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Summary

The aim of my thesis is a contribution to one of fields of data mining, i.e. the

linguistic association analysis. The main idea is from numerical data set to identify

valid, novel, potentially useful, and ultimately understandable knowledge. The new

knowledge is called “association”. Therefore we represent associations in natural

language we speak about linguistic association analysis. The main advantage of lin-

guistic associations is in a hight understandability, furthermore the found linguistic

associations can be interpreted as standard fuzzy IF-THEN rules.

The goal of the thesis is to suggest the new mathematical model with more spe-

cific results and represented it in the known algorithm. Moreover, in this thesis,

the fuzzy confirmation measures are employed with several properties that enable a

further work with found associations. Further these theoretical knowledge is imple-

mented into one of well-known algorithms.

In the thesis, the basic information of data mining is summarized. We will

specialize in a research of an association analysis. Theme motivation, thesis structure

and contributions are described in Chapter 1. The elementary concepts of the theory

of fuzzy modeling are established in Chapter 2.

The main part of thesis is elaborated in Sections 3, 4 and 5. In first one we present

the original mathematical model published by V. Novák. The original mathematical

model is modified. We obtain the same results as well as more specific results. At

the end of the chapter the comparison of models is shown. The chapter Properties

induced by fuzzy confirmation measures (Chapter 4) studies three pairs of fuzzy

confirmation measures (support and confidence degrees) with the respect to axioms

and inference rules that are used in database design as well as properties that are

motivated by analogous properties that are used in GUHA method or in the classic

Apriori algorithm. On the base of the extended mathematical model and above

mentioned properties the modified Apriori algorithm is constructed in Chapter 5.

Keywords: Data mining, linguistic association, association rule, reduction rule,

confirmation measure.
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Anotace

Ćılem této práce je jedna z oblast́ı dobývańı dat, a to lingvistická asociačńı analýza.

Hlavńı myšlenkou asociačńı analýzy je identifikovat z numerických dat nové, platné,

potenciálně užitečné a pochopitelné znalosti. Novou znalost budeme nazývat “asoci-

ace” a jelikož ji prezentujeme v přirozeném jazyce, jedná se o lingvistickou asociačńı

analýzu. Hlavńı výhodou zmı́něné analýzy je jej́ı pochopitelnost, jelikož nalezené

asociace můžeme interpretovat formou IF-THEN pravidel.

V této disertačńı práci je navržen nový matematický model, který kromě výsledk̊u

dosažených v p̊uvodńım modelu, obsahuje také v́ıce specifické výsledky. V práci jsou

použity fuzzy konfirmačńı mı́ry s několika vlastnostmi, které umožňuj́ı daľśı práci

s nalezenými asociacemi. Tyto teoretické znalosti jsou implementovány do jednoho

z dobře známých algoritmů.

V práci jsou shrnuty základńı informace o dobýváńı dat. Motivace, struktura

práce a př́ınosy jsou popsány v Kapitole 1. Základńı pojmy teorie fuzzy modelováńı

jsou zavedeny v Kapitole 2.

Hlavńı část práce je zpracována v kapitolách 3, 4 a 5. V prvńı z nich prezentu-

jeme p̊uvodńı matematický model, který byl publikován V. Novákem. Původńı ma-

tematický model je modifikován a d́ıky němu źıskáváme stejné a současně v́ıce speci-

fické výsledky. Na konci kapitoly můžeme vidět srovnáńı těchto model̊u. V kapi-

tole Vlastnosti indukované fuzzy konfirmačńımi mı́rami (Kapitola 4) se zaměřujeme

na tři páry fuzzy konfirmačńıch měr (definovaných pomoćı stupně podpory a stupně

spolehlivosti) s ohledem na axiomy a odvozovaćı pravidla, která se použ́ıvaj́ı při ná-

vrhu databáźı, stejně jako vlastnosti, které jsou motivovány obdobnými vlastnostmi

použ́ıvaj́ıćımi se v GUHA metodě nebo v klasickém Apriori algoritmu. Na základě

rozš́ı̌reného matematického modelu a výše uvedených vlastnost́ı je popsán v Kapi-

tole 5 modifikovaný Apriori algoritmus.

Kĺıčová slova: Dobýváńı dat, jazyková asociace, asociačńı pravidlo, redukčńı

pravidlo, konfirmačńı mı́ra.
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Chapter 1

Introduction

1.1 Motivation

Data mining, also called Knowledge Discovery in Databases (KDD), is the field of

discovering novel and potentially useful information from large amounts of data.

In the world, the amount of data is increasing. We would like to mine some

knowledge from data or look for patterns in data. We investigate ways how found

patterns can be sought automatically, identified, validated, and used for prediction.

In other words, the data mining is about solving problems by analysing data already

present in databases.

The data mining is used in a practise in the sphere of scientific research as well

as in the commercial sector. There exist many applications, for example, in medical

and pharmaceutical area (diagnostic methods and the development and testing of

medicaments), marketing and sales area (automatic web page design, recommenda-

tions for new purchases, cross selling) but also in bioinformatics, counter-terrorism

and for analysis of the data collected by NASA from space observation and evalua-

tion of geophysical data.

The Knowledge Discovery in Databases (KDD) process is commonly defined with

the stages:

1. In the selection-step the significant data gets selected or created. Only relevant

information is selected, and also meta data or data that represents background

knowledge.

2. Before applying data mining an appropriate data preparation is important.

Relevant elements of the provided data have to be detected and filtered out.

This phase is called the pre-processing phase. To detect knowledge the effective
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main task is to pre-process the data properly and not only to apply data

mining tools. Elements of the pre-processing span the cleaning of wrong data,

the treatment of missing values and the creation of new attributes.

3. The transformation phase of the data may result in a number of different data

formats, since variable data mining tools may require variable formats. The

data also is manually or automatically reduced.

4. In the data mining phase, the data mining task is approached. There exist

many techniques for data mining. The output of this step is detected patterns,

novel relations, predictions, etc.

5. The interpretation of results of data mining process reveals whether or not the

result is interesting. This is why this step is also called evaluation.

The another view is the Cross Industry Standard Process for Data Mining

(CRISP-DM) which defines six phases (see Figure 1.1):

1. Business Understanding

This initial phase focuses on understanding the project objectives and require-

ments from a business perspective, and then converting this knowledge into

a data mining problem definition, and a preliminary plan designed to achieve

the objectives.

2. Data Understanding

The data understanding phase starts with an initial data collection and pro-

ceeds with activities in order to get familiar with the data, to identify data

quality problems, to discover first insights into the data, or to detect interesting

subsets to form hypotheses for hidden information.

3. Data Preparation

The data preparation phase covers all activities to construct the final dataset

(data that will be fed into the modeling tool(s)) from the initial raw data.

Data preparation tasks are likely to be performed multiple times, and not in

any prescribed order. Tasks include table, record, and attribute selection as

well as transformation and cleaning of data for modeling tools.

4. Modeling

In this phase, various modeling techniques are selected and applied, and their

parameters are calibrated to optimal values. Typically, there are several tech-

niques for the same data mining problem type. Some techniques have specific

requirements on the form of data. Therefore, stepping back to the data prepa-

ration phase is often needed.
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5. Evaluation

At this stage in the project you have built a model (or models) that appear

to have high quality, from a data analysis perspective. Before proceeding to

final deployment of the model, it is important to more thoroughly evaluate the

model, and review the steps executed to construct the model, to be certain it

properly achieves the business objectives. A key objective is to determine if

there is some important business issue that has not been sufficiently considered.

At the end of this phase, a decision on the use of the data mining results should

be reached.

6. Deployment Creation of the model is generally not the end of the project. Even

if the purpose of the model is to increase knowledge of the data, the knowledge

gained will need to be organized and presented in a way that the customer can

use it. Depending on the requirements, the deployment phase can be as simple

as generating a report or as complex as implementing a repeatable data mining

process. In many cases it will be the customer, not the data analyst, who will

carry out the deployment steps. Even if the analyst deploys the model it is

important for the customer to understand up front the actions which will need

to be carried out in order to actually make use of the created models.

Figure 1.1: The six phases of CRISP-DM.

There exists many techniques of data mining. Below the mostly used approaches

are meant.

Decision trees or also called Top Down Induction of Decision Trees (TDIDT).

At the begining is one node and then other subnodes are specialized. Trees are
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constructed by the divide-and-conquer algorithm. The aim is to search for tree that

is consistent to training data. These decision trees are mostly use to classification

rules.

Clustering is the task of discovering groups and structures in the data that are

in some way or another “similar”, without using known structures in the data.

The most known algorithm is k-means clustering algorithm. It was first used by

James MacQueen in 1967 though the idea goes back to Hugo Steinhaus in 1957.

At the beginning k initial points are chosen to represent initial cluster centers.

The remaining data are assigned to the nearest one initial cluster center. The

iteration continues until there are no changes in the cluster. The another clustering

algorithm is DBSCAN algorithm (Density-Based Spatial Clustering of Applications

with Noise) that was proposed by Martin Ester, Hans-Peter Kriegel, Jrg Sander

and Xiaowei Xu in 1996. It finds a number of clusters starting from the estimated

density distribution of corresponding nodes. DBSCAN is one of the most common

clustering algorithms.

Classification describes a task of generalizing known structure to apply to new

data. It is separate-and-conquer technique because it identifies a rule that covers

instances in the class (and excludes ones not in the class), separates them out, and

continues on those that are left.

Regression is a data mining (machine learning) technique used to fit an equation

to a model the data with the least error. The regression functions are used to deter-

mine the relationship between the dependent variable and one or more independent

variables. The dependent variable is the one whose values you want to predict,

whereas the independent variables are the variables that you base your prediction

on. Most often used types of regression models are linear, polynomial, and logistic

regression.

Association Rule Learning is one of the most frequent used techniques. It was

described by R. Atrawal and R. Srikant in [1]. Association rules search for relation-

ships between variables. For example, the known market basket analysis discovers

and understands customer purchasing behavior. A supermarket collects data about

customer purchasing habits. Using association rule learning, the supermarket can

determine which products are frequently bought together and use this information

for marketing purposes. More detailed about the association rule learning is in

Chapter 3.1.

Data mining is the process of analysing data from different perspectives and

summarizing it into useful, valid, novel information in large scale data sets. It allows

users to analyse data from many different dimensions or angles, categorize it, and

summarize the relationships identified. The process of data mining has attracted a

15



lot of research interest in the last two decades. It should be mentioned that the first

data mining method was the GUHA method presented in [9] even earlier. Probably

because of a different terminology (the author of [9] did not use the term “data

mining”) the GUHA method is not well known and some results were forgotten and

then rediscovered in the nineties (e.g. [18], [27]). For more precise information on

the GUHA method we refer to [11] and references therein.

This thesis is a contribution to the theoretical foundations of data mining and

partially extends the use of the GUHA method. We follow a direction that was

recently developed by V. Novák in several papers (c.f., e.g. [22] and [19]). Within the

novel Novák’s approach a method for searching for so-called linguistic associations

was elaborated ([23]). This method is based on the GUHA method and results of

formal fuzzy logic ([20]) and allows us to mine linguistic associations of the form

IF the area of the base of a cylinder is big AND the height of this cylinder is also

big THEN the volume of this cylinder is big.

The advantage of this approach is especially the high understandability of founded

associations since they are presented in natural language. Additionally, it should

be also mentioned that found linguistic associations can be interpreted as standard

fuzzy IF-THEN rules (see [6] and references therein). Further, any data mining

procedure working with categorical or logical data can be applied to Novák’s math-

ematical model of linguistic expressions and predications.

We consider three the most commonly used confirmation measures using of which

was mathematically justified in [6] (see also [8] for further information). For each of

considered confirmation measures we study special properties motivated by so-called

Armstrong axioms that, among other things, are used for database design (see [2])

and are also valid in fuzzy attribute logic developed, e.g. in [3]. This logic can be

applied to similar data sets and, under some assumptions, establishes a complete and

sound system of associations. Thus it was a natural question under what conditions

we can obtain similar relations in ordinary fuzzy association analysis. The remaining

properties are motivated by properties that are used, for example, in GUHA method

([11]) or in known Apriori algorithm ([1, 5]).

We demonstrate how to apply results from [15] and [16], and some specific prop-

erties of the model of evaluative linguistic expressions (see [14] and [23]) into known

Apriori algorithm. Our algorithm might be computationally more complex than

the original one as we use more complex model of linguistic expressions. But we

also suggest several ways allowing us to possibly reduce number of tested associa-

tions. Some of them are based on properties of fuzzy confirmation measures and,

consequently, can be used in the original algorithm as well. Additionally, this is
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the first algorithm where linguistic associations can be mined without transforming

to the non-fuzzy case. Additionally, the proposed algorithm is the first case where

hierarchical structure of evaluative linguistic expressions is taken into consideration

and this feature can substitute some preprocessing steps. It should be emphasized

that the same ideas can be used in other models of the same kind.

1.2 Thesis structure

The structure of thesis is following. In Chapter 1 the motivation and goals of this

thesis are introduced. In Chapter 2 the basic concepts and definitions are described.

In Chapter 3 the original mathematical model published by V. Novák is modified.

At the end of the chapter the models are compared. In Chapter 4, three pairs of fuzzy

confirmation measures (support and confidence degrees) with the respect to axioms

and inference rules that are used in database design as well as properties that are

motivated by analogous properties. These properties are used in GUHA method or

in the classical Apriori algorithm. On the base of the extended mathematical model

and above mentioned properties the modified Apriori algorithm is constructed in

Chapter 5.

1.3 My contribution

The contribution of Chapter 3 is to show two mathematical representations of lin-

guistic expressions based on common notions of fuzzy mathematics, namely on a

fuzzy partition and covering, respectively. The purpose of this chapter is to show

that such representations are possible and the second one based on fuzzy covering

extends the model developed by V. Novák et al. in [23] in a natural way.

Additionally, due to using standard notions of fuzzy modeling we also extend

the applicability of the method. The original model from [23] is suggested such

that any data mining methods using crisp decompositions (working with logical or

categorical data) can be used. In this chapter we use the same approach in order

to demonstrate our results. However, our model is suggested such that other data

mining techniques using fuzzy partitions ([25]) and coverings (c.f. [4], [12]) can be

applied.

In Chapter 4 three the most commonly used fuzzy confirmation measures are

considered - see [6] and [8] for justification of their existence. For each pair of

considered confirmation measures (i.e., support and confidence measures) we study

several properties. Six of them are motivated by so-called Armstrong axioms that,
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among other things, can be used for database design (see e.g. [2]) and are also valid

in fuzzy attribute logic developed e.g. in [3]. This logic can be applied to data

sets similar to ours and, under some additional assumptions, establishes a complete

and sound system of associations. Thus, it was a natural question under what

conditions we can obtain similar relations in ordinary fuzzy association analysis.

Further properties we have decided to study are motivated by properties that can

be used in current methods of association analysis - for example, in GUHA method

([11]) or in known Apriori algorithm ([1] and also [5]).

We explain that some properties remain valid when we use our fuzzy confirmation

measures. But we have also obtained some negative results and we demonstrated

that the situation can be improved if some additional (expert) knowledge is applied

to our properties. We would like to stress that our results are provided separately

either for support or confidence measure if necessary.

The Chapter 5 demonstrates how results from [15] and [16] can be applied.

Some specific properties of the model of evaluative linguistic expressions (see [14]

and [23]) are implemented into known Apriori algorithm. Our algorithm might be

computationally more complex than the original one as we use more complex model

of linguistic expressions. But we also suggest several ways allowing us to possibly

reduce number of tested associations. Some of them are based on properties of fuzzy

confirmation measures and, consequently, can be used in the original algorithm as

well. Additionally, this is the first algorithm where linguistic associations can be

mined without transforming to the non-fuzzy case. Additionally, the proposed algo-

rithm is the first case where hierarchical structure of evaluative linguistic expressions

is taken into consideration and this feature can substitute some preprocessing steps.

It should be emphasized that the same ideas can be used in other models of the

same kind.
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Chapter 2

Basic concepts of the theory of

fuzzy modeling

At the beginning of this chapter the basic notions of fuzzy mathematics are de-

scribed. Then we deal with special concepts for linguistic associations.

2.1 Basic concepts

By N we denote the set of natural numbers, the set of real numbers is denoted by

R.

Definition 1 A fuzzy set in the universe U (notation A ⊂∼ U) is a function from the

universe U to the closed unit interval [0, 1], i.e., A : U → [0, 1]. The function A is

called a membership function of the fuzzy set A and the value A(x) is a membership

degree of an element x ∈ U .

Definition 2 A support Supp(A) of a given fuzzy set A is usually defined as

Supp(A) = {x ∈ U |A(x) > 0}.

Definition 3 A fuzzy set A ⊂∼ U ⊆ R is convex, if

A(λx+ (1− λ)y) ≥ A(x) ∧ A(y)

for all x, y ∈ U and for all 0 ≤ λ ≤ 1, where the symbol ∧ denotes the minimum of

values A(x) and A(y).

Definition 4 Let A ⊂∼ [a, b] and α ∈ [0, 1]. Then the set

Aα = {x|x ∈ [0, 1], A(x) ≥ α}

19



is called the α–cut.

It should be mentioned that if A is upper semi-continuous then every α–cut is a

closed subset of [a, b].

Definition 5 A t–norm is binary function ⊗ : [0, 1] × [0, 1] −→ [0, 1] satisfying

these conditions:

x⊗ y = y ⊗ x, (commutativity),

x⊗ (y ⊗ z) = (x⊗ y)⊗ z, (associativity),

if x ≤ y then x⊗ z ≤ y ⊗ z, (monotonicity),

0⊗ x = 0 and 1⊗ x = x (boundary condition).

Definition 6 For given t–norm exists a corresponding t–conorm. It is binary func-

tion ⊕ : [0, 1]× [0, 1] −→ [0, 1] given by

x⊕ y = 1− (1− x)⊗ (1− y)

Example 1 The familiar t–norms are:

1. minimum given by x⊗ y = min{x, y},

2. product t–norm is x⊗ y = x · y (the ordinary product of real numbers),

3.  Lukasiewicz t–norm is defined x⊗ y = max{0, x+ y − 1}.

Example 2 The corresponding t–conorms are:

1. maximum or Gödel t–conorm given by a⊕ b = max{a, b},

2. product t–conorm or probabilistic sum is a⊕ b = a+ b− a · b,

3.  Lukasiewicz t-conorm or bounded sum is defined a⊕ b = min{1, a+ b}.

Definition 7 A two-dimensional copula c is a mapping c : [0, 1] × [0, 1] −→ [0, 1]

satisfying the following three conditions:

1. c(u, 0) = c(0, u) = 0 for every u ∈ [0, 1],

2. c(u, 1) = c(1, u) = u for every u ∈ [0, 1],

3. c(u2, v2) − c(u1, v2) − c(u2, v1) + c(u1, v1) ≥ 0 for every u1, u2, v1, v2 ∈ [0, 1]

satisfying u1 ≤ u2, v1 ≤ v2.

We can see that minimum and  Lukasiewicz t–norm are examples of copula. Moreover

 Lukasiewicz t–norm is the smallest copula.
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Definition 8 An implication operator →: [0, 1]× [0, 1] −→ [0, 1] is a generalization

of the material implication if it satisfies, for x, y, x0, y0 ∈ [0, 1],

1. x→ y ≤ x0 → y for x0 ≤ x,

2. x→ y ≤ x→ y0 for y ≤ y0,

3. 1→ y = y,

4. 0→ 0 = 1.

Example 3 For below meaning t–norms (from Example 1) there exist fuzzy impli-

cations (more detailed in [24]).

1. Gödel implication

x→ y =

{
1, if x ≤ y,

y, if x > y.

2. Product implication

x→ y =

{
1, if x ≤ y,
y
x
, if x > y.

3.  Lukasiewicz implication

x→ y =

{
1, if x ≤ y,

1− x+ y, if x > y.

In this thesis we mainly work with the standard  Lukasiewicz MV-algebra L (more

detailed in [24]) as an algebra of truth values. This is the algebra

L = 〈[0, 1],∨,∧,⊗,→, 0, 1〉,

where ∨ (resp. ∧) is an operation of supremum (resp. infimum) and, for any

a, b ∈ [0, 1], a⊗b = 0∨(a+b−1) is  Lukasiewicz conjunction and a→ b = 1∧(1−a+b)

is  Lukasiewicz implication. The operations ∧, ∨ and→ interpret logical connectives

AND, OR and the implication, respectively. The negation ¬ is defined pointwise by

¬A(x) = 1 − A(x) for any x ∈ [0, 1]. For a justification of the choice of L we refer

to [23] and references therein.

In the case when the universe U is a closed interval [a, b], a, b ∈ R, we may

define a fuzzy partition. We say that a finite system of fuzzy sets A1, . . . , An ⊂∼ [a, b]

forms a fuzzy partition of [a, b] if there are points xi ∈ [a, b], i = 1, 2, . . . , n, and

n ≥ 2, a = x1 < x2 < . . . < xn = b, called nodes and the following five conditions

are satisfied for k = 1, . . . , n:
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1. Ak : [a, b]→ [0, 1], Ak(xk) = 1,

2. Ak(x) = 0 if x /∈ (xk−1, xk+1), where for the uniformity of denotation, we put

x0 = a and xn+1 = b,

3. Ak(x) is continuous,

4. Ak(x), k = 2, . . . , n, monotonically increases on [xk−1, xk] and Ak(x), k =

1, . . . , n− 1, monotonically decreases on [xk, xk+1],

5. For all x ∈ [a, b]
n∑
k=1

Ak(x) = 1.

6. Ak(xk − x) = Ak(xk + x), for all x ∈ [0, h], k = 2, . . . , n− 1, n > 2,

7. Ak+1(x) = Ak(x− h), for all x ∈ [a+ h, b], k = 2, . . . , n− 2, n > 2.

If the nodes x1, . . . , xn are equidistant i.e., xk = a + h(k − 1), k = 1, . . . , n where

h = (b − a)/(k − 1) and the properties 6. and 7. are met then we call the fuzzy

partition uniform and talk about uniform basic functions.

Definition 9 A convex fuzzy set A is called a fuzzy number if it satisfies conditions

1.– 4. of the preceding definition (for A := Ak) for some points xk−1 < xk < xk+1.

A fuzzy covering of an interval [a, b] is a system {Ai}ni=1 such that there are n+1

points a = x1 < x2 < . . . < xn < xn+1 = b and the following conditions hold for

k = 1, 2, . . . , n

1. Ak(x) : [a, b] −→ [0, 1] is continuous,

2. Ak(x) = 0 if x /∈ (xk−1, xk+2), where for the uniformity of denotation, we put

x0 = a and xn+2 = b,

3. Ak(x) = 1 for x ∈ [xk, xk+1],

4. Ak(x) monotonically increases on [xk−1, xk] and Ak(x), k = 1, . . . , n−1, mono-

tonically decreases on [xk+1, xk+2].
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2.2 Evaluative linguistic expressions and predica-

tions

In this section we define several notions that are necessary for mining linguistic

associations. First of all we introduce a few fundamental notions of the theory of

evaluative linguistic expressions. This approach was initiated by V. Novák in [19]

and then developed in several subsequent papers (see [23] and also [22]). A special

attention should be focused also to [21] where the theory of evaluative linguistic

expressions was elaborated using higher order fuzzy logic.

The evaluative linguistic expressions are natural language expressions, such as

“significantly large, extremely big, roughly expensive, more or less thin”, etc. They

can be used in the data-mining process especially for user–friendly presentation of

discovered associations. We distinguish several types of evaluative linguistic expres-

sions :

• 〈atomic evaluative expression〉 := Small (briefly, Sm), Medium (Me),

Big (Bi).

• 〈pure evaluative expression〉 :=

〈linguistic hedge〉 〈atomic evaluative expression〉 .

A linguistic hedge was introduced by L. Zadeh in [28]. It is a special adverb modify-

ing the meaning of a given atomic evaluative expression. In paper [23] the following

linguistic hedges are considered: Extremely (Ex ), Significantly (Si), Very (Ve), More

or Less (ML), Roughly (Ro), Quite Roughly (QR) and Very Roughly (VR). We dis-

tinguish linguistic hedges with a narrowing effect (Ex , Si and Ve) or widening effect

(ML, Ro, QR and VR).

Linguistic hedges are constructed by using continuous functions νa,b,c : [0, 1] −→
[0, 1] (horizon shifts) where a < b < c are parameters, νa,b,c(y) = 0 for y ≤ a,

νa,b,c(y) = 1 for c ≤ y and it is increasing otherwise, i.e.,

νa,b,c(y) =


1, c ≤ y,

1− (c−y)2

(c−b)(c−a)
, b ≤ y < c,

(y−a)2

(b−a)(c−a)
, a ≤ y < b,

0, y ≤ a.

Further evaluative linguistic expressions are the following:

• 〈fuzzy number〉 := 〈linguistic hedge〉 〈numeral〉,
where numeral is a name of a given real number,
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• 〈negative evaluative expression〉 := not 〈atomic evaluative expression〉 ,

• 〈specifying evaluative expression〉 :=

〈atomic evaluative expression〉 but 〈negative evaluative expression〉 .

A compound evaluative linguistic expression is of the form

• E := ANDi∈I Ci, where Ci := ORk∈Ki
(Ak)

• F := ORj∈JDj, where Dj := ANDl∈Lj
(Bl)

and Ak and Bl for index sets I, J,Ki and Lj are above defined evaluative linguistic

expressions. The term AND (resp. OR) represents commonly used linguistic connective

“and” (resp. “or”).

In this paragraph, we outline the main concepts of semantics of evaluative ex-

pressions. For more precise information on described notions we refer to [23]. One

of established notions is the context (possible world). From the point of view of logic

understood the context is a state of the world at a given time moment and place.

Definition 10 The context is a mapping w : [0, 1] −→ [vL, vR] and is specified by a

triplet 〈vL, vM , vR〉, where vL, vM , vR ∈ R and vL < vM < vR. The value vL denotes

the smallest value (a left border) and vR means the highest value (a right border) that

makes a sense to consider. The value vM signifies a mean value (a center value).

For simplicity, we write x ∈ w instead an element x belongs to the interval [vL, vR]

(x ∈ [vL, vR]).

Intension of a linguistic expression is an abstract construction which conveys a

property denoted by the expression and it is invariant towards change of the context.

Definition 11 The intension is a function

Int(A) : W −→ F (U),

where A is linguistic expression, W is set of contexts and F (U) is set of fuzzy sets

in the universe U .

This means that the intension is a function from the set of all possible contexts

to the set of fuzzy sets. In other words, the intension of evaluative expression is a

representation of the property that the given expression determines.

We can model intensions of evaluative expressions in this way:

Smν(z) = ν(LH(z)),
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Meν(z) = ν(MH(z)),

Biν(z) = ν(RH(z)),

where ν ∈ Hf interprets 〈linguistic hedge〉, z ∈ [0, 1] and linear functions LH,MH,RH :

[0, 1] −→ [0, 1] are defined by

LH(z) = (
0, 5− z

0, 5
)?,

MH(z) = (
z

0, 5
)? ∧ (

1− z
0, 5

)?,

RH(z) = (
z − 0, 5

0, 5
)?

where the star ? means cut of all the values to interval [0, 1]. Then we put

Int(〈linguistic hedge〉)small = Sm,

Int(〈linguistic hedge〉)medium = Me,

Int(〈linguistic hedge〉)big = Bi.

The next important notion is an extension of a linguistic expression. That is

a class of objects that are determined by its intension in a given context (possible

world) and so, it changes whenever the context (time, place) is changed.

Definition 12 The extension is a fuzzy set in context w ∈ W

Extw(A) = Int(A)(w) ⊂∼ U.

It follows that for any context is derived one extension, i.e. fuzzy set. One intension

specifies a class of extensions.

Example 4 We assume the expression “young age” then “be young” is name of

intension that is independent on time moment and place. First, the context has

to be specify and then the extension can be determined. If we consider an age of

turtles, the context is the interval [0, 200]. Then the young turtle is given by the

extension (fuzzy set) on interval [0, 80]. But if we consider age of people with the

context [0, 120] then the young person is the extension (fuzzy set) on interval [0, 25].

We will distinguish between evaluative predications and expressions. An eval-

uative linguistic predication is an evaluative linguistic expression considered in a

certain context (possible world), i.e. a sentence of the form

〈noun phrase X〉 is A,
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where A denotes an evaluative linguistic expression. Such a linguistic predication

will be denoted by A(X).

For example, the word tall is an evaluative linguistic expression but the sentence

“a man is tall” (or, equivalently, the term “a tall man”) forms an example of a

linguistic predication. A precise mathematical representation of above mentioned

notions is elaborated in [23].

According to an ordering� ([23]) given by what a given linguistic hedge expresses

in natural language, i.e.

Ex � Si � Ve︸ ︷︷ ︸
narrowing effect

� 〈empty hedge〉 � ML � Ro � QR � VR︸ ︷︷ ︸
widening effect

, (2.2.1)

where ordering � means that all values in some context, that are extremely small

(or big), are also significantly small (or big), etc.

Later we will need an ordering of evaluative linguistic expressions and predica-

tions in each context w ∈ W . First we define an ordering on the set of linguistic

expressions and then we naturally shift this ordering to the set of linguistic predi-

cations. We define an ordering Evν1 � Evν2 .

Definition 13 We suppose that the set Hf is partially ordered by the specificity

relation �. The ordering induces a partial ordering on evaluating expressions defined

by

Evν1 � Evν2 iff ν1 ≤ ν2, (2.2.2)

where Ev is either of Sm,Me or Bi and ≤ is pointwise ordering of functions.

Definition 14 The position ordering l corresponds to the position of the evaluating

expressions on the scale, i.e.

Smν1 lMeν2 lBiν3 (2.2.3)

where ν1, ν2, ν3 are arbitrary.

From the ordering � and l we introduce natural (partial) ordering.

Definition 15 The natural (partial) ordering of evaluative expressions as lexico-

graphic ordering is

Ev1 / Ev2,

where first we order Ev1, Ev2 according to � (Definition 13), and then according to

l from (Definition 14).
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Example 5 For Si Sm and Me we obtain Si Sm � Me by Definition 14 since

the first (resp. the second) linguistic expression contains the expression small (resp.

medium), i.e. Si Sm / Me. But if we consider Si Sm and Sm then these sets

cannot be ordered by Definition 14 since both mentioned expressions contain the

atomic expression small. Thus we order separately evaluative linguistic expressions

describing small, medium and big values by Definition 13, i.e. Si Sm � Sm and it

means Si Sm / Sm.

At the end of this chapter we want to show a picture of fuzzy sets representing

extensions of certain evaluative linguistic expressions elaborated in [23]. Here we

can see that the context [aj, bj] is covered by fuzzy sets that are represented by

atomic evaluative linguistic predications Sm, Me, Bi and by evaluative linguistic

predications Si Sm, ML Sm and ML Me.

Sm BiMe

aj bj xj

1
ML Sm

Si Sm

ML Me

Figure 2.1: Fuzzy sets that are extensions of the corresponding evaluative linguistic
expressions described in [23].

27



Chapter 3

Extended mathematical model

of evaluative linguistic expressions

In this chapter we contribute to a part of data mining allowing us to search for asso-

ciations among attributes that can be expressed in a form of natural language sen-

tences. The theoretical background and also a method for mining such associations

was published recently in [23]. We elaborated other mathematical representations

of the model presented in the mentioned paper in order to extend its applicability.

This chapter is a contribution to the theoretical foundations of data mining

and partially extends the use of the GUHA method. We follow a direction that was

recently developed by V. Novák in several papers (c.f., e.g. [19] and [22]). Within the

novel Novák’s approach a method for searching for so-called linguistic associations

was elaborated ([23]). This method is based on the GUHA method and results of

formal fuzzy logic ([20]) and allows us to mine linguistic associations of the form

IF the area of the base of a cylinder is big AND the height of this cylinder is also

big THEN the volume of this cylinder is big.

The advantage of this approach is especially the high understandability of founded

associations since they are presented in natural language. Additionally, it should

be also mentioned that found linguistic associations can be interpreted as standard

fuzzy IF-THEN rules (see [6] and references therein). Further, any data mining pro-

cedure working with categorical or logical data can be applied to Novák’s mathemat-

ical model of linguistic expressions and predications. However, this mathematical

model has some disadvantages if we use it for mining of linguistic associations. We

found them when we tested this method ([7]). The problems are indicated in Sec-

tion 3.2. To cope with them we present another two mathematical representations

of linguistic expressions based on common notions of fuzzy mathematics, namely on
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a fuzzy partition and covering, respectively. The purpose of this chapter is to show

that such representations are possible and the second one based on fuzzy covering

extends the model developed by V. Novák et al. in [23] in a natural way.

Additionally, due to using standard fuzzy notions we also extend the applicability

of the method. The original model from [23] is suggested such that any data mining

methods using crisp decompositions (working with logical or categorical data) can

be used. In this chapter we use the same approach in order to demonstrate our

results. However, our model is suggested such that other data mining techniques

using fuzzy partitions ([25]) and coverings (c.f. [4], [12]) can be applied.

Organization of this chapter is the following. In Section 3.1, we present and dis-

cuss two possible mathematical models used for association mining. A method for

mining of linguistic associations is presented further in Section 3.2 and Section 3.3

is devoted to a short discussion on reduction rules. Finally, before a short con-

cluding section (Section 3.5) an example demonstrating our method is presented

(Section 3.4).

3.1 Mathematical models and mining of linguistic

associations from numerical data

We present a data mining process that is applied to real-valued two-dimensional

table. Thus, we have a data-set of the following form

X1 X2 . . . Xk

o1 a11 a12 . . . a1k

o2 a21 a22 . . . a2k

...
...

...
. . .

...

om am1 am2 . . . amk

where any real number aij ∈ R is a value of jth attribute (property) Xj on ith object

(observation, transaction) oi. The set of all objects Do = {oi|i = 1, . . . ,m} is called

row set.

To apply our method we have to specify a context wj for each attribute Xj (see

the definition on Page 24). We consider aij from a context wj, i.e. aij ∈ [aj, bj] ⊂ R
where values of a closed interval [aj, bj] are the left and right values of the context.

The values aj, bj are chosen by a real meaning of an attribute Xj or by what we

want to represent by linguistic expressions.

Example 6 Assume that Xj represents the height of people in centimeters and, in
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the data set, aij ∈ [190, 195] for any i = 1, 2, . . . ,m. Then the common choice

(aj = min{a1j, a2j, . . . , amj} and bj = max{a1j, a2j, . . . , amj}) is not suitable since a

190,5 cm tall person would be named small after using the model from Figure 2.1.

A reasonable choice can be aj = 150, bj = 200 in this case.

Below we work with fixed context [aj, bj]. The extension of evaluative linguistic

expression is modelling by fuzzy set in given context.

The first mathematical representation of linguistic expressions (Model I ) is based

on the fact that the context of each attribute Xj is covered by a fuzzy partition

Pj := {Ai,j}
nj

i=1. This assumption is quite general and is common for several fuzzy

data mining techniques (c.f. [25]).

The number nj of fuzzy sets Ai,j contained in Pj need not be fixed since there

are several possibilities how to define relevant evaluative linguistic expression repre-

sented by members of Pj. The choice of nj, resp. of evaluative linguistic expressions

(predications) could be defined without knowledge of the data set, but it should

be chosen according to what is represented by the attribute Xj and how are values

of Xj distributed in its context. Then fuzzy sets Ai,j of Pj are divided into three

subsets Sj,Mj, Bj representing extensions of small , medium and big values, respec-

tively. Then (see the next paragraph) we can find a suitable linguistic expression

for any member of Sj,Mj or Bj.

Our goal is to extend the mathematical model of evaluative linguistic expressions

elaborated in [23]. Therefore linguistic expressions associated with fuzzy set Ai,j
consist mostly of specifying linguistic expressions (see Example 7 below). This choice

is motivated by our latter effort to reconstruct fuzzy sets representing linguistic

expressions introduced in [23] (see (3.1.1)). It should be stressed that the linguistic

representation in Example 7 is not unique. We only show the way (using specifying

fuzzy sets representing linguistic expressions) how to do this. Another linguistic

representation is shown in Section 3.4.
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Example 7 If nj = 21 we can obtain the following fuzzy sets representing exten-

sions of the following linguistic expressions:

A1,j ∼ Ex Sm, A12,j ∼ Hi Me,

A2,j ∼ Si Sm but not Ex Sm, A13,j ∼ FN2 ,

A3,j ∼ Ve Sm but not Si Sm, A14,j ∼ VR Bi but not QR Bi ,

A4,j ∼ Sm but not Ve Sm, A15,j ∼ QR Bi but not Ro Bi ,

A5,j ∼ ML Sm but not Sm, A16,j ∼ Ro Bi but not ML Bi ,

A6,j ∼ Ro Sm but not ML Sm, A17,j ∼ ML Bi but not Bi ,

A7,j ∼ QR Sm but not Ro Sm, A18,j ∼ Bi but not Ve Bi ,

A8,j ∼ VR Sm but not QR Sm, A19,j ∼ Ve Bi but not Si Bi ,

A9,j ∼ FN1 , A20,j ∼ Si Bi but not Ex Bi ,

A10,j ∼ Lo Me, A21,j ∼ Ex Bi ,

A11,j ∼ Ex Me,

where A ∼ Sm means fuzzy set A representing extension of the linguistic expres-

sion Small . FN1 ,FN2 denote fuzzy sets associated with linguistic descriptions of

a fuzzy number (for instance, more or less 5 see definition on page 22) and lin-

guistic expressions Hi Me and Lo Me denote linguistic expressions Higher Medium

and Lower Medium, respectively. For medium values of the attribute Xj it is nec-

essary to use linguistic expressions that are not considered in [22]. The reason

for this is that natural language contains only a few linguistic expressions describ-

ing values that lie between typically small (resp. big) and typically medium val-

ues. For completeness, Sj = {A1,j, A2,j, ..., A8,j}, Mj = {A9,j, A10,j, . . . , A13,j} and

Bj = {A14,j, A15,j, . . . , A21,j}.

We denote by LKj
, Kj ∈ {Sj,Mj, Bj}, the system of convex fuzzy sets B ⊂∼ wj

of the form B :=
∑

i∈J Ai,j(x), x ∈ wj where {Ai,j}i∈J is a subsystem of Kj and∑
denotes a pointwise summation of fuzzy sets. By using specifying evaluative

linguistic expressions and pure evaluative ones, we can obtain suitable linguistic

expressions for each convex fuzzy set from LKj
. The idea how to represent such sets

linguistically is very simple and natural.

If we consider Example 7 we can demonstrate how to obtain suitable linguis-

tic expressions for small values at first. For instance, A1,j ∼ Ex Sm and A2,j ∼
Si Sm but not Ex Sm. Significantly small values of a given attribute are expressed

by A1,j + A2,j where + denotes a common (pointwise) addition of real functions.

Since A1,j and A2,j are members of the fuzzy partition Pj, it is consistent with com-

monly used mathematical representation of evaluative linguistic expressions (see
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Figure 2.1). Similarly, in Model I we can obtain

A1,j + A2,j ∼ Si Sm,

A2,j + A3,j ∼ Ve Sm but not Ex Sm,

A1,j + A2,j + A3,j ∼ Ve Sm,

A1,j + . . .+ A4,j ∼ Sm, (3.1.1)

A1,j + . . .+ A5,j ∼ ML Sm,

A1,j + . . .+ A6,j ∼ Ro Sm,

A1,j + . . .+ A7,j ∼ QR Sm,

A1,j + . . .+ A8,j ∼ VR Sm,

etc.

The following Figure 3.1 demonstrates the mentioned construction.

Small

A1 A2 A3 A4 A5

xj

1

Figure 3.1: Scheme of the construction of the extension of the evaluative linguistic
expression Small.

Similarly we obtain evaluative linguistic expressions for big values of the attribute

Xj. The situation concerning medium values is different and, as we have indicated

above, we use a little bit different evaluative expressions. For instance, in Model I

we can obtain the following expressions:
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A9,j + A10,j ∼ ML Me but not ML Hi Me,

A10,j + A11,j ∼ ML Lo Me but not FN1 ,

A11,j + A12,j ∼ ML Hi Me but not FN2 ,

A12,j + A13,j ∼ ML Hi Me but not Ex Me,

A9,j + A10,j + A11,j ∼ ML Lo Me,

A10,j + A11,j + A12,j ∼ Me,

A11,j + A12,j + A13,j ∼ ML Hi Me,

A9,j + . . .+ A12,j ∼ ML Me but not FN2 ,

A10,j + . . .+ A13,j ∼ ML Me but not FN1 ,

A9,j + . . .+ A13,j ∼ ML Me.

It is also demonstrated on the following Figure 3.2

Me
ML Me

Ex Me

A9 A10 A11 A12 A13

xj

Figure 3.2: Extensions of evaluative expressions characterizing medium values.

Using of fuzzy partitions is often required in fuzzy data mining methods (c.f.

[25]). Model I is suitable for such methods and, after using such methods, founded

associations can be represented in natural language. When we use this model, it

is necessary to keep in mind that there are some limitations. The main problem

comes from mathematical representation of above mentioned linguistic expressions.

When we use Model I (i.e., a fuzzy partition to decompose the context of any

attribute), the linguistic connective OR is seemingly represented as the pointwise

summation ((Ex Sm) OR (Si Sm but not Ex Sm) ∼ A1,j + A2,j ∼ Si Sm) which

need not be suitable. In this case (if OR is represented by a t-conorm min(a+ b, 1))

the conjunction AND is represented by  Lukasiewicz conjunction. But this conjunction

is quite restrictive if it is used for mining of linguistic associations ([23]), especially

if many attributes are considered. Because if we consider  Lukasiewicz conjunction

a⊗ b = 0 ∨ (a+ b− 1) then we can see that value a+ b has to be higher than 1 to

get non zero value, expecially if we consider more than two attributes.
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To overcome this problem we have decided to choose another mathematical model

(Model II). Thus, we use a fuzzy covering Cj to cover the context of a given attribute

Xj. Shapes of fuzzy sets representing evaluative linguistic expressions are distinct

from those used in Model I, but their names can be the same. For instance, Exam-

ple 7 demonstrates evaluative linguistic expressions represented by 21 members of

Cj.

Additionally, by the choice of Cj, we can use standard logical connectives AND,

OR interpreted by ∧ and ∨ to obtain additional evaluative linguistic expressions.

Namely,

(Ex Sm) OR (Si Sm but not Ex Sm) ∼ A1,j ∨ A2,j ∼ Si Sm.

On the following picture Figure 3.3 shapes of these fuzzy sets and their additional

evaluative linguistic expression are shown

1

x1 x2 x3 x4 x5

A1 A2 A3

A1 ∨A2

xj

Figure 3.3: Shapes of fuzzy sets used in Model II.

It is obvious that the shape of the fuzzy set A1,j ∨ A2,j is commonly used for

a representation of the evaluative linguistic expression significantly small (see Fig-

ure 2.1). Thus, similarly as for Pj we consider a decomposition of Cj into Sj,Mj

and Bj and we specify evaluative linguistic expressions separately for fuzzy sets from

Sj,Mj and Bj, i.e., small , medium and big values of a given context. For small (and
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similarly for big) values we obtain

A1,j ∨ A2,j ∼ Si Sm,

A2,j ∨ A3,j ∼ Ve Sm but not Ex Sm,

A1,j ∨ A2,j ∨ A3,j ∼ Ve Sm,

A1,j ∨ . . . ∨ A4,j ∼ Sm,

A1,j ∨ . . . ∨ A5,j ∼ ML Sm,

A1,j ∨ . . . ∨ A6,j ∼ Ro Sm,

A1,j ∨ . . . ∨ A7,j ∼ QR Sm,

A1,j ∨ . . . ∨ A8,j ∼ VR Sm,

etc.

Analogously we obtain evaluative linguistic expressions for medium values

A9,j ∨ A10,j ∼ ML Me but not ML Hi Me,

A10,j ∨ A11,j ∼ ML Lo Me but not FN1 ,

A11,j ∨ A12,j ∼ ML Hi Me but not FN2 ,

A12,j ∨ A13,j ∼ ML Hi Me but not Ex Me,

A9,j ∨ A10,j ∨ A11,j ∼ ML Lo Me,

A10,j ∨ A11,j ∨ A12,j ∼ Me,

A11,j ∨ A12,j ∨ A13,j ∼ ML Hi Me,

A9,j ∨ . . . ∨ A12,j ∼ ML Me but not FN2 ,

A10,j ∨ . . . ∨ A13,j ∼ ML Me but not FN1 ,

A9,j ∨ . . . ∨ A13,j ∼ ML Me.

Ordering of evaluative linguistic expressions and predications is described on

page 26. In the following example we suppose an ordering of evaluative linguistic

expressions defined in Example 7.

Example 8 For C ∼ Si Sm but not Ex Sm and D ∼ Me we obtain C / D by

(2.2.3) since the first (resp. the second) linguistic expression contains the expres-

sion small (resp. medium). But if C ∼ Si Sm but not Ex Sm, D ∼ Sm, then

these sets cannot be ordered by (2.2.3) since both mentioned expressions contain the

expression small. By ( (2.2.2)) we get C / D. If C ∼ Si Sm but not Ex Sm,

D ∼ Sm but not Si Sm, then these sets cannot be ordered.
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3.2 Mining linguistic associations

In this section we present one of methods for searching for linguistic associations.

The process presented in this section can be applied to both Models I and II. However

we will continue only with Model II since it forms a natural extension of the model

published in [23] and naturally follows ideas of the GUHA method (e.g., see [10]

and references therein). In addition to this, using of Model I is analogous. As we

mentioned in the preceding section, we search for linguistic associations in the data

set of the form

X1 X2 . . . Xk

o1 a11 a12 . . . a1k

o2 a21 a22 . . . a2k

...
...

...
. . .

...

om am1 am2 . . . amk

.

The first step of this method consists of replacing numerical values aij in the data set

by the most suitable evaluative linguistic expressions (i.e., by fuzzy sets representing

them). This is done by function Perc that is defined separately for the context wj
of each attribute Xj. Thus, we obtain k components Percj : R × wj −→ L(C),

j = 1, 2, . . . , k, of the function Perc that are defined by the user of the data mining

process and L(C) is the set of evaluative linguistic expressions. Usually, the most

specific and informative evaluative linguistic predications are assigned to aij ∈ wj,
i = 1, 2, . . . ,m.

For instance, functions Percj can be given by Percj(aij, wj) = Ãi,j := Al,j
if Al,j ∈ Cj is the unique fuzzy set from Cj satisfying Ak(aij) = 1. Otherwise,

we choose Al,j from {A ∈ Cj |A(aij) = 1} that represents evaluative linguistic

predications of the most narrow sense (see (2.2.1)).

In [23], the function Perc0 assigns to each context wj and to each element aij an

evaluating expression with intension Ãi,j, where Ãi,j is the most specific (sharpest)

in the sense of the natural ordering / defined on page 26, and aij ∈ wj is typical

in the extension Al,j in given context. To be typical means that the membership

degree Al,j(aij) is greater than some reasonable threshold α (we usually put α = 0, 9

or even α = 1).

Thus, we obtain a transformed data set of the form
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X1 X2 . . . Xk

o1 A1,1 A1,2 . . . A1,k

o2 A2,1 A2,2 . . . A2,k

...
...

...
. . .

...

om Am,1 Am,2 . . . Am,k

,

where Aij denote evaluative linguistic predications (see page 25). Now we can

look for dependencies between given disjoint sets of attributes {Yo}qo=1, {Zp}rp=1 ⊆
{Xj}kj=1. We search for simpler linguistic associations of the form

E({Yo}qo=1)⇒ F ({Zp}rp=1), (3.2.1)

where E,F are compound evaluative predications containing only the connective

AND. For simplicity we will write only E ⇒ F instead of (3.2.1). An example of

possible linguistic representation of this association can be: “IF the area of the base

of a cylinder is big AND the height of this cylinder is also big THEN the volume of

this cylinder is big.” The left and right side of (3.2.1) is called the antecedent and

consequent, respectively.

A symbol ⇒ represents an implication, resp. a relationship between an an-

tecedent and a consequent. This can be described by the so-called quantifier (see

[11]). The quatifier ⇒ in (3.2.1) characterizes validity of the association. By

⇒ (a, b, c, d) we denote the fact that the four fold table quantifier is computed

from the four fold table with components a, b, c, d. There are many quantifiers that

can be computed in such a way. For a comprehensive list of commonly used four-fold

table quantifiers we refer to [17] where these quantifiers are compared mutually by

several user oriented criteria. We would like also to point out to paper [26] where

several classes of four fold table quantifiers were studied from the logical point of

view. Probably the most often used quantifiers are the following

• ⇒ :=⇒x a symmetric associational quantifier. This quantifier is valid if ad >

bc.

• ⇒ :=@γ
r a binary multitudinal quantifier . This quantifier is taken as true if

a > γ(a + b) and a
m
> r, where γ ∈ [0, 1] is a confidence degree and r ∈ [0, 1]

is a support degree,

where parameters a, b, c and d are elements from the standard four-fold table (more

detail in [26, 11]).

F not F

E a b

not E c d
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For completeness, a is a number of positive occurrences of E as well as F - that is, a

number of objects (rows) such that attributes {Yo}qo=1 are evaluated via the function

Percj by the same linguistic expression E and, at the same time, the attributes

{Zp}rp=1 are evaluated by the respective linguistic expression F . The numbers b is

a number of positive occurrences of E and negative occurrences of F . c is number

of negative occurrences of E and positive occurrences of F and d is a number of

negative occurrences of E as well as F .

Example 9 We use linguistic expressions from Example 7 in all attributes. If we

look for an association IF the attribute X̄1 is small but not very small AND X̄2 is

extremely big THEN Y1 is higher medium where X2, X3, X6 are attributes consid-

ered in data set and X̄1 = X3, X̄2 = X2 and Y1 = X6. The positive occurrence of

this association in the row oj means that Perc3(aj,3) = Aj3,3, Perc2(aj,2) = Aj2,2
and Perc6(aj,6) = Aj6,6 where Aj3,3, Aj2,2 and Aj6,6 are fuzzy sets of the covering

Cj representing linguistic expression small but not very small, extremely big and

higher medium in contexts w3, w2 and w6, respectively. Analogously, b is a number

of positive occurrences of E but negative occurrences of F , c is a number of nega-

tive occurrences of E and positive occurrences of F and d is a number of negative

occurrences of E and negative occurrences of F .

In the rest of this section we present some limitations of the method presented

in [23]. First, using only common linguistic hedges (more or less , significantly etc.)

could cause some problems in the data mining process ([24, p.7]). For instance,

when we mine linguistic associations that contain linguistic expression more or less

medium but do not contain linguistic expression medium, we are not able to distin-

guish whether founded linguistic associations deal with transactions having either

rather smaller or rather bigger values.

Analogous problem appears when we intend to present mined associations. When

presenting associations dealing with values that are more or less medium but not

medium the reader should obtain more specified knowledge on rather smaller or

rather bigger values. Our representation allows this.

Further, there are some facts that is necessary to reflect during the presentation

of founded associations. If the method (using fuzzy sets on Figure 2.1, the function

Perc and some four-fold table quantifiers) presented in this chapter is used, we can

obtain associations describing small values. It is necessary to keep in mind that

such associations deal with values that are small but are not, for instance, very

small in the classical meaning. Using fuzzy coverings or decompositions together

with specifying linguistic expressions overcomes this limitation.
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3.3 Reduction of rules

We meet with the problem that there exist large number of mined hypothesis (as-

sociations). For further work with them and for clarity it is better to reduce the set

of hypothesis.

The ordering w of linguistic predications together with specific properties of a

chosen quantifier ⇒ can be used for a reduction of rules as it is suggested in [23],

[26] and [10]. A reduction of rules must be clear enough from the point of view

of the user of the data mining procedure and is used, for instance, to simplify the

output of the data mining procedure (to reduce the number of presented linguistic

associations) or to decrease the number of actually tested associations.

Definition 16 Let A,B,C,D be linguistic predications and ⇒ be a quantifier. We

denote by

(A⇒ B) ` (C ⇒ D)

that the association (C ⇒ D) follows from (A ⇒ B). This means that the validity

of (A⇒ B) implies the validity of (C ⇒ D).

The quantifier ⇒ (see page 37) characterizes validity (truth) of the association

in the data. In the case of a symmetric associational quantifier (⇒:=⇒x) taken as

true if ad > bc. Or in case of a binary multitudinal quantifier (⇒ :=@γ
r ), where

γ, r ∈ [0; 1]. It taken as true, if a > γ(a+ b) and a
m
> r.

The next statement was inspired by a theorem proved in [23] for ⇒=@γ
r .

Theorem 1 Let A,B,C be linguistic predications and ⇒ be an implicational quan-

tifier. Then

(i) If B w B′ then (A⇒ B) ` (A⇒ B′),

(ii) (A⇒ B) ` (A⇒ B OR C).

proof:

(i) Let a, b, c, d (resp. a′, b′, c′, d′) be elements of the four fold table of the associa-

tion A⇒ B (resp. A⇒ B′). By the assumption of the theorem, ⇒ (a, b, c, d)

is valid.

Since B w B′, we detone a set of all objects having the property A({Yo}qo=1)

as MA and similarly MB, MA AND B, etc. Their cardinality is denoted by | · |.
Then we obtain

MA AND B′ = MA AND B ⊂ (MA AND B′ ,MA AND B),
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MA AND ¬B = MA AND ¬B′ ⊂ (MA AND B′ ,MA AND B).

Hence a = |MA AND B| ≤ a′ = |MA AND B′ | and b′ = |MA AND ¬B′ | ≤ b =

|MA AND ¬B|.

Thus, by the definition of the implicational quantifier r ≤ a ≤ a′ and γ <
a
a+b
≤ a′

a′+b′
, then ⇒ (a′, b′, c′, d′) is also valid.

(ii) It easily follows from (i) and from the choice of the ordering of linguistic

associations w.

2

We can apply Theorem 1 to reduction on the following artificial associations:

Example 10 We assume data dealing with the measurement of Number of cars,

Temperature, Wind and Concentration of NO2. From data we can obtain following

associations in the form of IF-THEN rules.

(i) IF the Number of cars is big but not very big AND the Temperature is up-

per medium AND the Wind is more or less small but not small THEN the

Concentration of NO2 is medium.

(ii) IF the Number of cars is big but not very big AND the Temperature is up-

per medium AND the Wind is more or less small but not small THEN the

Concentration of NO2 is more or less medium.

We can see that IF-THEN rules (i) and (ii) are similar, the different is in the

consequent. From Definition 14 we know that Me wML Me. It follows from Theo-

rem 1 that the linguistic association (ii) logically follows from linguistic association

(i). Thus, only the association (i) will be stated in the set of presented linguistic

associations.

3.4 Testing

At the beginning of this section we introduce data we used for our experiment.

The original model elaborated in [23] and Model II are used for mining of linguistic

associations.

The chosen data were downloaded from a public web page∗). The data are a

subsample of 500 observations from a data set that originate from a study where air

∗)http://lib.stat.cmu.edu/
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pollution at a road is related to traffic volume and meteorological variables, collected

by the Norwegian Public Roads Administration. In the original data set there are

8 columns of attributes for any observation. The response variable (Y NO2) consists

hourly values of the logarithm of the concentration of NO2, measured at Alnabru

in Oslo, Norway, between October 2001 and August 2003. The data description is

following (see Tab. 3.1).

Attribute Context Measurement Description
Y NO2 [1.2, 6.2] particles Concentration of NO2
NoCar [4.1, 8.2] Number of cars per hour
Temp [-18.6, 19.3] degree C Temperature
Wind [0.3, 9.5] meters/second Wind

TempDiff [-5.4, 3.9] degree C Temperature difference
WindDir [2, 343] degrees between [0,360] Wind direction

Hour [1, 23] Hour of day
DayNumb [32, 582] Day number

Table 3.1: Data description.

We searched dependencies of concentration of NO2 on NoCar, Temp and Wind.

A software utility LAM (Linguistic Associations Mining)†) was developed in our

institute by A. Dvořák, H. Habiballa, V. Novák, I. Perfilieva and V. Pavliska. It is

used for searching for linguistic associations or associations using fuzzy numbers and

F-transform in numerical data. First, user have to specify input - a table of numerical

data and variables. Second, various parameters can be set, e.g., parameters r and

γ, type of quantifier, range of evaluative linguistic expressions used, etc. At first we

applied the original model and then Model II.

In both models, we replaced numerical data by appropriate evaluative expressions

according to their meaning. Then, in the original model, the function Perc0 (see

page 36) assigns to each context wj and to each element aij ∈ wj one of linguistic

expressions Ve Sm, Sm, ML Sm, Me, ML Me, ML Bi , Bi , and Ve Bi . The fuzzy

sets corresponding with these linguistic expressions are elaborated in [23] (see also

Figure 2.1).

Second, we searched dependencies between attributes by using a binary multi-

tudinal quantifier. The software LAM analyzed the data set, tested 343 hypotheses

and found 39 linguistic associations satisfying inequalities of binary multitudinal

quantifier with parameters γ = 0.2, r = 0.005 (see page 37).

†)For more information look at http://irafm.osu.cz/
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Similarly we proceeded when we looked for linguistic associations by using Model

II. We replaced numerical data using the function Perc by the following evaluative

linguistic expressions (see Figure 3.4) used in Model II.

A1,j ∼ Ve Sm,

A2,j ∼ Sm but not Ve Sm,

A3,j ∼ ML Sm but not Sm,

A4,j ∼ Lo Me,

A5,j ∼ Me,

A6,j ∼ Up Me,

A7,j ∼MLBi but not Bi ,

A8,j ∼ Bi but not Ve Bi ,

A9,j ∼ Ve Bi .

A1 A2 A3 A4 A5 A6 A7 A8 A9

1

c d

Figure 3.4: The most simple nontrivial mathematical model with fuzzy sets of
Model II.

It is possible to construct evaluative linguistic expressions used also in the original

model (see Figure 2.1)

A1,j ∨ A2,j ∼ Sm,

A1,j ∨ A2,j ∨ A3,j ∼ ML Sm,

A4,j ∨ A5,j ∨ A6,j ∼ ML Me,

A7,j ∨ A8,j ∨ A9,j ∼ ML Bi ,

A8,j ∨ A9,j ∼ Bi .

Software LAM tested 398 hypotheses and found 22 associations. More hypothe-

ses were tested because more fuzzy sets covering the context of each attribute were
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used. In the rest of this section we explain relations between linguistic associations

found by the original model and Model II, respectively.

Now we show six associations found by the original model and Model II.

The following three linguistic associations were found by the original model:

1. IF the NoCar is big AND the Temp is more or less medium AND the Wind

is more or less small THEN the Concentration of NO2 is more or less big.

2. IF the NoCar is big AND the Temp is more or less small AND the Wind is

more or less medium THEN the Concentration of NO2 is more or less medium.

3. IF the NoCar is very big AND the Temp is more or less medium AND the

Wind is more or less small THEN the Concentration of NO2 is more or less

medium.

The following three linguistic associations were found by Model II:

1′. IF the NoCar is big but not very big AND the Temp is upper medium AND the

Wind is more or less small but not small THEN the Concentration of NO2 is

more or less big but not big.

2′. IF the NoCar is big but not very big AND the Temp is more or less small but

not small AND the Wind is lower medium THEN the Concentration of NO2

is upper medium.

3′. IF the NoCar is very big AND the Temp is lower medium AND the Wind is

more or less small but not small THEN the Concentration of NO2 is upper

medium.

Since the same parameters (γ = 0.2, r = 0.005) were used in both models for

each association obtained by Model II we can find the corresponding association

obtained by the original model. Such pairs of associations (1, 1′), ( 2, 2′), ( 3, 3′)

represent the same knowledge from the point of view of the chosen quantifier. We

emphasize that different definitions of Perc and Perc0 are used in our models.

In the original model, the function Perc0 (its definition is in [23]) assigns to each

context wj and to each element aij ∈ wj one of linguistic expressions Ve Sm, Sm,

ML Sm, Me, ML Sm, ML Bi , Bi , Ve Bi (see Fig. 2.2). This linguistic expression

is the most specific (sharpest) in the sense of the ordering � (see Page 26).

They provide the same (crisp) decomposition of considered contexts but intervals

of this decomposition represent different linguistic variables. For instance, big values

in the original model are the same as big but not very big values in Model II etc.
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Consequently associations 1 and 1′ (2 and 2′ etc.) represent the same dependence

(knowledge). It is easy to see that the way of presentation of associations found

by Model II is longer but intuitively they represent more precise knowledge. For

example, if we consider the context [0, 100] in the original model, the function Perc0

assigns the intervals (27, 39) and (42, 57] (resp. [39, 42]) to the linguistic expression

ML Me (resp. Me). This does not correspond to common shape of the fuzzy

set representing the linguistic expression ML Me (see Figure 2.1) - hence the user

expects that the association containing the linguistic expression ML Me gives the

information about interval (27, 57].

From this point of view, more or less medium values of a given attribute do not

contain medium ones in the original model. By using Model II we are able to specify

whether we deal with lower medium or higher medium values. Consequently, they

present more precise knowledge.

As we demonstrated above, for 22 linguistic associations obtained by Model II

we can find 22 corresponding associations obtained by the original model. The

remaining linguistic associations found by the original model cannot be found by

the method presented in this thesis. By using different definitions for Perc and

Perc0, we have the following situation – more or less medium values of the original

model are represented by both lower medium and higher medium values of Model

II. The following example demonstrates that such associations need not be found

directly by Model II.

Example 11 If we look for associations by the original model we can obtain the

linguistic association containing the linguistic expression ML Me for a certain at-

tribute. Let elements of four fold table of this association be a = 12, b = 24. Then

the inequalities a > γ(a+b), a
m
> r are satisfied for γ = 0.2, r = 0, 005. As we could

see above, this linguistic association can be expressed in Model II by the linguistic

associations containing the linguistic expression Lo Me (resp. Hi Me) with a = 10,

b = 90 (resp. a = 2, b = 10). But these elements of four fold table do not satisfy the

inequality a > γ(a+ b) of the multitudinal quantifier with the parameter γ = 0.2.

We emphasize that the existence of the linguistic expression ML Me in the origi-

nal model (see 1 and 1′ etc.) does not imply that the relevant linguistic associations

containing expressions Lo Me and Hi Me are not found by Model II. If we want to

obtain the rest of linguistic associations we need to use more sophisticated method.
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3.5 Conclusion

In this chapter we have demonstrated that fuzzy partitions or coverings can be used

for mining of linguistic associations in data sets. We have also introduced linguistic

expressions (the specifying ones) that allow this. Advantages of our method are the

following - it provides more accurate knowledge to the user, it naturally extends

the method recently developed in [23] and that it extends applicability of mining

of linguistic associations since many other methods (based on fuzzy partitions or

coverings) can be used for such mining. Additionally, at the end of this chapter, we

have indicated one of possible ways of our future research, namely Theorem 1.
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Chapter 4

Properties induced by fuzzy

confirmation measures

Fuzzy associations (3.2.1) are evaluated using appropriate confirmation measures.

There are several ways how to choose confirmation measures that determine linguis-

tic associations. One of the best known methods for searching linguistic associations

is GUHA method ([11]). Its confirmation measures (called quantifiers) are computed

from relevant four-fold tables. To construct such tables crisp partitions (induced by

relevant fuzzy sets) of contexts of considered attributes are required ([11], [23] etc.).

However, there are also other possibilities due to which we can work directly with

fuzzy sets carrying linguistic labels.

For instance, in [6], the problem of choosing reasonable fuzzy confirmation mea-

sures was studied systematically and choices of various confirmation measures were

justified especially in connection with a certain and very natural partition of the

row set Do (see page 29). The partition of Do is given by fuzzy sets S+, S−, S± and

the condition

S+(oi) + S−(oi) + S±(oi) = 1, for any oi ∈ Do, (4.0.1)

where S+(oi), S−(oi), S±(oi) denotes a positive, negative and irrelevant evaluation,

respectively, of each row oi ∈ Do of a given rule (3.2.1). Such a partition of Do can

be of the form

S+(oi) := E(oi)⊗ F (oi),

S−(oi) := 1− (E(oi)→ F (oi)), (4.0.2)

S±(oi) := 1− E(oi)

where E(oi) (resp. F (oi)) means a membership degree of oi in the fuzzy set E (resp.

F ) representing antecedent (resp. succedent). A t–norm ⊗ is so-called copula (see
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page 20). From conjunction (4.0.1) and (4.0.2) an implication operator → is given

by a→ b = (1−a)+(a⊗ b). Under these assumptions, partition (4.0.2) guarantees

(4.0.1) for any possible rule (resp. association) of the form (3.2.1). Additionally,

the authors of [6] justified how such partition induces meaningful fuzzy confirmation

measures.

Definition 17 For partition (4.0.2), we introduce the following (t–norm-based)

support measure of (3.2.1) in the data set D

suppt(E ⇒ F ) :=
∑
oi∈Do

E(oi)⊗ F (oi). (4.0.3)

Remark 1 However, the problem in [6] can be further specified. For instance, when

we require the implication operator → to be a self implication (i.e., a → a = 1),

the authors obtained that ⊗ has to be the t–norm (x ⊗ y = min{x, y}), or, when

we require → to be the strong implication (i.e., a → b = n(a) ⊗ b for a strong

negation n(a)) the solution is given only by the product t–norm (x ⊗ y = xy). For

completeness we note that the partition is again given by (4.0.2).

The authors of [13] discussed also gradual (resp. certainty) rules. Such rules

are of the form “The more the property E is true, the more the conclusion F is

true”. In that case, another definition of partition of Do for association E ⇒ F was

considered

S+(oi) := E(oi)⊗ (E(oi)→ F (oi)),

S−(oi) := E(oi)⊗ (1− (E(oi)→ F (oi))), (4.0.4)

S±(oi) := 1− E(oi).

For this partition, condition (4.0.1) is satisfied only for the product t–norm.

Definition 18 The (implication-based) support measure is given for (3.2.1)

suppc(E ⇒ F ) :=
∑
oi∈Do

E(oi) · (E(oi)→ F (oi)), (4.0.5)

where → represents any generalized implication.

Definition 19 An implication operator I : I × I −→ I for I = [0, 1] is a general-

ization of the material implication if it satisfies, for x, y, x0, y0 ∈ I,

(I1) I(x, y) ≤ I(x0, y) for x0 ≤ x,

(I2) I(x, y) ≤ I(x, y0) for y ≤ y0,

(I3) I(1, y) = y,

(I4) I(0, 0) = 1.
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In order to keep preceding notation we put →:= I. Sometimes, x→ y denotes also

a product implication that is equal

x→ y =

{
1, x ≤ y,
y
x
, x > y.

Definition 20 Let ⊗ is a continuous t–norm and → is derived from that t–norm

through residuation. Then (minimum-based) support measure is given by

suppm(E ⇒ F ) :=
∑
oi∈Do

min{E(oi), F (oi)}. (4.0.6)

Definition 21 For support measures (4.0.3), (4.0.5) and (4.0.6), relevant confi-

dence measures are defined by

confj(E ⇒ F ) :=
suppj(E ⇒ F )∑

oi∈Do
E(oi)

(4.0.7)

for j ∈ {t, c,m}.

Note that (4.0.7) cannot be strictly greater than 1 for any association E ⇒ F .

Definition 22 Let r and γ are given support and confidence thresholds. We say

that the rule E ⇒ F is valid if suppj(E ⇒ F ) ≥ r and confj(E ⇒ F ) ≥ γ.

Further, for given rules E1 ⇒ F1 and E2 ⇒ F2, E1 ⇒ F1 `s E2 ⇒ F2 denotes the

fact that supp(E1 ⇒ F1) ≤ supp(E2 ⇒ F2). Similarly, E1 ⇒ F1 `c E2 ⇒ F2 denotes

the fact that conf(E1 ⇒ F1) ≤ conf(E2 ⇒ F2) and finally E1 ⇒ F1 ` E2 ⇒ F2

means that E1 ⇒ F1 `j E2 ⇒ F2 for j = {s, c}. Analogous notation we can also

use for sets of associations - the expression

A⇒ B, C ⇒ D ` E ⇒ F

means that E ⇒ F is valid, i.e., either supp(A ⇒ B) < supp(E ⇒ F ) and

conf(A ⇒ B) < conf(E ⇒ F ) or supp(C ⇒ D) < supp(E ⇒ F ) and conf(C ⇒
D) < conf(E ⇒ F ).

Let us remark that associations of the form C ⇒ C are valid. A consider-

ing such associations is very natural, their confidence degree has to be equal to 1.

Consequently, the validity of this association implies that the linguistic expression

represented by C has a sufficiently large support.

The following lemma will be used several times in this chapter. It describes rather

natural property but we have put it to this chapter for the sake of completeness.
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We say that data sets Dl, l = 1, 2, . . . , r, are of the same type if they have the same

attributes Xi, i = 1, 2, . . . , k, possessing the same contexts wi, i = 1, 2, . . . , k, and

fuzzy sets evaluating various linguistic terms of attributes Xi, i = 1, 2, . . . , k, are

also the same. Let ml denote the number of objects in each Dl, l = 1, 2, . . . , r.

For such data sets we can define another data set D := �rl=1Dl called direct join

by joining data tables Dl to the unique one. Then, for example, for D1 and D2; D
has m = m1 +m2 objects, the first m1 objects of D comes from D1, the following m2

objects of D comes from D2, etc. The following lemma claims that the validity of

a given rule in each particular data set ensures the validity of the rule in the direct

join of such data sets. Let us stress that this lemma is independent of the choice of

support measure.

Lemma 1 Let Dl, l = 1, 2, . . . , r, be data sets of the same type and let a rule (A⇒
B) is valid in each Dl. Then (A⇒ B) is also valid in D := �rl=1Dl.

proof: Consider any support measure suppj(A⇒ B) and the confidence measure

confj(A ⇒ B) for j ∈ {t, c,m}. By (Do)l we denote rows of D coming from Di.
Then we use suppl(A ⇒ B) and conf l(A ⇒ B) to denote that the confidence

measures are counted just by using rows (Do)l. According to our assumptions, for

given confidence degree γ and support degree r, we have

suppl(A⇒ B) =
∑

oi∈(Do)l

A(oi)⊗B(oi) = rl ≥ r (4.0.8)

and

conf l(A⇒ B) =

∑
oi∈(Do)l

A(oi)⊗B(oi)∑
oi∈(Do)l

A(oi)
=

rl∑
oi∈(Do)l

A(oi)
= γl ≥ γ (4.0.9)

for any l = 1, 2, . . . ,m. To simplify the proof put Al =
∑

oi∈(Do)l
A(oi). By the

definition of D and (4.0.8) we immediately have

supp(A⇒ B) =
r∑
l=1

suppl(A⇒ B) =
r∑
l=1

rl ≥ r · l ≥ r. (4.0.10)

As regards the confidence degree, (4.0.9) implies that γ ·Al ≤ rl for any l = 1, 2, . . . , r

and hence
r∑
l=1

γ · Al = γ

r∑
l=1

·Al ≤
r∑
l=1

rl

for any l = 1, 2, . . . , r. Consequently, by the choice of D, rl and Al,

conf(A⇒ B) =

∑r
l=1 rl∑r
l=1Al

≥ γ.
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This and (4.0.10) finishes this proof. 2

Remark 2 We can also use the last lemma in the following way - in order to check the

validity of the rule (A ⇒ B) in D it is sufficient to decompose the data set D to smaller

data sets Di and to check the validity of (A⇒ B) in each particular Di.

4.1 Using additional knowledge

Let us introduce a set E of associations (i.e., the set of expert knowledge) that can

be provided to the data mining process. We would like to emphasize that linguistic

and mathematical representation is the same for associations from E as well as for

associations we want to mine in a given data set.

Note that we need not to specify the inner structure of such expert associations

(i.e., associations from E). For a given unknown association E ⇒ F we would like

to test, associations from E (associations from E are denoted by a symbol ∗, i.e.,

(A ⇒∗ B) ∈ E) can describe information between the antecedent and succedent

part of E ⇒ F as well as between attributes contained either in the antecedent or

succedent part of E ⇒ F , respectively. We would like to stress that it makes sense

to deal only with confidence measures of associations from E .

We would like to emphasize that, within this chapter, associations from E are

assumed to be fully valid in the dataset Do (see page 29), i.e. we assume confi(A⇒∗
B) = 1. According to the choice of a confidence measure, we can obtain some

additional information.

Definition 23 For t–norm-based confidence measures (resp. for the minimum-

based)

confi(A⇒∗ B) = 1

where (A⇒∗ B) ∈ E and A(oi) ≤ B(oi), oi ∈ Do.

Remark 3 When an implication-based confidence measure is considered, we can

obtain the same condition provided → is a residuated implication of some t–norm.

But if → is a generalized implication then only B(oi) = 1 for any oi ∈ Do can be

assumed.

4.2 Properties

We study the following properties where A, B, C and D are evaluative linguistic

predications and the relation ` means that if the association on the left-hand side
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is true in the data set then the association on the right-hand side is necessarily also

true on the basis of support and confidence degree. In this subsection we analyse

general assumptions. On the base of these assumptions it is possible to claim, the

validation of associations on the left side implies validation of association on the

right side. In this way we can obtain further valid associations. Vice versa it is

possible to reduce set of associations without loss of information on the base of such

properties or to use properties for faster process of verification of associations.

P1 (A OR B)⇒ A,

P2 A⇒ B, (B OR C)⇒ D ` (A OR C)⇒ D,

P3 A⇒ B ` (C AND A)⇒ (C AND B),

P4 (A⇒ B), (A⇒ C) ` (A⇒ (B OR C)),

P5 A⇒ (B OR C) ` A⇒ B,

P6 A⇒ B, B ⇒ C ` A⇒ C,

P7 A⇒ B, C ⇒ D ` (A OR C)⇒ (B OR D),

P8 (A AND B)⇒ (C AND D) ` (A AND B AND D)⇒ C.

In [2] the authors study axioms and inference rules used in database design. It

should be also mentioned that the same rules are valid also in fuzzy attribute logic

elaborated e.g. in [3]. These axioms and inference rules are described by Properties

P1-P6.

The last two properties - Properties P7 and P8 are motivated by analogous

properties that are used e.g. in GUHA method ([11]) or in the classic Apriori

algorithm (see [1] and references therein). Below, we will discuss all properties P1 -

P8.

Properties P1 and P2

As regards Property P1, it has been explained in [16] that this property need

not be satisfied in general.

The symbol `s (resp. `c) means that formulae on the right sight is valid with

support degree (resp. confidence degree) higher or equal than formulae on the left

side.

Thus let us study

A⇒ B, (B OR C)⇒ D ` (A OR C)⇒ D.

We explained in [16] that, for t–norm-based measures,

A⇒ B, (B OR C)⇒ D 6`s (A OR C)⇒ D

51



and also

A⇒ B, (B OR C)⇒ D 6`c (A OR C)⇒ D

where the relation 6`s (resp. 6`c) means that this rule is not valid for a given threshold

of support measure (resp. confidence measure).

The same negative results we obtain also for the minimum-based and implication-

based confirmation measures - see the next two simple examples.

Example 12 Consider a dataset with three objects and fuzzy sets A,B,C,D with

values:
A B C D

o1 0.8 1 0.4 1

o2 0.7 0.8 0.4 0.1

o3 0.6 0.7 0.8 0.4

Then we immediately obtain suppm(A⇒ B) = 2.1 > suppm((B ORC)⇒ D) = 1.5 >

suppm((A ORC) ⇒ D) = 1.3. Moreover, confm(A ⇒ B) = 1 > confm((B ORC) ⇒
D) = 0.57 > confm((A ORC)⇒ D) = 0.56. Additionally, this example contradicts

A⇒∗ B, (B OR C)⇒ D ` (A OR C)⇒ D.

Example 13 Consider a dataset with three rows and fuzzy sets A,B,C,D with

values:
A B C D

o1 0.2 1 0.8 0.2

o2 0.1 0.8 1 0.1

o3 0.7 0.8 0.8 0.2

Then, for x→ y := max{1−x, y}, we get suppc(A⇒ B) = 0.85 > suppc((B ORC)⇒
D) = 0.49 > suppc((A ORC) ⇒ D) = 0.46. Moreover, we obtain confc(A ⇒ B) =

0.85 > confc(B ORC) ⇒ D) = 0.17 > confc((A ORC) ⇒ D) = 0.16, i.e., it contra-

dicts also

A⇒∗ B, (B OR C)⇒ D ` (A OR C)⇒ D.

Analogously it could be demonstrated that using A ⇒∗ B need not be justified

for general t–norm-based confirmation measures.

Property P3

Lemma 2 ([16])Consider a dataset Do such that B(oi) < C(oi) < A(oi) is satisfied

for no row oi. Then, for minimum–based confidence measure confm, we have

A⇒ B `c (C AND A)⇒ (C AND B).
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proof: By our assumptions, for given confidence restraint γ, we have

confm(A⇒ B) =

∑
oi∈Do

min{A(oi), B(oi)}∑
oi∈Do

A(oi)
(4.2.1)

is greater than or equal to γ. We want to prove

confm((C AND A)⇒ (C AND B)) =

∑
oi∈Do

min{A(oi), B(oi), C(oi)}∑
oi∈Do

min{A(oi), C(oi)}
(4.2.2)

cannot be smaller than (4.2.1). According to Lemma 1 (see also Remark 2), we may

decomposeDo into four disjoint subdatasets according to subsequent row inequalities

(i) C(oi) < A(oi), B(oi),

(ii) A(oi) ≤ B(oi) ≤ C(oi),

(iii) B(oi) < A(oi) ≤ C(oi),

(iv) ) A(oi) ≤ C(oi) < B(oi).

Because the cases (i), (ii) and (iv) lead to (4.2.2) = 1, we obtained that (4.2.1) is

smaller than or equal to (4.2.2) on these subdatasets. It remains to explain the case

(iii). But then (4.2.2) = conf(A⇒ B) and this concludes this proof. 2

To ensure the validity of this rule it is necessary to require more.

Corollary 1 For minimum–based confidence degree we have

A⇒∗ B `c (C AND A)⇒ (C AND B).

In the rest of this subsection we deal with an exact modification of Property P3

that can hold for support measures (4.0.6), (4.0.3) and (4.0.5). However, it can be

shown that it does not hold for confidence measures (Example 14).

Lemma 3 Let us consider the t–norm-based support measure given by (4.0.3). Then

(A AND C)⇒ (B AND C) `s A⇒ B.

proof: By the assumption, we have suppt((A AND C)⇒ (B AND C)) =
∑

oi∈Do
A(oi)⊗

C(oi)⊗B(oi)⊗C(oi) and it is smaller than suppt(A⇒ B) =
∑

oi∈Do
A(oi)⊗B(oi)

and therefore suppt((A AND C)⇒ (B AND C)) ≤ suppt(A⇒ B). 2

From this lemma the next corollary easily follows.
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Corollary 2 Let us consider the minimum-based support measure given by (4.0.6).

Then

(A AND C)⇒ (B AND C) `s A⇒ B.

Lemma 4 Let us consider the implication-based support measure given by (4.0.5)

and the product implication. Then

(A AND C)⇒ (B AND C) `s A⇒ B.

proof: We consider the implication-based support measure (4.0.5) with the prod-

uct implication →. Put D1 := {oi ∈ Do |A(oi) ≤ B(oi)} and D2 := Do \ D1 and

consider two expressions:

A(oi) · (A(oi)→ B(oi)) (4.2.3)

and

(A(oi)C(oi)) · (A(oi)C(oi)→ B(oi)C(oi)). (4.2.4)

For any oi ∈ D1 we easily obtain

A(oi)C(oi) = (4.2.4) ≤ (4.2.3) = A(oi). (4.2.5)

Consequently, since suppc of (A AND C)⇒ (B AND C) and A⇒ B is counted as the

sum of (4.2.4) and (4.2.3), respectively, we get that (4.2.5) implies

(A AND C)⇒ (B AND C) `s A⇒ B (4.2.6)

on the set D1.

Analogously, we can use an analogous argument for the set D2, since we clearly

obtain

B(oi)C(oi) = (4.2.4) ≤ (4.2.3) = B(oi)

for any oi ∈ D2. 2

In the following example it is shown that this rule can not be proved for confi-

dence measures.

Example 14 We consider a dataset consisting of one object with the following

values of fuzzy sets A,B,C: A(o1) = 0.9, B(o1) = 0.5, C(o1) = 0.1. Then

confm((A AND C)⇒ (B AND C)) = 1 and it is greater than confm(A⇒ B) = 5/9.

Or when we consider a dataset consisting of two objects with values of fuzzy

sets A,B,C: A(o1) = 0.9, B(o1) = 0.5, C(o1) = 0.1, A(o2) = 0.6, B(o2) =

0.8, C(o2) = 0.2. Then confc((A AND C)⇒ (B AND C)) = 0.8 and it is greater than

confc(A⇒ B) = 0.73.
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Remark 4 Here and in the subsequent counterexamples we consider the product

implication for implication-based confirmation measures - i.e., the residuated impli-

cation induced by the product t–norm.

Property P4

Let us study the rule

A⇒ B, A⇒ C ` A⇒ (B OR C).

As we can see from the following lemma, the validity of this property is straightfor-

ward.

Lemma 5 (P4) ([16])Let us consider confirmation measures given by (4.0.3), (4.0.5),

(4.0.6) and (4.0.7). Then

A⇒ B, A⇒ C ` A⇒ (B OR C).

The proof of this lemma is based on the proof of Theorem 1 (see page 39).

Remark 5 Clerly, since Property P4 is valid in general, it can be used also in connection

with the expert knowledge (i.e, associations from E) we consider in our task. Thus, e.g.,

A⇒∗ B, A⇒ C ` A⇒ (B OR C).

Property P5

In this subsection we focus on the property

A⇒ (B OR C) ` A⇒ B.

In [16] some examples demonstrate that this property does not hold in general for

various confirmation measures.

According to examples from [16] we can claim, for all confirmation measures

considered in this paper, that

A⇒ (B OR C) 6`s A⇒ B.

and

A⇒ (B OR C) 6`c A⇒ B.

However, it can be seen from the subsequent lemma we can specify some addi-

tional assumptions in order to ensure the validity of Property P5.

Lemma 6 (P5) Let us consider the minimum-based confirmation measures (4.0.6)

and (4.0.7). Then

A⇒ (B OR C), C ⇒∗ B ` A⇒ B.
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proof: By our assumptions we have, for support and confidence thresholds r and

γ,

suppm(A⇒ B OR C) :=
∑
oi∈Do

min{A(oi),max{B(oi), C(oi)}} ≥ r (4.2.7)

and

confm(A⇒ B OR C) :=

∑
oi∈Do

min{A(oi),max{B(oi), C(oi)}}∑
oi∈Do

A(oi)
≥ γ. (4.2.8)

We want to prove

suppm(A⇒ B) :=
∑
oi∈Do

min{A(oi), B(oi)} ≥ r (4.2.9)

and

confm(A⇒ B) :=

∑
oi∈Do

min{A(oi), B(oi)}∑
oi∈Do

A(oi)
≥ γ. (4.2.10)

According to Section 4.1, C ⇒∗ B implies that C(oi) ≤ B(oi) for any oi ∈ Do.
Having this in mind, it is clear that (4.2.7) is equal to (4.2.9) and also (4.2.8) is

equal to (4.2.10). 2

The following counterexample shows that the lemma above can not be con-

structed for t–norm-based and implication-based confirmation measures.

Example 15 Consider dataset with one object and fuzzy sets A,B,C with values -

A(o1) = 0.5, B(o1) = 0.1, C(o1) = 0.9.

Then suppt(A ⇒ (B OR C)) = 0.455, resp. conft(A ⇒ (B OR C)) = 0.91, is

strictly greater than suppt(A⇒ B) = 0.05, resp. conft(A⇒ B) = 0.01.

Further, suppc(A ⇒ (B OR C)) = 0.5, resp. confc(A ⇒ (B OR C)) = 1, is

strictly greater than suppc(A⇒ B) = 0.1, resp. confc(A⇒ B) = 0.2.

Property P6

In this subsection we consider the property

A⇒ B, B ⇒ C ` A⇒ C. (4.2.11)

The authors of [16] demonstrated in counterexamples that this property is not valid

in general in the set of mined associations, thus

A⇒ B, B ⇒ C 6`s A⇒ C
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and

A⇒ B, B ⇒ C 6`c A⇒ C (4.2.12)

for all support measures (4.0.3), (4.0.5) and (4.0.6), respectively. Additionally, there

are the examples demonstrating that requiring some additional assumptions (for

example A⇒ A, B ⇒ B, C ⇒ C) need not lead to the validity of Property P6.

For completeness, we can prove a lemma claiming that by using some expert

knowledge we can reasonably use Property P6.

Lemma 7 ([16]) Let us consider confirmation measures given by (4.0.7) and (4.0.3),

(4.0.5), (4.0.6). Then

A⇒ B, B ⇒∗ C ` A⇒ C.

proof: First we consider t–norm-based confirmation measures. By our assump-

tions we have, for support and confidence thresholds r and γ,

suppt(A⇒ B) =
∑
oi∈Do

A(oi)⊗B(oi) ≥ r

and

conft(A⇒ B) =

∑
oi∈Do

A(oi)⊗B(oi)∑
oi∈Do

A(oi)
≥ γ.

We want to prove

suppt(A⇒ C) =
∑
oi∈Do

A(oi)⊗ C(oi) ≥ r

and

conft(A⇒ C) =

∑
oi∈Do

A(oi)⊗ C(oi)∑
oi∈Do

A(oi)
≥ γ.

According to Section 4.1, B ⇒∗ C implies that B(oi) ≤ C(oi) for any oi ∈ Do.
Having this in mind, it is clear that

suppt(A⇒ B) =
∑
oi∈Do

A(oi)⊗B(oi) ≤ suppt(A⇒ C) =
∑
oi∈Do

A(oi)⊗ C(oi)

and also

conft(A⇒ B) =

∑
oi∈Do

A(oi)⊗B(oi)∑
oi∈Do

A(oi)
≤ conft(A⇒ C) =

∑
oi∈Do

A(oi)⊗ C(oi)∑
oi∈Do

A(oi)
.

This finishes the proof for t–norm-based confirmation measures. For minimum-

based confirmation measures the proof would be analogous. When we consider

implication-based confirmation measures (4.0.5) and (4.0.7), we can analogously use
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conditions B(oi) ≤ C(oi) or B(oi) = 1 for any oi ∈ Do. By using the monotonicity of

the ordinary product and a chosen implication operator, we immediately obtain the

required ordering for the support measure. Finally, it is trivial to finish the proof

for the implication-based confidence measures. 2

Remark 6 As an easy corollary of Lemma 7 we can see that an ordinary transitivity

(A ⇒∗ B, B ⇒∗ C ` A ⇒∗ C) is preserved in the set E. On the other side, the property

(A⇒∗ B, B ⇒ C ` A⇒ C) need not be valid in general.

Lemma 8 For measures (4.0.3), (4.0.5), (4.0.6) and relevant (4.0.7)

A⇒ B′, B ⇒∗ C ` A⇒ C, whenever B′ � B.

proof: We consider t–norm-based support measure (4.0.3). We obtain suppt(A⇒
B′) =

∑
o∈Do

A(o)⊗B′(o). B ⇒∗ C implies that B(o) ≤ C(o) for any o ∈ Do. From

B′ � B it holds B′(o) ≤ B(o) ≤ C(o). Consequently, we obtain directly from

(4.0.3) and (4.0.7) that suppt(A ⇒ B′) ≤ suppt(A ⇒ C) (resp. conft(A ⇒ B′) ≤
conft(A⇒ C)).

As minimum-based confirmation measures are a special case of t–norm-based

ones, it remains to finish this proof for implication-based confirmation measures

(4.0.6). We obtain suppc(A ⇒ B′) =
∑

o∈Do
A(o)(A(o) → B′(o)). As above we

have B′(o) ≤ B(o) ≤ C(o). Consequently, we obtain from (4.0.6) and (4.0.7) that

suppc(A⇒ B′) ≤ suppc(A⇒ C) (resp. confc(A⇒ B′) ≤ confc(A⇒ C)). 2

Property P7

We can return to the original motivation ([6]) of establishing confirmation mea-

sures (4.0.7), (4.0.3), (4.0.5) and (4.0.6). We use the partition of Do given by fuzzy

sets S+, S−, S±, i.e. a positive, negative and irrelevant part of the rule E ⇒ F

(notation S+(E ⇒ F ), S−(E ⇒ F ) and S±(E ⇒ F )), respectively. Note that each

Si(E ⇒ F ), i ∈ {+,−,±}, can be seen as a fuzzy set on Do. In [6] confirmation

measures (4.0.7), (4.0.3), (4.0.5) and (4.0.6) were established in order to satisfy

supp(E ⇒ F ) =
∑
oi∈Do

S+(E ⇒ F )(oi)

and

conf(E ⇒ F ) =

∑
oi∈Do

S+(E ⇒ F )(oi)∑
oi∈Do

(S+(E ⇒ F )(oi) + S−(E ⇒ F )(oi))

for given partitions satisfying (4.0.1).

It is easy to see from the last two expressions that having two valid associations

E1 ⇒ F1, E2 ⇒ F2 with “disjoint” positive parts ensures the validity of (E1 ORE2)⇒
(F1 ORF2) whenever the connective OR is represented by a pointwise maximum.
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Therefore, we can work with a rule

A⇒ B, C ⇒ D ` (A OR C)⇒ (B OR D)

for fuzzy sets A,C with disjoint supports. Generally, the following results for P7

and its special case (C ⇒ C) can be provided.

Lemma 9 (P7)([16]) Let us consider the t–norm-based support measure, resp.

minimum-based support measure given by (4.0.5), resp. (4.0.6). Then

A⇒ B, C ⇒ D `s (A OR C)⇒ (B OR D),

proof: From the definition of t–norm-based support measure it is easy to see

that

suppt(A⇒ B) =
∑
oi∈Do

A(oi)⊗B(oi) ≤

≤
∑
oi∈Do

(A OR C)⊗ (B OR D) = suppt((A OR C)⇒ (B OR D)).

For minimum-based support measure the proof would be analogous. 2

Corollary 3 ([16]) For t–norm-based support measure, resp. minimum-based sup-

port measure we have

A⇒ B, C ⇒ C `s (C OR A)⇒ (C OR B).

Lemma 10 (P7) Let us consider the implication-based support measure given by

(4.0.5). Then

A⇒ B, C ⇒ D `s (A OR C)⇒ (B OR D) (4.2.13)

proof: Let us consider the implication-based support measure (4.0.5) with the

product implication → and the following decomposition of Do into D′1,D′′1 , D′′2 , D′21

and D′22 – D1 := {oi ∈ Do |C(oi) ≤ D(oi)}, D2 := Do \ D1 and D′1 := {oi ∈
D1 |A(oi)⊕C(oi) ≤ B(oi)⊕D(oi)}, D′′1 := D1 \D′1, D′2 := {oi ∈ D2 |A(oi)⊕C(oi) ≤
B(oi)⊕D(oi)} and D′′2 := D2 \ D′2 and finally D′21 := {oi ∈ D′2 |A(oi) ≤ B(oi)} and

D′22 := D′2 \ D′21. Finally, by ⊕ we denote a t–conorm of the product t–norm.

Let us study expressions

A(oi) · (A(oi)→ B(oi)), (4.2.14)

C(oi) · (C(oi)→ D(oi)), (4.2.15)
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(A(oi)⊕ C(oi)) · (A(oi)⊕ C(oi)→ B(oi)⊕D(oi)). (4.2.16)

Then (A(oi)⊕C(oi)) · (A(oi)⊕C(oi)→ B(oi)⊕D(oi)) = A(oi)⊕C(oi) (or B(oi)⊕
D(oi)) on set D′1 (or D′′1). In both cases we have

C(oi) ·(C(oi)→ D(oi)) ≤ (A(oi)⊕C(oi)) ·(A(oi)⊕C(oi)→ B(oi)⊕D(oi)) (4.2.17)

since C(oi) · (C(oi)→ D(oi)) = C(oi) for any oi ∈ D1. Similarly, (4.2.17) holds also

on D′′2 because, for oi ∈ D′′2

C(oi) · (C(oi)→ D(oi)) = D(oi) ≤ B(oi)⊕D(oi) < A(oi)⊕ C(oi) =

= (A(oi)⊕ C(oi)) · (A(oi)⊕ C(oi)→ B(oi)⊕D(oi)).

Analogously, for any oi ∈ D′21

A(oi) · (A(oi)→ B(oi)) =

= A(oi) ≤ A(oi)⊕ C(oi) = (A(oi)⊕ C(oi)) · (A(oi)⊕ C(oi)→ B(oi)⊕D(oi)),

and for any oi ∈ D′22

A(oi) · (A(oi)→ B(oi)) = B(oi) < A(oi) ≤ A(oi)⊕ C(oi) =

= (A(oi)⊕ C(oi)) · (A(oi)⊕ C(oi)→ B(oi)⊕D(oi)).

Consequently, A(oi) · (A(oi) → B(oi)) ≤ (4.2.16) holds for any oi ∈ D′2. Since

(4.2.17) holds for any oi ∈ (Do \D′2) = D1∪D′′2 , we obtain (4.2.13) directly from the

definition of (4.0.5). 2

From Lemma 10 we get the following corollary on the special case of Property

P7.

Corollary 4 ([16]) For the implication-based support measure with the product im-

plication we have

A⇒ B, C ⇒ C `s (C OR A)⇒ (C OR B).

As regards the confidence measures, the following example demonstrates that

Property P7 need not be proved for the minimum-based confidence measure. But

it can be proven for the special case of Property P7 in the next lemma.

Example 16 Consider minimum-based confidence measure and take a dataset con-

sisting of three rows. Let fuzzy sets A,B,C,D be defined by A(o1) = 0.9, B(o1) =

C(o1) = D(o1) = 0.1, A(o2) = B(o2) = C(o2) = D(o2) = 0.9, A(o3) = B(o3) =

D(o3) = 0.1 and C(o3) = 0.9.

Then confm(A ⇒ B) = confm(C ⇒ D) = 11/19 and this expression is greater

then confm(A OR C ⇒ B OR D) = 11/27.
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Lemma 11 (P7)([16]) Let us consider the minimum-based confidence measure given

by (4.0.7). Then

A⇒ B, C ⇒ C `c (C OR A)⇒ (C OR B).

proof: By our assumptions we have,

confm(A⇒ B) :=

∑
oi∈Do

min{A(oi), B(oi)}∑
oi∈Do

A(oi)

and

confm(C ⇒ C) :=

∑
oi∈Do

min{C(oi), C(oi)}∑
oi∈Do

C(oi)
.

We want to prove

confm((C OR A)⇒ (C OR B)) :=

∑
oi∈Do

min{(C(oi) OR A(oi)), (C(oi) OR B(oi))}∑
oi∈Do

(C(oi) OR A(oi))
.

• For A(oi) ≤ B(oi) ≤ C(oi) (resp. B(oi) ≤ A(oi) ≤ C(oi), or A(oi) ≤ C(oi) ≤
B(oi) or C(oi) ≤ A(oi) ≤ B(oi)) where oi ∈ Do we have∑

oi∈Do
min{C(oi), C(oi)}∑
oi∈Do

C(oi)
≤
∑

oi∈Do
min{(C(oi) OR A(oi)), (C(oi) OR B(oi))}∑

oi∈Do
(C(oi) OR A(oi))

.

• Otherwise, i.e., for B(oi) ≤ C(oi) ≤ A(oi) (resp. C(oi) ≤ B(oi) ≤ A(oi))

where oi ∈ Do we have∑
oi∈Do

min{A(oi), B(oi)}∑
oi∈Do

A(oi)
≤
∑

oi∈Do
min{(C(oi) OR A(oi)), (C(oi) OR B(oi))}∑

oi∈Do
(C(oi) OR A(oi))

.

2

Property P8

The last property is the condition

(A AND B)⇒ (C AND D) ` (A AND B AND D)⇒ C.

It can be easily proven that this property can be valid for t–norm-based confirmation

measures, and hence also for the minimum-based ones.

Lemma 12 (P8)([16]) Let us consider the t–norm-based confirmation measures

given by (4.0.3)and (4.0.7). Then

(A AND B)⇒ (C AND D) ` (A AND B AND D)⇒ C.
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proof: Since the linguistic AND is represented by a given t–norm ⊗, it follows

directly from the associativity of ⊗ that

(A(oi)⊗B(oi))⊗ (C(oi)⊗D(oi)) = (A(oi)⊗B(oi)⊗D(oi))⊗ (C(oi))

for any oi ∈ Do. Hence, by the choice of suppt, we immediately obtain

suppt((A AND B)⇒ (C AND D) = suppt((A AND B AND D)⇒ C).

Consequently also

conft((A AND B)⇒ (C AND D) ≤ conft((A AND B AND D ⇒ C)

since A(oi)⊗B(oi) ≥ A(oi)⊗B(oi)⊗D(oi) for each oi ∈ Do. 2

Corollary 5 (P8) ([16]) Let us consider the minimum-based confirmation measures

given by (4.0.6)and (4.0.7). Then

(A AND B)⇒ (C AND D) ` (A AND B AND D)⇒ C.

Remark 7 Since Property P8 is valid in general, it would be superfluous to study how

to use associations from E.

However, for implication-based confirmation measures, the negative answer can

be obtained - see the next example.

Example 17 ([16]) Consider data with attributes represented by fuzzy sets A,B,C,D

having values A(oi) = B(oi) = 0.1 and C(oi) = D(oi) = 0.2.

Then, for the product t–norm and its residuated implication, we obtain

suppc((A AND B)⇒ (C AND D)) = 0.01 ≥ suppc((A AND B AND D)⇒ C) = 0.002.

4.3 Summary

In this chapter we sketch obtained results for particular confirmation measures.

For minimum-based confirmation measures we have demonstrated that some

rules (P1, P2, P3, P5, P6, P7) are not valid in general. However, when we can

modify some of them (P3) or specify some conditions (P7) or expert knowledge (P4

and P6) in order to guarantee the validity of the considered rule. Finally, P4 and

P8 are always valid.
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For t–norm-based confirmation measures we have got that Properties P1, P2,

P3, P5, P6 and P7 are not valid in general. Similarly as above, we can specify some

conditions (for P7) or some expert knowledge (for P4 and P6) in order to get their

validity. As above, P4 and P8 are valid.

Finally we consider implication-based confirmation measures. For such measures,

Properties P1, P2, P3, P5, P6 and P7 cannot be used in general. On the other side,

P4 and P8 are always valid and for other rules some additional knowledge (for P4

and P6) or assumptions (for P7) can guarantee their validity.

4.4 Experiment

At the end of this chapter we devise a simple example demonstrating how the men-

tioned results can be used in the data mining process. We use a dataset entitled NO2

downloaded from the web page: http://lib.stat.cmu.edu/modules.php. For mining

of associations we used the program LAMWin32∗).

Our tools are the following (for details see [23])

• a model of evaluative linguistic expressions (more precisely, Model I),

• the implicational quantifier with parameters r ≥ 0.005 and γ ≥ 0.2.

The next two tables show some of found linguistic associations. The first two

columns of Table 4.1 represent associations of the form “Hour ⇒ Temp” and

“Temp⇒ Y NO2”, etc.

IF THEN IF THEN

Hour is Temp is Temp is Y NO2 is
ML Me ML Me. ML Me ML Me.
Me ML Sm. ML Sm ML Me.

V e Sm ML Sm. ML Sm ML Me.

Table 4.1: Found linguistic associations via LAMWin32.

These tables demonstrate that, e.g., Property P6 is suitable for simplification of

the data mining process. We can simplify the data mining process provided we have

a suitable set E possessing associations from the right side of the first table. Then

∗)For more information look at http://irafm.osu.cz/
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IF THEN

Hour is Y NO2 is
ML Me ML Me.
Me ML Me.

V e Sm ML Me.

Table 4.2: New linguistic associations obtaining Property 6.

it would be sufficient to mine only for associations from the left side of that table.

For example, in the first rows we can see the associations

“IF Hour is ML Me THEN Temp is ML Me.”

“IF Temp is ML Me THEN Y NO2 is ML Me.”

Then we immediately obtain another association

“IF Hour is ML Me THEN Y NO2 is ML Me”.
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Chapter 5

Modified APRIORI Algorithm

5.1 Introduction

There are more mathematical models of evaluative linguistic predications. Namely,

the original one from [23] and the novel one [14] we work with here. Thus, linguistic

predications can be represented by a fuzzy covering P := {Ai,j} of a chosen universe

U (for details we refer to [14]). The latter model allows us to work with specifying

evaluative linguistic expressions containing the formula “but not”. In this chapter,

we use only an example of evaluative linguistic predications with linguistic hedges

more or less or very – see following Example 18 and Figure 5.1. The model from

Example 18 is the most simple nontrivial mathematical model of evaluative linguistic

predications. Note that later |Xj| denotes a number of fuzzy sets Ai,j from Pj.

Example 18 We consider the attribute (resp. property, variable) Xj. For simplic-

ity we denote the attribute Xj without index and this model we can consider for all

attributes Xj, j = 1, . . . , k. The attribute X is given on certain interval [c, d] whose

covering P contains 9 fuzzy sets {Ai}, (i.e., Ai : [c, d] −→ [0, 1] and |X| = 9)

A1 ∼ V e Sm, A2 ∼ Sm but not V e Sm, A3 ∼ML Sm but not Sm,

A4 ∼ Lo Me, A5 ∼Me, A6 ∼ Hi Me,

A7 ∼ V e Bi, A8 ∼ Bi but not V e Bi, A9 ∼ML Bi but not Bi.

For medium values we introduce special linguistic hedges. Concepts Lo Me ( “lower

medium”) and Hi Me (“higher medium”) are more naturale.

For every attribute X we can define sets P 1(X) := {Ai} and, for various indexes l

P l(X) =
{
A ∈ P([c, d]) |A = ORli=1Ai, where Ai ∈ P 1(X)

}
,
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A1 A2 A3 A4 A5 A6 A7 A8 A9

1

c d

Figure 5.1: Fuzzy sets representing evaluative linguistic expressions in Example 18.

where OR can be represented by a relevant t–conorm (see page 20). Further, for

every context we distinguish subsystems representing small, medium and big val-

ues, respectively, i.e., we can have P l
Sm(X), P l

Me(X), P l
Bi(X) for various indexes l.

Finally, we put P(X) =
⋃
l P

l(X).

Example 19 For Example 18 it makes sense to consider only l = 1, 2, 3. Then

P 1
Sm(X) = {A1, A2, A3}, P 1

Me(X) = {A4, A5, A6} and P 1
Bi(X) = {A7, A8, A9}, where

each Ai ∈ P (X) represents a suitable evaluative linguistic predication. For instance,

for small values we have

A1 OR A2 ∼ Sm ∈ P 2
Sm(X), A1 ∼ V e Sm,

A2 OR A3 ∼ML Sm but not V e Sm ∈ P 2
Sm(X), A2 ∼ Sm but not V e Sm,

A1 OR A2 OR A3 ∼ML Sm ∈ P 3
Sm(X), A3 ∼ML Sm but not Sm.

For medium and big values we construct P l
Me, P

l
Bi analogously (for details see [14]).

A1 A2 A3 A4 A5 A6 A7 A8 A9

1

c d

A1 OR A2

A1 OR A2 OR A3

Figure 5.2: Subsystems representing small values in Example 18.

It is possible to construct either simpler or more comlex mathematical models

than the one from Examples 18 and 19, but in this contribution we work only

with this one as it is the most simple nontrivial mathematical model of evaluative

linguistic predications.

A specificity ordering � is an ordering of fuzzy sets interpreting evaluative

linguistic predications. We denote by A′ � A the fact that, for each x ∈ X,

A′(x) ≤ A(x) holds.
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Example 20 Let A,A′ denote fuzzy sets from Examples 18 and 19. If A′ ∼ V e Sm

and A ∼ Sm then A′ � A.

In our task we consider a numerical data set in the form of two-dimensional

table D (see page 29),

X1 X2 . . . Xk

o1 a11 a12 . . . a1k

o2 a21 a22 . . . a2k

...
...

...
. . .

...

om am1 am2 . . . amk

where an element of table is a real number aij ∈ R (eij = [oi]j), it is a value of jth

attribute (property) Xj measured on ith object (observation, transaction) oi. Let

Do denote the set of rows (resp. objects) of D.

Now contexts of all attributes must be specified. Mathematically, for j =

1, 2, . . . , m, a context of any attribute Xj is a closed interval [cj, dj]. Any con-

text should be set by the expert (user) which is more natural. When contexts are

specified, one can work with fuzzy sets P(Xj) introduced above.

Example 21 Consider 10 objects in an attribute Age with values {28, 45, 67, 32, 56,

70, 43, 73, 33, 72}. Then the context of the attribute Age must be given by the expert

as [0, 110]. 2

Our goal is to search for dependencies between given disjoint sets of attributes

{Yo}qo=1, {Zp}rp=1 ⊆ {Xj}kj=1. We look for unknown linguistic associations of the

form

E({Yo}qo=1)⇒ F ({Zp}rp=1), (5.1.1)

(E ⇒ F in short) where E,F are conjunctive evaluative linguistic predications, i.e.,

predications of the form

E = AND
q
o=1(Yo is So), So ∈ P(Yo), (5.1.2)

and ⇒ denotes a relationship between E and F . This relationship can be given by

chosen confirmation measures introduced in Chapter 4 (for more details we refer to

[6]).

Below we also work with so-called itemsets. A k–itemset T is a set of k ordered

pairs (o, So) where any o ∈ {1, 2, . . . ,m} denotes an index for which So ∈ P(Yo).

Clearly, see the next example, there exists a one-to-one correspondence between
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linguistic predications (5.1.2) and p–itemsets. Consequently, we can identify p–

itemsets with relevant linguistic predications - for instance, the cardinality of a p–

itemset T can be considered as a cardinality of E, (3.2.1) can be thought as T ⇒ R

where T is a p–itemset and R is a q–itemset, respectively, and so on.

Example 22 Assume that linguistic predications are defined in all attributes. Then

an expression “X2 is very small AND X5 is big but not very big” can be represented

by 2–itemset {(2, E2), (5, E5)}, where E2 ∼ Ve Sm and E5 ∼ Bi but not V e Bi,

respectively.

Similarly, it is easy to see that specificity ordering of fuzzy sets (see Page 66

or can be extended to the set of itemsets in a very natural way. Namely, for a p–

itemset T = {(i, Ei)}i∈I and q–itemset R = {(j, Fj)}j∈J we denote T � R if I ⊆ J

and Ei � Fi for any i ∈ I. Finally, we can specify an operator C representing

cardinality of a given p–itemset (resp. (5.1.2)).

Definition 24 An operator C is cardinality of a given p–itemset and it is defined

by

C (E)(o) = AND
q
o=1Ao([oi]o) (5.1.3)

for any o ∈ Do.

The Apriori algorithm is one of the best known algorithm used for searching for

associations. In the first step of this algorithm frequent itemsets are discovered.

Then candidate associations are generated and tested by chosen confidence measure.

In this chapter we demonstrate how to implement our purposed mathematical model

into this algorithm. The computational complexity of the proposed algorithm is

higher, however our algorithm allows to adapt mined association to the data set and

hence, in some way, substitutes some preprocessing steps.

The aim of this section is twofold. Firstly, we demonstrate how the properties

described above and background knowledge can be implemented into the Apriori

algorithm (e.g., [1]). Secondly, we suggest an implementation of our model of eval-

uative linguistic expressions.
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5.2 The Algorithm

The proposed algorithm is the following:

INPUT:

Data description - notation:
m . . . the number of objects,

k . . . the number of attributes,

Do . . . the set of objects,

Xj . . . the jth attribute j = 1, . . . , k,

aij . . . the value of jth attribute measured on ith object.

What is specified by the user:
suppp . . . the support measure (p is one of t,m, c) (see Chapter 4),

supp min . . . minimal support threshold,

conf min . . . minimal confidence threshold and a suitable linguistic description,

[cj, dj] . . . the context of attribute Xj,

P(Xj) . . . fuzzy covering {Ajl}
|Xj |
l=1 on Xj consisting of fuzzy sets Ajl,

where |Xj| is the number of fuzzy sets P 1(Xj) := P(Xj)

(e.g., see Example 19),

E . . . the set of associations representing background knowledge.

Other symbols:
Cr . . . sets of candidate r–itemsets,

(e.g., C1 = {(j, Ajl) | ∀j = 1, . . . , k; Ajl ∈ P 1(Xj)}), (we start with Cr = ∅),
Lr . . . sets of large r–itemsets (we start with Lr = ∅),
A . . . the set of found associations (we start with A = ∅),
Ã . . . the set of derived found associations.

E . . . the set of background knowledge (in the form of found associations).

In the next we work with t-itemsets of knowledge

Ẽ . . . the set of derived background knowledge.

OUTPUT: The set of linguistic associations A.

STEP 1: Construct a set C1 := {(j, Ajl) |Ajl ∈ P 1(Xj), j = 1, 2, . . . ,m} of all 1–

itemsets and, for each t ∈ C1, compute (see (5.1.3))

count(t) =
∑
o∈Do

C (t)(o). (5.2.1)
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STEP 2: For each t ∈ E we consider all possible itemsets t′ satisfying t � t′ and we put

background knowledge formed by appropriate itemset t′ into Ẽ .

STEP 3: If t 6∈ E and t 6∈ Ẽ check the count(t) of each t ∈ C1 :

(a) If count(t) ≥ supp min then put t into L1.

(b) If count(t) < supp min and t ∈ P 1
Q(Xj)

∗) (Q is one of Sm, Me, Bi),

then check all t′ ∈ P 2
Q(Xj), satisfying t � t′. If count(t′) ≥ supp min for

such t′, put t′ ∈ L1. Otherwise, check all t′′ ∈ P 3
Q(Xj), satisfying t � t′′.

If count(t′′) ≥ supp min for such t′′, put t′′ ∈ L1.

STEP 4: Set r = 1.

STEP 5: As in the original algorithm, to generate Cr+1 from large r–itemsets, i.e., use

r–itemsets from Lr. The only difference is that we have to deal with linguistic

expressions which can be ordered by specificity ordering. In order to keep

cardinalities of r–subitemsets, every generated (r+ 1)–itemset the most broad

expressions mentioned in r–itemsets.

Example 23 Let only pairs {t1, t2}, {t1, t3}, {t1, t4} and {t2, t3} be in L2.

Then only {t1, t2, t3} ∈ C3 while {t1, t2, t4} 6∈ C3 (resp. {t2, t3, t4}, {t1, t3, t4})
because {t2, t4} 6∈ L2 (resp. {t2, t4}, {t3, t4} 6∈ L2).

STEP 6: For any t ∈ Cr+1 do the following:

(a) Compute count(t) by (5.2.1).

(b) If count(t) ≥ supp min, put t in Lr+1.

(c) If count(t) < supp min we have to consider “broader” linguistic expres-

sions in every attribute as in STEP 3(b). For example, if

t = {(u1, Au1), (u2, Au2), . . . , (ui, Aui), . . . , (ur+1, Aur+1)} (5.2.2)

and (ui, Aui) is such that Aui ∈ P h
Q(Xj), Q ∈ {Sm,Me,Bi} and h ≤ 2,

then instead of Aui we take all A′ui ∈ P
h+1
Q (Xj). Thus, we check (5.2.1)

for (r + 1)–itemset

t′ = {(u1, Au1), (u2, Au2), . . . , (ui, A
′
ui

), . . . , (ur+1, Aur+1)}.

If count(t′) ≥ supp min then we do not check t̃ ∈ Cr+1 for which t′ � t̃

and put t′ ∈ Lr+1. But we have to check other possible combinations

∗)Here and below we use the fact that k–itemsets can be identified with elements of fuzzy
covering.
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of “broader” expressions in this step as well as for h := h + 1 (if it is

possible).

(d) For any t ∈ Lr+1 we may assume that elements of t are ordered by their

cardinalities. I.e., for (5.2.2) we assume

count{(ui, Aui)} ≤ count{(uk, Auk)} whenever uk ≤ ui.

STEP 7: If Lr+1 = ∅ and r ≥ 2 then follow the next steps.

STEP 8: Set w = 1.

STEP 9: Choose element t ∈ Lr of the form

t = {(u1, Au1), (u2, Au2), . . . , (ui, Aui), . . . , (ur, Aur)}. (5.2.3)

The r–itemset t can be decomposed into t′(w) and t′′(w) := t \ t′(w) where w

denotes that t′ consists of w elements. For instance,

t′(w) = {(u1, Au1), (u2, Au2) . . . , (uw, Auw)},

t′′(w) = {(uw+1, Auw+1), (uw+2, Auw+2) . . . , (ur, Aur)}.

Clearly, such decomposition defines an association a(w) := t′(w)⇒ t′′(w). For

all w–itemsets t′(w) we do the following steps.

STEP 10: If confp(a(w)) < conf min, then t′(w) is replaced by w–itemset t̃ possessing

“broader” expressions stepwise in 1, 2 up to w elements (i.e., for i = 1, . . . , w

(i, Ai) ∈ t′(w) implies that there exists (i, Ãi) ∈ t̃ such that Ai � Ãi) an

association a(w) := t̃⇒ t′′(w) is checked instead of a(w). (As in STEP 6 (c) -

all possible combinations of “broader” expressions have to be considered here.

For i = 1, 2, . . . , w put Aui := A′ui that Aui � A′ui and repeat STEP 10.

If A′ui does not exist then i := i+ 1 and repeat STEP 10.

If none association t̃⇒ t′′(w) can be constructed then choose different t′(w) ⊆ t

and repeat this step. If this is not possible and w < r, put w := w + 1 and

repeat this step with another t′(w) ⊆ t. If w = r, then Lr := Lr \ t and go to

STEP 9 whenever Lr 6= ∅. In the latter case, r := r − 1 and go to STEP 8.

STEP 11: If confp(a(w)) ≥ conf min then

(a) put a(w) into set A.

(aa) put all ã(w) into set Ã, where t̃′′(w) = t′′(w) and t̃′(w) is “broader”

expression of the association ã(w) satisfying t′(w) � t̃′(w).
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For confirmation measures (4.0.3) and (4.0.5) and relevant (4.0.7) we can use

the following reduction tools.

(b) It follows from Property 8 that, for z={w+1, . . . , r-1}, a(z) is valid if the

antecedent of a(z) contains t′(w) therefore put a(z) in Ã.

(c) It follows from Property 8 that all associations a(w):= t′(w)⇒ t̃ are valid

whenever t′′(w) � t̃. Therefore put a(w) in Ã.

(d) According to (4.0.7) it is clear that elements of t′(w) can be replaced by

elements of t with lower cardinality and the validity is not corrupted.

Example 24 We consider 3–itemset {t1, t2, t3} where C (t3) ≤ C (t2) ≤ C (t1)

and we obtain a(1) := (t1 ⇒ t2 AND t3) ∈ A, then (t2 ⇒ t1 AND t3) and

(t3 ⇒ t1 AND t2) are also valid associations.

For all confirmation measures from Chapter 4:

(e) Lemmas 7 and 8 and associations from E might be applied in this step as

well.

STEP 12: If all associations a(w) generated from t were checked and w < r, put w :=

w + 1 and go back to STEP 9. If w = r, then Lr := Lr \ t and go to STEP 9

whenever Lr 6= ∅. In the next, r := r− 1 and go to STEP 8. In the latter case

r = 1 then it means the end of the algorithm.

In this part we provide analysis of the complexity of our algorithm.

Lemma 13 Let us consider m attributes where |Xj| means a number of fuzzy sets

of an attribute Xj covering its context [cj, dj]. Then total number of all the possible

associations is

k∑
j=2

 j−1∑
i=1

(
j

i

)
·

j∑
r1=1

j∑
r2=r1+1

· · ·
j∑

rj=rj−1+1

|Xr1| · |Xr2| · · · |Xrk |

 . (5.2.4)

If we want to obtain a number of associations included “broader” fuzzy sets, we

only increase the number of fuzzy sets for each attribute. The proof of the lemma

is given by a mathematical induction.

proof: For 2–itemset we consider one attribute in the antecedent (one in the

succedent) and all possible fuzzy sets for each attribute, then we obtain the number

of investigated associations in the form(
2

1

)
·
∑
r1

= 1k

(
k∑

r2=r1+1

|Xr1| · |Xr2|

)
.
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We suppose that for j–itemset we have the number of investigated associations given

by (5.2.4). We verify the number of investigated associations for (j + 1)–itemset.

For 2–itemset is the number given in the previous paragraph. For 3–itemset we

consider one as well as two attributes in antecedent, then we obtain((
3

1

)
+

(
3

2

))
·

k∑
r1=1

(
k∑

r2=r1+1

(
k∑

r3=r2+1

|Xr1| · |Xr2 | · |Xr3|

))
.

Hence, for (k + 1)–itemset we obtain

j∑
i=1

(
j + 1

i

)
·
j+1∑
r1=1

 j+1∑
r2=r1+1

· · ·

 j+1∑
rj+1=rj+1

|Xr1 | · |Xr2| · · · |Xrj+1
|

 .

The total number of all associations (i.e., 2–itemsets, 3–itemsets, · · · , (j + 1)–

itemsets) is the sum of the numbers of all possible itemsets then we get the formula

k∑
j=2

 j∑
i=1

(
j + 1

i

)
·
j+1∑
r1=1

j+1∑
r2=r1+1

· · ·
j+1∑

rj+1=rj+1

|Xr1| · |Xr2| · · · |Xrj+1
|

 .

In this way we prove that Lemma 13 is valid. 2

Corollary 6 If we consider k attributes where |Xj| > 2 means a number of fuzzy

sets of an attribute Xj covering its context [cj, dj] (where we work with small, medium

and big values). Then the number of attribute Xj is bigger more

|Xj |
3
−1∑

i=1

|Xj|
3
− i,

i.e., the total sum of all possible associations is given by (5.2.4) where |Xj| :=

|Xj|+
∑ |Xj |

3
−1

i=1 .

Example 25 Consider 3 attributes (k = 3) with the mathematical model considered

in Example 18 where

(a) the narrowest fuzzy sets, i.e., |X1| = |X2| = |X3| = 9. Then the number of all

possible associations according to (5.2.4) is 2 · 9 · 9 + 6 · 9 · 9 · 9 = 4862.

(b) the number of fuzzy sets with “broader” fuzzy sets describing in Example 18

is |X1| = |X2| = |X3| = 18. Then the number of all possible associations

according to (5.2.4) is 2 · 3 · 18 · 18 + 6 · 18 · 18 · 18 = 36936.
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According to Lemma 4.2 if the association

“IF X1 is small THEN X2 is very big”

is a valid association then following associations are valid associations as well

“IF X1 is small THEN X2 is big,”

“IF X1 is small THEN X2 is more or less big.”

In this way, if all associations with the narrowest fuzzy sets are valid associations

then we need not investigate 2 · 4862, i.e., 9724 associations. Thus we need not

investigate 26% from all possible associations.

According to Lemma 4.2 if there exists a valid association in this form “IF X1

is A THEN X2 is B AND X3 is C” where A,B,C are fuzzy sets of appropriate

attributes, then we need not investigate these two associations:

“IF X1 is A AND X2 is B THEN X3 is C”,

“IF X1 is A AND X3 is C THEN X2 is B”.

Moreover, if there exist B′, B′′, C ′, C ′′ that B � B′ � B′′ and C � C ′ � C ′′ then

following associations are also valid associations according to Lemma 5

“IF X1 is A AND X2 is B THEN X3 is C ′”,

“IF X1 is A AND X2 is B THEN X3 is C ′′”,

“IF X1 is A AND X3 is C THEN X2 is B′”,

“IF X1 is A AND X3 is C THEN X2 is B′′”.
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[10] P. Hájek, Logics for data mining (guha rediviva), Neural Network World 10

(2000), 301–311.
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