,
K(z,y) - a>T — a = a for any z € A and Theorem [L.I[iv). Thus, we get
H g o (ax)(y) = ay(y), which implies the desired equality. O

Obviously, H (®K ,) breserves any constant function in F(X) if (K, u®") satisfies

(C2) for —a for any a € L, which is equivalent to uY(A) = L for any A € F such
that A C X \ Core(K,) for any y € Y. As a consequence of Theorem we find
that if (K, u) satisfies (C1), then (K, u®") satisfies (C2) and thus H ) preserves
any constant function in F(X). Assuming that Core(K,) € F for any y € Y, if
(K, i) satisfies (C2), then (K, u©") satisfies (C1) and H, (i) Preserves any constant
function in F(X). In addition, if N is involutive generalized negation, we get that
the N-conjugate fuzzy measure to u“" is just the fuzzy measure pu. Hence, if
(K, ) satisfies (C1), we simply obtain that H ?K“) and H (i peony PTESETVe constant
functions, which is a very simple way to construct the DPR-residuum-based lattice
integral transforms in practice.

The following example demonstrates the DPR-residuum-based lattice integral
transform on a real function.

Example 3.7. We use the same residuated lattice, fuzzy measures (i.e., p € M)
and integral kernels as in Example and present the results of DPR-residuum-
based lattice integral transforms applied on the signal f given by formula on
{1,...,x,) for cases a) and b). From Example we know that (K, u) satisfies
(C1) and (K, u©) satisfies (C2) for all considered integral kernels, where N = N,
is the negation in the Lukasiewicz algebra. By Theorem and the discussion in
the above paragraph, we get that the (K, s, ®)—Rppr—lattice integral transform and
the (K, u®N, —)-Rppr-lattice integral transform preserve any constant function in
F(X).

Case a) We consider the integral kernel K : X xY — [0, 1] and the fuzzy measures
p1 = 3 and pip = 3 1, given in case a) of Example . Figure (a) shows the
output signals of the (K, uj, ®)-Rppr—lattice integral transform described by the
green diamonds and the (K, o, ®)—Rppr—lattice integral transform described by the
red squares together with the original signal f. The output signals of (K, uf’N, —)-
Rppr—lattice integral transform, ¢ = 1,2, are displayed in Figure (b) Since the
analysis of results is very similar to the analysis of case a) in Example , we omit
it here.

Case b) We consider two integral kernels Ky, Ky : X x Y — [0,1] and the fuzzy
measure ji = (i3 in case b) of Example . Figure (a) shows the output
signals of (K7, i, ®)-Rppr—lattice integral transform described by the green dia-
monds and (K, i, ®)-Rppr—lattice integral transform described by the red squares
together with the original function f. Figure (b) shows output signals of the
(K7, pel, —)-Rppr—lattice integral transform described by the green diamonds and

®Indeed, we have N(u®N (X \ A)) = N(N(u(X \ (X \ 4)))) = u(A) for any A € F.
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the (Ko, u®~, —)-Rppr-lattice integral transform described by the red squares. Ag-
ain the analysis of results is very similar to the analysis of case b) in Example ,
therefore, we omit it here.

We conclude this chapter with the statement on the linearity property of the
DPR-residuum-based lattice integral transform for comonotonic functions. More
precisely, we show that this type of lattice integral transform is comonotonic mini-
tive.

Theorem 3.19. Let L be a linearly ordered and assume that the algebra F is closed
over arbitrary unions. Let f,g,K(-,y) be F-B~measurable for any y € Y. If
K(-,y)~ f and K(-,y) * g are comonotonic for x € {®,—}, then

Hiw oy (f N g) = Hig o (f) N Hig ) (9)-
Proof. As a consequence of Theorem and Theorem [2.6] which are adopted for
F-Bmeasurability (see, Remark [2.3)), we find that K(-,y) = f and K(-,y) x g are
F-Bmeasurable. Since K (z,y) * (f(x) Ag(z) = (K (z,y) * f(2)) A (K(x,y) % g(x))
for any z € X and y € Y holds in any linearly ordered residuated lattice, we get by
Theorem [2.20] the statement. O
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Chapter 4

Approximation of functions based
on lattice integral transforms

In this chapter we show how lattice integral transforms can be used to approximate
lattice-valued functions. More specifically, we show that the composition of appro-
priate lattice integral transforms introduced in Chapter |3|leads to an approximation
of the original functions and develop a basic approximation theory for lattice integral
transforms, where some results generalize well-known results on function approxi-
mation by lower and upper fuzzy transforms [36]. The results are illustrated with
examples of signal approximation, including signals with the presence of noise.

4.1 Motivation

As we have mentioned in the motivation part of Chapter [3, the lower and upper
fuzzy transforms were designed to approximate lattice-valued functions (functions
for short). More precisely, Perfilieva in [36] shows that a suitable composition of
a direct upper (lower) lattice fuzzy transform and an inverse upper (lower) lattice
fuzzy transform approximates the original function from above (below). For a better
understanding, recall that the inverse upper lattice fuzzy transform with respect to
a fuzzy partition A = {A, |y € Y} of X is a map G : F(Y) — F(X) given by

Gh(9)@) = )\ 4y(2) = g(y) (4.1)

for any g € F(Y) and = € X, and the inverse lower lattice fuzzy transform with
respect to a fuzzy partition A of X is a map GY : F(Y) — F(X) given by

Ga(9)(x) =\ 9(y) ® 4,(2) (4.2)

yey

for any g € F(Y) and z € X. Formally, the following approximation theorem was
proved:

Ga o Fx(f)(z) < f(2) < Gy o FA(f)(@) (4.3)

forany f € F(X)and x € X. An example of the upper and lower approximation of a
function using lattice fuzzy transforms is presented in Figure (a). It is easy to see
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that the inverse lattice fuzzy transforms have the same formula as the direct lattice
fuzzy transforms only in the opposite direction. In fact, we can introduce a family
B = {B, | x € X} of fuzzy sets on Y from the fuzzy partition A of X such that
B,(y) = Ay(z) for any v € X and y € Y. If we admit that Core(B,) = Core(B,)
also for some x,z € X such that 2 # z[] the family B is a fuzzy partition of Y,
where Core(B,) is a singleton for any x € X, which is a simple consequence of the
definition of the fuzzy partition A. Then we find that

G =F, and GY = Ff,

where F]g and Flﬁ are the direct upper and lower lattice fuzzy transforms with respect
to B from F(Y') to F(X), respectively. Hence, the inverse lattice fuzzy transforms
are nothing else than special multiplication-based lattice integral transforms for
some inverse integral kernel K~! to the integral kernel K : X x Y — L, which is
determined from the fuzzy partition A as K(z,y) = Ay(x) forany z € X andy € Y.
From the definition of the family B, we can simply deduce that K= = K7. Now,
the approximation theorem expressed as (4.3]) can be rewritten in the terminology
of lattice integral transforms as

F(%(Ay“;) © F(?(,M)L()<f)($) < flz) < F(?(—l”u%/) ° F(Q?}(#T)(f)(x) (4.4)

X

for any f € F(X) and z € X, where the fuzzy measures uy and puyx denote the
highest and the least fuzzy measure on the measurable space (X, P(X)) and similarly
for the fuzzy measures py- and ug (see, Theorem . Naturally, these relations
between the original function and its approximations can be studied in a more
general setting for various integral kernels, their inverses and fuzzy measures. This
is the first goal of this chapter.

In addition, an interesting and challenging question arises whether we can express
the approximation quality of the composition of lattice integral transforms, which
means estimating the closeness of the original function and its approximation, i.e.,

F(?(*l,,u/)oF(@}(#)(f)(w) %f(x% .QTEX,

for a suitable setting of the fuzzy measure y', and similarly for the reverse compo-
sition. The second goal of this chapter is to focus on this problem.

The disadvantage of upper and lower approximation of a function using lattice
fuzzy transforms is that these transforms cannot be used as a filter similarly to the
real-valued fuzzy transform or Fourier and some other integral transforms, as can
be seen in Figure [4.1(b), where the original function is a bit noisy (30% function
values are biased). The final goal of this chapter is to show that more general lattice
integral transforms can suppress high frequencies and can serve as a random noise
filter.

4.2 Inverse and dually inverse integral kernels
In the first part of this subsection, we introduce the inverse of an integral kernel
K : X xY — L, which is an integral kernel K’ : Y x X — L that will be used in

'That is, we also consider the family of sets {X; | i € I} such that (J;c; X; = X and X;NX; =0
or X; = X; for any 4,5 € I to be a partition of X.
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Figure 4.1: Original function f (black) and its approximations using lattice fuzzy
transforms.

the reconstruction of functions by the composition of M*—lattice integral transforms
or R .. —lattice integral transforms introduced in Chapter

DPR

Let K : X xY — Land K’ : Y x X — L be two integral kernels. First, we
introduce a new type of integral kernel on X to express the relationship between K
and K'.

Definition 4.1. An integral kernel () : X x X — L is said to be compatible with K
and K’ or also (K, K')—compatible provided that

Qz,2) ® K'(y,z) < K(z,y) (4.5)
holds for any x,z € X and y € Y.

The following lemma shows that if an integral kernel ) on X is simultaneously
(K, K;)-compatible for i € I, then @ is also compatible with K and (J,.; K;.

Lemma 4.1. Let Q : X x X — L and K : X XY — L be integral kernels, and let
{K; : YxX — L|i€ I} be asystem of integral kernels such Q is (K, K;)—compatible
for any i € I. Then |J,; K; is an integral kernel and Q is compatible with K and
Uz‘el K.

Proof. For any y € Y, there is x € X such that K;(y,z) = T holds at least for one
i € I. Hence, we o ain \/,.; K;(y,x) = T. Similarly, for any z € X thereis y € Y
such that K;(y,x) = T for at least one i € I, which implies \/,.; K;(y,z) = T.
Hence, we find that |J,.; K; is an integral kernel. From the (K, K;)-compatibility
of @, the following inequality holds for any i € I:

Q(xay)(ng(yvz)SK(I?y)a vaEXJJEY'
Using Theorem [1.2[i), we find that

V(Q(z,y) @ Ki(z,9)) = Q(z,y) ® \/ Ki(z,y) < K(z,y),

il el

which implies that @ is (K, .., K;)—compatible. O

el
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The notion of inverse of K is related to the integral kernel of ) on X, which
allows to introduce a wider class of inverses that can be taken into account when
approximating the original functions.

Definition 4.2. Let Q : X x X — L and K : X XY — L be integral kernels. An
integral kernel K’ : Y x X — L is said to be an QQ—inverse of K if

Qz,z) = /\ K'(y,2) = K(z,y), z,z¢€ X. (4.6)

yey

From the previous definition, we can see that () is uniquely determined from K
and K’ by formula. In other words, if K’ is a (Q—inverse of K, then K’ cannot be
also a ()'-inverse of K for an integral kernel )’ different from @Q. So, when we write
that K’ is an QQ—inverse of K, we mean that () is an integral kernel determined from
K and K’ by formula . As a simple consequence of the adjointness property, () is
compatible with K and K’. Obviously, not every integral kernel K has its QQ—inverse
for every integral kernel ), and also not all pairs of integral kernels K and K’ lead
to an integral kernel () given by , i.e., ) is a fuzzy relation which is not normal
in both arguments. As we have indicated, (Q—inverses of K are different with respect
to different (). On the other hand, each integral kernel K has its transpose as an Q-
inverse, where () is determined by , as will be seen in Theorem on page .
Interestingly, we can have different ()—inverses of K for the same ) as the following
example shows, so, the QQ—inverse is not defined uniquely.

Example 4.1. Let X = {x1, 29, 23} and Y = {y1, 9}, and consider the Lukasiewicz
algebra on [0, 1]. Assume the integral kernels expressed by matrices as follows:

1 038
_ r (1 09 07 , (1 09 07
K= 8'2 } K _(0.8 11 E=\or 1 1)

We see that KT # K’ since K7 (yp,71) = K1, = 0.8 # 0.7 = Kj = K'(ya,21).
More specifically, there is K7 > K’. Introducing the matrix operation for a p x
g—matrix K and a ¢ x p-matrix L as

for any i,k = 1,...,p, we simply find that the integral kernel ) defined in (4.6)
expressed by the matrix form is

1 08 0.8
Q=K—->K'=K—>K=[09 1 1
0.7 08 1

Hence, there are two different (Q—inverses of K, namely, the transpose of K and the
integral kernel K.

By Lemma [4.1], if there is a Q—inverse of K, then there is also the mazimal
Q—inverse of K, where maximality is characterized with respect to the ordering of

64



fuzzy sets. Indeed, if the set {K; | i € I} of all Q—inverses of K is non-empty, then
from (4.6 and the adjointness property, we have

Ki(y,z) @ Q(x, 2) < K(z,y)

for any z,2 € X, y € Y and 7 € I. Using Lemma we get that (J,.; K; is an
integral kernel for which

(UK) 2) @ Q(x,2) < K(x,y)

el

holds for any =,z € X and y € Y. Due to the adjointness property and the fact
that the residuum is non-increasing in the first argument, we obtain

Qx /\(UK) z) = K(z,y) < /\K y,2) = K(z,y) = Q(z, 2)

yeY \iel yey

for any x, z € X, which implies that (J,., K; is the Q-inverse of K.

In what follows, we use K~ ! to denote an arbitrary Q-inverse of K. More
precisely, if we use K !, then we mean one of the Q—inverses of K, including the
maximal one.

Remark 4.1. A reason why the Q—inverse of K is not defined as the maximal integral
kernel satisfying is twofold. First, we have the same estimate of the approxima-
tion of the original function for any ()—inverse of K with the same integral kernel Q).
Second, we want to establish a unified theory for all lattice integral transforms, and
the notion of the dual inverse of K used in reconstructing functions using Rpz—lattice
integral transforms has a slightly different standing for the transpose of K as in the
case of the Q—inverse of K, as will be seen later. But the transpose of K is the
simplest and most natural way to express a (dual) inverse of K in practice, which
motivates us to introduce the ()—inverse of K that admits more than one inverse.

A natural question is whether we are able to determine an inverse of K from a
given integral kernel ). The following theorem shows that from a suitable integral
kernel (), we can determine a maximal inverse of K.

Theorem 4.2. Let Q) : X X X — L and K : X XY — L be integral kernels. If the
fuzzy relation K':'Y x X — L given by

K'(yz)= N\ Qu.z) = K(u,y), z€X, yey, (4.8)

ueX
is an integral kernel, then K' is the mazximal Q* —inverse of K.
Proof. From the definition of K’ we simply find that
K'(y,2) ® Q(x,2) < K(z,y) (4.9)

holds for any x,z € X and y € Y. Hence, @ is (K, K')-compatible. Let @ be
(K, K")—compatible for some integral kernel K" :Y x X — L. Since

K"(y,2) @ Q(z,2) < K(z,y)
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for any x,z € X and y € Y, we find that

K'(y,2) < N\ Qa,2) = K(v.y) = K'(y,2)

zeX

for any z € X and y € Y, and thus K” < K’. Hence, K’ is the maximal integral
kernel such that @ is (K, K')—compatible. From (4.9)), for any x,z € X, we obtain

Qz,2) < K'(y,2) = K(x,y)

for any y € Y, which implies

Qr,2) < \ K'(y,2) = K(z,y) = Q(x,2),

yey

and thus @ < Q*. Since () is an integral kernel, the same holds for )*. By the
definition, K’ is the Q*~inverse of K, and it remains to prove that K’ is maximal.
Let K" be another Q*—inverse of K. Since Q* is (K, K”)—compatible and @ < Q*,
we have

K'(y,2) @ Q(z,2) < K"(y,2) ® Q" (2, 2) < K(z,y)

for any =,z € X and y € Y, where we used the monotonicity of ®. Hence, @ is also
(K, K")—compatible, which implies that K” < K, since K’ is the maximal integral
kernel such that @ is (K, K')—compatible, which completes the proof. H

It is know that the inverse lattice fuzzy transforms use the transpose of the
integral kernel K as the inverse integral kernel (see formula (4.4]) in the motivation
part). The following theorem shows that K7 is the maximal Q—inverse of K for the
integral kernel () determined by .

Theorem 4.3. If K is an integral kernel, then KT is the mazimal Q—inverse of K.

Proof. For any x € X, we have
Qz,x) = N\ K'(y,2) = K(z,y) =T,
yey

which implies that ) is an integral kernel on X, and thus K7 is the Q-inverse of
K. In addition, we find that

E"(y,z) < \ Qu,z) = K(u,y) = K'(y, ),

for any € X and y € Y, and thus K7 < K’, where K’ is the maximal Q*-inverse
of K according to Theorem [4.2] On the other side, we have

K'(y,x) = )\ Qu,2) = K(u,y) < Q(z,2) = K(z,y) =

ueY

T— K(xvy> = K(:L’,y) = KT(y,.’Ij)

for any x € X and y € Y. Hence, K’ < K7, which implies K’ = KT and Q =
0. 0
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The natural question is what is the position of the inverse defined as the transpose
of an integral kernel among other inverses. The following theorem provides an answer
to this question. Recall that a fuzzy relation @ on X is reflexive if Q(x,z) = T for
any r € X.

Theorem 4.4. Let K be an integral kernel, and let K= be a Q-inverse of K.
Assume that K is the P—inverse of K~! for an integral kernel P on'Y. If Q and P
are reflexive fuzzy relations, then K=t = K7,

Proof. Since Q is (K, K-')-compatible and reflexive, we simply find that

T=Q@2) < N\ K (y.2) = K(r.y)

yey

for any x € X, which implies K !(y,z) < K(z,y) for any z € X and y € Y, i..
K~! < K. By similar arguments, we find that

T =P(y,y) < /\ K(z,y) = K~ (y,2)

zeX

for any y € Y, which implies K (z,y) < K '(y,z) for any z € X and y € Y, i.e,,
KT < K'. Hence, we get K~! = KT, O

The previous theorem shows that K=' = K7 if K and K~! are mutually inverse
for reflexive integral kernels () and P, which is a natural requirement that holds for
the integral kernels in the classical theory of integral transforms.

In the rest of this subsection we introduce dual notions to the notions of com-
patible and inverse integral kernel. The dual inverse of an integral kernel is the key
concept in the reconstruction of the functions using the compositions of Rpy—lattice
integral kernels.

Definition 4.3. An integral kernel Q% : X x X — L is said to be dually compatible
with K and K’ or also (K, K')~dually compatible provided that

K(z,y) < K'(y,2) = Q(x, 2) (4.10)
holds for any =,z € X and y € Y.

The following lemma shows that the same result presented in Lemma holds
also for the dually compatible integral kernels.

Lemma 4.5. Let Q¢ : X x X — L and K : X xY — L be integral kernels, and let
{K;:Y x X = L|i€l} bea system of integral kernels such Q¢ is (K, K;)-dually
compatible for any i € I. Then Q% is dually compatible with K and Uier K-

Proof. From the (K’, K)-dual compatibility of Q¢ and using the adjointness prop-
erty, we have for any i € I:

Ki(y.z) ® K(z,y) < Q%(w,2), z,2€X,y€Y.
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Using Theorem [1.2]i), we find that

i€l i€l

and by the adjointness property, we get

K(l’,y) S (\/KAZ,:I/)) — Qd(mﬂz)a

el

which implies that Q¢ is (K, J,.; K;)-dually compatible. ]

The dual inverse of an integral kernel is defined as follows.

Definition 4.4. Let Q?: X x X — L and K : X x Y — L be integral kernels. An
integral kernel K’ : Y x X — L is said to be a Q?dual inverse of K if

QYx,2) = \/K(x,y)@K’(y,z), z,2 € X. (4.11)

yey

Similarly to Q-inverses of K, we can have more than one Q%dual inverse of K,
as the following example shows.

Example 4.2. Similarly to Example we assume X = {x1,x9,23} and YV =
{y1,92}, and consider the Lukasiewicz algebra on [0,1]. The integral kernels are
expressed by matrices as follows:

1 08
B s (1 09 07 , (1 09 08
K= 82 ! K"Qs 1 1) K”—Qj ) 1)

where the integral kernel K is the same as in the mentioned example. We see
that KT # K, since KT (y;,23) = Ki; = 0.7 # 0.8 = Kj; = K'(y1,73). More
specifically, there is K7 < K'. Introducing the matrix operation for a p x ¢-matrix
K and a ¢ x p—matrix L as

for any i,k = 1,...,p, we simply find that the integral kernel Q¢ defined in (4.11])
expressed by the matrix form is

1 09 08
Q =KQK =K®QK =[09 1 1
08 1 1

Hence, there are two different Q% dual inverses of K, namely, the transpose of K
and the integral kernel K.

Similarly to Theorem we are able to determine the Q%-dually inverse integral
kernel whenever it exists.
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Theorem 4.6. Let Q¢ : X x X — L and K : X xY — L be integral kernels. If the
fuzzy relation K' 1Y x X — L given by

K'(y,z) = /\ K(u,y) = Q%u,z), z€X,ycY (4.13)
uex
is an integral kernel, then K' is the mazimal Q™ ~dual inverse of K.
Proof. From the definition of K’, we simply find that
K(z,y) < K'(y,2) = Q(x,2) (4.14)
holds for any z,2 € X and y € Y. Hence, Q% is (K, K')-dually compatible. Let Q%
be (K, K")-dually compatible for some integral kernel K" : Y x X — L. Since
K(z,y) < K"(y,2) = Q%(x, 2)
holds for any z,z € X and y € Y, using the adjointness property we find that

K"(y,2) < N\ K(z,y) = Q"(z,2) = K'(y, 2)

zeX

for any z € X and y € Y, and thus K” < K’. Hence, K’ is the maximal integral
kernel such that Q% is (K, K’)-dually compatible. Since K and K’ are the integral
kernels, for any x € X, there is u € Y such that K(z,u) = T, and also for u there
is z € X such that K'(u,z) = T, which implies

Q™ (z,2) = \/ K(z,y) @ K'(y,2) > K(z,u) @ K'(u,2) = T.

yey

Therefore, for any z € X there is z € X such that Q¥ (z,z) = T. Similarly, we
can prove that for any z € X there is # € X such that Q% (x,2) = T. Hence, we
find that Q% is an integral kernel. By the definition, K’ is an Q%—inverse of K and
remains to show that K’ is maximal. Assume that K” is an Q% —inverse of K. Then

K(z,y) < K"(2,y) = Q% (x,2) < K"(2,y) = Q(x, 2)

holds for any =,z € X and y € Y, where we used the fact that the residuum is non-
decreasing in the second component and Q% < Q?. Hence, K” is also an integral
kernel such that Q¢ is (K, K”)-dually compatible. Since K’ is the maximal kernel
such that Q% is (K, K')-dually compatible, we find that K” < K’, which implies
that K’ is also the maximal Q% dual inverse of K and the proof is finished. n

The following theorem shows that, as in the case of the ()—inversion, the trans-
pose of K is the Q%dual inverse of K. Nevertheless, the difference is that K7 is
not the maximal Q%-dual inverse of K, as was demonstrated in Example

Theorem 4.7. If K is an integral kernel, then K* is a Q%~dual inverse of K.
Proof. For any = € X, we have
yey

since for any = € X there is y € Y such that K(z,y) = K*(y,z) = T. Hence, Q% is
an integral kernel on X, and K7 is an Q?dual inverse of K. O
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4.3 Approximation of functions based on M-lattice integral
transforms

This section aims to investigate the approximation of an original lattice-valued func-
tion using a combination of two types of M-lattice integral transforms that are in-
troduced in Subsection Throughout this section, we assume that (X, F, jux)
and (Y, G, uy) are fuzzy measure spaces, K : X x Y — L is an integral kernel and
K™1:Y x X — L is a Q-inverse integral kernel, where () is the integral kernel on

X satisfying (4.6]).

4.3.1 Upper and lower approximation of functions

We start with a theorem that gives a generalization of the right inequality in (4.4])
and in a sense shows the approximation from above of the original function using
the composition of M-lattice integral transforms. Recall that the ®@—fuzzy integral
is a monotonically non-decreasing map (see, Theorem [2.7)).

Theorem 4.8. Let g, \ be an M-lattice integral transform from F(X) to F(Y),
and let F(K_Wy) be an M lattz’ce integral transform from F(Y) to F(X). Then

F®

— ®
Flg-iypy o F (Quix)”

= (4.15)

Proof. From Definition and using (ii) and (iv) of Theorem [2.7, we simply find
for any f € F and z € X that

Fiis 1 Fio () = [ U710:2) = Fig (00 iy =

( (y, 2 %/ny)®f()dux)duy

I-.<

/
< X K™ (y,2) (x) = (K(z,y) ®f(x)))dux> dpy >
VAL

Kl (y,2) (@) > K(,y) @ f(l’))dux) dy >

~<

X

/(/@“ f( Wx)y d“Y_/Qx'Z@f()dMX e (D),

where we used a — (b®¢) > b® (a — ¢) (Theorem [L.1[viii)), K '(y, 2) is a con-
stant for the fuzzy integral [, (therefore, we may apply Theorem 2.7(iv)), the fact
that Q is a (K, K~')-compatible integral kernel, i.e., K~ 1(y, 2) (7)) = K(z,y) =
Ky, 2z) = K(z,y) > Q(x,2) for any z,z € X, and

( JCESERS m)

is a constant function on Y integrated by fY® . O]

Y
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In contrast to the original approximation of the original functions from above
by a composition of lattice fuzzy transforms, the composition of M—lattice integral
transforms approximates the original function such that the reconstructed function
is over the M®-lattice integral transform of the original functions with respect to
the integral kernel () on X, which is determined from the integral kernel K and
its inverse K~!. The M®-lattice integral transform on X with respect to @) can
be viewed as a smoothing filter that filters out the high frequencies presented in
the functions. Thus, the composition of the M—lattice integral transform does not
in general approximate the original function from above, but its smoothing given
by the M®-lattice integral transform. This property also shows that the M-lattice
integral transforms can be applied as filters for high frequencies or random noise
(see, Subsection [4.3.4).

Similarly, a generalization of the approximation from below of the original func-
tion by a composition of M-lattice integral transforms is given in the following
theorem.

Theorem 4.9. Let Fi3 ) be an M-lattice integral transform from F(X) to F(Y),

and let Fge_. , .\ be an M-lattice integral transform F(Y) to F(X). Then

®
Flk1 uy)

Proof. From Definition 4.1{and using (i) and (iii) of Theorem we have

© F(?QMX) < F(Z%ux)' (4'16)

Flc1uy) © Flicuno (H)(2) = /j K (y,2)® Fe oy (D) dy =
/Y® K'Yy, 2)® </X®<K(x,y) N f(x))dux> diy <
/j (/ij(ﬂﬁ) ® (K (z,y) — f(x))dﬂx) djiy <

/ (K w,2), () > K(wy) = K(,9) © (K(z,) = £(z) dﬂx) dpiy

<)

[ 02 (@) = Kw)) = F0) di ) s <

X

/j (/X Q. 2) = f(z) dux) () dpy

Y

- /j Qx,2) = (&) dpux = Fig,0(N)(2),

where we used a < (a - b) - band (a - b) ® (b = ¢) < a — ¢, ((i) and (vii) of
Theorem, the fact that the residuum is non-increasing in the first component, ()
is a (K, K~')-compatible integral kernel (see the proof of Theorem 4.8 for details),

and again
( [ @@ - s dux)

is a constant function integrated on Y by fy® . O]

Y
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Note that M~—lattice integral transform on X with respect to the integral kernel
@ can be viewed as another smoothing filter that filters out the high frequencies
presented in the functions. Thus, the reverse composition of M—lattice integral
transforms approximates from below the smoothed original function given by the
M~ —lattice integral transform on X with respect to Q.

As a consequence of the previous theorems, we can derive another approximation
of the original function using M-lattice integral transforms in the case that @) is a
reflexive fuzzy relation on X. Recall that (), denotes the y-projection, i.e., Q,(z) =
Q(z,y) for any x € X

Corollary 4.10. For any f € F(X) and y € X, it holds that
() Fies 0 Fer /(@) 2 3£ @ Lomeiay) diix,

(i1) F(%(—I,NY) © F(?(,MX)(JC)(Z/) < f)(? Leore(@,) = [ dpx.
Proof. Let A : L — L be given as follows

Aa) = {T’ a=T, (4.17)

1, otherwise.

Further, define AQ : X x X — L as AQ(x,y) = A(Q(x,y)) for any z,y € X.
Obviously, it holds that AQ < Q.
(i) By Theorem [2.7(i), for any y € Y, we simply get

Fioum(Hly) = /j Q(z,y) ® f(z) dpx

> / AQ(x,y) ® f(x) dux = /X F(2)  Leoeiay) ditx.

X

where we used that ® is monotonically non-decreasing in both argument. The
statement is the straightforward consequence of (4.15).
(ii) Again by Theorem 2.7(i), for any y € Y, we simply get

FG ey (N() :/ Qx,y) — f(x)dpx
X
S/ AQ(z,y) = f(w) dux :/X Leore(q,) = f () dpux,

b's
where we used that — is monotonically non-increasing in the first component. The
statement is the straightforward consequence of (4.16]). m

The last corollary in this subsection gives a generalization of the upper and
lower approximation of the original function expressed in for more general
integral kernels under the assumption the least and the highest fuzzy measures are
considered.

Corollary 4.11. Let K be an integral kernel, and let K~ be the Q—inverse of K
such that Q is a reflexive integral kernel. Then, for any f € F(X), it holds that

F((g}(_17u;) © F(?(”ug-()(f) S f S F(?(*l,,u,{;) o F((g}(w})(f) (418)
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Proof. From Corollary [4.10(i), we get

1) © Py (W) 2 /X f @ loore(,) dix =
V (A F(@) @ Loowi@) (@) @ px(A) = \/  fl2) > fv),
AEF zcA z€Core(Qy)

where we used the fact that @) is reflexive, and thus y € Core(Q,). Hence, the right
inequality in (4.18)) is proved.
From Corollary 4.10(ii), we get

Ficrp) P N0 < [ Leaiay = fdtk =
V(A Lesion(@) = f@) @ ukA) = A\ £@) < F)
ACF z€A z€Core(Qy)

where again we used the fact that y € Core(Q,), and the property T — a = a
(Theorem [1.1fiv)). Hence, the left inequality in (4.18)) is proved. O

4.3.2 Estimation of approximation quality

In this part, we focus on the quality estimation of the approximation of the original
function using the M-lattice integral transforms. One tool to measure the quality
of the approximation is to determine the proximity of the original function and the
reconstructed function with respect to the modulus of continuity. For the classical
(higher degree) fuzzy transform, we can find several approximation theorems based
on the modulus of continuity, see, for example, [4], 21} [40]. In the case of a lattice-
valued function, it is difficult to apply the arithmetic of real numbers; therefore, we
propose the following, rather abstract, definition of modulus of continuity suitable
for our purpose. Let £(X) denote the set of all equivalences on X.

Definition 4.5. The map w : F(X) x £(X) — L given by

wf,E)= J\ f(x)< fy) (4.19)

(z,y)ER
is called the modulus of continuity.

The modulus of continuity provides a degree of proximity of function values at
points that are equivalent with respect to a chosen equivalence E. For E expressing
the equality on X, we trivially obtain w(f, ) = T. In contrast to the classical
definition, we specify a structure on X directly using the equivalence relation.

We first show how the functional values of the result of an M-lattice integral
transform are close to the function values of the original function for a certain
equivalence relation. Define V: L — L as

V(a) = {L’ o= (4.20)

T, otherwise,
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for any a € L. The operator V on L is dual to the operator A on L introduced
in (4.17). Recall that a constant function on X is denoted by ay. The following
theorem shows an estimate of the approximation quality for the M®—lattice integral
transform.

Theorem 4.12. Let (K, p) satisfy (C1), and let f € F(X) and y € Y. Define an
equivalence E, on X as (z,z2) € E, if v = z or VK, () @ VK, (2) = T for any
x,z2 € X. Then

Foe (D) & F(@) = w(f, B,), (4.21)

for any x € X such that VK, (z) = T.

Proof. Let y € Y. First, let us show that E, is an equivalence on X, so E, is well-
defined. The reflexivity of F, is trivially true, and the symmetry immediately follows
from the commutativity of ®. If (u,v), (v,w) € E,, then from VK, (u) ® VK, (v) =
T and K,(v) ® VK,(w) = T, we get that VK, (u) = T = VK,(w), and thus
VK,(u) ® VK, (w) =T and (u,w) € E,. Further, let us show that

Fow® =\ (A E(y) @ f(@) @ pA).
AeF z€A
ACSupp(Ky)

Note that the satisfaction of (C1) by (K, p) ensures that there is A € F such that
A C Supp(K,) with u(A) = T, i.e. A # 0. Moreover, if A Z Supp(K,), then we
have A\, .4 K(z,y) ® f(x) = L; therefore, it is sufficient to restrict the supremum
to F-measurable sets that are subsets of Supp(A). Denote by F, the set of all F-
measurable sets such that A C Supp(K,). According to (C1), we know that there
is A € F such A C Supp(K,) for which u(A) = T. Finally, since Fj , preserves
constant functions due to (C1), using (18), (22) and (23) of Theorem |1.3| we have

Flw (D) < f(2) = Fie (D) < Fie ) (@) )(y) =

V (ANEEy) @ f)@n) &\ (N\EEy) @ f(2),(2) @ u(d) >

AcF, z€eA AcF, z€A

N (A EEy @ f(2) & \Ezy) @ f(@) (2)© (1) & u(4)) =

AeF, zeA 2€A

A NEEY) & Ezy) o (f(2) & f@) (2) =

AcFy, z€A

A U@ e fa)z N (fw) e f) =wf,E),

z€Supp(Ky) (u,v)EEY
where we used the fact that z € Supp(K,) implies (z,z2) € E,. O

The next theorem shows that the same estimate of the approximation quality
holds also for the M ~—lattice integral transform.

Theorem 4.13. Let (K, u) satisfy (C2), and let f € F(X) andy € Y. Define the
equivalence E, on X as in Theorem |4.12. Then

Flaew(Ny) < flx) 2 w(f, Ey), (4.22)
for any x € X such that VK, (z) =T.
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Proof. From Theorem we know that F, is well-defined. First, let us show that

FewDw) =\ N\ K@y = f2)ouA).

AeF
ANCore(Ky)#0 rEANSupp(Ky)

Since (K, p) satisfy (C2), i.e., u(A) = L for any A € F such that A C X\ Core(K,),
we can write

FoewPHw =\ (NEK@y) — f(z) @A), (4.23)

AceF rEA
ANCore(Ky)#D

and from

NE@y) = f@)= N\ (Klzy) = f@),

z€A € ANSupp(Ky)

where we used that K(z,y) — f(z) = T for x € A such that x &€ Supp(K,), we
find the desired modification of the definition of F; (f). Denote by F, the set of
all F-measurable sets such that AN Core(K,) # (). Since F (k.u) Preserves constant
functions due to (C2), using (15),(19), (22) and (23) of Theorem we have

Fige ()W) < fx) = Fige () < Fige (£ (2) )(y) =

Vi A (K = f=) @ u(A) «

AeFy ze ANSupp(Ky)

VA Eey=f@) ()04

A€Fy z€ ANSupp(Ky)

AC AN Eey—=f)e N (Eey = f@), )

AeFy ze ANSupp(Ky) z€ANSupp(Ky)

oA &)= N N\ (K)o Kz9)© (f(2) « f2),(2) 2

A€Fy ze ANSupp(Ky)

AN AN F@ef@)= N (fe) e f@)=

AeFy z€ ANSupp(Ky) z€XNSupp(Ky)
N @ e fa)z N\ (fW) e fw) =wf B,
2€Supp(Ky) (u,v)EBEy

where we used the same notation and arguments as in the proof of Theorem n

The following statements present the estimation of the approximation quality of
the reconstructed function.

Theorem 4.14. Let K be an integral kernel, K=' be an Q-inverse of K for a
reflexive integral kernel Q, and let f € F(X). Assume that (K, ux) satisfies (C1)
and (K=", py) satisfies (C2) and define w(f) = A,y w(f, Ey), where E, is the
equivalence defined in Theorem[4.13. Then

Flie=1 1y © F(%MX)(f)(x) < flx) > w(f) (4.24)
forany x € X.
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Proof. Since Q is reflexive, we get T = Q(z,7) = A oy K '(y,2) — K(x,y) for
any z € X, which implies K~!(y,z) < K(z,y) for any r € X and y € Y. Hence, we
get that if y € Supp(K; '), then z € Supp(K,), i.e., VK,(x) = T. Similarly to the
proof of Theorem for any x € X, denote G, the set of all G-measurable sets A
such that AN Core(K; ') # 0. Let x € X. Since both M-lattice integral transforms
preserve constant functions, according to Theorem using and the fact
that VK, (x) = T for any y € Supp(K '), we have

Flic-1 ) © Flie ey (N (@) < fl2) =
Fie=1uv) © Flic ) (@) 2 i iy 0 Fi oy (f(2) ) (@) =
Fiies oy (Flie s (F)(8) 0 Fien o (F(2). )(2) >
Vi A Ky = F o (W) @ uy(A) <

A€Fx ye AnSupp(K; ")

Vi A (E )= f2), ) oy (4) 2

A€Gx ye AnSupp(Kz ')

A N FanH) & f@), 1) =

A€Gx ye AnSupp(K; )

AN N FeoOwef@)> N wlf,B)>wlf)

A€G: ye ANSupp(K; 1) yeSupp(Kyz 1)
where the verification skips the analogous steps as in the proof of Theorem O]

Theorem 4.15. Let K be an integral kernel, K=' be an Q-inverse of K for a
reflezive integral kernel Q, and let f € F(X). Assume that (K, ux) satisfies (C2)
and (K=1, uy) satisfies (C1), and let w(f) be defined as in Theorem|4.14. Then

Ficr ) © Flic ) (N (@) < f2) > w(f) (4.25)
forany x € X.

Proof. Similarly to the proof of Theorem denote G, the set of all G-measurable
sets A such that A C Supp(K;'). Let z € X. Since both M-lattice integral
transforms preserve constant functions, according to Theorem using (4.21)) and
the fact that VK, (z) = T for any y € Supp(K, ') (see the proof of Theorem [4.14]),

we have
F(Qkfl,w) o F(}’(#X)(f)(x) = f(r) =
F(%{_IWY) © F(?QMX)(]”)(ZC) < F(%(—l,uy) © F(?(,ux)(MX)(x> =
Flie ) Flie i) (D) (@) € Fgen 0 (f(2), ) (@) 2

V (N E(y,2) @ Fe o (D) © py (A)

AeG, yeA

V (A K g,2) = f@), (1) @ py(A) >

AeG, yeA
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A N\ Fien)(H@) ¢ f@) () =

A€G, yeA

A NEGoHw) & f@) > N\ wlf.E) > w(f),

A€, yeA yESupp(K5 ')

where the verification skips the analogous steps as in the proof of Theorem n

In the end of this subsection, we provide an estimation of the approximation
quality of M—lattice integral transforms for very special functions which are exten-
sional with respect to a fuzzy relation on the space X. We know that K~! = K7 is
the Q—inverse of K, where () is the fuzzy relation on X given by formula . Let
Y C X. We say that a fuzzy relation () on X is Y ~transitive if

Qz,y) ® Qy,2) < Q(w,2) (4.26)

holds for any =, z € X and y € Y. Obviously, @ is transitive if X = Y. The following
lemma shows the properties of (), when the integral kernel K is determined by a
similarity relation on X.

Lemma 4.16. Let Y C X be a non-empty set, let P be a similarity relation on X
such that K : X XY — L given as K(z,y) = P(z,y) foranyx € X andy €Y is an
integral kernel, and let K1 = KT be a Q-inverse of K, i.e., Q is give by formula
, Then @ is a reflexive and Y —transitive integral kernel on X such that P < Q.
In addition, P(x,y) = Q(x,y) holds for any x € X andy €Y.

Proof. In the proof of Theorem [4.3] we have verify that @ is reflexive. Let z,z € X
and y € Y. Then

Qz,y) @ Qy, 2) = (/\ K (u,y) — K(%U)) ® </\ K (v,2) = K(zw)) <

ueY veY

AN (K uy) = K(r,u) @ (K (v,2) —» K(y,v)) <

AN (K (uyy) © K0, 2)) = (K (2,0) @ K(y,0))) <
A (K (gy) © K (0, 2)) = (K(2,y) © K(y,v))) <

/\ (K_l(’L)’Z) - K(:B7U)) = Q(ZL‘,Z),

veY
where we used Theorem [1.1{(x), the monotonicity of the residuum in the second

argument, and the transitivity of P, i.e., K(x,y) ® K(y,v) = P(x,y) ® P(y,v) <
P(z,v) = K(z,v). Since P is a similarity, we have

P(z,y) = /\ P(y,z) — P(z,2)

zeX
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for any z,z € X. Indeed, P(z,y) < P(y,z) — P(z,z), which implies P(z,y) <
N.cx P(y,z2) = P(x,2). On the other hand, A,.y P(y,2) = P(z,2) < P(y,y) —
P(z,y) = P(z,y). Hence, we obtain

P(z,y) = /\ P(y,z) = P(x,z2) = /\ PT(z,y) = P(z,2) <

zeX zeX

N PP(zy) = Pla,2) = \ K'(2y) = K(z.2) = Q(x,y)

z€Y zeY

for any x € X and y € Y, and thus P < (). Finally, assume that y € Y. Then

Qr,y) = N\ K (u,y) = K(z,u) = N\ P"(u,y) = Plz,u) <

u€eyY u€Y

P'(y,y) = P(z,y) = T — Pla,y) = P(z,y).
Since P < @ as shown, we get Q(x,y) = P(z,y) forany x € X and y € Y. O

Let f : X — L be a function, and let ) be a reflexive and Y—transitive fuzzy
relation on X. We say that f is extensional with respect to @ if

f(z) ®Q(r,y) < f(y) and Q(z,y) ® f(y) < f(z) (4.27)

holds for any x,y € X. Note the standard concept of the extensionality of f is
related to the similarity relation on X, where it is sufficient to consider only one of
the above inequalities. In our case, the fuzzy relation () is not symmetric, therefore,
we need to consider both inequalities to introduce the extensionality of f with respect
to ). The following theorems provide an estimation of the approximation of the
extensional functions.

Theorem 4.17. Let Y C X be a non-empty set, let P be a similarity relation on
X such that K : X XY — L given as K(z,y) = P(z,y) foranyz € X andy € Y
is an integral kernel, and let K=" = KT be a Q-inverse of K. If f is extensional
with respect to Q and (K™, uy) satisfies (C2), then

Fliems 0 Fie uy (1) (@) > f(2) > /X Q(y,) dux (4.28)

for any x € X.

Proof. Let f be an extensional function with respect to ). By Lemma we have
K(z,y) = P(z,y) = Q(z,y) and so K '(y,z) = QT (y,z) forany r € X and y € Y.
Then, for any y € Y, we have

e (F) = /X C K(ry) ® f(o) dux =
/j Qz,y) ® f(z) dux < /jMX(as) dux = f(y),

where we used Theorem (ii), and the extensionality of f with respect to Q. It is
easy to see that K?(x,y) = Q*(z,y) = Q(z,y) ® Q(x,y) for x € X and y € YV is
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again an integral kernel, since T = T ® T. Note that (K*)T = (K7)? = (K7!)2
In addition, it holds that Core(K ;') = Core(KI) = Core(( 2) ) for any = € X.
Indeed, if y € Core(K!), then K*(y,z) = T = (K?)*(y,z) and therefore y €
Core((K*T). If y € Core((K?)L), then (K?)T(y,x) = (KT)> = T. Since T is
) =
K2

ﬂ&%

the only solution of the equation a @ a = T, we get K7 (y,x) = T and therefore

y € Core(K?T). Since (KT, uy) satisfies (C2), we find that ((K?)T, uy) also satisfies
(C2). Hence, for any = € X, we have
Pl Ficu (00) = [ K7012) = By (D10 oy =

/ QT(9:2) = Fiepo ()0 diy <
/j Q" (y, ) = f(y)duy < /Y Q" (y,2) @ Q" (y,2)) = (Q" (y,2) ® f(y)) duy =
/ @ (.2) © QT (0,2)) = (Qay) ® F(3)) dpy <

Y

(@ :0) = £, 0) i = Fiy o (1), )(2) = f10),
where we used Theorem (X), the inequality Ff’;( MX)( f)y) < f(y) that holds for

any y € Y, and the fact that ((K2)7, uy) satisfies (C2), and therefore, F};,

((K?) -t py)
preserves constant functions. As a consequence of the previous inequality, we obtain
Fifew1 0 F(%WX)(f)(x) — flx)=T (4.29)

for any x € X. Further, for any z € X, we have

(Fli-sar © Fi o D) 2 F (N0 = [ Q) © f0) s =
[ a0 o Qe fa) hdix = [ Qi) ) ) dx >
o [ @) dux

where we used Theorem (iii) and Theorem By the adjointness property, we
get

®
F@) = (Bt © oD@ 2 [ @y (430
for any z € X. By combining (4.29) and (4.30), we get the desired inequality in
@23). 0

Theorem 4.18. Let Y C X be a non-empty set, let P be a similarity relation on
X such that K : X XY — L given as K(z,y) = P(z,y) foranyz € X andy € Y
is an integral kernel, and let K=' = KT be a Q—inverse of K. If f is extensional
with respect to Q and (K, ux) satisfies (C2), then

Foes 10 Fepo (@) & f(@) 2 /Y Q(z,y) duy (4.31)

for any x € X.
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Proof. Let f be an extensional function with respect to ). By Lemma we have
K(z,y) = P(z,y) = Q(z,y) and so K '(y,z) = QT (y,z) forany r € X and y € Y.
First, we show that under the assumptions of the theorem, it holds that

Flaeuo () = fly), yeY. (4.32)

It is easy to see that Core(K,) C Core(QQ) for any y € Y, where Q3 (z) = Qy(z) ®
Qy(z), x € X. Indeed, due to Lemma for any y € Y, we have K,(x) =
K(z,y) = P(z,y) < Q(z,y) = Q,(z) for any z € X. Hence, if x € Core(K ) then
Ky(z) =T = Qy(x), therefore, Q2(z) = T and z € Core(QZ). Now, if A € F such
that A C X \ Core(Q}), then A C X\ Core(kK,), which implies px(A) = L, since
(K, ux) satisfies (C2). As a consequence, we obtain that (Q?, ux) also satisfies (C2),
and F, (02,x) Preserves constant functions. Then, for any y € Y, we have

Fienolf /Ka:y%f d,ux—/ Qle,y) — f(2) dyix <

/ Q*(z,y) — (f(2) ® Q(z,y)) dux S/X Q*(z,vy) —)MX(x)dluX =
Fe oy (S W) ) = f(y),

where we used Theorem[1.1{(x) and the extensionality of f with respect to (). On the

other hand, for any 7,y € X, Q(z,y) ® f(y) < f(x) implies f(y) < Q(z,y) > ()
due to the adjointness property. Using Theorem (ii), we simply find that

Fiu 00 = [ Ko, y) = f(@) dux = / Qey) = fa) diy >
/ F) (@) dyix = F(y),

which implies (4.32)). Using this equality, for any x € X, we get
®
Flic1 yy © Flicyue) (N)(@) =/ K7y, 2) ® Fize oy (/) (W) dpty =

/@Ty, ® 1y duy—/Qxy ® I(y) duy < /f y) duy = f(2)

where we used Theorem [2.7] ﬁ (ii) and the extensionality of f with respect to Q). As a
consequence of this inequality, we get

Fer )0 Fipy (@) = fl@) = T. (4.33)
Since f(z) ® Q(z,y) = f(x) ® QT(y, x) < f(y) forany © € X and y € Y, we get
Fir 0 Fiiep (F)@) = /Y QT (y,2) ® iy (F) () day =
| Qe fwdnr = [ Q") 0 @ 0) @ f2), () duy =
Y Y

®

[ @ e ), @) dny > @) e [ Q) du

Y Y
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where we used Theorem [2.7](iii) and (4.32)). Due to the adjointness property, we find
that

F0) = Fios ) © Pl (N@) 2 | @) iy (4.34)

where we used the fact that (QT)?(y, z) = Q*(x,y), which follows from (Q7)?(y, x) =
Q" (y,2) @ Q" (y,z) = Qz,y) ® Q(z,y) = Q*(x,y) for any z,y € X. By combining
(4.33) and (4.34]), we obtain the desired inequality in (4.31)). ]

We have shown that the composition of M—lattice integral transforms preserves
constant functions under the satisfaction of conditions (C1) and (C2). The following
corollaries show that the same conditions ensure the preservation of extensional
functions with respect to (), where () is determined from a similarity relation on X.

Corollary 4.19. Let the assumption of Theorem be satisfied, and let (K, px)
satisfy (C1). Then

Flic-1yy © Flge ey () = 1 (4.35)

for any extensional function f on X with respect to Q).

Proof. From Lemma we know that @ is Y—transitive and K(y,z) = P(y,z) <
Q(y,z) for any x,y € X. Let x € X. Then there is z € Y such that K(z,z) =
P(z,z) = T, since K is an integral kernel. By the Y—transitivity of @, for any
y € X, weget Q(y,z) = Qy,2) ®Q(z,2) = Py, 2) ® P(z,2) = P(y,2) ® P(x, 2) =
P(y,z) = K(y,z), where we used the fact that P is symmetric. Hence, we get
Core(K,) C Core(Q,). Since (K, pux ) satisfies (C1), we get that (Q, pux) also satisfies
(C1). Hence, for any x € X there is A, € F such that A, C Core(Q,) and
w(Az) = T. Obviously, Q*(y,z) > 14,(y) for any y € Y. Indeed, for y € A,, we have
T =14, = Qy,7) = Q*(y,z). If y & A,, then trivially L = 14, (y) < Q*(y,x).
By Theorem [4.17], we simply find

Fiiems iy © Fiie o (1)(@) 5 f(2) > /X @y, ) dux >

®
/ La,(y)dux = px(Ay) =T,
X

where we used Theorem (V) Hence, we get the desired equality as the conse-
quence of the fact that a <» b = T if and only if a = b. m

Corollary 4.20. Let the assumption of Theorem be satisfied, and let (K, uy)
satisfy (C1). Then

Fiie1 ) © Flie) (f) = f (4.36)

for any extensional function f on X with respect to Q).
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Proof. Using Lemma [4.16] we have Q7 (y,z) = PT(y,z) = K~'(y, ) for any v € X
and y € Y. Since (K~!, uy) satisfies (C1), for any x € X, there is A, € G such that
A, C Core(K; ') and py(A,) = T. Obviously, we have (K 1)*(y,z) > 14,(y) for
any y € Y, which can be verified analogously as in the proof of Corollary In
addition, it holds (K—')* = (K?)”. By Theorem we find that

Ficor ) © Pl (N@) ¢ 1) = [ Q¥ y) dpry =
/Y@(KQ)T(?J,:E) dpy = /Y@(K‘l)Q(y,x) dpy > [j) La (y) duy = p(Ay) = T,

where we used Theorem [2.7(v). Hence, we get the desired equality as the conse-
quence of the fact that a <» b = T if and only if a = b. O]

4.3.3 Illustration on signal reconstruction

In this part, we demonstrate the reconstruction of discrete signals using compositions
of M-lattice integral transforms. We will follow the setting of Example and
reconstruct the original signal given by formula from the transformed functions
(i.e., the outputs of M-lattice integral transforms) presented there. Recall that
all the integral kernels K : X x Y — L together with the fuzzy measures py
(originally denoted as ;1) on the measurable space (X, P(X)) are introduced in that
example in such a way that (K, x) satisfies condition (C1) for » = ® and (K, u$")
satisfies condition (C2) for x =— due to Theorem [3.9) Therefore, the M*-lattice
integral transforms from F(X) to F(Y) preserve constant functions. To illustrate,
we similarly introduce M-lattice integral transforms from F(Y') to F(X), namely,
an @QQ-inverse integral kernel K~ : Y x X — L is given by K~! = K7 and the
related fuzzy measure py on the measurable space (Y, P(Y)) is defined such that
(K, py) satisfies (C1) for x = ® and consequently (K, u$") satisfies (C2) for
x =— due to Theorem [3.9] Thus, both M-lattice integral transforms in a particular
composition for reconstructing the original signal always preserve constant signals
(cf., Theorems [4.14] and {4.15)). In the following we will consider cases a) and b)
studied in Example

Case a) We assume the integral kernel K : X x Y — [0,1] and two associ-
ated fuzzy measures pix1 = p3¢ and pxs = p2 15 on (X, P(X)) established in case
a) of Example that specify the (K, px;, ®)-M-lattice integral transform and
the (K,u$, =) M-lattice integral transform from F(X) to F(Y) for i = 1,2.
Further, we define the fuzzy measure py = pj, on (Y,P(Y)) to introduce the
(K", py, ®)-M-lattice integral transform and the (K, u$", —)-M-lattice inte-
gral transform from F(Y) to F(X). It is easy to see that #Core(K ') € {2,3} for
any = € X, therefore, piy satisfies (C1) and S satisfies (C2) due to Theorem .
Note that the space for setting fuzzy measures on (Y, P(Y')) to ensure that condition
(C1) is satisfied is very small, so we use only one fuzzy measure for both reconstruc-
tions. Since this fuzzy measure is very close to the highest measure " on (Y, P(Y)),
we get that the M-lattice integral transforms from F(Y') to F(X) are very similar
to the direct lattice fuzzy transforms. In Figure [1.2a), we show the reconstruction
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Figure 4.2: Original function f (black) and its approximation using M~ o M® (green
diamonds) and M® o M~ (red squares) for a fixed integral kernel K and two different
fuzzy measures px; and pxs.
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Figure 4.3: Original function f (black) and its approximation using M~ o M® (green
diamonds) and M® o M~ (red squares) for a fixed fuzzy measure px and two different
integral kernels K; and K.

of the original signal using the composition of the (K, uyi, ®)-M-lattice integral
transform and the (K, ,u;’N, —)-M-lattice integral transform described by green
diamonds (M~ o M® for short) and the same reconstruction using the composition
of the (K, %Y, —)-M-lattice integral transform and the (K, sy, ®)-M-lattice in-
tegral transform described by red squares (M® o M~ for short) together with the
original function. Since the output signals of the M-lattice integral transforms from
F(X) to F(Y) are very similar to the signals obtained by the direct lattice fuzzy
transforms (a consequence of the setting of px; = ugﬁ, see Figure , it is not sur-
prising that the reconstructed signals provide near lower and upper approximation
of the original function. Analogous reconstructions of the original signal, but for the
fuzzy measure jix2, are shown in Figure [£.2(b). As we stated in Example the
fuzzy measure pxo and similar can be used to filter out high frequencies in a signal
using the M-lattice integral transform from F(X) to F(Y), and the output of the
corresponding M-lattice integral transform from F(Y') to F(X) is the smoothed
original signal. A suitable composition of M-lattice integral transforms can thus
serve as a high-pass filter in signal processing.
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Case b) We assume two integral kernels K7, Ky : X x Y — [0, 1] and the fuzzy
measure jux = i3 on (X, P(X)) established in case b) of Example [3.5( that specify

the (K, ux, ®)-M-lattice integral transform and the (K;, u3", —)-M-lattice inte-
gral transform from F(X) to F(Y) for i = 1,2. Further, we consider the same fuzzy
measure py on (Y, P(Y)) as above in case a) to introduce the (K; ', iy, ®)-M-lattice
integral transform and the (K, u$", —)-M-lattice integral transform from F(Y")
to F(X) for i = 1,2. Note that #Core(K;,') € {4,5} and #Core(K,') € {2,3}
for any 2 € X, therefore, (K., uy) satisfies (C1) and (K%, uS") satisfies (C2) due
to Theorem In Figure , similarly to case a), we show reconstructed signals
for the compositions of M-lattice integral transforms with different integral kernels
K, and K. Since Ky, C K, for any y € Y, more function values are aggregated
inside the M*—lattice integral transform from F(X) to F(Y') with regard to K than
K5, which leads to a better approximation of the original function for Ky, shown
in Figure [.3(b) than for K, shown in Figure [4.3[a). This influence of the setting
of the integral kernel on the approximation quality is not surprising and its a con-
sequence of the theorems presented in Subsection {.3.2. Obviously, if Ky, C K,
for any y € Y, then Supp(Ky,) C Supp(K7,), which leads to w(f, E1,) < w(f, Eay),
where w(f, E;y), i = 1,2, is defined in Theorem Then

wi(f) = N\ w(f, Ey) < N\ w(f, Ezy) = ws(f),

yey yey

and by Theorems and we find that the reconstructed signal by the compo-
sitions of M—lattice integral transforms with regard to K5 should provide a better
approximation of the original function f than in the case of Kj.

Finally, we should note that the composition M~ o M® is over the composition M®
o M~ in all of the above cases except one, which is shown in Figure [4.2(b). This
observation is very interesting and leads to a natural question under which general
conditions this claim is true, i.e.,

F(%(*l,w) o Fig ) (f) < Flic—1 ) © Fgwx)(f) (4.37)
holds for any f € F(X). Specifically, we can assume that p = u%" and g = p$™
and (K, ux) and (K~ py) satisfy (C1), but this is not sufficient, as shown in
Figure [£.2(b). The answer to this question is the subject of our future research.

4.3.4 Filtering of random noise

As we mentioned in the motivation in Subsection of this chapter, lattice fuzzy
transforms cannot in principle filter out random noise present in the signal (see, Fig-
ure[4.1(b)). The goal of this subsection is to show that M-lattice integral transforms
can be used to filter out random noise in signal processing. A further illustration
will be given in Chapter [6] where M-lattice integral transforms are used to filter out
salt-and-pepper noise in images. For the demonstration, we again use the function
f given by the formula in , to which we add 30% random noise determined by a
uniform distribution. In what follows, we will present two applications of M-lattice
integral transforms in random noise filtering:
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Figure 4.4: Filtering random noise using M®-LIT (light blue) and M~-LIT (light
green) for a fixed integral kernel K and two different fuzzy measures pux; and pxo.

o Filter based on a single M-lattice integral transform with an integral kernel
on X.

« Filter based on a composition of M-lattice integral transforms as mentioned
above.

In both applications, we consider the same fuzzy measures py, px1 and pxs on
(X,P(X)) and puy on (Y,P(Y)) specified in the previous illustration subsection.

Filter based on single M—lattice integral transform The idea of filtering out
random noise from a signal using a single M—lattice integral transform is inspired
by data analysis methods such as moving average or median. It consists in using an
integral kernel defined only on X (i.e., X =Y), which we use to aggregate function
values over each point in X. By adjusting the integral kernel and in particular the
fuzzy measure, we can control how random noise is removed. For illustration, we
assume that X = {1,2,...,204} and the integral kernels K, K, Ky : X x X — L
are are defined by the same formulas as in Example only Y is replaced by X.
Again, we distinguish two cases, namely, case a) the fixed integral kernel K and two
fuzzy measures px; and pxs, case b) the fixed fuzzy measure pyx and two integral
kernels K, and K.

The results of filtering random noise for case a) are displayed in Figure .
Recall that the size of the core and support of K is quite high, so in addition to
noise filtering, there is also suppression of higher frequencies, which is particularly
noticeable in the case of uys, shown in Figure (b), which is set to aggregate
function values similar to the median. It seems that the fuzzy measure 1 x; preserves
higher frequencies and filters noise better than p yo, namely the M®—LIT reconstructs
the upper part of the signal well, while the M”—LIT reconstructs the lower part
well. The results for case b) are shown in Figure . Since the fuzzy measure pyx
with respect to K is very similar to the highest fuzzy measure uy, as discussed in
Example , so it is not surprising that the noise is not well filtered, as shown in
Figure [4.5a), similar to the lattice fuzzy transforms (cf. figure [£.1(b)). Visually,
the best result is obtained by the M®-LIT for Ks, which, together with the fuzzy
measure [y, behaves almost like a median filter. Again, the M®—LIT reconstructs
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Figure 4.5: Filtering random noise using M®~LIT (light blue) and M~-LIT (light
green) for a fixed fuzzy measure px and two different integral kernels K; and K.
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Figure 4.6: Filtering random noise using composition of M~ o M® (green diamonds)

and M® oM™ (red squares) for a fixed integral kernel and two different fuzzy mea-
sures fix1 and fixo.

the upper part of the signal better, while the M~—LIT reconstructs the lower part
better.

Filter based on composition of M-lattice integral transforms For noise
filtering, we can generally use more than one filter, with filters applied in sequence.
Thus, we consider the composition of the same or different filters. We can even
transform the noisy signal from F(X) to F(Y') for its compression, assuming that
Y C X, and back again to recover it with noise suppression. In this part, we show
that the compositions of M-lattice integral transforms presented in the previous
subsection suppress noise in the reconstructed signals.

We consider the same setting of the integral kernels K, K; and K; as in Ex-

ample [3.5] The results are shown in Figures [4.6] and We can see that all the
resulting signals are noise-free and are very similar to the reconstructed signals in

the previous subsection, which are derived from the original (noise-free) signal.
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Figure 4.7: Filtering random noise using composition of M~ o M®(green diamonds)

and M® o M~ (red squares) for a fixed fuzzy measure px and two different integral
kernels K, and K.

4.4 Approximation of functions based on R ,,—lattice integral
transforms

In this section, we continue our investigation of the estimation of an original lattice-
valued function using a combination of two types of Rp—lattice integral transforms
that are introduced in Subsection Throughout this section, we assume that
(X, F,vx) and (Y, G, vy) are complementary fuzzy measure spaces, K : X xY — L
is an integral kernel and K=%¢:Y x X — L is a Q% dual inverse integral kernel of
K, where Q% is the integral kernel on X satisfying

4.4.1 Upper and lower approximation of functions

Similarly to the previous section, we start with a theorem showing in a sense a
generalization of the approximation from above of the original function using the
composition of Rpy—lattice integral transforms. Recall that the fuzzy integral f]:HY
is monotonically non-increasing map (see, Theorem [2.12)).

Theorem 4.21. Let G?K’VX) be an Rpy-lattice integral transform from F(X) to
F(Y) and G ra,,, be an Rp,-lattice integral transform from F(Y) to F(X).
Then

(KL py) © G((X)K,VX) > _‘G%Qd,ux)' (4.38)

Proof. From Definition 4.4 and using (ii) and (iii) of Theorem [2.12] we have for any
feFand z€ X

i) Gl (D) = [ (7110.) = Gl () oy =

/D:y <K1’d(y’z> - /:i K(z,y) @ f(x) dVX) dvy >
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/D:y (/D:X (MX(@ ® K (rc,y)) ® f(x)) duX) dvy >

/DHY (/ Q'x,2) @ f(x )de) (y) diy =

Y

/ Q'(w,2) @ f(x)dvx = G, | (£)(2),

where we used the associativity of ®, K~"%(y, z) is a constant for [ (therefore,
we may apply Theorem iii)), the fact that Q¢ is a (K, K ~14)-dually compatible
integral kernel, i.e., K~14(y, 2) (@) ® K(z,y) = K4y, 2) @ K(z,y) < Q%x, 2)

for any z,z € X, and
([ @woese o)
DH X

is a constant function integrated by f;}ly. O

Y

Note that the use of negation on the right-hand side of the inequality in is
very natural because Rpy—lattice integral transforms give a negative output, so the
negation provides a comparison of two positive outputs. The approximation from
below of the original function using the second composition of Rpy—lattice integral
transforms is presented in the following theorem.

Theorem 4.22. Let G i, be a Ryy-lattice integral transform from F(X) to F(Y')

and G? (k-1 V€ @ Rpy-lattice integral transform F(Y) to F(X). Then

G®

(K1) © Glicwy) < G (4.39)

wx)

Proof. From Definition using (ii) and (iv) of Theorem and for any f € F

and z € X, we have

Gl 1oy G (DD = [ (K74(0.2) © Gy () i =
| (x| (K@) = @) v ) doy <
L (/H (Ky,2) (@) = (K(2,5) > f(@))) dux) duy =
/D;y (/D;X((wx(@ ® (K(z,y)) — f(z)) de) dvy <
/DHY (/ Q'(w.2) = Sl WVX)y(y) dvy =

) (/X @e2) = f() dVX) = Gt (F)(2),

where we used a — (b — ¢) = (a®b) — ¢ (Theorem[L.1](vi)), K~ 4(y, z) is a constant
for f;HX (therefore, we may apply Theorem W(iv)), the fact that the residuum is
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non-increasing in the first argument, Q% is a (K, K~ %%)-dually compatible integral
kernel (see the proof of Theorem for details), and

( | @) s dux)

is a constant function integrated by D;y. O

Y

Similarly to Corollary we show another estimation of the approximation
of the original function using the composition of Ryy—lattice integral transforms in
the case that Q% is a reflexive fuzzy relation on X. Denote QZ—projection, ie.,

Ql(x) = Q¥(x,y) for any z € X.
Corollary 4.23. For any f € F(X) andy € X, it holds that

(7’) G(}(_l7d’yy) o G?K’VX)(]C)(:U) > D—I;X 1Core(QZ) & f(:E) dVX7

(ZZ) G(?Kflyd’l/y) © G(_}(J/X)(f)(y) S - D;X 1001‘6(@5) — deX

Proof. Let A : L — L be the operation defined by (4.17) on page[72, and f € F(X).
(i) Using Theorem [2.12(i), for any y € X, we have

Glga e () = /D:X QUxz,y) ® f(z)dvy
< [ sepei@an= [

HX DH

Loore(Qd) @ f(x) dvx,
X

Applying the negation, the previous inequality is reversed, and the desired inequality
in (a) is the straightforward consequence of (4.38]).
(ii) Again using Theorem for any y € X, we have

i ()W) = / ;X Q) — f(x) dvy

> / AQd($7y> - f(ZL‘) dVX = / 1Core(QZ) — f(ZE) dVX7
DHX DH X

where we used the fact that the residuum is monotonically non-increasing in the first

component. Using the negation, the previous inequality is reversed and the desired

inequality in (b) is the straightforward consequence of (4.38)). O

4.4.2 Estimation of approximation quality

This part is devoted to the quality estimation of the approximation of the origi-
nal function using the Rpy—lattice integral transforms. For the estimation, we use
the modulus of continuity introduced in Definition [4.5] Since the Rpy—lattice in-
tegral transform transforms a positive input to a negative output, we compare the
transformed values with the negation of the original values. Recall that V is the
operator assigning |, if a = 1, and T, otherwise (see, on page for the
definition). The following theorem shows an estimate of the approximation quality
for the R3,-lattice integral transform transform.
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Theorem 4.24. Let (K,v) satisfy (C3), and let f € F(X) andy € Y. Let E, be
the equivalence on X defined in Theorem[{.13. Then

Gl (D) & ~f(2) 2 (], By, (1.40)
for any x € X such that VK,(z) = T.

Proof. From Theorem we know that F), is well-defined. Similarly to the refor-
mulation of the definition of F; (%{ )0 e have

G W) = N\ (NE(@y) @ f(x) = v(A)). (4.41)
AEF T€A
ACSupp(Ky)

Indeed, if A € F such that A € Supp(k,), then we get A _,(K(z,y) ® f(z)) =
v(A) = L — v(A) = T. Hence, the infimum over all F-measurable sets can be
reduced to all F-measurable sets that are subsets of Supp(kK,). We use F, to
denote the set of all F-measurable sets A C Supp(kK,). Since GE@K” preserves

constant functions due to (C3), and using (15), (18), (19) and (22) of Theorem [1.3]
we have

G?K,V)(f)(y) © f(z) = G?K,V)(f)(y) A G?K,y) (MX)(?J) =

A (N E =y @ f(2) = vA) & N\ (N\EE) o [f(2) (2) = v(A) 2

AeF, z€A AeF, z€A

A (N E(zy) @ [(2) = v(4) & (N\(E(2y) © f2) () = v(4))) 2

AeF, z€A 2€A

A (A EEy) @ f2) o N(Ezy) o f(@) () © @(A) < () =

AcF, z€A z€A

N (N EEy @ [(2) o \Ey) e @) () 2

AeFy, z€A z€A

A NEEy) & Kzy) o (fz) ¢ f2), () 2

AeF, z€A

A U@ e fa)z N (fw) e ) =wf,E),

z€Supp(Ky) (u,v)EEy
where we used the fact that if = € Supp(K,), then (z, 2) € E,. ]

The next theorem shows that the same approximation quality can be achieved
also for the R, —lattice integral transform transform.

Theorem 4.25. Let (K, v) satisfy (C4), and let f € F(X) andy € Y. Let E, be
the equivalence on X defined in Theorem[{.13. Then

& (NY) & ~f(x) =2 w(f, Ey), (4.42)

for any x € X such that VK, (z) =T.
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Proof. From Theorem we know that £, is well-defined. Similarly to the refor-
mulation of the definition of F(} L) We have

wnNw = N O N Ky = f2) = v(A). (4.43)

AeF
ANnCore(Ky)#0 zeAﬂSupp(Ky)

Indeed, since (K, v) satisfy (C4), i.e., v(A) =T for any A C X \ Core(kK,), we get
A N K@y = f@)—vA)=T,

AeF
ANCore(Ky)=0 xeAﬂSupp(Ky)

which follows from @ — T = T for any a € L (Theorem [L.I]iii)). Hence, it is
sufficient to consider only F-measurable sets such that A N Core(K,) # 0. In
addition, we find that for such an F-measurable set A, it holds that

N E@y) = f@)= N\ (Klzy) = f@),

€A € ANSupp(Ky)

where we used that z € A\ Supp(K,) leads to K(z,y) = f(z) = L = f(x) =
T, therefore, we can restrict the calculation of the infimum to the elements from
AN Supp(K,). Denote by F, the set of all F-measurable sets A such that AN
Core(K,) # (. Since G/, preserves constant functions due to (C4), and using

(15), (18), (19), and (22) of Theorem |1.3| we have
() (NY) & 2f(2) = Gy (HNY) © G (f(2) )y) =

AC N Ky = f() = v(A) &

AeFy z€ANSupp(Ky)

ANC N Ky = f2) (2) = v(4) 2

AeFy ze ANSupp(Ky)

AN N Ky = f(2) = v(A) «

AeFy z€ANSupp(Ky)

(N Ky = f@)(2)) = v(4) 2

z€ ANSupp(Ky)

ANC N Eey=fe)e N\ By = f@), ()

A€Fy z€ANSupp(Ky) z€EANSupp(Ky)

swA) evA))= N N (Kiy) = fE) e

AeFy ze ANSupp(Ky)

AN By = f@) () 2

z€ ANSupp(Ky)

AN N\ Ky e KEy) o (fe) o f2) (2) 2

AeFy ze ANSupp(Ky)

AN F@ef@)> A (&) o f@)>

zeXNSupp(Ky) z€Supp(Ky)

A (W) & f(v) = w(f, E)),

(u,v)EE,
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where we used the fact that if 2 € Supp(X,), then (z,2) € E,,. O

Similarly to the previous section, the next two statements characterize the ap-
proximation quality of the reconstructed function obtained by the respective com-
position of Rp—lattice integral transforms. Recall that the negation — is involutive,
if =(—a) = a for any a € L.

Theorem 4.26. Let K be an integral kernel, K= be a Q*dual inverse of K such
that K=5%(y,x) > L if and only if K(z,y) > L holds for anyx € X andy € Y, and
let f € F(X). Assume that (K,vx) satisfies (C3) and (K19, vy) satisfies (C4), let
w(f) be defined as in Theorem and = is involutive. Then

Giie a0 Gl (1)) € () 2 w(f) (4.44)
for any x € X.

Proof. As a simple consequence of the assumption on K and K¢, we get VK, (z) =
T for any * € X and y € Supp(K,;"¢). Similarly to Theorem we use G, to
denote the set of all G-measurable sets A such that ANCore(K ;%) # (. Since both
Rpy—lattice integral transforms reverse constant functions (Theorem and the
negation is involutive, according to Theorem using and VK, (z) =T
for any y € Supp(K;1?), we have

(k-1 y) © Gli iy (@) < f(x) =
Gl © Gy (D)(@) 0 Glicmrayy 0 Gl (f(@) () =

(14,3 ) (G i) (@) 2 Gy (2 (@) ) () =

ANC N E M) =G, o (HN) = w(4) &

A€0z ye AnSupp (K, )

AC A (K™ (y, ) = =f(2), () = vy(A4)) 2

A€Gs ye AnSupp (K, -7

A AN (Gl (D) & =f(2), () =

A€0z ye AnSupp(K; M%)

A N (G N o ~f@)> N\ wfE)=w(f),

A€Gx ye AnSupp (K, 17) y€Supp(Kz %)

where the verification skips the analogous steps as in the proof of Theorem and
we used

(1) © Gl ([(@) (@) = Glicra,) (2f(2),)(2) =
(=S (@) (1) = =(=f(x)) = f(x)

as the consequence of the fact that the negation is involutive. O

Note that we cannot use the same assumption on the integral kernels K and
K~ as in Theorem where we assume that () is a reflexive integral kernel.
Unfortunately, the reflexivity of Q% does not ensure that VK, (z) = T holds for all
y € Supp(K; ).
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Theorem 4.27. Let K be an integral kernel, K= be a Q?dual inverse of K such
that K=y, x) > L if and only if K(x,y) > L holds for any v € X andy € Y, and
let f € F(X). Assume that (K,vx) satisfies (C4) and (K14, vy) satisfies (C3), let
w(f) be defined as in Theorem[{.1]), and = is involutive. Then

Gy vy © Clicamy (F)(@) & Fl2) 2 () (4.45)
for any x € X.

Proof. Similarly to Theorem . we use G, to denote the set of all G—measurable
sets A such that A C Supp( 1d). Let x € X. Since both Rpy—lattice integral

transforms reverse constant functlons according to Theorem |4.25| u using (4 d
4.26),

the fact that VK, () = T for any y € Supp(K ;%) (see the proof of Theorem
we have

G?K—lvd,uy © Ga(,ux)(f)(m) e .f(x) -
G?K*Ldyy) ° (_}(,Vx)(f)< ) Ane G®K Ld 1) G(_}(vl’X)(MX)('r) =
G?K*Ld,lxy)(G(_I}(,uX)(f))( ) A G®K 1,d VY)(_‘MY)<J;> >

A NE 4 y,0) © G (H) = vr(A)) &

AeGy yeA
N (N E Ay, 2) @ =f(2),(y) = v(A) >
AeGr yeA
A N (GClero (N W) < () (y) =
AeG, yeA

A N Gon(Dw) < ~f@) = N\ wf.B)>w(f),

AcG, ycA yESupp(KaZl'd)

where the verification skips the analogous steps as in the proof of Theorem and

we used the fact that G‘?K L) G} VX)(f(x)X)(:B) = f(z), which can be shown
similarly as in the proof of Theorem ]

The end of this section will be devoted to an estimation of the approximation
quality of Rpy—lattice integral transforms for extensional functions with respect to
a reflexive and Y -transitive fuzzy relation on X. We show that the results achieved
in the previous section for M—lattice integral transforms also hold in a reformulated
version for Rpy—lattice integral transforms.

First, we provide a similar result in Lemma showing that Q¢ is a reflexive
and Y-transitive fuzzy relation on X.

Lemma 4.28. Let Y C X be a non-empty set, let P be a similarity relation on X
such that K : X XY — L given as K(z,y) = P(z,y) foranyx € X andy € Y is an
integral kernel, and let K= = KT be a Q%dual inverse of K, i.e., Q% is given by
formula , Then Q% is a reflexive and Y —transitive integral kernel on X such
that Q¢ < P. In addition, Q%(z,y) = P(z,y) = Q¥y,z) for anyx € X andy €Y.
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Proof. The reflexivity of Q¢ has been verified in the proof of Theorem . As a
consequence of the symmetry of P, we get P = PT. Then, for any z,2 € X and
y € Y, we have

QU(z,y) ® Q(y, 2) = (\/ K u,y) ® K(%U)) ® (\/ K0, 2) ® K(%U))

ueY veY

- (\/ PT(u,y) ® P(m,u)) ® (\/ P'(v,2) ® P(y,u)> <

ueyY veY

P(z,y) ® P(y,2) < \/ P'(y,2) @ P(z,y) = \/ K "(w,2) ® K(z,w) = Q%(x, 2),

yey weyY

where we used the transitivity of P. Hence, we obtain that Q% is Y-transitive.
Further, it holds that

P(z,y) = \/ P(z,u)® P(u,y), z,y€X.
ueX

Indeed, as a consequence of the transitivity of P, we have P(z,y) >V cx P(z,u) ®
P(u,y) for any x,y € X. Moreover,

\/ P(z,u) @ P(u,y) > P(w,x) © P(z,y) = L ® P(z,y) = P(z,y)
ueX
for any x,y € X. Hence, we get

QY x,y) = \/ K" (u,y) ® K(z,u) = \/ P(z,u) @ P(u,y) < P(z,y),

ueyY uey

where we used that P = PT and Y C X; therefore, Q¢ < P. Finally, for z € X and
y € Y, we find that

QUx,y) = \/ K (u,y) ® K(w,u) > P"(y,y) ® P(z,y) = T @ P(x,y) = P(x,y)

ueY

and

Q'y,z) = \/ K" (u,2) ® K(y,u) > P (y,2) ® P(y,y) = P(x,y) ® T = P(,y)

ueyY

which together with Q¢ < P leads Q%(z,y) = P(z,y) = Q%(y, z) for any x € X and
yey. ]

The following lemma shows that the extensionality of f is preserved even for its
negation —f.

Lemma 4.29. Let Q¢ be a reflexive and Y ~transitive fuzzy relation on X, and let
f be extensional with respect to Q. Then —f is also extensional with respect to Q2.
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Proof. Let x,y € X. Since f is extensional with respect to Q?, we have f(r) ®
Q%z,y) < f(y) and also Q*(z,y)®f(y) < f(x). Hence, and using Theorem|L.1|xiii),

we get

Q%z,y) < f(x) = f(y) <~ f(y) = ~f(2),

which implies Q%(z,y) ® —f(y) < —f(z). Similarly, we get —f(z) ® Q%(xz,y) <
~f(y)- O

Theorem 4.30. Let Y C X be a non-empty set, let P be a similarity relation on X
such that K : X XY — L given as K(z,y) = P(x,y) foranyx € X andy € Y is an
integral kernel, let K¢ = KT be a Q%dual inverse of K, and let — be involutive.
If f is extensional with respect to Q¢ and (K~ vy) satisfies (C4), then

—

i) @ Gl (N@) & f@) 2 [ (@Poydy (010

HX

for any x € X.

Proof. Let f be extensional function with respect to Q¢, and let € X. Note that
if @ < b, then =b < —a, which is a consequence of Theorem (xiii). Using the
extensionality of f and (i) and (iii) of Theorem [2.12 we have

—

| @ fn < [ QU)o @) fla) ) dox <

HX

| @ f) v < 1) [ Q) vy

HX

By Theorem and using Theorem [L.1|xii), we get

i) Gl (D) 2 = [ @) @ i) do >

~(f(x) - / %X(Qd)Q(y,x) dvy) > f(z) ® / (@) (y, 2) duy.

HX

Due to the adjointness property, we get

—

F(2) = Gicovtin © Gl (D) 2~ [ (Q (g 2)d. (4.47)

DH X

For y € Y, we have

—

Gl N0 = [ Ko @ f@)dve = [ Play) @ (o) dvy =

D HX

|t =),

where we used that P(z,y) ® f(z) = Q%(z,y) ® f(z) < f(y). From Lemma [4.29]
we have —f(2) ® Q4(x,y) < —f(y) then we obtain —f(z) < Q% x,y) — —f(y) using
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adjunction property. Hence,

i) © Gl (D) = [ (K74y.0) = Gy (N(0)) doy <

/D ;Y (K~ "y, 2) = —f(y)) dvy = /D ;Y (Q"(y,7) = ~f(y)) dvy <
| atte), doy =~ (@) = fa),

where we used the involutive property of -, the monotonically non-increasing of the
Cand Q4z,y) = (QYT(y,2) = K~ 14(y, z) from Lemma 4.28l Therefore, using

DHY
the adjunction property we have

G k1) © Glguy) (N (@) = fz) = T. (4.48)
By combining (4.47)) and (4.48)), we get the desired inequality in (4.46)). O

Theorem 4.31. Let Y C X be a non-empty set, let P be a similarity relation on X
such that K : X XY — L given as K(z,y) = P(z,y) foranyx € X andy € Y is an
integral kernel, let K= = KT be a Q?dual inverse of K, and let = be involutive.
If f is extensional with respect to Q% and (K,vy) satisfies (C4), then

—

G i1y © Glicwy) (N)(@) < f(z) > ﬁ/ (QD2(z,y) dvy (4.49)

DHY

for any x € X.

Proof. Let f be an extensional function with respect to Q%. By Lemma [4.28] we
have K (r,y) = P(z,y) = QU(z,y) and so K~14(y,z) = (Q)7(y, ) for any z € X
and y € Y. First, we show that under the assumptions of the theorem, it holds that

G i) (N y) = —f(y). (4.50)

For any 2,y € X, Q%(x,y) @ f(y) < f(z) implies f(y) < Q(z,y) — f(x) using the
adjointness property. Hence, using Theorem ii), we have

G0 = [ (@) fa)dox < [ fl), dvx == f10).

HX

On the other hand, it is easy to see that Core((QZ)Q) = Core(K,) for any y € Y,
where (Q%)*(z) = Q¥(z) ® Qi(x), » € X. Indeed, due to Lemma , for any
y € Y, we have K,(z) = K(z,y) = P(z,y) = Q%(z,y) = Qi(x) for any = € X.
Hence, if 2 € Core((Q])?), then (QF)*(x) = T, therefore, Q}(z) = T, which implies
K,(z) =T and z € Core(K,). If z € Core(K,), then K,(z) = Qi(z) = (Q%)*(x)T,
which implies # € Core((Q¢)?). Now, if A € F such that A C X \ Core(K,), then
A C X\ Core((Q%)?), which implies vx(A) = T, since (K, vx) satisfies (C4). As a
consequence, we obtain that ((Q%)2, vx) also satisfies (C4), and G (i), Preserves
constant functions. Then, for any y € Y, we have

oo (D) = / HX K(e,y) - f(2)dvy = / HX Q'(r,y) — f(z)dvx >

| @Pan) > 1@ o @aa)dn > [ Q) = f) ) vy -

HX DH X

Gilonz.m (fW) ) (y) = =f(y),
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where we used Theorem (X) and the extensionality of f with respect to Q?. Using
the equality in (4.50)), for any x € X, we get

Gt ® Giican @) = [ K14(0.2) G (1) ) o =
| @ wa e s = [ Qe o s =
[ =1, ) vy = ~(=5) = 1)

HY

where we used Theorem M(ii), and the extensionality of =f with respect to Q¢
according to Lemma [4.29, As a consequence of this inequality, we get

f(@) = Gliera gy © Glic) () (@) = T. (4.51)

Since —f(z) ® Q*(x,y) = ~f(x) ® (Q4)"(y,x) < ~f(y) for any v € X and y € Y,
we get

Gii-rta)  Glcan(N) = [ (@) (0:2) ® Gl (1)) oy =
| @ e~smdn < [ (@09 (Q) 10) © 2fa), () dvy
= [ (@ ) @ 25 ), W) e < ~f0) > [ Q1)) do,
where we used Theorem [2.12(iii) and (£.50)). Using the adjointness property, we get

Gl o) © Gl (@) 8 2F@) < [ (@7 Pg.) doy-
DHY
Due to Theorem [I.1|xii) and a < b implies —a > —b, we find that

(Gt © Giicon) (@) ®=(2)) = Gy, © Gilean (D) = (@),

which implies

G Gl () = F2) 2 = [ (@1(a,y)doy, (4.52)

DHY
where we used the fact that ((Q%)7)%(y,z) = (Q%)?(x,y). By combining (4.51) and
(4.52), we get the desired inequality in (4.49). O

We know that the composition of Rpz—lattice integral transforms preserves con-
stant functions under the satisfaction of conditions (C3) and (C4). The following
corollaries show that these conditions ensure the preservation of extensional func-
tions with respect to @Q?, where Q? is determined from a similarity relation on X.

Corollary 4.32. Let the assumption of Theorem be satisfied, and let (K, vy)
satisfy (C3). Then

(K—1y) © G{@K,VX)(JC) =f (4.53)

for any extensional function f on X with respect to Q°.
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Proof. From Lemma we know that Q¢ is Y —transitive and K (z,y) = P(z,y) =
Q4 x,y) = Q%y,z) forany z € X and y € Y. Let x € X. Then there is z € Y such
that K(z,z) = P(x,z) = T, since K is an integral kernel. By the Y-transitivity
of Q% for any y € X, we get Q%(y,z) > Q%y,2) @ Q%z,z) = P(y,2) ® P(z,2) =
P(y,z) ® P(z,z) = P(y, z) = K(y, z), where we used the fact that P is symmetric.
Hence, we get Core(K,) C Core(Q?). Since (K,vy) satisfies (C3), we get that
(Q,vx) also satisfies (C3). Hence, for any x € X there is A, € F such that
A, C Core(Q?) and v(A,) = L. Obviously, (Q%)*(y,z) > 14,(y) for any y € Y.
Indeed, for y € A,, we have T = 14, (y) = Q%y,z) = (Q9)*(y,x). If y & A,, then
trivially 1 = 14,(y) < (Q%)*(y,z). By Theorem we simply find

—

?[(_1,1/)/) © GE@K,VX)(JC)(@ A f((l,’) > _‘/ (Qd)2(y, l’) dVX >

DH X

ﬂ/'lhwmmzﬂwmazr
pDHX

where we used Theorem [2.12(v). Hence, we get the desired equality as the conse-
quence of the fact that a <» b = T if and only if a = b. O]

Corollary 4.33. Let the assumption of Theorem be satisfied, and let (K1, vy)
satisfy (C3). Then

G?K—l,uy) © GFK,V;Q(f) =f (4.54)

for any extensional function f on X with respect to Q°.

Proof. Using Lemma we have (Q))T(y,z) = PT(y,x) = K~ (y,z) for any
r € Xandy €Y. Since (K1, vy) satisfies (C3), for any x € X, thereis A, € G such
that A, C Core(K ;') and vy (A,) = L. Obviously, we have (K1)%(y,z) > 14,(y)
for any y € Y, which can be verified analogously as in the proof of Corollary [4.32]
In addition, it holds (K~1)? = (K?)”. By Theorem we find that

—

G&awwG&mxﬁ@M+ﬂMEﬂ/ (QD2(x.y) dvy —

DHY

ﬁ/]: (K~Y)2(y, ) dvy > ﬂ/ﬁ 1, (y) dvy = —wx(Ay) =T,

HY DHY

where we used Theorem M(V) Hence, we get the desired equality as the conse-
quence of the fact that a <> b= T if and only if a = b. ]

4.4.3 Illustration on signal reconstruction

In this part, we present the reconstruction of signals using the composition of
Rpu-lattice integral transforms. We use the setting of Example and reconstruct
the original signal given by formula from the transformed functions presented
in the mentioned example. Recall that all the integral kernels K : X xY — L
together with the complementary fuzzy measures vy (originally denoted as v) on
the measurable space (X,P(X)) are introduced in such a way that (K,vy) sat-
isfies condition (C3) for » = ® and (K,v%") satisfies condition (C4) for x =—
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due to Theorem Therefore, the Rpy—lattice integral transforms from F(X)
to F(Y') reverse constant functions. For the reconstruction, we similarly introduce
Rpr—lattice integral transforms from F(Y) to F(X), namely, an Q%dual inverse
integral kernel K14 :Y x X — L is given by K19 = K7 and the related com-
plementary fuzzy measure vy on the measurable space (Y, P(Y)) is defined such
that (K~ 1y) satisfies (C3) for x = ® and consequently (K¢ v$") satisfies
(C4) for x =— due to Theorem [3.14, Thus, both Rpy—lattice integral transforms
in a particular composition always reverse constant functions. Since N = N,
is the negation in the hLukasiewicz algebra, which is involutive, the composition of
Rpu—lattice integral transforms preserves constant functions as can be also seen from

Theorems and In the following, we will consider cases a) and b) studied
in Example 3.6

Case a) We consider the integral kernel K : X x Y — [0,1] and two associ-
ated complementary fuzzy measures vy; = ,ug:év and vy, = ,u?i\; on (X,P(X))
introduced in case a) of Example that specify the (K, vy;, ®)-Rpy—lattice in-
tegral transform and the (K,v%), —)-Rpy-lattice integral transform from F(X)
to F(Y) for i = 1,2. Further, we consider the complementary fuzzy measure
vy = ,u‘;’év on (Y,P(Y)), where /’?72 is given in Subsection [4.3.3, to introduce the
(K~5 vy, ®)-Rpy-lattice integral transform and (K 14, u@lv,_—ﬁfRDHflattice inte-
gral transform from F(Y) to F(X). In Figure {.§(a), we show the reconstruction
of the original signal using the composition of the (K, vxi, ®)-Rpy—lattice inte-
gral transform and the (K9, I/;?N, —) —Rpy-lattice integral transform described
by green diamonds (Rg, o R%, for short) and the analogous reconstruction us-
ing the composition of the (K, V&?,%)—RDH—lattice integral transform and the
(K=Y vy, ®)-Rpy-lattice integral transform described by red squares (R, o Ry,
for short) together with the original function. The reconstructed signals for the
complementary fuzzy measure vxo are displayed in Figure (b) Comparing the
signals reconstructed here with the reconstructed signals in Figure 4.2] we see the
similar effect of the setting of complementary fuzzy measures, namely, using vxs we
get a suppression of higher frequencies as using the fuzzy measure p o, whereas, vy
leads to a near lower and upper approximation of the original signal depending on
the type of composition. In Figure (b), we can also see that the output signal of
R, © R2, (green diamonds) is below the output signal of R, o Ry, (red squares),
confirming that the inequality similar to between the types of the composition
of Rpy—lattice integral transforms does not hold in general.

Case b) We consider two integral kernels K7, Ky : X x Y — [0, 1] and the com-
plementary fuzzy measures vy = ,ugjév on (X,P(X)) introduced in case case b)
of Example that specify the (K;, vx,®)-Rpy—lattice integral transform and the
(K, v$Y, =) Rpy-lattice integral transform from F(X) to F(Y) for i = 1,2. Fur-
ther, we consider the same complementary fuzzy measure vy = u?év on (Y,P(Y)) as
above in case a) to introduce the (K; % vy, ®) Rpy-lattice integral transform and
the (K, "%, 15N, =) Rpy lattice integral transform from F(Y) to F(X) for i = 1,2.
In Figure , similarly to case a), we illustrate reconstructed signals for the com-
positions of Rpy—lattice integral transforms with different integral kernels K; and

99



~ ” ~ "
- :.'-. vy . R A
. - 4 T 2 .= ~
p— n: o - 1'?" T b s
s S Lt ey awn Ty - POt W
4 oS :;'--'. e o 4 Py - -
L f em | - o Gt
—== .. v = .
V- v
- [
1 1 1 1
(a) vx1 (b) vxe

Figure 4.8: Original function f (black) and its approximation using Ry, o Rg,
(green diamonds) and RE,, o Ry, (red squares) for a fixed integral kernel K and two
different complementary fuzzy measures vx; and vys.
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Figure 4.9: Original function f (black) and its approximation using Rz, o R%,, (green
diamonds) and RE, o Ry, (red squares) for a fixed complementary fuzzy measure
vx and two different integral kernels K; and K.

K,. As we stated in case b) of Example Ky, C Ky, for any y € Y, which
again leads to a better approximation of the original signal for Ky, shown in Fig-
ure [L.9(b) than for K7, shown in Figure [1.9(a). Thus, the use of a smaller kernel
(with respect to the ordering of fuzzy sets) results in a better approximation of the
original function in both types of lattice integral transforms, which is the common
property with the standard (real-valued) fuzzy transform (see, [36]). Note that the
results of R}, —lattice integral transforms from F(X) to F(Y') given in Example
are negative, i.e., in the reverse ordering (it can be also seen as a negation of the
results for the M-lattice integral transform, as discussed in Example , but the
results of the reconstruction of function from F(Y') to F(X) given by the R —lattice
integral transform are transformed back to positive. Thus, to get a reasonable re-
construction, we must of course assume that the negation is involutive, which is also
an important assumption in the approximation theorems presented in the previous
section.
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Figure 4.10: Filtering random noise using R%,~LIT (light blue), Rg,,—LIT (light
green) for a fixed integral kernel K and two different complementary fuzzy measures
vx1 and vys.
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Figure 4.11: Filtering random noise using RE,~LIT (light blue), Rg,~LIT (light
green) for a fixed complementary fuzzy measure vx and two different integral kernels
Kl and KQ.

4.4.4 Filtering of random noise

In this part, we will show that Rpy—lattice integral transforms can be used to filter
out random noise in signal processing, but with a negative output in case of the filter
based on a single transform. A further demonstration will be shown in Chapter [6]
where Rpy—lattice integral transforms are used to filter out salt-and-pepper noise
in images. For the illustration, we again use the function f given by the formula
in , to which we add 30% random noise determined by a uniform distribution.
Similarly to Subsection we present filters based on a single Ryy—lattice inte-
gral transform and their compositions. In both applications, we consider the same
complementary fuzzy measures vy, vx; and vxy on (X, P(X)) and vy on (Y, P(Y))
specified in the previous subsection.

Filter based on single Ryy—lattice integral transform Recall that we can
control how random noise is removed by adjusting the integral kernel and in par-
ticular the complementary fuzzy measure. For demonstration, we assume that
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Figure 4.12: Filtering random noise using composition of Rz, o R2, (green dia-
monds), and R, o Ry, (red squares) for a fixed integral kernel K and two different
complementary fuzzy measures vx; and vys.
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Figure 4.13: Filtering random noise using composition of Ry, o R, (green dia-
monds), and RZ, o Rz, (red squares) for a fixed complementary fuzzy measure vy
and two different integral kernels K7 and K.

X =Y = {1,2,...,204} and the integral kernels K, K;, Ky : X x X — L are
defined by the same formulas as in Example [3.6| only Y is replaced by X. Again,
we distinguish two cases, namely, case a) the fixed integral kernel K and two com-
plementary fuzzy measures vy, and vys, case b) the fixed complementary fuzzy
measure vy and two integral kernels K; and K.

The results of filtering random noise for case a) are shown in Figure Al-
though, the output signals are negative, we can see that the random noise is filtered
out similarly as in the case of the M—lattice integral transform. The results for case
b) are presented in Figure Note that this type of filter does not appear to be
useful in practice, only when we filter out the noise and simultaneously convert the
signal or better image from positive to negative.

Filter based on composition of Rpy—lattice integral transforms In this
part, we consider the same setting of the integral kernels K, K; and K, and the
complementary fuzzy measures vy, vx; and vxs as in Subsection [4.4.3. The recon-
structed signals are shown in Figures and Since the Rpy—lattice integral
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transform from F(Y") to F(X) transforms negative signals to positive ones, the out-
put signals approximate the original signal. We can see that all the reconstructed
signals are noise-free and are very similar to the reconstructed signals in the pre-
vious subsection, which are derived from the original (noise-free) signal. However,
to obtain a reasonable approximation, we must assume that the negation used is
involutive, as discussed in case (b) of the previous subsection.

4.5 Approximation of functions based on R,..—lattice inte-
gral transforms

In this section, we complete our investigation of the estimation of an original lattice-
valued function using a combination of two types of Rppr—lattice integral transforms
that are introduced in Subsection Throughout this section, we assume that
(X, F, px) is a fuzzy measure space and uggN denotes the N—conjugate fuzzy measure
to ux and (Y, G, uy) is a fuzzy measure space and ui}N denotes the N—conjugate
fuzzy measure to py. Further, we assume that K : X x Y — L is an integral kernel
and K71:Y x X — L is an Q-inverse integral kernel of K, where @ is the integral
kernel that satisfies .

4.5.1 Upper and lower approximation of functions

In this part, we show similar results presented in the previous two sections, which in
a sense generalize the approximation of the original functions from below and above
by a composition of Rppr—lattice integral transforms. Comparing the properties of
the ®—fuzzy integral and the —p.x—fuzzy integral, we see that they are identical
except for (v) in Theorem and Theorem where the latter assumes an in-
volutive negation based on the residuum. Since the proofs of all the statements on
the upper and lower estimation of functions using M—lattice integral transforms in
Subsection [4.3.1 are based only on the properties (i)-(iv) of Theorem the same
statements for the Rypr—lattice integral transforms can be proved quite analogously.
We therefore present only analogous statements and omit their proofs.

The following theorem shows a generalization of the approximation from above
of the original function using the composition of Rppr—lattice integral transforms.

Theorem 4.34. Let H(Q@K,#X) be an Rppr—lattice integral transform from F(X) to

FY) and Hg,,y be an Rypp-lattice integral transform from F(Y) to F(X).
Then

H; o Hf

(1) © Hige ) 2 Hic (4.55)

(Qpx)”

Similarly to the upper approximation of the original functions by the composition
of M-lattice integral transforms, the composition of Rypr—lattice integral transforms
provides the upper approximation of the smoothed original function given by the
Rg,,lattice integral transform on X with respect to the integral kernel () derived
from the kernel K and its inverse K 1.

The approximation from below of the original function using the composition of
Rppr—lattice integral transforms is presented in the following theorem.
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Theorem 4.35. Let H(}’WX) be an Rppr—lattice integral transform from F(X) to

F(Y) and H(@K,ljw) be a Rppp—lattice integral transform F(Y) to F(X). Then

H(®K*1,uy) © H(_f)ﬂlbx) < H(_é,ux)' <4'56)

Analogously to Corollary we show another approximation of the original
function using the composition of Rppr—lattice integral transforms in case that @ is
a reflexive fuzzy relation on X.

Corollary 4.36. For any f € F(X) and y € X, it holds that
() Hijer ) © Hisc ) 2 Jornx [ & Loore(@,) diix,

(ZZ) H?K—IVMY) © H(?(,,ux) < f]:PRX 1Core(Qy) - fd//lX

The last corollary is the analogous statement given in Corollary and shows
that under certain assumptions, compositions of integral transformations of the
Rppr—lattice can approximate the original function from below and above.

Corollary 4.37. Let K be an integral kernel, and let K=' be the Q—inverse of K
such that Q) is a reflexive integral kernel. Then, for any f € F(X), it holds that

HE@K*,MJ) © H(_}C#;%)(f) =f= H(_f)f‘l,ul © H?K,uj()(f>‘ (4.57)

¥)

4.5.2 Estimation of approximation quality

In this section we show that all the statements about the quality of the approxima-
tion that hold for M—lattice integral transforms also hold for the Rppr—lattice integral
transforms. The first theorem shows an estimate of the approximation quality for

the RZ,,lattice integral transform.

Theorem 4.38. Let (K, u®N) satisfy (C2), and let f € F(X) and y € Y. Define
the equivalence E, on X as in Theorem |4.12. Then

Hig o (N) & f(x) = w(f, Ey), (4.58)
for any v € X such that VK, (z) = T.
Proof. From Theorem we know that E, is well-defined. Since (K, u“") satisfies

(C2), we can write

Hi N = N @)=\ (K)o f). (459

AceF
ANCore(Ky)#D :pEAﬂSupp(Ky)

Indeed, due to (C2), we know that for any A € F such A C X \ Core(K,) it holds
that u>V(A) = L. Hence, we find that

Hi o (DW= N\ @A) = (K@) © f(2)

AeF €A
ANCore(Ky)#0
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Moreover, if x € A\ Supp(Ky), then K(z,y) ® f(z) = L ® f(x) = L, therefore, we
obtain

VK@ fa)y=\  (Kyef(),

z€A € ANSupp(Ky)

which implies the desired modification of the definition of H (®K’#)( f). Denote F, the
set of all F—measurable sets A such that A N Core(K,) # 0. Since H, (k) Preserves

constant functions due to (C2), using (18), (19), (22) and (23) of Theorem [1.3] we
have

Heye o (D) & f(@) = Ho ()  Hi o (f(@) () =

A @A) =\ (K (=) ® f(2)

AeFy z€ ANSupp(Ky)
o Nwh)— ) (K e f@) () >
AeF, z€ANSupp(Ky)
A @A) =\ (K(zy) ® f(2)
AeFy z€ ANSupp(Ky)
o) -\ (K)o f2) () >
z€ANSupp(Ky)
A (N & peV AN e\ (B(zy) o f(2) ©
AeFy z€ ANSupp(Ky)
V  (KEy e f@) () =
z€ANSupp(Ky)
ANC YV EeyefE) e \  (KeEyefl), ()=
AeFy, z€ANSuppKy z€ ANSupp(Ky)

A N Ky o K)o () e f2)(2) 2

A€Fy ze ANSupp(Ky)

N (@ e f@)= N\ (fw) e f) =wf, B,

z€Supp(Ky) (u,v)ELy
where we used the fact that if z € Supp(X), then (z,2) € E,. O

The next theorem provides an estimate of the approximation quality for the
R, lattice integral transform.

Theorem 4.39. Let (K, u®N) satisfy (C1), and let f € F(X) and y € Y. Define
the equivalence E, on X as in Theorem[{.12. Then

Hgey(f)(y) < f(z) = w(f, By), (4.60)
for any x € X such that VK, (z) = T.
Proof. From Theorem we know that £, is well-defined. Further, we can write

Hicw(Nw) = N\ (A =\ (K(z,y) = f(2)): (4.61)

AeF z€A
ACSupp(Ky)
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Note that due to (C1), there is A € F such that A C Supp(K,) and p>N(A4) =T,
i.e., A # 0. Moreover, if A € F is such that A Z Supp(K,), then

poN(A) =\ (K(z,y) = f2) = u*N(A) > T =T,

€A

since K(z,y) = f(z) = L — f(z) =T for any x € A\ Supp(K,). Hence, we can
restrict the infimum in (4.61) to all A € F such that A C Supp(K,). Denote F,
the set of all F—measurable sets such that A C Supp(K,). Since H (k) Preserves

constant functions due to (C1), using (18), (19), (22) and (23) of Theorem [1.3| we
have

Hge,y (N(y) € f(@) = Hge,y ((Y) 0 He,y (f(2) )(y) =

A N (A) =\ (K (z,y) = [(2))

AeFy z€A
o N\ WNA) = V(K(zy) = f(2) (2)) =
A€F, z€A
A (N (A) =\ (K (2.9) = f(2))
A€F, z€A
e (1N (A) = \ (K (z,9) = f(2) (2)) =
A (N (A) & poN(A) @ () (K(z,y) = f(2)
A€F, z€A
oV (K(zy) = f(2) () =
z€A
A (V (E(zy) = () & (K(zy) = f2) () =
A AN EGy) & Kz (fe) o f) () 2
AEF, z€A
A U@ e fa)z N (fw) e f0) =wf,E),
2€Supp(Ky) (u,v)EEy
where we used the fact that if z € Supp(X), then (z,z2) € E,. O

The following two statements present the estimation of the approximation quality
of the reconstructed function.

Theorem 4.40. Let K be an integral kernel, K= be an Q-inverse of K for a
reflexive integral kernel Q, and let f € F(X). Assume that (K, u%") satisfies (C2)
l4.12

and (K1, u$™) satisfies (C1), and let w(f) be defined as in Theorem |4.12 Then
H et iy © Hige ) () (@) € f2) 2 w(f) (4.62)
for any x € X.
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Proof. From the proof of Theorem we know that VK, (z) = T for any = €
X and y € Supp(K;!). Similarly to Theorem denote G,, the set of all
G-measurable sets A such that A C Supp(K,!). Let x € X. Since both Rppg-lattice
integral transforms preserve constant functions, according to Theorem [4.38] using
(4.61) and the fact that VK, (z) = T for any y € Supp(K,*'), we have

Hjes iy © Hise oy () (@) 5 fl2) =

H(}}ilnu‘Y) © H?KvﬂX)(f) <x) N H(})(iluuY) © H?K:,U'X)(f(gj)X)(l') -

H&(’lvuy)<H€§K,#x)<f))<x) < H(}*lyuy)(My)(x) =

A 57 (A) = \ (B o) = Hi,, o (N©)

A 157 (A) = \ (KN y,2) = f(2), (1) =

AeG, yeA

A N E o (D) & @), 1) =

AcG, yeA

AN NHee, (D) e f@) = N\ wf By =w(f),

A€Gr yeA yeSupp(K; ')

where we omit the same steps in the verification used in the proof of Theorem [4.38]
]

Theorem 4.41. Let K be an integral kernel, K=' be an Q-inverse of K for a

reflexive integral kernel Q, and let f € F(X). Assume that (K, /@(N) satisfies (C1)
and (K1, uSN) satisfies (C2), and let w(f) be defined as in Theorem|.14l Then

H(®K‘17uy) o Hije ) (f)(2) < fz) =2 w(f) (4.63)

forany x € X.

Proof. Similarly to the proof of Theorem we use G, to denote the set of all G-
measurable sets A such that ANCore(K ') # 0. Let z € X. Since both Rypr-—lattice
integral transforms preserve constant functions, according to Theorem [4.39] using

and the fact that VK, (z) = T for any y € Supp(K,*'), we have
Hggf)f*,w) © H(}}#X)(f)(x) < f(x) =

Her iy © Hitegu) (1) (@) €0 Hijeor g 0 Hije ) (f(2) ) (@) =
H(®K*1,uy)<H(_f)<,#x)<f))(x) AR H&fl,py)(@y)(@ >

A G A = (KT ) © Hie, (1)

A€, y€ANSupp(K; 1)
/\ (N (A) — \/ (K~ Yy, z) @ f(z),(y)) >
AEG, yeANSupp(Kz 1)
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A AN HioN) & f@), (y) =

A€G, yeAﬁSupp(K; 1)

A N HioH) e f@) > N wf,By) > w(f),

A€Gz ye AnSupp(K; ') yeSupp(K5 ")

where we omit the same steps in the verification used in the proof of Theorem [4.39]
[l

In the next part we give an estimate of the quality of the approximation for the

extensional functions. Since the proofs of the following two theorems are complete
analogies of the proofs of Theorems and 4.18 we omit them.

Theorem 4.42. Let Y C X be a non-empty set, let P be a similarity relation on
X such that K : X XY — L given as K(x,y) = P(x,y) foranyx € X andy € Y
is an integral kernel, and let K= = KT be a Q-inverse of K. If f is extensional
with respect to Q and (K1, u@’N) satisfies (C1), then

—

Hge—1 iy © Hi ) (N(2) < f(2) 2 Q*(y, x) dux (4.64)

DPR X

for any x € X.

Theorem 4.43. Let Y C X be a non-empty set, let P be a similarity relation on
X such that K : X XY — L given as K(z,y) = P(z,y) foranyz € X andy €Y
is an integral kernel, and let K=' = KT be a Q—inverse of K. If f is extensional
with respect to Q and (K, u$) satisfies (C1), then

—

Hig1 ) © Hie o) (@) < fl2) 2 Q*(z,y) duy (4.65)

DPRY

for any x € X.

We have shown that the M—lattice integral transforms preserve extensional func-
tions with respect to (), where () is determined from a similarity relation on X. The
following corollaries show that Rppr—lattice integral transforms have the same prop-
erty, provided that the negation NN is determined by the residuum and is involutive.

Corollary 4.44. Let the assumption of Theorem be satisfied, let (K, ux) satisfy
(C1), and let N = N5 be involutive. Then

Hgeor 0 H(®K,ux)(f) =f (4.66)

for any extensional function f on X with respect to Q.

Proof. First, observe that the definition of the integral kernel K (derived from the
similarity relation P on X) in this corollary coincides with the definition of K in
Corollary [4.19] Therefore, from the proof of Corollary [4.19, we know that for any
z € X there is z € Y such that Core(K,) C Core(Q,). Since (K, ux) satisfies (C1),
we get that there is A, € F such that A, C Core(K,) and ux(A,) = T. Since
A, C Core(Q.), we find that (Q, ux) also satisfies (C1).
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Let z € X. Then there is A, C Core(Q,) such that pux(A4,) = T. Obviously,

Q*(y,x) > 14,(y) for any y € Y (see the proof of Corollary [4.19). By Theorem [4.42]
Theorem M(V) and the fact that N = N, is nilpotent, we find

—

Hie1,uy) © Hiie ) (F) (@) € @) 2 / Q*(y, =) dux >

DPR X

/ﬁ La,(y)dux =T A px(Az) = px(A) = T.

PR X

Hence, we get the desired equality as the consequence of the fact that a <> b= T if
and only if a = b. O

Corollary 4.45. Let the assumption of Theorem be satisfied, let (K1 py)
satisfy (C1), and let N = N5 be involutive. Then

H?K—l,,uy) © H(?{,MX)(f) =f (4.67)

for any extensional function f on X with respect to Q).

Proof. First, observe that the definition of the integral kernel K (derived from the
similarity relation P on X) in this corollary coincides with the definition of K in
Corollary [4.20] from the proof of which we know that Q” (y, ) = K~!(y,z) for any
re€Xandy €Y. Let z € X. Since (K!, uy) satisfies (C1), there is A, € G
such that A, C Core(K;') and uy(A,) = T. Further, we have (K ')*(y,z) >
14,(y) for any y € Y and (K~')? = (K?)7 (see, Corollary [4.20). By Theorem [4.44]
Theorem [2.16{v) and the fact that N = N, is nilpotent, we find that

—

H?Kfl,uy) °© H(?(,,ux)(f)(x) A f(l') Z YQQ(QT,y) d[l,y =
/H (K (y, x) dpy = /H (KY(y, ) dpy >
DPRY DPRY

/ La,(y)dpy =T Au(Ay) =T.

PRY

Hence, we get the desired equality as the consequence of the fact that a <+ b =T if
and only if a = b. O]

Remark 4.2. We assume that (K, ux) satisfies (C1) in the first corollary to find
a suitable set A, € F such that A, C Core(Q,) and ux(A,), which allows us to
construct a function 14, whose DPR-residuum based fuzzy integral is equal to T.
In general, we cannot replace this assumption by (K, ui’(N) satisfy (C2), which would
be expected in this case, since condition (C2) does not guarantee the existence of the
desired set A,. Nevertheless, if we assume that Core(K,) € F for any y € Y, then
the N—conjugate fuzzy measure to ,ug’(N is the fuzzy measure pux, since N = N,
is an involutive negation, and px satisfies (C1) by Theorem Thus, assuming
that each set Core(K,) is F-measurable for y € Y, then we can substitute the
assumption “(K, px) satisfy (C1)” by the assumption “(K,u$") satisfy (C2)” in
Corollary [4.44] The same observation also holds for the second corollary.
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Figure 4.14: Original function f (black) and its approximation Ry, o RZ,. (green
diamonds) and R2,. o R, (red squares) for a fixed integral kernel K and two

different fuzzy measures py; and pixo.

4.5.3 Illustration on signal reconstruction

In this part, we demonstrate the reconstruction of signals using the composition of
Rppr—lattice integral transforms. We use the setting of Example|3.7]and reconstruct
the original signal given by formula from the transformed functions presented
in the mentioned example. Recall that all the integral kernels K : X xY — L
together with the fuzzy measures px (originally denoted as p) on the measurable
space (X, P(X)) are introduced in such way that (K, ux) satisfies condition (C1)
and (K, ) satisfies condition (C2), and due to Theorem we get that the
(K, px, ®)-Rppr—lattice integral transform and the (K, ,uﬁgN, — )—Rppr—lattice inte-
gral transform preserve any constant function in F(X). In the following, we will

consider cases a) and b) studied in Example [3.7]

Case a) We use the same setting of the kernel K and the fuzzy measures px; and
ixo as in case a) of Subsection @ In Figure M(a), we show the reconstruction of
the original signal using composition of (K, x1, ®)-Rppr—lattice integral transform
and (K1, S, —) Rppr-lattice integral transform described by green diamonds
(Rgpr © RE,y, for short) and the same reconstruction using the composition of the
(K, 1Y, =) Rppr-lattice integral transform and (K7, y1y, ®)-Rppr-lattice integral
transform described by red squares (RE,, © R,y for short) together with the original
function. We see that the constructed signals are similar to those obtained by the
previous two types of lattice integral transforms, so we can fully adopt their analysis.

The same applies to the reconstruction of the original signal with the fuzzy measure
tx2, which is shown in Figure b).

Case b) Again we use the same setting of the kernels K; and K, and the fuzzy
measure px as in case b) of Subsection @ In Figure similarly to case a), we
illustrate reconstructed signals for compositions of Rypr—lattice integral transforms
with different integral kernels K; and K,. As shown in Subsection 4.3.3, since
Ky, C Ky, for any y in Y, we get that the approximation of the original signal for
K, shown in Figure [1.15(b), is better than that for K, shown in Figure 4.15]a),
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Figure 4.15: Original function f (black) and its approximation using R, © RSy
(green diamonds) and R2,. o Ry, (red squares) for a fixed fuzzy measure puyx and
two different integral kernels K; and Ks.

which is a consequence that appears in the previous two types of lattice integral
transforms.

4.5.4 Filtering of random noise

In this part, we will show that Rppr—lattice integral transforms can be used to filter
out random noise in signal processing. For the illustration, we again use the func-
tion f given by the formula , to which we add 30% random noise determined
by a uniform distribution. We present filters based on a single Rppr—lattice inte-
gral transform and their compositions. In both applications, we consider the same
fuzzy measures pyx, px1 and pxe on (X, P(X)) and py on (Y, P(Y)) specified in
Subsection [4.3.3.

Filter based on single Rppz—lattice integral transform Again, for demon-
stration, we assume that X =Y = {1,2,...,204} and integral kernels K, K, K :
X x X — L are defined by the same formulas as in Example [3.7/ only Y is replaced
by X. Again, we distinguish two cases, namely, case a) the fixed integral kernel K
and two fuzzy measures px; and pxs, case b) the fixed fuzzy measure pyx and two
integral kernels K7 and K5. The results of filtering random noise for both cases are
shown in Figures and Comparing these results with those obtained using
a filter based on a single M—lattice integral transform, we see little difference, so
that the behavior of the two filters is almost identical. An interesting question is
whether we can determine the effectiveness of one filter over another with respect
to the signal and the noise presented inside.

Filter based on composition of Ryp.z—lattice integral transforms This part
presents noise suppression using the compositions of Rppr—lattice integral transforms
shown in previous subsection on signal reconstruction. From Figures and
we can see that all the resulting signals significantly filter out the noise and recon-
struct the original signal without noise similarly to the previous subsection.
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Figure 4.17: Filtering random noise using R
green) for a fixed fuzzy measure px and two

@ ~LIT (light blue), Rz, LIT (light

different integral kernels K; and K.

10F 10F
i ! el . e s
e R o = -
0.6 " . ." . %" gl e R :"’ . . L
*'T:ﬁ-'- . D, . -'.‘-"' N . o . u_ _—?- . :‘2‘
= S it - Paeaie L e
0al - e 0al A&, " " . o -
— —— - . oo [ g .
L - e, . . “ - %
.M .
02} ‘e 02} .
L L L L L L L L
50 100 150 200 50 100 150 200
(a) px1 (b) px2

Figure 4.18: Filtering random noise using Rz,

® 1 ®
o © R2.. (green diamonds), and RE,,

o Ry (red squares) for a fixed integral kernel K and two different fuzzy measures

fex1 and fixo.

112



1.0F 10F
08La 08ks .
* . * .
: T R T
A . : . e . " . T,
© . . R . o —e o m— . . .
-""'("'——7—— . . .o it - -, v —
S o - S - L —
04F o & oom— % . * 041 wme, os -t =
. " ——rt e o Dol - ‘.
- . e . ‘ gt . LT
. o= il
0.2 ‘e 0.2 ‘.
A . A . A . A .
50 100 150 200 50 100 150 200

(a) K1

—

Figure 4.19: Filtering random noise using Ry,
o R,y (red squares) for a fixed fuzzy measure px and two different integral kernels

K1 and KQ.

o R®

DPR

(b) Ko

(green diamonds), and R

®
DPR

113






Chapter 5

Application of M—-lattice integral
transforms to multicriteria
decision making

Multicriteria decision making (MCDM) is used in screening, prioritising, ranking,
or selecting a set of alternatives under usually independent, incommensurate or
conflicting criteria. An MCDM problem is usually characterized by the ratings of
each alternative with respect to criteria and weights determining their significance
(see, [2 [7, 15 [14]). The evaluation of alternatives is provided by an aggregation of
values expressing the degrees to which criteria are satisfied, taking into account the
weights of their importance in a decision making. The most popular aggregation
function in practice is the weighted average (generally OWA operators can be ap-
plied in [46]) when we assume that sum of all weights of the importance of criteria
equal to 1. However, the linearly ordered scale L. may not satisfy generally all the
requirements for the application of the weighted average. This can occur when the
standard arithmetic operations cannot be, in principle, used for the values of the
scale L (e.g., the values of a scale are only linearly ordered labels like low, medium,
high or bad, good, excellent) or even can but the weighted average provides wrong
results . In this case, it is reasonable to use aggregation operators on bounded
linearly ordered sets (or even bounded partial ordered sets or lattices) such as the
weighted minimum or maximum proposed in [9], weighted median in [47] or linguis-
tic OWA operator in [20]. The theory of such aggregation operators “often referred
to as qualitative”, with other examples can be found in [15].

In this chapter, we are interested in MCDM, where the alternatives are evaluated
in a linearly ordered set endowed by additional operations (precisely, in a residuated
lattice) and, moreover, the evaluation is not a single value for each alternative but a
vector whose values determine the satisfaction of alternatives with respect to global
criteria describing suitable features. This seems to be advantageous in a situation

For example, let r; = r(a;)(price) = 0.2, ro = r(az)(price) = 0.5 and r3 = r(az)(price) = 0.8
denote the satisfactions of the criterion “price” by three alternatives (cars). Although we have
ro — 171 = T3 — T2, the real prices of alternatives may not capture the same differences, because of
different considerations when real prices are lower and when higher. This type of heterogeneity
is quite common, especially when quantifying something which is not well measurable (e.g. car
design), and in this case, the weighted average can lead to an incorrect evaluation of alternatives.
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Figure 5.1: Relationship between criteria from C' = {¢; | j = 1,...,9} and global
criteria from G = {gx | k = 1,2, 3}, where the displayed arrows indicate an existing
importance that can be described by degrees of importance and missing arrows
indicate non importance.

when it is difficult to specify the importance of criteria with respect to one global
criterion formally expressing “to be the best alternative”, whose satisfaction by
alternatives corresponds to the evaluation of alternatives ] and it is easier to select
global criteria related only to criteria from certain subgroups of all criteria, which
allows us to simply determine the importance of criteria with respect to the related
global criteria. Subgroups of criteria may overlap which means that one criterion has
an influence in the evaluation of more than one global criterion as it is demonstrated
in Figure . The evaluated alternatives can be used directly for a decision (by a
comparison of vectors), or can serve as input values for another MCDM (e.g., a
hierarchical model is considered).

The aim of this chapter is to introduce the evaluation of alternatives with re-
spect to global criteria by a novel approach, which is based on the M—lattice integral
transform (M-LIT) of lattice-valued functions presented in Subsection [3.3| of Chap-
ter [3| (also see [26]). The proposed approach will be demonstrated and compared
with a common approach on a car selection problem.

5.1 MCDM based on the M—lattice integral transform

As an example, let us consider a problem of selecting a car, the aim of which is to
buy a new car from a set of cars of different brands. This set is called the set of
alternatives. To select the best car, it is necessary to determine suitable criteria (e.g.,
price, brand, design, safety, performance) together with their degrees of importance
according to which it will be decided. More formally, let A = {a4,...,a,} denote
a set of alternatives, let C' = {¢y,..., ¢} denote a set of criteria, and let L be
a complete linearly ordered residuated lattice as the scale for the evaluation of
alternatives. A satisfaction of criteria by alternatives can be described as a function
r: A — L where r(a;)(c;) expresses the degree to which the j-th criterion ¢; is
satisfied by the i-th alternative a; (i.e., LY denotes the set of all functions from C to

2Tt is easy to see that the evaluation of alternatives described as a function u : A — L can be
identically expressed by a function «’ : A — L9}, where g represents a global criterion “to be the
best alternative”, and the evaluation of alternatives can be equivalently described by the degrees
to which the alternatives satisfy the global criterion g, i.e., u(a;) = v/(a;)(g) for i = 1,...,n. The
importance of criteria can be equivalently expressed as a function w’ : C'x {g} — L, where w’(c;, g)
determines the degree to which the criterion ¢; is important in the evaluation of the global criterion

g.
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L). The importance of criteria can be described as a function w : C'— L, where the
higher value of w(c;) means the higher importance of criterion ¢;. The evaluation
of alternatives is then a function v : A — L given as

u(a;) = hy(r(a;)(cr), ..., r(a;)(cm)), (5.1)

where h,, : L™ — L is an aggregation function respecting the importance of criteria
expressed by the function w. In addition, let G denote the set of global criteria, then
the evaluation of alternatives with respect to global criteria can be described as a
function v : A — LY which is defined through the following commutative diagram

N

LG

(5.2)

where the function r expresses a satisfaction of criteria from C by alternatives from
A, and h is an “extended” aggregation function, which will be introduced as the
lattice integral transform of the space LE to the space LY with an integral kernel
w: C x G — L, where w(c;, g;) determines the degree to which the criterion c;
is important in the evaluation of alternatives by the criterion gkﬁ If a criterion
¢; is not important at all for a global criterion g, then w(c;, gx) is equal to the
bottom element of L. Note that, for G = {g}, the extended aggregation function
h defined by the lattice integral transform involves the weighted maximum men-
tioned above (i.e., similarly the weighted minimum can be obtained as a special case
of the residuum base lattice integral transform proposed in [25]). Of course, the
extended aggregation function can be obtained also in other ways, but the lattice
integral transform provides a consistent way for the evaluation of alternatives with
a possibility of changing parameters.

Now, for a more detailed expression, let (C, F, u) be a fuzzy measure space over
the set of criteria C'. According to , the evaluation of alternatives u : A — L%
is determined by a (w, u, ®)-M-lattice integral transform as follows

w(as)(g) = FE,, (r(as))(ge) = /®w<cj,gk>®r<a@-><cj>du, g cG, (53

where the kernel function w : C' x G — L determines the importance of the criteria
from C in the evaluation of alternatives with respect to the global criteria from G
assuming that w is semi-normal in the second component, i.e., for any g, € G, there
exists at least one ¢; € C such that w(c;, gx) > 0.

We should note that the setting of kernel function w is hard work for an expert
with experience because its values significantly influence the decision. Following the
assumptions on the weighted maximum proposed by Dubois and Prade in [9], one
could even assume that w is normal in the second component, which means that
each function wy, is a possibility distribution (i.e., max.,ec wy, (c;) = 1), and in the

3We use w instead of K for the denotation of the integral kernel to keep the notation in the
paper [22].
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case of lower lattice fuzzy transform proposed by Perfilieva in [36], one could be
even stronger and assume that the sets Core(wy, ), ..., Core(w,,) form a partition of
C. But w does not provide the only parameter of our approach. Other parameters
are the fuzzy measure space and the selection of residuated lattice, especially, the
multiplication operation. For example, if the measurable space F = P(C), L = [0, 1]
and the fuzzy measure is defined as u(X) = 1 for any X € F \ {0}, and u(0) = 0,
the evaluation of alternatives can be expressed as

us™(a) () =\ wlcj, o) ®r(ai)(e;), ai € A, gr €G, (5.4)

CJ‘EC

which can be seen as a ®-weighted maximum generalizing the weighted maxi-
mum with ® = A, ie., ulM. Tt is easy to see that for any fuzzy measure p on
a measurable space (C,F), the evaluation of alternatives u given by can-
not be higher than the evaluation ugM given by the ®-weighted maximum, i.e.,

u(a;)(gr) < u™(a;)(gx) for any a; € A and gy € G.

5.2 Illustrative example

We consider a car selection problem, that is, we would like to buy a new car from
some famous car brands. The MCDM problem is to select an appropriate car from
the following four alternatives: Toyota Wigo, Hyundai Grand i10, Honda City and
Nissan Terra, i.e., we consider the set A = {Wigo, Grand i10, City, Terra} as the set
of alternatives. Our global criteria for the evaluation of alternatives that form the
set G are looks, safety and performance. To determine the evaluation of alternatives
with respect to the global criteria we consider ten criteria, namely, Price, Logo, Year
of Manufacture, Top Speed, Fuel consumption, Style, Insurance quote, Boot space,
Warranty and Equipment, which form the set C.

For a comparison of the evaluation of alternatives based on the M-LIT with
other evaluations based on quantitative and qualitative aggregations, we consider
the residuated lattices L defined by the left-continuous t-norms on [0, 1] (see, Ex-
ample [L.1). The satisfaction of criteria by alternatives (i.e., r(a;, ¢;)) is displayed in
Table [5.1]

One can see that, example, r(Wigo, Price) = 0.2 < 0.5 = r(Grand i10, Price),
which corresponds to the higher price of Toyota Wigo than the price of Hyundai
Grand 110, and a lower price naturally increases the satisfaction of the criterion
Price.

For the purpose of the evaluation of alternatives, we consider the integral kernel
w: C x G — [0,1] whose values are displayed in Table [5.2] It can be seen that
the set Supp(wreeks) consists of seven criteria from C', namely, Price, Logo, Year,
Style, Insurance quote, Warranty and Equipment, that are important in a certain
non-zero degree for the evaluation of alternatives with respect to the global criterion
(a car feature) Looks. Similarly the sets Supp(wsafety) and Supp(wperformance) consist
of four and five criteria from C, respectively. One could see that the functions w,, ,
gr € G, have the non-empty cores, hence, these functions are possibility distributions
(see, [9]), which seems to be a reasonable requirement reflecting the fact that there
is at least one fully important criterion for each global criterion.
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Criteria Cars

Wigo Grand i10 City Terra

Price 0.2 0.5 0.7 0.4
Logo 0.9 0.7 0.6 0.8
Year 0.6 0.2 0.8 0.4
Top.sp/mph 0.6 0.8 0.2 0.4
Fuel.co/mpg 0.9 0.5 0.4 0.7
Style 0.7 0.9 0.6 0.8
Insurance.qu 0.1 0.7 0.6 0.9
Boot.sp/litres 0.2 0.5 0.7 0.3
Warranty 0.3 0.5 0.2 0.8
Equipment 0.8 0.7 0.9 0.6

Table 5.1: Satisfactions of the criteria by the alternatives.

Criteria Global criteria
Looks Safety Performance
Price 1 0 0
Logo 0.2 0.3 0.5
Year 1 0 0
Top.sp/mph 0 0 1
Fuel.co/mpg 0 0 1
Style 0.6 0.4 0
Insurance.qu 0.5 0.5 0
Boot.sp/litres 0 0 1
Warranty 0.6 0 0.4
Equipment 0.7 1 0

Table 5.2: Integral kernel determining the importance of criteria for the evaluation
of alternatives with respect to global criteria.

To ensure that the evaluation of alternatives is “fair” and respects only the
important criteria, we define a fuzzy measure p on (C, F(C)) as follows

X >4
M(X)={1’ A,

X .
#T’ otherwise,

for any X € F(C). The “fair” evaluation is reflected in the fact that the fuzzy
measure 4 is symmetric. Moreover, we set ;1(X) = 1 for #X > 4, which is motivated
by the numbers of criteria in the support of functions wy, , gx € G. More specifically,
we use the minimum number 4 to allow the maximum evaluation of all alternatives
equal to 1, ideally when the satisfaction of criteria is equal to 1 for all alternatives
and the non-zero degrees of importance in Table would be changed to 1. Our
setting of fuzzy measure does not influence the evaluation of alternatives in the
above-mentioned ideal case, although we consider arbitrary left-continuous t-norm
as the multiplication on the residuated lattice, which seems to be a reasonable
requirement. A stronger requirement defined analogously could be introduced using
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the number of elements in the cores of functions w,,, gr € G, which will guarantee
the preservation of constant satisfactions of criteria by alternatives.

In Table @L we present the evaluations of alternatives u” with respect to global
criteria for the fundamental continuous t-norms, namely, the minimum, product and
FLukasiewicz t-norms. To compare the proposed approach based on the M-LIT with
some, say, representatives of the standard (quantitative and qualitative) approaches,
we show in the same table the evaluation of alternatives using the weighted average
given as

St wlcs, gr) - r(ai)(cs)
Zjlil w(cj> gk) ’
WM

representing the quantitative approach, and the weighted maximum u,' ™ represent-
ing the qualitative approach, although, it can be obtained as a special case of the
lattice integral transform.

wWV (a;) (gr) == a; € A, gx € G, (5.5)

Evalua- Global Cars
tions criteria
Wigo Grand 110 City Terra
Looks 0.6 0.5 0.7 0.6
u™ Safety 0.4 0.5 0.5 0.5
Perfor 0.5 0.5 0.5 0.5
Looks 0.315 0.3675 0.4725 0.42
u'® Safety 0.2025 0.2625 0.225 0.24
Perfor 0.3375 0.375 0.225 0.32
Looks 0.2 0.2 0.35 0.4
u’e Safety 0.05 0 0.15 0.1
Perfor 0.2 0.25 0.1 0.3
Looks 0.476 0.547 0.658 0.606
uWA Safety 0.636 0.736 0.736 0.731
Perfor 0.582 0.602 0.43 0.543
Looks 0.7 0.7 0.8 0.6
uyM Safety 0.8 0.7 0.9 0.6
Perfor 0.9 0.8 0.7 0.7

Table 5.3: Evaluation of alternatives with respect to global criteria determined by
the M-LITs, the weighted average and the weighted maximum.

To select the best car we aggregate the values of vectors evaluating alternatives
related to global criteria in Table to one value using the weighted average with
respect to the weights: w(Looks) = 0.35, w(Safety) = 0.4 and w(Performance) =
0.25, with a total sum equal to 1, expressing their importance for our selection of
the best car. The results are displayed in Table 5.4 To compare the resulting
evaluations of cars we determine the orders of cars that correspond to the orders
of their evaluations presented in Table [5.3] e.g., we get Honda City, Nissan Terra,
Hyundai Grand i10, Toyota Wigo for the evaluation u™, where Honda City has the
highest evaluation 0.57, while Toyota Wigo the lowest evaluation 0.495. Surprisingly,
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Evaluations Cars

Wigo Grand i10 City Terra
ul™ 0.495 0.5 0.57 0.535
u’P 0.275 0.327 0.311 0.323
u'e 0.14 0.132 0.207 0.255
uWVA 0.566 0.636 0.632 0.64
uyM 0.79 0.725 0.815 0.625

Table 5.4: Aggregation of various evaluations of alternatives to order the alterna-
tives.

there are no two evaluations resulting in the same order of cars, but three of all
evaluations indicate Toyota Wigo as the car with the worst evaluation. Clearly the
candidates for the best car are Honda City and Nissan Terra with the two highest
evaluations. It is probably impossible to say, what evaluation of alternatives is right
or even the best in this illustrative example, since each uses a different type of
aggregation, but summing the ranking numbers of cars (i.e., a car gets the ranking
number n if it stands on the n-th position in an order of cars. The ranking number 1
(4) indicates the best (worst) car with respect to considered evaluation of cars) over
all evaluations to get an overall ranking number we can conclude that Honda City
and Nissan Terra occupy the first and second place with the overall ranking number
10 (e.g., 10 = 1+3+4+2+3+1 for Honda City). The third place gets Hyundai Grand
i10 with the overall ranking number 13, and Toyota Wigo gets the last place with
the overall ranking number 17. If we remove the weighted maximum evaluation in
the summation of ranking numbers, which depends on only one maximum value,
the best car is Nissan Terra with the overall ranking number 6 =2 +2 + 1 4 1.
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Chapter 6

Application of lattice integral
transforms in image processing

Lattice integral transforms for lattice-valued functions were introduced to provide
a theoretical framework for transformations of functions whose functional values
cannot in principle be handled by standard arithmetic of real or complex numbers
or application of standard arithmetic have certain disadvantages. For example, non-
additive noise in signal or image processing is filtered out by the methods that do
not use the standard arithmetic, but order statistic functions like median are applied
(see, [1]). Another example can be mathematical morphology on complete lattices,
which provides morphological operators whose mathematically coherent application
to gray-scale images has already been justified (see, [39, [38] [19]).

Similarly to the lattice fuzzy transforms, in Chapter |4 we have shown the com-
position of two types of lattice integral transforms, for example,

Fo o F(X) = F(Y) and Fgor,,, : F(Y) = F(X),

(Kvl/'X)

where K is an integral kernel, K ! = K7 is an Q-inverse of K, j1x is an appropriate
fuzzy measure on (X, F) and uy is an appropriate fuzzy measure on (Y, G), approx-
imates original functions. In addition, we have also shown that the random noise
present can be filtered out, unlike lattice fuzzy transforms, as shown in Figure

08t oo oo e 08 oo
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04fe . P S - - 04l X . -4 -

0.2 0.2
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(a) lattice fuzzy transforms (b) M-lattice integral transforms

Figure 6.1: A comparison of noisy signal reconstructions based on lower and upper
approximations using lattice fuzzy transforms and M-lattice integral transforms.
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The aim of this chapter is to present the use of all types of lattice integral trans-
forms introduced in Chapter |3|in image processing, specifically non-linear filtering,
compression/decompression and opening/closing of images. We show that filters
based on lattice integral transforms can be seen as a generalization of the known
median filter as well as minimum and maximum filters. Note that these filters are
popular for removing of salt-and-pepper noise, namely, the minimum (maximum)
filter removes the salt (pepper) noise because it has very high (low) values of inten-
sities. The median filter removes both types of noise. The minimum and maximum
filters are also associated with the most common morphological operations of ero-
sion and dilation, because the minimum filter erodes shapes on the image, whereas
the maximum filter extends object boundaries (see, [13]). The opening and closing
filters are achieved by combining the morphological operations of erosion and dila-
tion, in our case, we will consider their definitions in fuzzy mathematical morphology
(see, [42]). We illustrate the proposed methods in various selected images.

6.1 Introduction

In this chapter, we apply the (K, u, x)-M-lattice integral transforms (M*~LIT), the
(K, v, *)-Rpy—lattice integral transforms (R, —LIT) and the (K, u, x)—Rppr—lattice
integral transforms (Rf,,—LIT) introduced in Chapter |3|and their compositions in-
vestigated in Chapter |4|to the following image processing tasks: non-linear filtering,
compression /decompression and closing/opening of images. For their application,
we restrict ourselves to grayscale images. Note that the color image is divided into
color channels and independently processed one by one. The standard RGB color
model is suitable for noise filtering. For compression, it is preferable to use the YUV
color model, where U and V are compressed more strongly than the Y component
that contains information important to human perception.

In what follows, we assume that an image I of the size N x M (the number of
pixels in rows and columns) is a function [ : D — [0, 1], where

D={(ij)|1<i<N1<j< M}

and the value I(7, j) expresses the intensity of shades of gray from black to white for
the pixel at the position (i, j) € D. In our terminology, the image I is nothing but a
fuzzy relation on D. For simplicity, we assume that the shade of gray is determined
for any number from [0, 1]. Since an image is a two-dimensional function, we consider
lattice integral transforms for fuzzy relations from F(D;) to F(Dz), where Dy is the
domain of original (input) images and D, is the domain of transformed (output)
images (e.g., compressed images). In the following sections, we first describe in
details the way of how the lattice integral transforms are applied to the above tasks,
and then demonstrate it in various images.

6.2 Method description

Let N, M, o be natural numbers such that ¢ divides N and M. Denote n = N/p
and m = M/p. The number ¢ will be called the shift and ¢* : 1 expresses the
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compression ratio. Let D be the domain of input images and denoted D, = {(, j) |
1 <i<n,1<j<m} the domain for compressed images (¢ > 1) or filtered images
(0=1).

Let 7, s be natural numbers such that o < r < N and p < s < M, and denote
[—r,r] ={-r,...,0,...,7} and similarly for [—s,s]. Let W ={w,; | i € [-r,7],j €
[—s,s]} bea2r+1x2s+ 1 matrix of values from [0, 1], which will be referred as
the window of size R x S, where R =2r+1 and S =2s+ 1. A window W specifies
the weights that are assigned to pixels in the neighborhood of a corresponding pixel
in the input image. In our application, we assume that wyy = 1. Note that W can
be viewed as a normal fuzzy relation on [—7r, 7] X [—s, s].

To properly process the pixels at the edges of images, we extend D to a broader
domain given as

Dy ={(i,j) | -r+1<i<N4r—-s+1<j<M+s},

and consider an operator ~: F(D) — F(D, ) that each image I € F(D) extends to
an image [ € F(D,s) such that 1(i,§) = I(i,j) for any (i, ) € D. The extension of
I for pixels from D, \ D can be adjusted in different ways according to the given
task. For example, we can consider the following extending operators:

~

(i) 1(i,§) = I(i,§), for (i,j) € D, and I(i,j) = T, otherwise, which is used in
dilation,

o~

(ii) f(i,j) = I1(i,7), for (i,7) € D, and I(i,j) = L, otherwise, which is used in
erosion,

(iti) 1(i,7) = I(i',5'), where
i' =2 -max(1,min(N,i)) —i and j =2-max(1,min(M,j)) — j.

It is easy to see that ¢/ = ¢ and 5/ = j, whenever 1 < ¢ < Nand 1 < j < M,
therefore, so the extension in case (iii) is well defined, where the grayscale intensity
in the new pixels is mirrored across the edges.

Image filtering Filtering is a technique for adjusting or enhancing an image.
For example, we can filter an image to emphasize certain elements or remove other
elements. Filtering is a neighborhood operation, in which the value of any given
pixel in the output image is determined by applying some algorithm to the values
of the pixels in the neighborhood of the corresponding pixel in the input image.
Our approach based on the lattice integral transforms provides a class of non-linear
filters which includes some of the known filters as median filter, or minimum and
maximum filter.

The M*—LIT-filter for images in F (D) is defined as an M*-lattice integral trans-
form Flwm F(D,s) = F(D), where Ky : D, s x D — [0, 1] is an integral kernel
determined by a widow W of size R x S given by

W —ij' = j), |i' =il <rand|f —j| <s,

. (6.1)
0, otherwise,

KW((Z7])7 (ilhj/)) = {
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and p is a fuzzy measure defined on (D, s, P(D,s)). In addition, we assume that

Ky and p are adjusted in such a way that F(*KW . breserves constant functions, see

Theorem . By Example [3.4] we select u € M? for x = ® and " € M5SN for
* =—>.

One can see that image filtering is provided by aggregation based on a Sugeno-
like integral applied on the values in specific neighborhoods that are adjusted by the
weights in the window W. More precisely, for any (i’,j') € D, a neighborhood in
D, s is determined as follows:

N(@@ )= + kg +0) | —r <k <r, —s <0< s}

collecting positions of pixels that are actually processed. The calculation of the
output pixel value at position (', 5') € D is given by Corollary as follows:

D7) =\ (T * Kw (0(k), (7)) ©
kelp]

where p = #N (', "), [p] ={1,...,p} and o : [p] = N(7,j') is a bijection such that

~

Io(l) * KW(U(l)v (i/vj/>) < 27(2) * KW(U(Q)v (i/’j/» <0 < j:f(n) * KW(U(n)’ (i/’j,))

with fg(k) = I(o(k)) and py = p({o(k),...,o(n)}). Hence, the procedure of calcu-
lation of image filtering is very simple and fast.

By setting of the window (integral kernel), an operation x € {®, —}, and a fuzzy
measure p on (D, , P(D,)), we can determine various types of non-linear filters.
Assume that the window W consists of weights w; ; € {0, 1} for any ¢ € [—r,r] and
j € [—s,s]. In Table we display the operation x and the fuzzy measure p in
Example specifying the integral transform F. ) that determine the classical

)

non-linear filters. Note that the weighted median could also be introduced within the
Filters Type of M-LIT (%) Fuzzy measures
p T
(ML7U B MQPZ n,U/n
Standard median ® M(leS)/Q,(RxS)p
Minimum - Hhes s = 1
Maximum ® ,u(l)yo =u"

Table 6.1: The classical types of non-linear filters.

framework of integral transform, but the definition is not straightforward, because
the window used for the weighted median contains natural numbers that determine
the repetition of pixels in the window from which the median is calculated (see, [1]).
A solution of this task is to extend the input image domain in a suitable way to
respect the repetition of pixels according to the weights in the window and define
the weighted median as a lattice integral transform of the images with the extended
domain to the original domain with the integral kernel that connects the positions
of the pixels according to the repetitions in the window. It should be noted that
the specific choice of operation x has no influence on the result, because the weights
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are only 0 and 1, and % for 0 and 1 always give the same results regardless of the
specific operation.

Similarly, the R}, -LIT-filter is defined as an R}, —lattice integral transform
Glkw ) @ F(Drs) = F(D), where Ky is the same integral kernel as in the pre-
vious case, and v is a complementary fuzzy measure on (D, s, P(D, s)) such that
constant functions are reversed, see Theorem and Remark In contrast to
the M*~LITfilter, the R} ,—LIT-filter provides a negative output image (see, images
(c) and (d) in Figure[6.4). The calculation of the output pixel values is again simple
and fast and is given by Corollary as follows:

Gl D7) = N\ (Toto * Ko (k). (7,5)) =
kelp)

where p = #N (7', j"), [p] ={1,...,p} and o : [p] = N(7,j') is a bijection such that
j\a(l) *KW(U<1)7 (iluj/)> S -?:7(2) *KW(U<2)7 (ilaj/)) S e S fU(n) * KW(O'(TL), (ilaj/))

with I, = I(o(k)) and v, = v({o(k),...,a(n)}).

Finally, the Rj,,-LIT-filter is defined as an R}, -lattice integral transform
Higwwy + F (Drs) = F(D), where Ky is the same integral kernel as in the previous
case and p is a fuzzy measure on (D, 5, P(D, s)) such that constant functions are pre-
served, see Theorem [3.18|and subsequent discussion. Similarly to the M*~LIT-filter

and Ry, -LIT-filter, due to Corollary the simple and fast calculation of the
output pixel values is given by

i D7) = N\ (55 = Togo + Kw(0(k), (7.1)))

kelp]

where p = #N (7', "), [p] = {1,...,p} and o : [p] = N(7,j') is a bijection such that

~

Loy * Kw (o (1), (', 7)) = Ty * Kw(0(2), (', 7)) = -+ > Ly * Kw(o(n), (¢, §'))

~

with T, = I(o(k)) and p&™ = poN({o(k), ..., a(n)}).

Image compression Image compression is a technique for reducing image size.
Similarly to image filtering, we introduce the M*-LIT-image compression as an
M*lattice integral transform Fg. .t F(Dys) = F(D,), where ¢ > 1 is the shift,
Kw : D,sx D, — [0,1] is an integral kernel determined by a widow W of size R x S
given by

W(({i"—=1eo—i,(j'=Deo—j), [@—1e—i[<r
Kw((i,5), (0,)) = and [(j' —1)o —j| <s,
0, otherwise,
(6.2)

and p; is a fuzzy measure defined on (D, s, P(D,)). Again, we assume that Ky,

and p, are adjusted in such a way that F, (K ) PYESEIVES constant functions. The
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procedure of calculation of image compression is performed in the same way as for
image filtering, only the neighborhood in D, s for (i, j") € D, is determined as

No(@',7) ={((" =De+1+k (7' = Do+ 1+ | —r<k<r —s<{<s}

Obviously, N = N, for o = 1.

The R}, ~LIT-image compression is defined analogously as an R} —lattice inte-
gral transform Gy .y 1 F(Drs) = F(D,), where Ky is the same integral kernel
as in the previous case, and v4 is a complementary fuzzy measure on (D, ;, F (D, ;))
such that constant functions are reversed.

Finally, the R} ,,~LIT-image compression is defined as an R}, —lattice integral
transform H(y 1 F(Dys) = F(D,), where Ky, is the same integral kernel as in
the previous case, and p; is a fuzzy measure on (D, ,, F(D,s)) such that constant

functions are preserved due to Theorem [3.18]

Image decompression Conversely to image compression, the image decompres-
sion is used to reconstruct the original image from its compression. To introduce
image decompression, in the first step, we extend the domain D, to the domain
D, ., where u denotes the integer part of r/p and similarly v denotes the integer
part of s/o. To better understand our motivation for the definition of extension,
let us consider the situation o = r = s, i.e., u = 1 = v. For any pixel position
(i',5') € D, of output images, the neighborhood N,(i',j") of the pixel at the po-
sition ((¢/ —1)o+1,(j' — 1)o + 1) in D, , over which the calculation is provided,
contains positions ((i'+a—1)o+1,(j'+b—1)o+1) for —u < a <wand —v < b < v,
where (i +a,j’ 4+ b) ¢ D, can occur in general. So, once we use the pixel values
at positions ((i' +a —1)o+1,(j +b— 1)o+ 1) to calculate image compression,
it seems reasonable to use pixel values at positions (i’ + a, j + b) into account for
reconstructions of compressed images.

Assume that the M*~LIT-image compression with the ratio ¢? : 1 is realized by
Fliy oy for € {®, =1}, and denote x the adjoined operation to *, e.g., if x = ®,
then *x =—. The M*-LIT-image decompression is introduced as an M*-lattice
integral transform F(;Kv?m) : F(Dyuw) — F(D), where Ky : Dyyo x D — [0,1] is
the integral kernel determined by a widow W of size R x S given by

W(({#—Do—1i,(j'=De—j), [(@'=1eo—il<r
Ky (.5, (i, 5)) = and (' = D) —j| <5,
0, otherwise,
(6.3)

o is a fuzzy measure defined on (D, ., P(Dyuy)). In addition, we assume that

Kﬁ,l and po are adjusted in such a way that F (;K* 1) PrEserves constant functions.
W s

It is easy to see that the integral kernel KV_V1 is the inverse to Ky, if we restrict
ourselves to original domains D and D,, i.e., Ky;'((¢,5), (1,7)) = K& ((i', '), (i, )
for any (4,j) € D and (¢, j') € D,.

The R}, ~LIT-image decompression is defined analogously as an Ry ,—lattice inte-

gral transform G?Kv?m) : F(Dyuw) — F(D), where K is the same integral kernel
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as in the previous case, and v is complementary fuzzy measure on (D, y.ps F(Dpuw))
such that constant functions are reversed. It should be noted that the decompres-
sion of the negative image, which is a result of the compression procedure, we get
again a positive image, as demonstrated in Figure [6.5]

Finally, the R} ,,-LIT-image decompression is defined as an Ry —lattice integral

transform H(;K_1 ) F(D,uy) — F(D), where K;;' is the same integral kernel as in
w o

the previous case, and jis is a fuzzy measure on (D, ,, F (D,u.)) such that constant
functions are preserved due to Theorem [3.18]

Opening and closing Opening and closing are two important morphological op-
erators. They are both derived from the fundamental operations of erosion and
dilation, namely, the opening is defined as an erosion followed by a dilation, and
vice versa for closing. Opening is generally used to restore the original image to the
maximum possible extent. It eliminates the thin protrusions of the obtained image
and is also used to remove internal noise. Closing is generally used to smooth the
contour of the distorted image and fuse back the narrow breaks and long thin gulfs.
It is also used to remove the small holes in the obtained image.

In our case, we consider the opening and closing defined by fuzzy morphological
erosion and dilation, which correspond to the direct lower and upper lattice fuzzy
transforms, respectively, as shown in [42]. The fuzzy morphological erosion (dilation)
is defined in a similar way as the minimum (maximum) filter introduced in Table [6.1]
More precisely, the fuzzy morphological erosion is the (Kyy,ut, —)-M-lattice in-
tegral transform from F(D, ) to F(D), where u' denotes the least fuzzy mea-
sure on the powerset P(D, ) and the window W consists of arbitrary weights
from [0, 1], as described in Subsection The fuzzy morphological dilation is
the (K, u', ®)-M-lattice integral transform from F(D,.;) to F(D), where p' de-
notes the highest fuzzy measure on the powerset P(D, ;) and again the window W
consists of arbitrary weights from [0, 1]. However, the lattice integral transforms
provide an opportunity to generalize the fuzzy morphological erosion (dilation) so
that instead of the least (highest) fuzzy measure, we can consider fuzzy measures
that are close (but not equal) to the least (highest) fuzzy measure. The combina-
tion of more general fuzzy morphological operations introduces a generalization of
opening and closing. More precisely, a generalized opening (M-LIT-opening) op-
eration is obtained as the composition of (K, u, —)-M-lattice integral transform
(M-LIT-erosion) and (Kw, y/,®)-M-lattice integral transform (M-LIT-dilation)
which are set to preserve constant functions and f is close to u* and p’ to u'. The
reverse composition of the previous lattice integral transforms leads to a generalized
closing (M-LIT—closing) operation. Other alternatives of opening and closing can
be obtained by applying Rpy—LIT (also Rppr—LIT).

6.3 Filtering, compression/decompression, opening/closing

In this part, we illustrate our method based on M-LIT, Rpy—LIT, Rppr—LIT for
lattice-valued functions. We do not have the ambition to present results that sur-
pass current approaches, but we want to show that integral transforms provide an
extension of selected methods with a wide space for setting parameters that can be
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used to solve various tasks in image processing. We believe that certain parameter
settings could provide interesting alternatives to popular techniques such as the me-
dian, minimum or maximum filter, opening and closing, and the M-LIT (Rp,—LIT
and Rppr—LIT) can be used to introduce other useful types of filters and morpho-
logical operators. However, a detailed analysis is beyond the scope of this thesis,
and we leave it for our future work.

To illustrate, we assume the complete residuated lattices determined by con-
tinuous t-norms from the Schweizer-Sklar class of t-norms 77 in Example
and negations N = N{° determined by the residuum —qss for A > 0 in Exam-
ple Note that N{* are involutive for A > 0, i.e., N{¥ o NJ¥ = idjy 1], where
idjo1) denotes the identity function on [0,1]. In addition, we consider a fuzzy mea-
sure = “IZ,U ,u o for the (Kw, p, ®)-M-lattice integral transform and the
N-conjugate fuzzy measure p®" = /L%CUN w Dpen 1O p for the (K, us",—)

L/nU n

—M-lattice integral transform (see, Examples [2.§ E and |2 E and Remark . Fur-

ther, we consider the complementary fuzzy measure v = :uLU = uwp N for
L/n,U/n

the (K, v, ®)-Rpy—lattice integral transform and the N—conjugate complementary

fuzzy measure v*V = by, = [ope for the (K,v%Y, —)-Rpylattice integral
’ /n U/n

transform (see, Remark E Thus, all types of fuzzy measures are determined
from the fuzzy measure p. Finally, we consider the fuzzy measure p and the
N-conjugate fuzzy measure uY for the (K, 1, ®)-Rppr—lattice integral transform
and the (Ky, u®", —)-Rppr-—lattice integral transform, respectively.

Image filtering For illustration, we consider the Cameraman image (256x256)
with 30% and 40% of salt-and-pepper noise, see Figure [6.2(b) and Figure [6.3(b),
where we assume that the salt-and-pepper noise is in the ratio 2:1 and 3:1, respec-
tively. The reason for the non-uniform distribution of salt and pepper noise is to
show that M-LIT-filters (Rpy—LIT-filters, Rppr—LITfilters) provide a more effi-
cient way to reduce noise due to greater parameter flexibility than the standard
median filter and its combination with minimum filter (maximum filter). Note that
the median filter provided the best solution in case of the uniform distribution of
salt and pepper noise in our experiment. To compare the results of M—LIT-filters
(Rpy—LITfilters, Rppr—LITfilters) with the median filter approach, we use the
same window of size 3x3 with all weights equal to 1. Furthermore, we consider
A = 1, which specifies the t norm, residuum, and negation used. The fuzzy measure
is the crucial parameter in our experiment, and its setting will be specified for each
result of M-LIT-filters (Rpy—LIT-filters, Rppr—LITfilters).

The filtering results of 30% salt-and-pepper noise (2:1 ratio) for different types
of filters are shown in Figure [6.2] In our demonstration, we consider the applica-
tion of all three filters in succession to demonstrate the effect of the composition
of M-LIT-filters (Rpy—LIT-filters, Rppr—LITfilters) determined by the multipli-
cation and residuum. In Figure [6.2(c-f), we can see the results of the median fil-
ter, M®-LITfilter, R ~LIT— ﬁlter and RE,.~LIT-filter, where the respective (com-
plementary, N fconjugate) fuzzy measures are determined from the fuzzy measure
= ugﬁ. By adjusting the fuzzy measure u, we can remove more salt noise, see
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Figure [6.2d.f), compared to the median filter, see Figure [6.2|c), with the pres-
ence of a higher proportion of pepper noise. The negative image as the result of
the R2,~LIT-filter seems unnecessary at first glance, especially if we want to work
with it immediately without further processing. In Figure [6.2)g-1), we can see the
results of combinations of two filters. Particularly, we use the double application
of the median filter (D-Median filter) and the application of the median filter and
then the minimum filter (Min-Median filter) and the maximum filter (Max-Median
filter). Further, the composition of the M—LIT-filters with the multiplication and
residuum (M~o M®-LIT-filter), where the M~-LIT-filter with the N—conjugate
fuzzy measure p“" derived from g, 5 (the same fuzzy measure as for the me-
dian filter, see, Table is applied on the result of the M®-LIT-filter shown in
Figure [6.2(d). The composition of the Rp,~LITfilters with the multiplication and
residuum (R 0 RE,~LIT-filter), where the R,—LIT-filter with the N—conjugate
complementary fuzzy measure v derived from p = ,ugﬁ is applied on the re-
sult of the R, ~LIT-filter shown in Figure (e). Finally, the composition of the
Rppr—LIT-filters with the multiplication and residuum (Rg,,o0 Rg,,~LIT-filter),
where the R, —LIT-filter with the N-conjugate fuzzy measure to u is applied on
the result of the R, ~LITfilter shown in Figure [6.2|f). Visual comparison of the
results shows that the best filtering is provided by the M~ o M®-LIT-filter in Fig-
ure [6.2|j). This claim is also underlined by the highest PSNR among others in
Table 6.2

The filtering results of 40% salt-and-pepper noise (3:1 ratio) for different filters
are displayed in Figure[6.3] We consider the same filters as in the previous case. The
M®—LIT-filter has the same fuzzy measure as above. For the M~ o M®-LIT-filter,
we consider the conjugate fuzzy measure p>V derived from p = ,ugﬁ in the set-
ting of M~—LIT-filter, which is applied on the result of the M®-LIT-filter in Fig-
ure [6.3(d). Again, the RE, ~LIT-filter (RE,,~LIT-filter) and Ry, 0 RZ,~LITfilter
(Rgero RE.,LIT-filter) have the same setting as in the previous case. The R0
R ~LITAilter provides the best result both visually and supported by the highest

PSNR, as seen in Table

Filters PSNR for 30% noise PSNR for 40% noise
(dB) (dB)
Median filter 18.0779 13.5977
M®-LIT filter 18.8865 16.7818
R, ~LITfilter 3.2306 3.2385
R, —LITfilter 18.6335 16.579
D-Median filter 20.4318 15.734
Min-Median filter 16.4346 16.9958
Max-Median filter 11.9095 8.2982
M=o M®-LIT-filter 21.365 18.9119
Rg,o RE, ~LITfilter 19.1213 19.4209
Roero RE.,LITfilter 20.9759 18.5289

Table 6.2: PSNR for different methods of filtering of salt-and-pepper noise.
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(a) Original image (b) 30% salt-pepper (¢) Median filter

; w \ )I e 2 '. .: | . ot -'_4 ' I' j "‘ . ‘..' ‘ 3 ',-'\.. ':
. 4 * a4 o - ¥ - < R - - }ﬁ 4 . A = !

(g) D-Median filter (h) Min-Median filter (i) Max-Median filter

PR 3 vy

(j) M~ o M®-LIT filter (k) Ry o R,y LIT filter (1) Rijpg © Rpg- LIT filter

Figure 6.2: Filtering Cameraman image with 30% salt-and-pepper noise (2:1 ratio)
using standard filters and new filters based on M*-LIT filter, R, ~LIT filter, and

*
RDPR

~LIT filter with the window 3x3.
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(d) M®-LIT-filte (e) Ry LIT-filter (f) RgprLIT-filter

(g) D-Median filter (h) Min-Median filter (i) Max-Median filter

* -

(G) M™ o M®-LIT filter (k) Ry o RpyLIT filter (1) Rgpg © Rppr-LIT filter

. NP

Figure 6.3: Filtering Cameraman image with 40% salt-and-pepper noise (3:1 ratio)
using standard filters and new filters based on the M*-LIT filter, Ry ~LIT filter,
and R} ,.—LIT filter with window 3x3.

DPR
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To summarize results, the filters based on (Rpy—LIT, Rppr—LIT) M-LIT seem to
be useful in filtering non-uniform salt-and-pepper noise from images. For the sake of
comparison, the only parameter here was the fuzzy measure whose setting improves

the results for the median filter. The further development of more sophisticated
filters based on (Rpy—LIT, Rppr—LIT) M-LIT is the subject of future research.

Image compression and decompression For illustration of this part, we use
the Lena image (512x512) and the compression ratio 4:1, i.e., the shift is o = 2. We
consider the window of size 7x7 with the weights equal to 1 around the center and
other less than 1, more specifically, w;; = 1 for ¢, j € [-2,2] and w;; < 1, otherwise.
Here, we use different values less than 1 for different A\. The respective integral
kernel is denoted by K. Further, we consider A € {0.5,1,2}, which specify the used
operations.

For compression, we apply the fuzzy measure p; = ,u?&% and similarly to image

filtering, the remaining fuzzy measures are derived from p; as follows: ui’N is the
N-conjugate fuzzy measure to juy, v, = pd’ is the complementary fuzzy measure of
1, and l/f’N is the N—conjugate complementary fuzzy measure to 1. The results of
M-LIT-image compression of the Lena image for different settings of A are shown
in Figures [6.4(a-b). The negative images as the results of Rp,—LIT-image com-
pression of the Lena image are then shown in Figures (c—d). Finally, the results
of Rppr—LIT-image compression of Lena image are shown in Figure (f—g). On
compressed images we can observe that a higher value of the parameter A makes
the M®-LIT-image compression darker, while the opposite effect appears for the
M~ -LIT-image compression. Similar observations can be found for other types of
compression.

For decompression, we consider the fuzzy measure py = “%,2’ which is close to
the highest fuzzy measure on P (D, ). The remaining fuzzy measures are derived
from ps in the same way as for ;. We chose s because it experimentally provided
the best decompression. The results of decompression of compressed Lena image
in Figure for different settings are shown in Figure A comparison of all
image decompression results with the original Lena image using PSNR is shown
in Table [6.3] We can see that a good result of LIT-image decompression can be
provided by the Ryy—LIT-image decompression in case of R, o Ry, with A = 2.

Type of LIT- PSNR(A=05) PSNR(A=1) PSNR() = 2)

decompression
M~ o M® 26.3666 23.7756 22.3109
M® o M~ 24.069 25.9264 23.7151
Ry, o RE, 26.1738 26.6169 26.5364
R, o Ry, 24.3746 25.9614 28.6796
Rior © REok 25.6844 25.6013 24.4589
R&.. © Roen 24.7239 24.0233 21.4154

Table 6.3: PSNR for the decompression of Lena image using M-LIT decompression,
Rpy—LIT decompression, and Rppr—LIT decompression with a window 7x7.
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(d) Rgy—LIT compression.

continued figure
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(e) Rgpgr-LIT compression

(f) Rgpr—LIT compression

Figure 6.4: Compression of Lena image with ratio of 4:1 using M—LIT compression,
Rpus—LIT compression, and Rppr—LIT compression with a window 7x7 for various
operations determined by A € {0.5,1,2} where A = 0.5(left), A = 1(middle), and
A = 2(right).
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(d) Ry © Ry —LIT decompression.

continued figure
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(e) Riy o Ry~ LIT decompression.

(g) REpr © Rgpr—LIT decompression.

Figure 6.5: Decompression of Lena image, which was previously compressed at a
ratio of 4: 1 using M-LIT decompression, Rpy—LIT decompression and Rppr—LIT
decompression with a 7x7 window for various operations specified by A € {0,5,1,2},
where A = 0.5 (left), A = 1 (middle) and A = 2 (right).

In principle, lattice integral transforms lead to lossy (irreversible) compression,
and the question is whether the quality of reconstructed images can be improved by
appropriate parameter settings, which is the subject of our future research. However,
we see the primary purpose of lattice integral transforms in image filtering demon-
strated in the previous paragraph and introducing new types of (morphological)
operations, which is the topic of the next paragraph.
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(a) 300x300 image

20 D

(b) Fuzzy erosion (¢) Fuzzy dilation (d) Fuzzy opening (e) Fuzzy closing

DODO

(f) M-LIT-erosion (g) M-LIT-dilation (h) M-LIT-opening (i) M-LIT—closing

Figure 6.6: Comparison of fuzzy and M-LIT-morphological operations of erosion,
dilation, opening and closing with the use of window of size 5x5.

Opening and closing For the last illustration in this chapter, we use a 300x300
binary image with black balls inside a white circle, which can be seen in Figure (a).
Similarly to compression, we consider the window (structuring element) W of size
5x5 with weights equal to 1 around the center and others small than 1. By setting
the window W, the effect of the morphological operations can be seen on the white
pixels. As we stated above, in our case, opening and closing operations are fuzzy
morphological operations that can be expressed in terms of M—LIT as compositions
of fuzzy morphological erosion and dilation.

The results of fuzzy morphological erosion, dilation, opening and closing for the
considered image with respect to the given window are shown in Figure (b-e). For
example, we can see that the white space erodes in Figure (b) and is extended
in Figure [6.6(c). For comparison, we consider the M-LIT-dilation defined as the
(Kw, pt, ®)-M-lattice integral transform with p = ugj, which is close to the highest
fuzzy measure p', and the M-LIT-erosion as the (Ky, i, —)-M-lattice integral
transform with p/ = ", which is close to ut. Further, we use the t-norm T2
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and its residuum —pss with A = 1 in the definitions of M-lattice integral trans-
forms. The M-LIT-opening is defined as the composition of M—LIT—erosion and
M-LIT—dilation, and vice verse for the M—LIT—closing. The results of all modified
fuzzy morphological operations are displayed in Figure [6.6(f-i). The effect of the
newly defined conjugate fuzzy measure y’ in the M—LIT—erosion is obvious and con-
sists in a smaller erosion of white part in the image in contrast to the fuzzy erosion.
The opposite effect can be recognized for the M—LIT—dilation defined by the fuzzy
measure p. The M-LIT—-opening provides a better restoration of the original image
than fuzzy opening, and the M—LIT—closing leaves more of the black circle than
the fuzzy closing. Interestingly, morphological operations based on lattice integral
transforms better preserves the shape of black balls in image.
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Chapter 7

Conclusion

In the thesis, we introduced a theory of integral transforms for functions valued in
complete residuated lattice (lattice integral transforms) and showed their usefulness
in solving practical problem. The motivation for this theory was the discovery that
the lattice fuzzy transforms proposed in [36] and used for the lower and upper ap-
proximation of functions can be expressed in the same form as the standard integral
transforms, except that a Sugeno-type fuzzy integral is used for integration and
the binary fuzzy relation represents the integral kernel. To develop the theory of
lattice integral transforms, we employed the three types of Sugeno-like fuzzy inte-
grals, which were established to integrate functions with function values in complete
residuated lattices. More specifically, we used a multiplication-based fuzzy integral
(®—fuzzy integral) and two residuum-based fuzzy integrals (—py—fuzzy integral and
—ppr—fuzzy integral) proposed in [10} [11]. The basic properties of these fuzzy inte-
grals and computational methods useful for solving practical problems were studied
in Chapter 2|

Following the standard scheme, we introduced three types of lattice integral
transforms using the fuzzy integrals mentioned above and investigated their basic
properties in Chapter It is well-known that the key element of lattice fuzzy
transforms is the fuzzy partition of the function domain. Therefore, we provided
a representation of the fuzzy partition using the integral kernel which enabled us
to prove that the lattice fuzzy transforms are particular cases of lattice integral
transforms with respect to the top and bottom fuzzy measures. We also analyzed
the sufficient conditions ensuring the preservation (reversation) of constant functions
by lattice integral transforms. This property proved to be essential for the successful
approximation of the original functions. The theoretical results were demonstrated
on signal processing.

The approximation properties of integral lattice transforms were investigated in
Chapter In particular, we were interested in the quality of the approximation
achieved by the composition of two suitable lattice integral transforms, where we
were inspired by the composition of the direct and inverse lattice fuzzy transforms
leading to a lower and upper approximation of the original function. For this pur-
pose, we introduced a modulus of continuity for functions valued in a complete
residuated lattice. Further, we designed two inverse kernels according to the type
of integral transform and thoroughly investigated their properties. The results were
used to prove several approximation theorems for each type of integral transform.
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An interesting and surprising result is that the composition of lattice integral trans-
forms can even preserve extensional-like functions with respect to a similarity rela-
tion. The approximation abilities of the composition of lattice integral transforms
were illustrated on a signal without and with noise.

An application of lattice integral transforms to multicriteria decision making
was developed in Chapter |5l In particular, we proposed an approach based on the
multiplication-based lattice integral transform to evaluate the alternatives in a lin-
early ordered set endowed by additional operations when the evaluation need not
be a single value for each alternative but a vector whose values determine the sat-
isfaction of alternatives with respect to global criteria describing suitable features.
We demonstrated our approach on the problem of car selection, where the obtained
results are compared with the results of the evaluation of alternatives using the stan-
dard weighted average and weighted maximum. Since the lattice integral transform
can be seen as an “extended” qualitative aggregation function, our approach provide
a tool for qualitative evaluations as opposed to quantitative evaluations based on
the weighted average or more general OWA operators.

Other applications of lattice integral transforms in image were shown in Chap-
ter [6] We proposed non-linear filters based on lattice integral transforms that gen-
eralize the popular median filter as well as minimum and maximum filters. We also
designed a method for image compression/decompression and generalized fuzzy mor-
phological operators of erosion and dilation and derived operators of opening and
closing of images. All the new approaches to image processing were illustrated on
various selected images for different types and settings of lattice integral transforms
and the quality of the results were compared with each other using PSNR.

The proposed theory of lattice integral transforms provides a theoretical back-
ground for data processing, especially for data whose values cannot in principle
be processed within the arithmetic of real or complex numbers but has a lattice
structure. In addition, the proposed tools can be used to develop new “qualitative”
methods that are as oppose to standard “quantitative” methods. Although the the-
ory provides some interesting results, it can only be considered as an introduction
to lattice integral transforms and motivation for further research. In the future, we
plan to focus our attention on studying different types of kernels and their inverses
together with their effect on function approximation. For particular complete resid-
uated lattices, we want to investigate the quality of the approximation in more detail
and show that some functions defined over a real interval (or more general compact
set) can be approximated with arbitrary accuracy. Motivated by examples, we see
as a challenge the theoretical analysis of lattice integral transforms applied to signals
with noise. Finally, we plan to develop methods based on lattice integral transforms
in signal and image processing to provide alternative approaches to solve various
tasks such as non-additive noise filtering, image compression and decompression, or
image processing using novel and interesting fuzzy morphological operators.
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