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ABSTRACT:

The paper deals with the F-transform technique which was introduced as a method for an approximate representation

of continuous functions which is appropriate for many applications. In the terminology of neural networks, the

F-transform uses so called off-line (batch) learning. However, for certain applications an on-line (incremental) learning

algorithm has to be implemented. We study the F-transform from a neural network point of view and introduce an

on-line learning based on the gradient descent method. Moreover, we introduce an on-line algorithm tuning the fuzzy

partition used in the F-transform method.

Keywords: Fuzzy set, F-transform, Neural network, RBF, Gradient descent method.

1 Motivation

Fuzzy approximation is a newly developing mathematical branch aiming at approximation of say some
dependencies by means of the fuzzy set theory and the fuzzy logic in broader sense. Obviously it has old
roots in Takagi-Sugeno fuzzy rule based systems and in works aiming at approximation capabilities of
fuzzy rule based systems, see [2, 6].

The approximation task is in mathematics very and already well studied so, we hardly avoid building
bridges between fuzzy approximation and already done results. Conversely, we can simply inherit many
results from other branches dealing with the approximation problem.

This paper is an introduction of the study of different relationships between fuzzy approximation
methods and other approximation techniques. It deals with a particular fuzzy approximation method
called fuzzy transform (F-transform) and neural networks as another soft computing branch which has
many times been proven to be an appropriate tool for approximation tasks.

By getting both approaches closer to each other we expect:

• development of new algorithms (known in neural networks) for fuzzy approximation

• enriching both branches by already done results from each other

• possible improvements

• answering natural question about similarities and similar problems in both branches

• inheriting theoretical results e.g. conditions of universal approximations etc.

At this first stage of our investigation, we simply try to look at the fuzzy transform problem from
a neural network point of view to open this problematic, inherit neural algorithms, investigate possible
improvements, implement an on-line type of learning and build a bridge between both branches for next
theoretical results and algorithmic improvements.

2 Preliminaries

The F-transform technique has been introduced in [9]. Several theoretical result and successful practical
applications have been published since the introduction, see [10, 11, 8, 16].

Basically, it is an approximation method which deals with a fuzzy partition of a domain of an ap-
proximated function. The direct F-transform transforms an approximated function to a discrete vector
where every single component of the vector represents all values of the approximated function above a
support of a respective fuzzy set from the fuzzy partition of the domain. The representation is supposed
to be the best one, in some sense.

For a bit more detailed explanation let us recall basic facts and definitions about the F-transform.

Definition 1 Let ci = a + h(i− 1) be nodes on [a, b] where h = (b− a)/(n− 1), n ≥ 2 and i = 1, . . . , n.
We say that functions A1(x), . . . ,An(x) defined on [a, b] are basic functions if each of them fulfils the
following:

• Ai : [a, b] → [0, 1], Ai(xi) = 1,
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• Ai(x) = 0 if x 6∈ (ci−1, ci+1), where c0 = a, cn+1 = b,

• Ai(x) is continuous,

• Ai(x) strictly increases on [ci−1, ci] and strictly decreases on [ci, ci+1],

•
∑n

i=1 Ai(x) = 1, for all x ∈ [a, b],

• Ai(ci − x) = Ai(ci + x), for all x ∈ [0, h], i = 2, . . . , n − 1, n > 2,

• Ai+1(x) = Ai(x − h), for all x ∈ [a + h, b], i = 2, . . . , n − 2, n > 2.

It is easy to see, that the basic functions form a fuzzy partition (see [12]) of the given domain and
each basic function Ai can be viewed as a fuzzy number ’approximately xi’.

The basic functions can be generalized to the nonsymmetric ones, see [8]. In that case, we define
hi = ci−1 − ci and the basic functions Ai fulfill only the first five conditions from Definition 1.

Now, we consider a continuous function f : [a, b] → R which is to be approximated by an element of
a class of approximating functions given by linear combinations of the basic functions

fF
n (x) =

n
∑

i=1

FiAi(x) (1)

where Fi ∈ R.
The real coefficients Fi are called the components of the F-transform and they are determined to

minimize the following error function

E(Q1, . . . , Qn) =

∫ b

a

n
∑

i=1

(f(x) − Qi)
2Ai(x). (2)

By a direct computation one can check that the components given by the following formula

Fi =

∫ b

a
f(x)Ai(x)
∫ b

a
Ai(x)

, i = 1, . . . , n (3)

minimize error function (2), see [8, 10].
In most practical cases, we are not given an analytical description of the approximated function f but

only some, say measured, samples (xk, f(xk)) where k = 1, . . . ,K and in principle n << K. For these
cases the error function is given as follows

E(Q1, . . . , Qn) =

K
∑

k=1

n
∑

i=1

(f(x) − Qi)
2Ai(x) (4)

and the components are given analogously

Fi =

∑K

k=1 f(xk)Ai(xk)
∑K

k=1 Ai(xk)
, i = 1, . . . , n (5)

as well.
The real vector [F1, . . . , Fn] given by formula (3) or (5) is called the direct F-transform. Continuous

approximating function fF
n (x) given by (1) is called the inverse F-transform.

The direct F-transform formula keeps the linearity condition i.e. let [F1, . . . , Fn] be the direct F-
transform of a function f , [G1, . . . , Gn] be the direct F-transform of a function g and finally [H1, . . . ,Hn]
be the direct F-transform of h = αf + βg, α, β ∈ R then

Hi = αFi + βGi, i = 1, . . . , n. (6)

Therefore we can talk about a transform. We simply transform a function into a real vector and
then the vector is transformed back to the space of continuous functions. The necessary condition of the
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uniform convergence of the sequence of the inverse F-transform for hi → 0 has been already proved, see
e.g. [8].

The F-transform technique has been many times shown to be appropriate for a number of appli-
cations. Let us stress its main advantages and properties: linearity and uniform convergence [8, 10],
computational simplicity and fastness [8, 15], smoothing abilities [11, 15, 16], noise removing abilities
[11], best approximation in integral sense [8, 10].

3 RBF φ Neural Networks

Besides fuzzy techniques, neural networks are also often used soft computing techniques (not only) for an
approximation of functions. Compared to fuzzy techniques, they are usually implemented as black boxes
but they have also advantages like e.g. algorithmic approach to an identification of a model or on-line
learning algorithms. This section is devoted to the so called φ-neural nets which are studied e.g. in [7].
Basically, φ-neural nets are one hidden layer nets with only one linear unit (with an identity activation
function) in the output layer.

Since the components Fi provide us with an information about the function f above its subdomains
given by the supports of Ai they can be viewed as local units in the neural network terminology. There-
fore the F-transform technique is closely related to the so called RBF (Radial Basis Function) neural
networks which deal with the local units. Therefore in the latter we will consider only RBF φ-neural
nets. Obviously, there exists a neural network performing the F-transform approximation i.e. the inverse
F-transform, see Figure 1.

Figure 1: RBF φ-neural network performing the F-transform

There are different definitions and approaches to local unit activation functions or radial basis func-
tions. In most cases, the Gaussian functions are used, see [5, 13].

The most usual approach to general RBF units is as follows: the activation function is basically
a continuous non-increasing function A : R

+ → [0, 1] (compared to the perceptron neural nets where
we require non-decreasing activation function, see [14]); the inner potential compared to the perceptron

4



neural networks is not computed as a weighted sum of inputs and weights but according to the following
formula

ξ =
||x − c||

h
(7)

where x ∈ R
m is an input vector, c ∈ R

m is a vector determining so called center of the unit and finally,
h ∈ R

+ is a parameter determining the width of the unit, see [14, 3]. In the latter, we restrict our focus
to the case m = 1 for a simplified visualization.

Such a network can be constructed similarly to the one on Figure 1 with a few differences. First, all
hidden layer units will provide the same activation function A. Second, the input to the i-th hidden layer
unit will be marked by the weight ci determining the center of the unit. Third, each hidden layer unit
will have a bias hi determining width parameter of the unit. Fourth, the inner potential ξi ∈ R

+ of the
i-th unit is computed according to (8) i.e.

ξi =
|x − ci|

hi

, (8)

see Figure 2.

Figure 2: RBF φ-neural network

It is easy to see that the basic functions from Definition 1 can be constructed in the presented RBF
neural network way. For instance, if we take A(ξ) = (1 − ξ) ∧ 0 then it is easy to check that

Ai(x) = A (ξi) (9)
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where Ai are triangular shaped basic functions and h = hi for i = 1, . . . , n. Similarly, if we take

A(ξ) =

{

1
2 (cos (Πξ) + 1) ξ ≤ 1,
0 otherwise

(10)

which is since ξ ∈ R
+ obviously a non-increasing function then one can again check that equality (9)

holds for sinusoidal shaped basic functions Ai.

4 Learning algorithm

Although both methods - RBF φ-neural networks and the F-transform - deal with an approximation
of a function and both are, as discussed in the previous section, closely related to each other there are
significant differences between them. May be the most important one is that neural network approach
is in principle an algorithmic approach and can provide us with the so called on-line (or incremental)
learning.

In the terminology of the neural nets, the computation of the components of the F-transform Fi

according to (5) is called just an off-line (or batch) learning. However, for certain applications on-line
learning algorithms have to be used.

The neural network approach can help us to keep all the nice properties of the F-transform and provide
us with a technique belonging to on-line learning algorithms. So, from the original definitions we keep
only the inverse F-transform formula which is performed by the RBF neural net displayed on Figure 1
and criterion (4) which is to be minimized. Formula (5) will be replaced by an on-line algorithm.

The most usual way how to construct an on-line learning is to consider it in the delta rule i.e. weights
are modified by some delta after each new sample (xk, f(xk)) is involved. The gradient descent method
is a standard tool for finding the delta.

To minimize the error function E =
∑K

k=1 Ek given by (2) after each new sample we differentiate

∂Ek

∂Qi

i = 1, . . . , n. (11)

Obviously,
∂Ek

∂Qi

= 2A
(

ξ
(k)
i

)

(f(xk) − Qi) (12)

where

ξ
(k)
i =

|xk − ci|

h
. (13)

The gradient points at the direction of the fastest growth of the function values and therefore we will
use the negative gradient in the construction of the delta rule. Therefore the delta rule is as follows

F
(k)
i = F

(k−1)
i + θ1(f(xk) − F

(k−1)
i )A

(

ξ
(k)
i

)

(14)

where 0 ≤ θ1 ≤ 1 is a learning coefficient and F
(k)
i is the i-th component of the F-transform after k

samples involved where k = 1, . . . ,K.

Remark 1 Notice, that although we use standard RBF neural network and standard neural tools like the
gradient descent method together with the delta rule, the error function which is minimized is different
compared to usual approaches. We do not compare function values f(xk) with the outputs of the network

but with its weights F
(k−1)
i . This is a significant difference which is inherited from the F-transform to

keep its properties.
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5 Learning of other parameters

In the previous section, we have introduced a relationship between the F-transform method and the RBF
neural networks and inherited the gradient descent method for a learning algorithm. Besides the learning
of the weights Fi we can get more from the neural network approach.

The construction of the basic functions can be the key issue for the results of the approximation. In
general, one can hardly expect that the uniform distribution of the basic functions of the same length
would provide us with the best results but on the other hand, the basic functions cannot be chosen
arbitrarily and some say fuzzy cluster analysis would have to be used. Therefore, in most applications,
the uniform fuzzy partition has been chosen. Let us discuss the possibility of the neural approach to the
fuzzy partition construction.

Let us consider the nonsymmetric basic functions Ai then these basic functions are functions of four
variables x, ci−1, ci, ci+1. Therefore, in the latter, we will again use the notation from the F-transform
since it is shorter i.e.

Ai(x) = A(x, ci−1, ci, ci+1) (15)

for i = 1, . . . , n.
For instance, the nonsymmetric triangular shaped basic functions are given by

Ai(x) =











(x−ci−1)
ci−ci−1

x ∈ [ci−1, ci]
(ci+1−x)
ci+1−ci

x ∈ [ci, ci+1]

0 otherwise

(16)

where i = 0, . . . , n + 1 and c0 = c1, cn+1 = cn, while the nonsymmetric sinusoidal shaped basic functions
are given by

Ai(x) =















1
2

(

cos
(

Π(x−ci)
(ci−ci−1)

)

+ 1
)

x ∈ [ci−1, ci]

1
2

(

cos
(

Π(x−ci)
(ci+1−ci)

)

+ 1
)

x ∈ [ci, ci+1]

0 otherwise

(17)

where i = 0, . . . , n + 1 and c0 = c1, cn+1 = cn.
If we deal with a real-time problem which is necessary to be solved by an on-line learning algorithm

we cannot simply use a fuzzy cluster analysis e.g. fuzzy c-means, see [1]. For these problems a neural
approach again seems to be very appropriate since a lot of incremental self-organizing (unsupervised)
algorithms have been already developed, see [5, 7]. We adopt a simple c-means clustering for RBF neural
networks published e.g. in [14]. The task is to find the centroids ci for i = 1, . . . , n which for a given
shape of basic functions already completely specify the fuzzy partition.

The resulting algorithm using both, the self-organizing method for determining a distribution of the
nodes ci and the gradient descent method for adapting the components Fi will be as follows.

Algorithm:

(18)

FOR k := 1 TO K DO BEGIN

j = argmini=1,...,n{|xk − c
(k−1)
i |};

FOR i := 1 TO n DO BEGIN

IF i = j AND j /∈ {1, n} THEN

c
(k)
i := c

(k−1)
i + θ2(xk − c

(k−1)
i )

ELSE

c
(k)
i := c

(k−1)
i ;

F
(k)
i = F

(k−1)
i + θ1(f(xk) − F

(k)
i )Ai(xk);

END;

END.
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The inputs F
(0)
i for i = 1, . . . , n to the algorithm described above are small random numbers and c

(0)
i

for i = 0, . . . , n + 1 are distributed equidistantly on the domain and keeping the conditions c0 = c1 = a
and cn = cn+1 = b.

The algorithm is independent on the shape of the basic functions. In its first part, it searches for
the closest centroid to an actual incoming value xk. The chosen centroid is then shifted unless it is a
corner centroid c1 or cn. Then the delta rule formula is applied to each component Fi but because of
the influence of the basic function Ai weighting the formula only two neighboring components Fi are
modified at most.

6 Demonstration

Let us consider a function f given by

f(x) = 2e(−40(x−0.5)) − 1 (19)

on a domain [a, b] = [0, 1]. Function (19) has been sampled to get a training set (xk, f(xk)) at randomly
chosen nodes xk where k = 1, . . . ,K = 100. For simplicity, we consider only one learning coefficient
θ = θ1 = θ2.

It is clear that if we implement the on-line learning given by (14) we never reach the accuracy obtained
in case when the components are given by original formula (5). The components given by the delta rule
only tend to the optimal ones given by (5).

Of course, better results were reached by resulting algorithm (18) which besides the components also
modifies the distribution of the nodes ci. It is not possible to measure the accuracy of the approximations
by error function (4) since the error is weighted by the basic functions and the basic functions are different
for both approximations.

Let us measure the error by simple normed least square criterion i.e. let

Error = 100
1

K

K
∑

k=1

(f̂(xk) − f(xk))2

(max f(xk) − min f(xk))
(20)

where f̂ is the approximate output.
Results for the resulting neural algorithm were very often even better than results given by the

original batch formula. For instance, for n = 10 the original approach gives results with 0.523 error for
the triangular shaped basic functions (see Figure 3) and 0.462 for the sinusoidal shaped basic functions

while the neural approach gives always different errors depending on random generation of F
(0)
i and the

choice of θ but sometimes even better than the original approach, see Table 1.
For the number of basic functions n = 7 the advantages of nonequidistant distribution of nodes ci

was naturally even stronger. For sinusoidal shaped basic functions the batch learning gives 1.227 error
and for the triangular shaped basic functions error of 1.521, the neural approach experimental results are
displayed in Table 2. On the other hand, the higher number of basic functions is the weaker advantage
from the centroids modification we get and the on-line learning will hardly reach as good results as the
batch one with fixed basic functions.

Remark 2 Values in Tables 1 and 2 are experimental and only informative since the computations starts

from randomly generated components F
(0)
i .

7 Discussion

We have briefly recalled the F-transform technique as a robust fuzzy approximation method as well
as the RBF neural networks as appropriate tolls for an approximation of functions. We discussed the
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Table 1: Table of errors, n = 10.
θ Basic f. type Error

0.4 sin 1.427
0.4 tri 1.564
0.5 sin 0.977
0.5 tri 1.000
0.6 sin 0.708
0.6 tri 0.674
0.7 sin 0.534
0.7 tri 0.497
0.8 sin 0.467
0.8 tri 0.409
0.9 sin 0.457
0.9 tri 0.385
1.0 sin 0.485
1.0 tri 0.405

Table 2: Table of errors, n = 7.
θ Basic f. type Error

0.4 sin 0.985
0.4 tri 1.026
0.5 sin 0.775
0.5 tri 0.756
0.6 sin 0.676
0.6 tri 0.617
0.7 sin 0.616
0.7 tri 0.532
0.8 sin 0.587
0.8 tri 0.484
0.9 sin 0.578
0.9 tri 0.464
1.0 sin 0.601
1.0 tri 0.476

relationship between both approaches since the inverse F-transform mapping can be realized by an RBF
neural network with basic functions as its activation function in its hidden layer. The difference in both
methods is in learning of parameters especially the components Fi.

We have introduce a simple delta rule based on the gradient descent method determining the compo-
nents by the so called on-line (incremental) learning what is an obvious advantage but on the other hand,
such an algorithmic approach can never reach as good results as the original optimized batch formula.

The main benefit is that we can adapt also other approaches and techniques already developed in
the neural network area. One of them, unsupervised c-means clustering for determining an appropriate
distribution of nodes ci for nonuniform fuzzy partition, was implemented to increase the approximation
accuracy of the model. Obviously, better results would be obtained by off-line cluster analysis e.g. by
fuzzy c-means and afterwards by applying the batch formula for the components. On-line algorithms can
hardly compete with them. On the other hand, from the computational complexity point of view it does
not have to be always efficient and therefore usually only uniform distributions were used. Moreover,
there are such real-time application where such clustering in advance can be impossible. Let us mention
at least one of them aiming at real time prediction of emission of a diesel engine which was studied in [4].

Undoubtable disadvantage of the introduced approach is, that we loose linearity property (6) if we
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Figure 3: Approximation of sampled function (19) by the original F-transform; N = 10 triangular shaped
basic functions.

adapt the centroids since they are adapted for each function in a different way. It should be stressed that
such approach is appropriate only if we want to approximate a function or some dependencies between
variables not if we intend to transform several functions into a discrete space, deal with their component
vectors and then transform them back.

From the experimental part of the paper, we find the results to be promising for future. The paper is
considered to be an introduction to this new stage of investigation which promises to inherit results from
the neural network area to the fuzzy approximation area and viceversa. For instance, how to deal with
the parameters θ1 and θ2 if they vary in time is a natural question.

References

[1] J.C. Bezdek (1981). Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press,
New York.

[2] J. Buckley and Y. Hayashi (1993). Fuzzy Input-Output Controllers Are Universal Approximators.
Fuzzy Sets and Systems, volume 58, pages 273-278.

[3] D. Coufal (2005). Radial Implicative Fuzzy Systems. Proceedings of the FUZZ-IEEE2005 conference,
pages 963-968, Reno, Nevada, May 2005.

[4] E. Lughofer (2005). Data-Driven Incremental Learning of Takagi-Sugeno Fuzzy Models, PhD-Thesis,
Department of Knowledge-Based Mathematical Systems, University Linz, Austria.

[5] R. Fullér (2000). Introduction to Neuro-Fuzzy Systems (Advances in Soft Computing Series),
Springer-Verlag, Berlin, Heidelberg.

[6] B. Kosko (1992). Fuzzy Systems as Universal Approximators. In Proceedings of the FUZZ-IEEE1992
conference, San-Diego, California, pages 1153-1162.
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