

Abstract — The present paper is oriented to problems of simulat-

ion of anticipatory systems, namely those that use simulation models

for the aid of anticipation. A certain analogy between use of simulat-

ion and imagining will be applied to make the explication more com-

prehensible. The paper will be completed by notes of problems and

by some existing applications. The problems consist in the fact that

simulation of the mentioned anticipatory systems end is simulation of

simulating systems, i.e. in computer models handling two or more

modeled time axes that should be mapped to real time flow in a non-

descent manner. Languages oriented to objects, processes and blocks

can be used to surmount the problems.

Keywords — Anticipatory systems, Nested computer models,

Discrete event simulation, Simula.

I. IMAGINATION AND SIMULATION IN DESIGN

HEN a collective of humans (a team etc., exceptionally

one human) S designs, develops, organizes and/or con-

structs a system s, almost always such an activity is performed

with respect to future: S assumes s not only to be once made

as a static thing, but frequently takes into account that s will

behave and exist during time in order to satisfy some task,

target, intention etc. S anticipates the possible behavior of s by

using of a certain model M and – according to that

anticipation – S frequently changes the conception of the

future s. According to the definition introduced in [1], S is an

anticipatory system, because the instantaneous states of its

work are influenced by viewing to the future (to possible

behavior of the result s of its design work) and that viewing

may lead S to change the reactions to its instantaneous states.

M is a model of s and it often a mental one, frequently aided

by imagining in sense “What would s do after it is realized

and applied as a real object in the physical world?” The

capacity of human imagining is rather limited, humans make

often errors, the imagining should be controlled by rationality,

and therefore computer simulation is often applied to replace

human imagination, namely in case s is rather complex. In

general, computer modeling permits to take a great (may be

variable) number of (often variable) properties into account,

and computer simulation permits to add causality of events

into their variability. The simulation model M is carried by a

Manuscript received February 10, 2006.

Eugene Kindler is with the Institute of fuzzy modelling and applications,

Faculty of Science, University of Ostrava, 30. dubna Street no. 22. CZ –

70103 Ostrava, Czech Republic (phone: +420-221-914-286; fax: +420-221-

914-323; e-mail: evzen.kindler@ mff.cuni.cz).

certain computer C that can be viewed as an element of S (see

Fig. 1 where some possible elements of S are denoted as H1-

H6).

To program a simulation model of a complex system is a

difficult task and therefore simulation languages were deve-

loped; their basic contribution is that their user does not need

describe what should happen in the simulating computer, but

he only describes the system that should be simulated; then

the description can be automatically interpreted or translated

into a computer program. More and more complex systems

demand to be simulated, the developing of simulation

language processors was hard and expensive and therefore

already in 1966 the principles of the object-oriented

programming (further OOP) was designed and in a short time

after, in Simula programming language offered to the users. In

OOP, the classes enable representing general concepts,

dynamic creating of their instances enables to form models

with time dependent structures, the subclasses enable effective

organizing the concepts according to their content and extent,

the messages enable to introduce a certain standardization of

the abilities of instances to interact either effectively or – in

case of virtual methods – in a symbolic way that can be

completed or even re-declared when a concept of richer

contents is defined. OOP enables to define problem-oriented

programming languages without hard and expensive

Object-Oriented Simulation of Simulating

Anticipatory Systems

Eugene Kindler

W

H2

H1
C

M

 E1 E2

E6 E7

E3 E4 E5

H3

H4 H6

H5

S

Fig. 1 Designing team composed of 6 humans H1-H6 and computer

C that contains model M of s, composed of 7 elements E1-E7

implementation of their processors: a class D of (possible) real

systems is analyzed, every partial result of the analyze can be

immediately recorded in an OOP language and when the

analyze is finished the text in the language, got during it

represents a definition of a problem-oriented language,

prepared to model the systems of D. Among such problem-

oriented languages, new simulation one arise, “tailored” to

various classes of (complex) systems.

II. IMAGINATION AND SIMULATION IN OPERATION

Let us now turn attention to system s designed and realized

by the system S (see section I). Frequently, s is supposed to

operate under a certain small or less human control or at least

influence (note that even a manual worker employed in s is a

component of s and can affect the future states of s). Let h de-

notes such a human. He is also an anticipatory system, using

often a certain mental model that leads him to make some

decisions, which may directly or indirectly influence the

future dynamics of s.

More humans with their own models can affect the same

system. Therefore the automatic control is applied with a vis-

ion to concentrate the decision in one center and to replace all

mental models by a unique one m. Nowadays computer simu-

lation models come increasingly into interest of specialists.

Suppose inside s at a certain state an intervention is

necessary and a set of possible interventions exists, forming a

question to choose the intervention that causes the optimal

consequences in a certain future time; to determine the

consequences is often difficult and thus for every possible

intervention a simulation model can be run to present the

future consequences, so that finally the optimum decision is

known. The simplest way is to let the models run one by one.

Therefore the computer c that manipulates them may carry

only one such a model m at a time (see Fig. 2, which

illustrates a certain similarity between s and m inside c, using

a correspondence between i and – i; note that c is a member

of s in the same sense like e1-e7).

III. AGENTS

The idea of computing agents (further c-agents) roots in its

certain analogy in the world – such agents are often taken as

models of agents (further w-agents) existing outside

computing technique. It is no more known that since 1960 the

first symptoms of c-agents have been in the first discrete event

simulation language GPSS [2] (applied until the present time

in a PC form [3]). It offered easy describing simulation

models so that their elements were viewed as simple c-agents

existing and operating in the common simulated time

according to their “life rules”: the corporative behavior of the

c-agents was automatically implemented by a scheduling

mechanism among life rules of different c-agents. One

described the simulation model so that he viewed the

simulated system as composed of w-agents, which he

described in GPSS and their descriptions were interpreted as if

they concern c-agents.

The reactivity and interactivity of such c-agents was rather

limited in GPSS, but several years later – still in the sixties of

the XX century – other discrete event simulation languages

(e.g. SOL or Simula I [4]) admitted very rich interactions.

They are called process-oriented simulation languages [5].

Finally (in 1967), the object-oriented programming (further

OOP) was born in the cradle of simulation [7] as a universal

programming paradigm; it enabled not only to define classes

of c-agents and order them according to their content and ex-

tent “homomorphly” with the relations among the correspon-

ding w-agents (the classes of which do not differ from what

the philosophers call concepts), but also to introduce common

names of their possible interactions. Note that according to [7]

and the first implementation Simula 67 [8] of OOP, the “life

rules”, i.e. the algorithmic description of the c-agent dynamic

interruptible behavior remained, while many other OOP pro-

gramming tools like SmallTalk, C++, Eifel and newer

versions of Pascal admit no interruptible “life rules” and their

users have difficulties when wishing to formulate c-agents in

them.

Nowadays, Simula 67 is officially called simply Simula [9],

as it completely covered the use of Simula I. Among the other

OOP languages that admit the “life rules” are Beta [10], Java

and Modsim [11]. They are both OOP languages and process-

oriented ones. It is possible to state that a language that has

the both orientations is also agent-oriented.

IV. SIMULATING AND SUBORDINATED AGENTS

What was described above was oriented to w-agents that

form systems (i.e. that are elements of systems intended to be

simulated) and the corresponding c-agents that form

simulation models. Examples of such w-agents are H1-H6 and

C of Fig. 1 and e1-e7 and c of Fig. 2, examples of such c-

agents are E1-E7 of Fig. 1 and 1- 7 of Fig. 2. Let them be

called subordinated agents, as they are components of either

Fig. 2 Designed system composed of 7 elements e1-e7 and of

computer c that handles model m reflecting the environment of c

c

m

1 2

6 7

3 4 5

e2

e1

e3

e4

e7

e6
s

e5

simulated systems (in case they are w-agents) or simulation

models (in case they are c-agents).

C and c are special ones: they carry simulation models. Let

them be called simulating agents. Until the present phase of

the explication, it seems that every simulating agent is

subordinated w-agent and cannot be subordinated c-agent.

The future phase of explication will show that the present idea

is not complete.

V. NESTING SIMULATING AGENTS

Using usual terms of computing science and system

science, we can say that the subordinated w-agents are nested

in the system where they belong and the subordinated c-agents

are nested in the models where they belong. Note the relation

of nesting is often considered transitive (not only expressing a

direct nesting). In case the models themselves are considered

as agents (see section XI), the transitivity enables to preserve

the mentioned nesting of agents also in case the subordinated

ones are viewed as nested in models.

It is said with a bit humor that (computer) simulation is the

worst method to get data for decision – it needs a model that is

usually rather complicated and hard for constructing, and the

run of the model needs a lot of computing time. Although the

present computers are so fast that the computing time problem

is almost negligible (it concerns the personal computers, too),

it is true that in case simulation could be replaced by a short

formula it would be better. Nevertheless the human

civilization meets more and more complex systems, for which

simulation is the only method to tell something exact about,

while the desire to apply simple formulas is like fata morgana.

Suppose the team S designing a system s is apprized of its

great complexity and of the consequence that in s simulation

will be sometimes necessary. Then it is necessary to accept

such a simulation as a component of the model M used by S

during the design. If S is really convinced that s will use simu-

lation then the deletion of this simulation from M (or its repla-

cing by something simple) would damage M and its predicting

ability.

The consequence is that model M used by s must reflect

also computer c existing in the designed system s and the

models like m handled by c. In a graphic scheme, we must

accept that the image of M in Fig. 1should contain – beside

the elements E1-E7 – also something like the image of c

presented in Fig. 2. In other words, the contents of s visible in

Fig.2 should be transferred into the image of M visible in Fig.

1 so that the w-agents e1-e7 change to c-agents E1-E7. See

Fig. 3.

So we our consideration comes to nesting simulating

agents. They correspond to nesting anticipation: the designing

system S anticipates the behavior of the designed system s

under the expectation that s itself will be anticipatory. Let

conventional simulation models be called (simulation) models

of order one and models like M be called (simulation) models

of order two.

VI. PROBLEMS OF MODELS OF ORDER 2 – MORE TIME AXES

A very profitable property of the simulation languages are

tools for automatic manipulation with simulated Newtonian

time axis that corresponds to the real time flow viewed at the

simulated time; that allows that the events coming in the real

time described by means of the tools can be “homomorphly”

scheduled in the corresponding simulation model. As there is

only one time axis visible as real time flow, the simulation

tools offer only one simulated time axis in any simulation

experiment. And the standard simulation tools introduced into

OOP languages are limited in the same way. But one problem

of nesting agents is that they behave in two (or even more)

different time axes: a model M of order two itself changes its

states in a certain time axis T while if it calls a model m nested

in it another time axis t arises and exists during the simulation

experiment with m; then t disappears but when another use of

this (or another) nested model is demanded, a new time axis t’

should arise.

As an example concerning the difference between T and t,

the following statement can be presented: “while computer C

operates during time interval <T1, T2> it simulates what could

happen in s during time interval <t1, t2>”. The only demands

for the values are that T1<T2 and t1 t2 but otherwise no limita-

tion exists (really, <T1, T2> is often like <56 ms, 62 ms> while

<t1, t2> may be like <20 days, 23 days>).

The events concerning M have to be non-decreasingly orde-

Fig. 3 Nesting of model m inside an element of model M – each of

the models is depicted with dashed line and geometrically nested

into the image of the element (computer C) that carries it (in case of

M) or into the image of the model of the element (computer c) that

carries it.

H2

H1C

M

H3 H4
H6

H5

S

c

m

1 2

6 7

3 4 5

E4

E2

E3

E1

E6

E5

E7

red with respect to T according to their times during the whole

existence of M and in that order they must be interpreted at C

during real time flow, and that holds also for the events related

to t and to t’; but there are no similar relations concerning the

events belonging to different time axes. For example, after

finishing a nested experiment by an event scheduled at time

axis t for rather great time, the time axis t’ could start with an

event scheduled for zero.

VII. MORE TIME AXES – ANSWER

The existing simulation programming tools appear useless

for implementation of nesting models of order two. But there

is a good way to implement them, namely by means of the

OOP languages that are process-oriented (agent-oriented – see

section III) and block-oriented.

Block orientation was exactly introduced into programming

in ALGOL 60 language at the beginning of the 60-ies of the

preceding century [12] but the enthusiasts of structured and

modular programming proscribed it already in the 70-ies.

Nowadays, such mode of programming is out of use for a long

time but the return of block-orientation is rather reluctant.

Simula has had that orientation already since 1967 and then

only Beta and Java were equipped with it.

Block can be described as a part of life rules that can mani-

pulate with some “private” entities, i.e. with something that is

not accessible from the outside of the block. The entities are

called local in the block and can be variables and subroutines;

nevertheless, if a block-oriented language is also OOP one,

classes can be among the local entities. When an instance E of

a class performs its life rules and enters into such a block it

can be viewed as representing something that just entered into

a certain phase of its life that is “intellectually” richer: E

behaves as “knowing” what mean the local entities and is

“thinking” by means of them. In case such a local entity is a

class, the words “knowing” and “thinking” do not sound

bombastically, as the instance can use the class for many

purposes, among which there is generating instances and

letting them perform according to their life rules.

Thus, if an instance E enters into a block B where classes U,

V, W, … are introduced as local ones, E can use them to form

a model m, which behaves like a “private model” existing on-

ly in the E’s existence. When simulation tools are introduced

into the block B too, this block behaves as being a simulation

experiment and E behaves as a simulating agent as far as its

dynamics is inside B. Let such a block be called simulation

block. When leaving B, the simulation model m disappears

together with all what is local in B.

In case E was a subordinated agent already before entering

B its events are bound to some time axis T related to a model

M, which E forms a component of. The ability to be a subordi-

nated agent is preserved during the E is a simulating agent and

persists after E leaves B. Thus E can be contemporarily simul-

ating and subordinated. Operating inside B, a time axis t local

to B arise and the entities of the classes local to B are related

to it. A very fine and sophisticated use of Simula tools enables

that during operating inside B, E behaves like a part of the

model m for that it is a carrier.

VIII. FORMAL SIMILARITY OF NESTING SIMULATION MODELS

Habitually, the models M and m mentioned above concern

the same thing, i.e. they should have many similar properties.

Let such a phenomenon be called reflective simulation.

Nevertheless, both the models can be declared similar only

when they are viewed in a formal manner and without their

context. Certain parts of their semantics differ: while M is a

model of s, m nested inside M does be a model of certain elec-

tronic phenomena existing in the computer c represented in M,

namely of the phenomena that are viewed as a model of s. Lo-

gically, the elements of both the models cannot be mixed. E.g.

an image of an element in m cannot be inserted into a an

image of a queue in M or vice versa; such a step would model

the inserting of a real element of s into a representation of a

queue inside the electronics of c or – in the opposite case –

inserting an electronic phenomenon inside c viewed as a

representation of an element of s into real queue existing in s.

In general, such assignment is a (programming) error called

transplantation and can lead to logical contradictions [13],

sometimes interpreted as a collapse of computer or task.

Therefore if such an error is made and then recognized

according to its consequence (collapse) its repairing is almost

impossible.

The best way to be safe against transplantation is to apply

rather different languages for describing M and m, i.e. to give

all the entities (the classes, their attributes and methods and

their instances) names differing from those introduced in the

simulation block corresponding to model m among the life

rules of c. Unfortunately, this idea is very inconvenient, as if

accepting it the author of a model of order two would have to

remember two languages and use them adequately, contrary to

the fact that he describes the same object in them.

The other way would be to give a wide berth from writing

on both the models in the same sentences. Unfortunately, it is

also impossible, because at least during the start of the nested

model m its carrier should assign its initial values by those

read as the corresponding instantaneous values of M.

Therefore the practice demands using the same languages

for the description of both M and m and applying them in sen-

tences where both the models figure. Therefore transplantation

is a real danger. It seems that Java checks it sometimes while

in other cases the security depends on the user’s

responsibility. Beta seems to have checks on the security but

many of them exert during the run of the compiled model, i.e.

lengthen the simulation experiments.

IX. CASE OF SIMULA

Simula was designed to check the possible transplantation

cases during the compilation as much as possible. Because of

it, the following two limitations have to be respected:

a. the blocks are not objects and they cannot get names,

b. the excellent Simula standard tools for simulation (name-

ly for automatic event scheduling) can be applied only to

instances of classes local in blocks.

The consequence is that a model cannot be identified and

therefore one cannot use assignment statements like

m.machine3.object.mass:=M.machine3.object.mass

telling something like “in the newly generated model m, the

mass of the object that is being elaborated at machine3 should

be copied from the corresponding structure existing just in

model M”.

Similarly, the same limitations seem not enabling to distin-

guish two “scheduling” statements expressing that something

takes a certain (simulated) time, for which Simula offers a

standard tool hold(e) in case of models of order one (if such a

statement is met during the performing of life rules of a

certain agent p it tells p to interrupt the performing until the

simulated time increases of e. To understand the obstacle, one

must realize that the carrier c of model m is contemporarily a

subordinated agent in M and a simulating agent carrying m

and that hold(e) could be demanded to relate to any of time

axis T or t. The former interpretation tells that inside S, the

computer c should wait e units, while the latter interpretation

tells that the subordinated agent a that just controls the

computation inside m should wait e units. In other words, the

first interpretation tells something on the computing rate of c

while the second interpretation speaks on what happens inside

m. Simula does not allow to distinguish both the cases in a

simple way like M.hold(e) or c.hold(e) and m.hold(e) or

a.hold(e); it allows to write only hold(e) and to interpret it as

a.hold(e).

X. FIRST SOLUTIONS OF PROBLEMS

It is necessary to say that for a scientific analysis a modern

programming language that is object-oriented, process-orient-

ed and block-oriented represents something like formal mathe-

matical theory; the description of the languages is like the axi-

oms and the application of the language is like deriving theo-

rems from the axioms. The axioms of certain mathematical

theories were stimuli for such deriving during hundreds of

years and a similar situation can be met at the modern pro-

gramming languages. Note that only the syntax of such lan-

guages is expressed by more that hundred rules that behave as

axioms that cannot be generated by some algorithm, and that

the languages that are object-oriented and block-oriented

behave like theories of systems, the elements of which can be

other theories.

Respecting such a situation, there is not a surprise that 25

years starting by the exact definition of Simula a common opi-

nion existed that Simula is so secure against transplantation

that it does not allow any communication among simulation

models (i.e. in case each of them had its own time axis, inde-

pendent of those of the other models). But in 1993 a trick was

discovered how to circumvent its restrictions and a way to

make possible the communication among different simulation

models and thus the real use of reflective simulation, too [14].

The trick was sufficient but rather sophisticated and not

suitable for wholesale application. After having implementing

some models (see section XII) an idea came to prepare soft-

ware that could help the users to surmount the captiousness of

the trick: the objective of the idea was to make a processor

that would translate a Simula description of a model of order

one to a description of a similar model enriched by an image

of a computer that would be able to react to a certain message

so that it watches its environment, creates a model of it and

carries that model as a block of its own life rules. When a user

would let send such a message he could be sure the computer

to have the model and the users would only complete a de-

scription by the criteria, for which he desires the nested

model.

The software was implemented as a structure of three pro-

grams in Simula – the processor mentioned above, the run

time support for the run of the translated (and completed)

models and a program for checking whether the source of the

processsor has not errors. It worked in a satisfying manner

[16], but in 2005 a rather revolutionary fact was discovered on

Simula.

XI. MODELS AS AGENTS

In order to explain the discovery let us illustrate the preced-

ing situation in the models of order two in a graphical manner,

similarly to the preceding Figures (so called Mejtsky’s dia-

grams were used, which enable understanding the nesting

classes, models and theories [17], [18]).

Fig. 4 corresponds to Fig. 2 but respects the restriction de-

manded by Simula: the horizontal abscissa inside the image of

c represents the dynamics of c. When it enters in a simulation

block, the block is “attached” to the dynamics and a model m

arises inside it. Blocks are depicted as rectangles with rounded

vertices. Simula allows giving names to the objects, i.e. to the

entities that are depicted as circles, but not to blocks, i.e. to the

objects depicted in other form. Let “dot notation” of form A.B

Fig. 4 Implementation of model m carried by a simulating agent c,

having use of the standard simulation tool offered by Simula

c

e2

e1

e3

e4

e7

e6
M

e5

m

represents “B of A”; then it should denote something like a pe-

netrating into inside of the circle A and to point there an object

called B. The boundary of a rectangle is closed for

penetrating. Therefore e.g. e2 can manipulate c. but not c. 2,

and – being outside m – cannot be a subordinated agent in

m.

Suppose Fig. 4 represents a model M applied in the design.

For the visual understanding, in the Figure, e1 and 1 differ by

names but what happens when they have the same names in a

Simula program (e.g. name_k, for k=1, …, 7)? Then the elem-

ents like e1,…, e7and c cannot penetrate to the block m inside

c and thus to communicate with 1,…, 7; but also 1,…, 7

cannot communicate with e1,…, e7, because ek and k (k=1,

…,7) have the same names name_k that cannot be distinguish-

ed e.g. by dot notation (neither M nor m have names) and –

according to Simula rules – name_k occurring outside the

block of m denotes only ek while name_k inside this block

denotes only k.

The innovation of 2005 consists in using another simulation

tool than that offered as standard one by Simula. A new tool

was programmed so that it does not demand place the simulat-

ion models into blocks: such models can figure as agents, each

of them can get a name and using that name they can commu-

nicate. What was thus depicted in Fig. 4 was returned to the

situation depicted in Fig. 2 and the whole model of order two

is organized exactly as depicted in Fig. 3. For example, model

M can communicate by an element k of m by means of c.m.N

where N is the name of k. Similarly, m can communicate by

an element of M, which carries the same name N, by using or

even M.N.

Note the way to the result took 38 years of “thinking in Si-

mula” and that the further details would demand very deep

knowledge of this language. Nevertheless it should be mentio-

ned that the old rules of Simula cause the new simulation tool

to be completely secure against the transplantation.

XII. APPLICATIONS

In the conclusion of [5] it was demonstrated that the simula-

tion languages can make easy programming of some routines

that are far from simulation in case they are viewed from pure-

ly physical viewpoint. When a computing process A is neces-

sary to be programmed, then – instead of algorithmizing it –

one can imagine a fictitious system F that generates the same

data as A, and implement a simulation model of F. One speaks

on fictitious simulation. We used often Simula for it and since

1990 the fictitious simulation has been nested in “true” simu-

lation. Naturally, the activity was far from the reflective

simulation, as the fictitious systems were rather different from

those in they were nested. Among the examples presented in

[5] a method for computing the short path occurred,

applying simulation of fictitious system F of multiplying

pulses.

The first study [19] concerned a production system served

by automatically guided carriages; to get the optimal paths, the

simulated carriages applied the mentioned method . The

same technique was then applied in preparing software for

simulation of automated container yards – the ground-moving

tools for the operational transport inside the yards used to

get the optimal path composed of free places in the labyrinth

columns of containers ([20], pp. 265-274).

An extensive experimentation with the models of container

yard showed that almost all cases finished by a deadlock; the

sufficient condition was occurring two or more transport tools

in the simulated system. The deadlock was caused by the

possibility of a change of the configuration of free places at

the yard during using a result of : this method was based at

the instantaneous configuration of free places at the moment

of the computing, but when a transport tool was applying the

result of another transport tool could change the

configuration and cause a barrier on the computed path.

Simulation showed that sooner or later the cumulation of

barriers led to total collapse of transport in the yard.

Therefore the model was completed with another nested

model m, applied as follows. After the shortest path p was

computed by , model m was applied to simulate what conse-

quences can come when p is used. If m told that no barrier can

be expected p was applied, and when m discovered a barrier at

some place g of p, a fictitious container f was placed at g and

method was newly applied. Because of f, the newly

computed path was different from p, it was tested by m etc.,

until a safe path was reached [21].

Model m clearly anticipates a possible future development

of the system in that it exists; therefore m was the first case of

practical application reflective simulation. Before it, a demon-

stration case of reflective simulation was run, simulating a

bank of several tellers and one or more dispatchers who moni-

tor the situation in the queues and possibly can open a new

teller (in case it exists and the queues are rather long) or close

a teller (in case the queues are short or empty). In order to

learn whether such a decision is not a result of a rather volatile

situation, each of the dispatchers has a computer at that he

simulates the future, in order to see the possible consequences

of his decision; according to what the simulation shows, the

dispatcher accepts or modifies his decision [22].

Although the mentioned simulation was not directly applied

in practice it discovered many aspects, among which models

of various types of executives existed like master-pupil or two

non-communicating bureaucrats [23] and also simulated pairs

of competing systems that use their own simulationists to

discover what is the rival’s intention or even what the rival’s

simulationist might simulate about the simulation of the other

system [24].

Another application concerned public transport at a region

of a Moravian town Havirov of about 100.000 inhabitants: the

dynamics of the bus public transport net was simulated so that

passengers were represented according to their possible imagi-

ning: each of the imagines the duration of possible paths (se-

quences of walking and using various bus lines) to his target

and accordingly he decides for a certain path. The simulation

was oriented to future central dispatching and information

center, using portable telephone network to advise the passen-

gers on their paths optimal in relation to the instantaneous

situation [25].

The mentioned cases were applied with Simula standard

simulation tools, i.e. by hard programming technique depicted

in Fig. 4. In the next class of applications, one started with the

mentioned difficult technique but nowadays continues with

the new simulation tool mentioned at the end of section XI. It

concerns circular conveyor with rollers, to which some work-

ing areas are connected (see Fig. 5). When such an industrial

transport system is designed, the questions relate not only to

the number of the working places, to the length of the main

circle and to the power of the driving mechanism but also the

future control that should eliminate crashes and that will

answer questions like the follows:

(1) When an object comes to the conveyor and the

conveyor is rather occupied: should the object enter it or not

(when it enters, it might be returned after making a whole

cycle at the conveyor basic circle without any results and it

might obstruct the transport of other objects during that).

 (2) In case the object has to wait for being accepted to the

conveyor, what is the duration of the waiting?

(3) In case of an unexpected fault: is it better to stop the

conveyor function immediately and to repair the fault, or to

continue some time with a limited number of working areas?

(4) When the decision in (3) is to continue, what modificat-

ion of the technological programs would be optimal?

Note the question (4) is rather general and falls into many

other questions. All should be answered by simulation during

the conveyor operation and each of such simulation applicat-

ions should be incorporated into simulation during the design

[26]-[28].

Using the new simulation tool, simulation of certain aspects

of hospital reorganization was started at Ostrava University

and of regional development as well. The simulation studies

of hospitals reflect the patient-bed-fond managing with

respect to use computer simulation for certain decisions

demanded during the hospital operation [29]. The regional

development simulation models take nto account that the

region will organize consulting centers, where the inhabitants

(or persons interested into immigration) will et information

concerning the expected development of laber market,

transport, housing etc.

XIII. CONSLUSION

The technique of nested simulating agents enabled to sur-

pass the classification foreshadowed at the end of section V by

the terms models of order one and models of order two. It was

already the case of simulation of competing simulating

systems [24] mentioned in the preceding section, where

something like a model of order three was realized. We can

speak of the depth of model levels. Beside it, another criterion

concerns the number of (different) models – e.g. a computer

can represented in a simulation model as an entity carrying

more than one model. That is just a case of container yard

simulation mentioned above, where the computer managing

the yard handles two different simulation models, namely that

of the fictive model, used in for computing the shortest

path, and that identified m, applied for testing the security of

the computed path. We can speak on the size at different

model levels. Nevertheless, the size immediately carries a

further criterion into the possibilities of model nesting, namely

the aspects whether there is a reflective simulation or not. For

such a classification it is difficult to find words, as in

connection with depth and size a complicated graph of the

reflective relations can be thought. In [30] a certain attempt to

classification was depicted.

L1

L2

V1

V2
WA5 WA4 WA3

WA1 WA2

Fig. 5 An example of a conveyor with 5 working areas

Fig. 6 Scheme of a rectification column simulation model – the

environment of place x is occupied by agents that try to “bargain”

the attributes of place x so that they correspond the partial

differential equations describing the column behavior.

boiling liquid

boiling gasleaving liquid

leaving gas

x

Nesting simulating agents may be a mental stimulus for

further development in a larger domain, outside simulation. In

general, “shaving” the common time axis from simulating

agents is no problem and so one gets interesting cases, namely

of nesting intelligent agents that do not need to be simulating.

In Fig. 6 there is a schema of a simulated rectification column

where certain agents are depicted as shadow squares; when

they are just computing the values at place x: each of agents

viewed some space or time development in directing to x

(from left, from right and from the history), makes a certain

approximation of possible true values in x, and then he agents

perform a certain “discussion” to balance (and conciliate) the

differentiating prognoses. No time scheduling exists during

that discussion.

REFERENCES

[1] R. Rosen: Anticipatory Systems. New York: Pegamon Press, 1985

[2] G. Gordon: “A general purpose systems simulation program”. Proceed-

ing 1961 EJCC, New York: MacMillan, pp. 81-88

[3] T. J. Schriber: An Introduction to Simulation using GPSS/H, New York:

Wiley, 1991

[4] O.-J. Dahl and K. Nygaard: SIMULA, a Language for Programming and

Description of Discrete Event Systems, 5th ed. Oslo: Norsk Regne-

sentralen, 1967

[5] O.-J. Dahl: Discrete Event Simulation Languages. Oslo: Norsk Regne-

sentralen, 1966. Reprinted in [6]

[6] F. Genuys, Ed.: Programming Languages. London – New York: Acade-

mic Press, 1968

[7] O.-J. Dahl and K. Nygaard: “Class and subclass declarations”, in

Simulation Programming Languages, J. N. Buxton, Ed. Amsterdam:

North-Holland, 1968, pp. 158-174

[8] O.-J. Dahl, B. Myhrhaug and K. Nygaard: Common Base Language.

Oslo: Norsk Regnesentralen, 1968 (1st ed.). 1972 (2nd ed.), 1982 (3rd

ed.), 1984 (4th ed.)

[9] SIMULA Standard as Defined by the SIMULA Standards Group. Oslo:

Simula a.s., 1989

[10] O. L. Madsen, B. Møller-Pedersen and K. Nygaard: Object-Oriented

Programming in the Beta Programming Language. Harlow – Reading –

Menlo Park: Addison Wesley, 1993

[11] C. Herring: “ModSim: A new object-oriented simulation language”. SCS

Multiconference on Object-Oriented Simulation. San Diego: The Society

for Computer Simulation, 1990

[12] Naur, P., Ed.: “Revised report on the algorithmic language ALGOL 60”.

Communications of the ACM, vol. 6, no.1, pp. 1-17, Jan. 1963.

[13] E. Kindler: “Transplantation – what causes it in MS-DOS SIMULA?” in

Object Oriented Modelling and Simulation of Environmental, Human

and Technical Systems – Proceedings of the 24th Conference of the

ASU, Salzau (Schleswig Holstein, Germany), B. Breckling and H. Islo

Eds. Kiel: Ecology Center, 1998, pp. 155-164

[14] E. Kindler: “Reflective simulation in SIMULA,” in Applications of

Distributed and Graphical Simulation – Proceedings of the 19th Confe-

rence of the ASU, R. Kerr, Ed. Aberdeen: Kings College (University of

Aberdeen), 1993, pp. D-2-1 – D-2-11. Reprinted in [15]

[15] E. Kindler: “Reflective simulation in SIMULA”. ASU Newsletter, vol.

22, no. 1, pp. 1-14, Jan. 1994

[16] I. Krivy, E. Kindler and A. Tanguy: “Software for simulation of

anticipatory production systems”. International Journal of Computing

Anticipatory Systems, vol. 11, pp. 320-335, 2002

[17] J. Mejtský and E. Kindler: “Diagrams for quasi-parallel sequencing –

Part I”. SIMULA Newsletter, vol. 8, no.3, pp. 46-49, Aug. 1980

[18] J. Mejtský and E. Kindler: “Diagrams for quasi-parallel sequencing –

Part II”. SIMULA Newsletter, vol. 9, no.1, pp. 17-19, Feb. 1981

[19] E. Kindler and M. Brejcha: “An application of main class nesting – Lee's

algorithm”. SIMULA Newsletter, vol. 13, no.3, pp. 24-26, Nov. 1990

[20] E. Kindler: “Classes for object-oriented simulation of container termi-

nals,” in Managing and Controlling Growing Harbour Terminals,

E.Blümel, Ed. San Diego, Erlangen, Ghent, Budapest: The Society for

Computer Simulation International, 1997, pp. 175-278

[21] E. Kindler: “Nesting simulation of a container terminal operating with its

own simulation model”. Belgian Journal of Operations Research,

Statistics and Computer Sciences, vol. 40, no. 3-4, pp. 169-181, Dec.

2000

[22] E. Kindler: “Reflective simulation – first experiences,” in Simulation

und Animation für Planung, Bildung und Präsentation '96, P. Lorenz

and F. Breitenecker Eds. Magdeburg – Wien: ASIM, 1996, pp. 39-50

[23] E. Kindler: “When everybody anticipates in a different way ...,” in Com-

puting Anticipatory Systems CASYS 2001 – Fifth International Confe-

rence, D. M. Dubois, Ed. Melville, New York: American Institute of

Physics, 2002, pp. 119-127

[24] P. Blümel and E. Kindler: “Simulation of antagonist mutually simulating

systems,” in Simulation und Animation '97, O. Deussen and P. Lorenz,

Eds. Erlangen, Ghent, Budapest, San Diego: Society for Computer

Simulation International, 1997, pp. 56-65

[25] P.Bulava: “Transport system in Havirov,” in Proceedings of 28th ASU

Conference, 2002. Brno, Czech Republic:Technical University, pp. 57-

62

[26] E. Kindler, P. Berruet and T. Coudert: “Conveyors with rollers and their

reflective simulation,” in International Workshop of Modelling &

Applied Simulation MAS 2003, A. G. Bruzzone and R. Mosca, Eds.

Genoa: McLeod Institute of Simulation Science, pp. 147-152

[27] E. Kindler, T. Coudert and P. Berruet: “Component-based simulation for

a reconfiguration study of transitic systems”, SIMULATION, vol. 80, no.

3, pp.153-163, March 2004

[28] P. Berruet, T. Coudert and E. Kindler: “Conveyors with rollers as antici-

patory systems: their simulation models,” in Computing Anticipatory

Systems CASYS 2003 – Sixth International Conference, D. M. Dubois,

Ed. Melville, New York: American Institute of Physics, 2004, pp.

582-592

[29] E. Kindler and I. K ivý: “On the way to reflective simulation of

hospitals,” in 4th International Conference Aplimat, Part II. Bratislava:

Slovak University of Technology, 2005, pp. 309-314

[30] E. Kindler, I. K ivý and A. Tanguy: “Object-oriented sytem analysis of

anticipatory systems in week sense”. International Journal of Comput-

ing Anticipatory Systems, vol. 14, pp. 271-285, 2004

