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1 Introduction

In general fuzzy set theory several categories are important as a natural generalization of classical [0, 1]-
fuzzy sets. A special position among these categories has the category SetF(Ω) of Ω-fuzzy sets A = (A, δ),
where Ω = (L,∧,∨,⊗,→, 0, 1) is a complete MV -algebra, A is a set and δ : A × A → Ω is a similarity
relation. A morphism f : (A, δ) → (B, β) in this category is a map f : A→ B such that

(a) (∀x, y ∈ A) β(f(x), f(y)) ≥ δ(x, y),

(b) (∀x ∈ A) β(f(x), f(x)) = δ(x, x).

This category was (in a little more general form) introduce by U.Höhle [5]-[9]. He observed that this
category (although it is not a topos) can be used for interpretation of some part of fuzzy logic. This
property of the category SetF(Ω) is connected with some special fuzzy sets and subobjects of (A, δ) ∈
SetF(Ω). Recall ([13],[14]) that a map s : A→ Ω is called extensional set (s ⊆ (A, δ), in symbol) if

(a) (∀x ∈ A) s(x) ≤ δ(x, x),

(b) (∀x, y ∈ A) s(x) ⊗ (δ(x, x) → δ(x, y)) ≤ s(y).

Moreover a subset S ⊆ A is called complete (see [13]) in (A, δ) if

S = {a ∈ A :
∨

x∈S

δ(a, x) = δ(a, a)}.

Complete subsets in (A, δ) then define some closure system X 7→ X. Principal properties of the category
SetF(Ω) can be then described by some special contravariant functors

Sub, Subc,S, Hom(−,Ω∗) : SetF(Ω)op → Set,

where for a morphism f : (A, δ) → (B, β) in the category SetF(Ω) we have

(a)

Sub(A, δ) = {(S, δ) : S ⊆ A},

Sub(f) : Sub(B, β) → Sub(A, δ),

Sub(f)(T, β) = (f−1(T ), δ), for (T, β) ∈ Sub(B, β),
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(b)

Subc(A, δ) = {(S, δ) : S ⊆ A is complete in (A, δ)},

Subc(f) : Subc(B, β) → Subc(A, δ),

Subc(f)(T, β) = (f−1(T ), δ), for (T, β) ∈ Subc(B, β),

(c)

S(A, δ) = {s : s ⊆ (A, δ) is an extensional set},

S(f) : S(B, β) → S(A, δ),

S(f)(t) = t.f, for t ∈ S(B, β),

(d)

Hom((A, δ),Ω∗) = {g : (A, δ)
g

−−−−→ (Ω∗, µ) is a morphism in SetF(Ω)},

Hom(f) : Hom((B, β),Ω∗) → Hom((A, δ),Ω∗),

Hom(f)(h) = h.f, where h ∈ Hom((B, β),Ω∗).

Here we have

Ω∗ = ({(α, β) ∈ L× L | α ≥ β}, µ),

µ((α1, β1), (α2, β2)) = α1 ⊗ (β1 → β2) ∧ α2 ⊗ (β2 → β1).

In [13] we introduced several natural transformations between pairs of these contravariant functors. The
fact that all these functors are contravariant could be interpreted as some disadvantage of these functors.
In fact, one of the most important tools in classical fuzzy set theory is Zadeh’s extension principle. It
enables to extend any map f : A → B into a map F(f) : F(A) → F(B) where, for every set X, F(X)
denotes the class of fuzzy subsets of X, i.e. maps s : X → Ω (in case we consider Ω-fuzzy sets instead of
[0, 1]-fuzzy sets only). Namely,

F(f)(b) =
∨

a∈A,f(a)=b

s(a),

for s ∈ F(A) and b ∈ f(A) ⊆ B. Hence, by using this principle we can obtain a covariant functor

F : Ω − fuzzy sets → Set,

(here we do not specify a category of corresponding Ω-fuzzy sets).
Unfortunately the same approach cannot be used in the category SetF(Ω), where the extensional sets

s ⊆ (A, δ) play the role of Ω-fuzzy sets. In fact, if f : (A, δ) → (B, β) is a morphism in the category
SetF(Ω) and s ⊆ (A, δ) is an extensional set then F(f)(s) is not an extensional set in (B, β), in general,
as the following example shows.

Example 1.1

Let Ω be a complete MV -algebra such that there exists α ∈ Ω such that α3 = α⊗ α⊗ α < α⊗ α = α2.
Let A = {a1, a2} and define δ, β : A×A→ Ω such that

δ(x, y) =

{
1, if x = y

0, otherwise,
, β(x, y) =

{
1, if x = y

α, otherwise.

It is clear that (A, δ), (A, β) ∈ SetF(Ω) and that f = id : (A, δ) → (A, β) is a morphism in this category.
Let s : A→ Ω be defined such that

s(a1) = α, s(a2) = α3.
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Then s ⊆ (A, δ) and F(f)(s)(ai) = s(ai); i = 1, 2. On the other hand we have

α2 = F(f)(s)(a1) ⊗ (β(a1, a1) → β(a1, a2)) 6≤ F(f)(s)(a2) = α3,

and it follows that F(f)(s) is not extensional set in (A, β).
The principal aim of this paper is to introduce some generalization of Zadeh’s extension principle for

objects which are of some interest from fuzzy set theory point of view and which could be derived from
objects of the category SetF(Ω). For any object (A, δ) ∈ SetF(Ω) there are three principal sets of such
objects:

(a) a set C(A, δ) of all extensional sets s ⊆ (A, δ),

(b) a set sub(A, δ) of all subobjects of (A, δ) which are of the form (S, δ), where S ⊆ A, and

(c) a set hom(A, δ) of all morphisms from (A, δ) to Ω∗.

Elements of all these sets then represent some generalized fuzzy sets in a category SetF(Ω). It means
that generalizations of Zadeh’s extension principle to the category SetF(Ω) are based on those covari-
ant functors C, sub, hom : SetF(⊗) → Set, respectively. In this paper we introduce these functors
and we investigate some natural transformations between pairs of these functors. Finally we derive a
generalizations of Zadeh’s extension principle based on these covariant functors.

2 Complete sets and extensional sets in SetF(Ω)

Let Ω = (L,∧,∨,⊗,→, 1Ω, 0Ω) be a complete MV - algebra, i.e. a complete residuated lattice, where
(a → b) → b = a ∨ b holds for every a, b ∈ L. By an Ω-fuzzy set we mean (A, δ), where A is a set and
δ : A×A→ Ω is a map such that

(a) (∀x, y ∈ A) δ(x, y) ≤ δ(x, x) ∧ δ(y, y),

(b) (∀x, y ∈ A) δ(x, y) = δ(y, x),

(c) (∀x, y, z ∈ A) δ(x, y) ⊗ (δ(y, y) → δ(y, z)) ≤ δ(x, z).

Moreover, a Ω-fuzzy set (A,α) is called separated if it satisfies the axiom

α(x, x) ∨ α(y, y) ≤ α(x, y) ⇒ x = y.

The category SetF(Ω) of Ω-fuzzy sets then consists of separated Ω-fuzzy sets as objects and morphisms
between objects (A,α), (B, β), which are maps f : A→ B such that

(a) (∀x, y ∈ A) β(f(x), f(y)) ≥ α(x, y),

(b) (∀x ∈ A) α(x, x) = β(f(x), f(x)).

The composition of morphisms is the usual composition of maps. In this category SetF(Ω) a special object
(Ω∗, µ) exists (see the definition from the introduction) which is an analogy of a subobject classifier in a
topos but only for some special subobjects. These subobjects are connected with extensional sets of an
Ω-fuzzy set A = (A, δ) (s ⊆ (A, δ), in symbol), i.e. with maps s : A→ Ω such that

(a) (∀x ∈ A) s(x) ≤ δ(x, x),

(b) (∀x, y ∈ A) s(x) ⊗ (δ(x, x) → δ(x, y)) ≤ s(y).

In [13] we introduced a contravariant functor S : SetF(Ω)op → Set such that S(A, δ) = {s : s ⊆ (A, δ)}.
This functor then represents a contravariant generalization of classical Zadeh’s extension principle which
could be defined as a covariant functor F : SetF(Ω) → Set, where F(A, δ) = {s : s : A→ Ω is a map }.
As we observed this covariant functor does not respect the fact that s is extensional set in (A, δ), in
general. In the following definition we do the first step to derive a generalized Zadeh’s extension principle
for extensional sets in a category SetF(Ω), i.e. we will define a map S(A, δ) → S(B, β).
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Definition 2.1 Let f : (A, δ) → (B, β) be a morphism in a category SetF(Ω). Then the map f̂ :
S(A, δ) → S(B, β) is defined such that for s ∈ S(A, δ),

b ∈ B, f̂(s)(b) =
∨

x∈A

s(x) ⊗ β(b, f(x)).

This definition is correct, i.e. f̂(s) ∈ S(B, β). In fact, we have f̂(s)(s) ≤ β(b, b) and for b, c ∈ B,

f̂(s)(b) ⊗ (β(b, b) → β(b, c)) =

=
∨

x∈A

s(x) ⊗ β(f(x), b) ⊗ (β(b, b) → β(b, c)) ≤

≤
∨

x∈A

s(x) ⊗ β(f(x), c) = f̂(s)(c).

Recall that a subset S ⊆ A is called complete in (A, δ) if

S = S = {a ∈ A : δ(a, a) =
∨

x∈S

δ(a, x)}.

Then X 7→ X is a closure system (see [13]) which is used for some functors construction. It could be
observed that any extensional set s ⊆ (A, δ) is then (in some sense) continuous with respect to the
closure system in the full subcategory SetF(Ω)0 of SetF(Ω) which consists of Ω-fuzzy set (A, δ) such
that δ(x, x) = 1Ω for all x ∈ A. In fact, on the value MV -algebra Ω a similarity relation ω can be defined
such that ω(α, β) = α↔ β. Then the following simple lemma holds.

Lemma 2.1 Let s ⊆ (A, δ) be an extensional set and let X ⊆ A. Then s : (A, δ) → (Ω, ω) is a morphisms
in SetF(Ω)0 and s(X) ⊆ s(X).

Proof. Since s(x) ⊗ δ(x, y) ≤ s(y)), we have δ(x, y) ≤ ω(s(x), s(y)). Further, for y ∈ X we have∨
s(x)∈s(X) ω(s(y), s(x)) ≥

∨
x∈X δ(y, x) = 1.

In SetF(Ω)0 for s ⊆ (A, δ) any α-cut of s is closed, i.e. for sα = {x ∈ A : s(x) ≥ α} we have sα = sα.
In fact, let a ∈ sα; i.e.

∨
x∈A,s(x)≥α δ(a, x) = δ(a, a) = 1. Since s(a) ≥ s(x) ⊗ δ(a, x) for any x ∈ A, we

have

s(a) ≥
∨

x∈sα

s(x) ⊗ δ(a, x) ≥ α⊗
∨

x∈sα

δ(a, x) = α⊗ δ(a, a) = α.

Hence, a ∈ sα.
It could be observed that this statement does not hold true in SetF(Ω), in general. Let us consider

the following example.

Example 2.1

Let Ω be such that there exists α with the property α2 < α. Let A = {a1, a2}, δ(a1, a1) = α, δ(a2, a2) =
δ(a1, a2) = α2. Then (A, δ) is Ω-fuzzy set and for s : A → Ω such that s(a1) = α, s(a2) = α2 we have
sα = {a1}, sα = {a1, a2}.

The following lemma describes some analogy of this property of α-cuts of the map f̂ .

Lemma 2.2 Let f : (A, δ) → (B, β) be a morphism in SetF(Ω) such that β(b, b) = 1 for all b ∈ B and
let s ∈ S(A, δ). Then for any α ∈ Ω we have

f(sα) ⊆ (f̂(s))α.
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Proof. Let b ∈ f(sα), then we have β(b, b) =
∨
x∈sα

β(b, f(x)) and it follows that

f̂(s)(b) =
∨

x∈A

s(x) ⊗ β(f(x), b) ≥
∨

x∈sα

s(x) ⊗ β(f(x), b) ≥

α⊗
∨

x∈sα

β(f(x), b) = α⊗ β(b, b) = α.

It could be observed that the opposite inclusion in 2.2 does not hold, in general. In fact, let (A, δ),
(A, β) and s ⊆ (A, δ) be the same as in Example 1.1. Then for f = id : (A, δ) → (A, β) we have

f̂(s)(a1) = (α⊗ α) ∨ (α3 ⊗ α) = α,

f̂(s)(a2) = (α3 ⊗ 1) ∨ (α⊗ α) = α2.

Hence, we have (f̂(s))α2 = {a1, a2} and on the other hand f(sα2) = {a1} = {a1}.

Proposition 2.1 Let f : (A, δ) → (B, β) be a morphism in SetF(Ω).

(a) If s ≤ t in S(A, δ) then f̂(s) ≤ f̂(t).

(b) For any s, t ∈ S(A, δ), f̂(s ∨ t) = f̂(s) ∨ f̂(t), where (s ∨ t)(a) = s(a) ∨ t(a).

Proof. It is clear that s ∨ t ∈ S(A, δ). Moreover, for b ∈ B we have

f̂(s ∨ t)(b) =
∨

x∈A

(s ∨ t)(x) ⊗ β(f(x), b) =

=
∨

x∈A

(s(x) ⊗ β(f(x), b)) ∨ (t(x) ⊗ β(f(x), b)) =

= f̂(s)(b) ∨ f̂(t)(b) = (f̂(s) ∨ f̂(t))(b).

Lemma 2.3 Let f : (A, δ) → (B, β) be a morphism in SetF(Ω) and let C ⊆ A. Then f is continuous
with respect to the closure systems in (A, δ) and (B, β), i.e.

f(C) ⊆ f(C).

Proof. Let a ∈ C. Then we have

β(f(a), f(a)) ≥
∨

x∈C

β(f(a), f(x)) ≥
∨

x∈C

δ(a, x) = δ(a, a) = β(f(a), f(a))

and it follows that f(a) ∈ f(C).
The closure operator X 7→ X in (A, δ) has some importance for functors and their natural transfor-

mations in the category SetF(Ω). The following proposition shows when this closure space is discrete.

Proposition 2.2 The closure operator in (A, δ) is discrete if and only if the following condition is sat-
isfied in (A, δ):

(∀a ∈ A)(∃αa < δ(a, a))(∀x ∈ A, x 6= a) δ(a, x) ≤ αa. (1)

Proof. Let the closure operator be discrete and let us assume by contradiction that there exists a ∈ A such
that for any α < δ(a, a) there exists xα 6= a in A with δ(a, xα) > α. We putX = {xα : α ∈ Ω, α < δ(a, a)}.
Then a 6∈ X and we have δ(a, a) =

∨
x∈X δ(a, x). In fact, if

∨
x∈X δ(a, x) = α0 < δ(a, a), we have

xα0
∈ X and it follows that α0 < δ(a, a) ≤ α0, a contradiction. Hence, a ∈ X, a 6∈ X and the operator

is not discrete. Conversely, let (A, δ) satisfy the condition (1) and let X ⊆ A. For a ∈ X we have
δ(a, a) =

∨
x∈X δ(a, x). If a 6∈ X then according to (1) we have δ(a, x) < αa for all x ∈ A. Therefore,∨

x∈X δ(a, x) ≤ αa < δ(a, a), a contradiction.
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Proposition 2.3 Let the closure operator in (A, δ) be discrete. Then there exists an extensional set
s ⊆ (A, δ) which is sub-normal, i.e. s(x) < δ(x, x) for all x ∈ A.

Proof. According to 2.2, for any a ∈ A there exists αa < δ(a, a) satisfying the condition (1). Then the
map s : A→ Ω can be defined such that s(a) = αa and for any x, y ∈ A, x 6= y we have

s(x) ⊗ (δ(a, a) → δ(x, y)) ≤ s(x) ⊗ (s(x) → δ(x, y)) =

= s(x) ∧ δ(x, y) ≤ s(x) ∧ αx ∧ αy ≤ s(y).

Hence, s ⊆ (A, δ).

Lemma 2.4 Let (A, δ) ∈ SetF(Ω) and a ∈ A,X ⊆ A. Then

∨

x∈X

δ(a, x) =
∨

x∈X

δ(a, x).

Proof. We have
∨

y∈X

δ(a, y) =
∨

y∈X

δ(a, y) ∧ δ(y, y) =

=
∨

y∈X

δ(a, y) ∧ (
∨

z∈X

δ(y, z)) =
∨

y∈X

∨

z∈X

δ(a, y) ∧ δ(y, z) ≤

≤
∨

y∈X

∨

y∈X

δ(a, y) ⊗ (δ(y, y) → δ(y, z)) ≤
∨

z∈X

δ(a, z)

3 Covariant functors in SetF(Ω)

In [13] we introduced several contravariant functors

S, Sub, Subc, Hom(−,Ω∗) : SetF(Ω)op → Set.

In this part we want to introduce covariant analogy of these functors which have the same object
functions as the original functors. Nevertheless covariant versions of these functors will be defined for some
full subcategory SetF(Ω)0 only, which consists of Ω-fuzzy set (A, δ) which are normal, i.e. δ(a, a) = 1Ω

for all a ∈ A. These covariant analogy of functors S, Sub and Hom are introduced in the following
definition.

Definition 3.1 Let f : (A, δ) → (B, β) be a morphism in SetF(Ω)0. Then we set

(a)

C(A, δ) := S(A, δ),

C(f) : C(A, δ) → C(B, β), C(f) := f̂ .

(b)

sub(A, δ) := Sub(A, δ),

sub(f) : sub(A, δ) → sub(B, β),

(∀(S, δ) ∈ sub(A, δ)) sub(f)(S, δ) := (f(S), β).

(c)

subc(A, δ) := Subc(A, δ),

subc(f) : subc(A, δ) → subc(B, β),

(∀(S, δ) ∈ subc(A, δ)) subc(f)(S, δ) := (f(S), β).
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(d)

hom(A, δ) := Hom((A, δ),Ω∗),

hom(f) : hom(A, δ) → hom(B, β),

(∀u ∈ hom(A, δ), b ∈ B) hom(f)(u)(b) := (1Ω, f̂(pr2.u)(b)),

where pr2 : Ω∗ → Ω is the second projection map.

From the next lemma it follows that the definition of hom is correct.

Lemma 3.1 Let (A, δ) ∈ SetF(Ω) and let u : (A, δ) → (Ω∗, µ) be a morphism. Then pr2.u is an
extensional set in (A, δ).

Proof. Let s = pr2.u and a ∈ A. We set u(a) = (u1, u2) ∈ Ω∗. Then we have 1Ω = δ(a, a) = u1 and
s(a) ≤ δ(a, a). Moreover, for a, b ∈ A we have

δ(a, b) ≤ µ(u(a), u(b)) ≤ δ(a, a) ⊗ (s(a) → s(b)),

and it then follows that

s(a) ⊗ (δ(a, a) → δ(a, b)) ≤

≤ s(a) ⊗ (δ(a, a) → (δ(a, a) ⊗ (s(a) → s(b)))) =

= s(a) ⊗ ((s(a) → s(b)) ∨ ¬δ(a, a)) =

= (s(a) ⊗ (s(a) → s(b))) ∨ (s(a) ⊗ ¬δ(a, a)) ≤

≤ s(b) ∨ (δ(a, a) ⊗ ¬δ(a, a)) = s(b).

Hence, s ⊆ (A, δ).

Theorem 3.1 C, sub, subc and hom are covariant functors SetF(Ω)0 → Set.

Proof. Let f : A = (A, δ) → (B, β), g : (B, γ) → (C, γ) be morphisms in SetF(Ω)0.
(1) To prove that C is a functor we have to show that C(1A) = 1C(A) and C(g.f) = C(g).C(f). Let

s ∈ C(A, δ), a ∈ A. Then

s(a) = s(a) ⊗ δ(a, a) ≤
∨

x∈A

s(x) ⊗ δ(a, x) ≤ s(a).

Let c ∈ C. Then we have

C(g).C(f)(s)(c) =
∨

b∈B

∨

a∈A

s(a) ⊗ β(f(a), b) ⊗ γ(g(b), c) ≤

∨

b∈B

∨

a∈A

s(a) ⊗ γ(gf(a), g(b)) ⊗ γ(g(b), c) ≤

≤
∨

a∈A

s(a) ⊗ γ(gf(a), c) = C(g.f)(s)(c).

On the other hand we have

C(g).C(f)(s)(c) ≥
∨

a′∈A

∨

a∈A

s(a) ⊗ β(f(a), f(a′)) ⊗ γ(gf(a′), c) ≥

≥
∨

a′∈A

s(a′) ⊗ γ(gf(a′), c) = C(g.f)(s)(c).

Hence C is a functor.
(3) Let (C, δ) ∈ subc(A, δ). Then according to Lemma 2.4, we have

subc(g.f)(C, δ) = (g.f(C), γ) = (g(f(C)), γ) = subc(g). subc(f)(C, δ).
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(4) Let u : (A, δ) → Ω∗ be a morphism. For simplicity we set ũ := hom(f)(u) : B → Ω∗. We have to
prove that ũ : (B, β) → (Ω∗, µ) is a morphism. Let b, c ∈ B. Then

µ(ũ(b), ũ(c)) =
∨

x∈A

pr2.u(x) ⊗ β(f(x), b) ↔
∨

z∈X

pr2.u(z) ⊗ β(f(z), c).

We have
β(b, c) ⊗

∨

x∈A

(pr2.u(x) ⊗ β(f(x), b)) ≤
∨

x∈A

pr2.u(x) ⊗ β(f(x), c)

and it follows that

β(b, c) ≤
∨

x∈A

pr2.u(x) ⊗ β(f(x), b) →
∨

z∈A

pr2.u(z) ⊗ β(f(z), c).

By using the symmetry of β we obtain β(b, c) ≤ µ(ũ(b), ũ(c)). Moreover, by simple computation we can
show that hom(g.f) = hom(g). hom(f). The rest of the proof is trivial.

In [13] we introduced several natural transformations between pairs of contravariant functors S, Sub, Hom.
The following are principal of these transformations.

S
ζ

−−−−→ Hom(−,Ω∗)
ζ−1

−−−−→ S
σ

−−−−→ Sub,

where for A = (A, δ), s ∈ S(A, δ), u ∈ Hom(A,Ω∗) we have

ζA(s)(x) = (δ(x, x), s(x)), x ∈ A (2)

ζ−1
A

(u) = pr2.u, (3)

σA(s) = ({a ∈ A : s(a) = δ(a, a)}, δ). (4)

Moreover, if SetF(Ω)1 is a subcategory of SetF(Ω) with the same objects and with morphisms f :
(A, δ) → (B, β) such that f is surjective and β(f(x), f(y)) = δ(x, y) for all x, y ∈ A then according to
[13]; 3.3, there exists a natural transformation

ψ : Sub1 → S1

ψA(S, δ)(x) =
∨

y∈S

δ(x, y); x ∈ A, (5)

where Sub1 and S1 are restrictions of Sub,S onto SetF(Ω)1, respectively.
In the next proposition we show the existence of some natural transformations also between covariant

extension functors.

Proposition 3.1 The object ψ = {ψA : A ∈ SetF(Ω)0} is a natural transformation sub → C, where
ψA are defined by (5).

Proof. According to [13];3.3, ψA(S, δ) is a extensional set in (A, δ) for any S ⊆ A. We have to show only

that for any morphism (A, δ)
f

−−−−→ (B, β) in SetF(Ω)0 the following diagram commutes.

sub(A, δ)
ψA

−−−−→ C(A, δ)

sub(f)

y
yC({)

sub(B, β)
ψB

−−−−→ C(B, β).

Let (S, δ) ∈ sub(A, δ) and b ∈ B. Then we have

C(f).ψA(S, δ)(b) =
∨

x∈A

∨

z∈S

δ(z, x) ⊗ β(f(x), b),

ψB. sub(f)(S, δ)(b) =
∨

y∈S

β(f(y), b).

9



On the other hand we have
∨

x∈A

∨

z∈S

δ(z, x) ⊗ β(f(x), b) ≤
∨

x∈A

∨

z∈S

β(f(z), f(x)) ⊗ β(f(x), b) ≤

∨

y∈S

β(f(y), b) =
∨

x∈S

δ(x, x) ⊗ β(f(x), b) ≤

≤
∨

x∈S

∨

z∈S

δ(z, x) ⊗ β(f(x), b) ≤

≤
∨

x∈A

∨

z∈S

δ(z, x) ⊗ β(f(x), b).

The following proposition is then an analogy of subobject classification theorem [13]; Proposition 3.1,
for generalized Zadeh’s extension principle C.

Proposition 3.2 The objects ζ = {ζA : A ∈ SetF(Ω)0} : C → hom and ζ−1 = {ζA : A ∈ SetF(Ω)0} :
hom → C are mutually inverse natural transformations, where ζA and ζ−1

A
are defined by (2) and (3),

respectively.

Proof. In [13] it was proved that ζA and ζ−1
A

are defined correctly. Hence, we have only to show that the
corresponding diagrams commute for any morphism f : (A, δ) → (B, β) in SetF(Ω)0. Let us consider
the following diagram.

C(A, δ)
ζA

−−−−→ hom(A, δ)

C(f)

y
y hom(f)

C(B, β)
ζB

−−−−→ hom(B, β).

Let s ∈ C(A, δ) and b ∈ B. Then we have

hom(f).ζA(s)(b) = (1Ω, ̂pr2.ζA(s)(b)) =

(1Ω,
∨

x∈A

s(x) ⊗ β(f(x), b)) = ζB.C(f)(s)(b).

It can be shown analogously that the diagram for ζ−1 commutes.

Proposition 3.3 The object ψ = {ψA : A ∈ SetF(Ω)0} is a natural transformation subc → C.

Proof. Let f : (A, δ) → (B, β) be a morphism in SetF(Ω) and let (S, δ) ∈ subc(A, δ). Then the following
diagram commutes.

subc(A, δ)
ψA

−−−−→ C(A, δ)

subc(f)

y
yC(f)

subc(B, β)
ψB

−−−−→ C(B, β).

In fact, according to 2.4, we have

ψA.C(f)(S, δ)(b) =
∨

x∈A

∨

z∈S

δ(z, x) ⊗ β(f(x), b) =

∨

y∈f(S)

β(y, b) =
∨

y∈f(S))

β(y, b) = ψB. subc(f)(S, δ)(b).

Let SetF(Ω)0,1 be the full subcategory of SetF(Ω)1 with objects from the category SetF(Ω)0 and
let C0,1 and sub0,1 be restrictions of C and sub, respectively, on the category SetF(Ω)0,1.

Proposition 3.4 The object σ = {σA : A ∈ SetF(Ω)0,1} is a natural transformation C0,1 → sub0,1.

10



Proof. Let f : (A, δ) → (B, β) be a morphism in SetF(Ω)0,1. Then the following diagram commutes.

C0,1(A, δ)
σA−−−−→ sub0,1(A, δ)

C0,1(f)

y
y sub0,1

C0,1(B, β)
σB−−−−→ sub0,1(B, β).

In fact, let s ⊆ (A, δ). Then we have

σB.C0,1(f)(s) = ({b ∈ B :
∨

x∈A

s(x) ⊗ β(f(x), b) = 1Ω}, β),

sub0,1(f).σA(s) = ({f(a) : a ∈ A, s(a) = 1Ω}, β).

Let a ∈ A be such that s(a) = 1Ω. Then 1Ω ≥
∨
x∈A s(x) ⊗ β(f(a), f(x)) ≥ s(a) = 1Ω. Conversely, for

b = f(a) ∈ B we have

1Ω =
∨

x∈A

s(x) ⊗ β(f(a), f(x)) =
∨

x∈A

s(x) ⊗ δ(a, x) ≤ s(a) ≤ 1Ω.

We present now some relationships between contravariant functors S, Hom, Sub, Subc on one hand
and their covariant versions C, hom, sub, subc on the other hand. Let f : (A, δ) → (B, β) be a morphism
in SetF(Ω)0, G be one of the above contravariant functor and let Gcov be its covariant version. Then we
obtain two maps

F(A, δ)
Fcov(f)
−−−−−→ F(B, β)

F(f)
−−−−→ F(A, δ).

In the following proposition we present some properties of their compositions.

Proposition 3.5 Let f : (A, δ) → (B, β) be a morphism in SetF(Ω)0.

(a) For any s ⊆ (A, δ), we have s ⊆ S(f).C(f)(s).

(b) If f is surjective, then C(f).S(f) = id.

(c) Hom(f). hom(f) ≥ id.

(d) If f is surjective, then hom(f). Hom(f) = id.

(e) If f is surjective, then subc(f). Subc(f) = id.

(f) id ⊆ Subc(f). subc(f).

Proof. We will prove (d) and (e) only since the rest is straightforward.
(d) Let v ∈ Hom((B, β),Ω∗), b ∈ B. Then we have

hom(f). Hom(f)(v)(b) = hom(f)(v.f)(b) =

(1Ω,
∨

x∈A

pr2.v(f(x)) ⊗ β(f(x), b)) ≤ (1Ω,
∨

x∈A

pr2.v(b)) = v(b),

as follows from the fact
pr2.v(b) ⊗ β(b, c) ≤ pr2.v(c)

for any b, c ∈ B. On the other hand, we have

∨

x∈A

pr2.v(f(x)) ⊗ β(f(x), b) ≥ pr2.v(b) ⊗ β(b, b) = pr2.v(b).

(e) Let (T, β) ∈ Subc(B, β). Then

subc(f). Subc(f)(T, β) = (f(f−1(T )), β) = (T , β) = (T, β).
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4 Zadeh’s extension principle in SetF(Ω)

Zadeh’s extension principle can be used to extend any map h :
∏
i∈I Ai → A, where Ai and A are sets,

into a map F(h) :
∏
i∈I F(Ai) → F(A). This property is the most important for applications. In this

section we want to present similar properties of our generalized extension principles C, sub, subc and
hom.

Let (Ai, δi), i ∈ I, be objects in the category SetF(Ω)0 and let (
∏
i∈I Ai, δ) =

∏
i∈I(Ai, δi) be a

product in this complete category, i.e. δ(a,b) =
∧
i∈I δ(ai, bi), where a = (ai)i,b = (bi)i. Generalized

Zadeh’s extension principles G = sub, subc, C, hom, introduced in Theorem 3.1, enable then to extend
any morphism f :

∏
i∈I(Ai, δi) → (B, β) in SetF(Ω)0 to a map G(f) : G(

∏
i∈I Ai, δ) → G(B, β). Never-

theless to be able to use this principle in applications we need (analogously as we do for classical Zadeh’s
extension principle) to extend a morphism f to a map

G∏ (f) :
∏

i∈I

G(Ai, δi) → G(B, β).

It is clear that
∏
i∈I G(Ai, δi) 6= G(

∏
i∈I Ai, δ), in general, and it follows that this map G∏ (f) has to be

defined newly. In this part we will show how to define this map and we investigate some properties of
this map.

For definition of G∏ we need to introduce in a specific way a map

uG :
∏

i∈I

G(Ai, δi) → G(
∏

i∈I

(Ai, δi)).

If such a map is defined than the map G∏ (f) can be defined as follows:

∀(Xi)i ∈
∏

i∈I

G(Ai, δi), G∏ (f)((Xi)i) = G(f)(uG((Xi)i).

In the following definition we introduce some examples of a map uG for our generalized extension functors.

Definition 4.1 Let (Ai, δi) ∈ SetF(Ω)0 for i ∈ I.

(a) Let G = C and let si ∈ C(Ai, δi) for i ∈ I. Then uC((si)i) is defined such that for all a = (ai)i ∈∏
i∈I Ai, we have

uC((si)i)(a) =
∧

i∈I

si(ai).

(b) Let G = sub and let (Ci, δi) ∈ sub(Ai, δi) for i ∈ I. Then

u sub((Ci, δi)i) = (
∏

i∈I

Ci, δ).

(c) Let G = subc. The definition of u subc is then formally the same as for sub.

(d) Let G = hom and let gi ∈ hom(Ai, δi) for i ∈ I. Then for any a = ((ai)i) ∈
∏
i∈I Ai we put

u hom((gi)i)(a) =
∧

i∈I

gi(ai).

We show that this definition is correct. We have to prove firstly that uC((si)i) ⊆ (
∏
i∈I Ai, δ). In fact,

uC((si)i)(a) ⊗ δ(a,b) = (
∧

i∈I

si(ai)) ⊗ (
∧

j∈I

δj(aj , bj) ≤

≤
∧

i∈I

si(ai) ⊗ δi(ai, bi) ≤
∧

i∈I

si(bi) = uC((si)i)(b).

12



Further we have to prove that if Ci is complete in (Ai, δi) for any i ∈ I, then
∏
i∈I Ci is complete in

(
∏
i∈I Ai, δ). Let a = (ai)i ∈

∏
i∈I Ci. Then we have

1Ω =
∨

x∈
∏
Ci

δ(a,x) =
∨

x∈
∏
Ci

∧

i∈I

δi(ai, xi) ≤

≤
∧

j∈I

∨

x∈
∏
Ci

δj(aj , xj) =
∧

j∈I

∨

x∈Cj

δj(aj , x) ≤

≤
∨

x∈Cj

δj(aj , x) ≤ 1Ω,

for all j ∈ I. Hence, aj ∈ Cj = Cj and a ∈
∏
i∈I Ci.

Finally we show that for ((gi)i) ∈
∏
i∈I hom(Ai, δi), u hom((gi)i) : (

∏
iAi, δ) → (Ω∗, µ) is a morphism.

Let a,b ∈
∏
iAi. For gi(ai) = (α′, α) we have 1Ω = δi(ai, ai) = µ(gi(ai), gi(ai)) = α′ and it follows that

gi(ai) = (1Ω, αi), gi(bi) = (1Ω, βi). Then we have

δ(a,b) =
∧

i∈I

δi(ai, bi) ≤
∧

i∈I

µ(gi(ai), gi(bi)) =

=
∧

i∈I

µ((1Ω, αi), (1Ω, βi)) =
∧

i∈I

(αi ↔ βi) ≤ (
∧

i

αi) ↔ (
∧

i

βi) =

= µ(
∧

i

gi(ai),
∧

i

gi(bi)) = µ(u hom((gi)i)(a), u hom((gi)i)(b)).

For any morphism f :
∏
i(Ai, δi) → (B, β) in SetF(Ω) we obtain maps

C∏ (f) :
∏

i

C(Ai, δi) → C(B, β),

sub∏ (f) :
∏

i

sub(Ai, δi) → sub(B, β),

subc∏ (f) :
∏

i

subc(Ai, δi) → subc(B, β),

hom∏ (f) :
∏

i

hom(Ai, δi) → hom(B, β).

Then C∏ (f) is clearly a generalization of Zadeh’s extension principle since for any sets Ai, i ∈ I and B

we can define trivial similarity relations δi on Ai and δ on B such that δi(x, x) = 1Ω and δi(x, y) = 0Ω,
otherwise (and similarly for δ). Then C(Ai, δi) = F(Ai) and C∏ (f) coincides with classical Zadeh’s
extension of a map f :

∏
iAi → B.

In the previous section we presented several natural transformations between pairs of functors C,
sub, subc and hom. In this last section we show that similar relations exist also between maps C∏ (f),
sub∏ (f), subc∏ (f) and hom∏ (f).

Proposition 4.1 Let Ai = (Ai, δi) be objects in SetF(Ω) for i ∈ I and let f :
∏
iAi → B = (B, β) be a

morphism in this category.

(a) If Ai, i ∈ I,B and f are objects of the category SetF(Ω)0,1, then the following diagram commutes.

∏
i sub(Ai)

sub∏ (f)
−−−−−−→ sub(B)

∏
i
ψAi

y
yψB

∏
i C(Ai)

C∏ (f)
−−−−→ C(B),

where ψ was introduced in 3.3.
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(b) The following diagram commutes.

∏
i C(Ai)

C∏ (f)
−−−−→ C(B)

∏
i
ζAi

y
yζB

∏
i hom(Ai)

hom∏ (f)
−−−−−−→ hom(B),

where ζ was introduced in 3.2.

(c) If Ai, i ∈ I,B and f are objects of the category SetF(Ω)0,1, then the following diagram commutes.

∏
i subc(Ai)

sub
c∏ (f)

−−−−−−→ subc(B)

∏
i
ψAi

y
yψB

∏
i C(Ai)

C∏ (f)
−−−−→ C(B).

(d) If Ai, i ∈ I,B and f are objects of the category SetF(Ω)0,1, then the following diagram commutes.

∏
i C(Ai)

C∏ (f)
−−−−→ C(B)

∏
i
σAi

y
yσB

∏
i sub(Ai)

sub∏ (f)
−−−−−−→ sub(B),

where σ was introduced in 3.4.

Proof. (a) Let Ai,B and f are objects of the category SetF(Ω)0,1 for any i ∈ I and let ((Ci, δi)i) ∈∏
i sub(Ai). Then for any b ∈ B we have

ψB. sub∏ (f)((Ci, δi)i)(b) = ψB( sub(f)(u sub((Ci, δi)i)))(b) =

ψB(f(
∏

i

Ci), β)(b) =
∨

z∈
∏
Ci

β(b, f(z)).

Let b = f(a), then we have

(C∏ (f).(
∏

i

ψAi
)((Ci, δi)i)(b) = C(f)(uC((ψAi

(Ci, δi)))(b) =

∨

x∈
∏
Ai

(
∧

i

ψAi
(Ci, δi))(x) ⊗ β(b, f(x)) =

=
∨

x∈
∏
Ai

∧

i

ψAi
(Ci, δi)(x) ⊗ δ(a,x) ≤

∨

x∈
∏
Ai

(
∧

i

ψAi
(Ci, δi))(a) =

=
∧

i

(ψAi
(Ci, δi)(ai)) =

∧

i

(
∨

zi∈Ci

δi(zi, ai)) =

=
∨

z∈
∏
Ci

(
∧

i

δi(zi, ai)) =
∨

z∈
∏
Ci

δ(a, z) =

=
∨

z∈
∏
Ci

β(b, f(z)).

On the other hand we have

(C∏ (f).(
∏

i

ψAi
)((Ci, δi)i))(b) =

=
∨

x∈
∏
Ai

(
∧

i

(
∨

z∈Ci

δi(xi, z))) ⊗ β(b, f(x)) ≥

≥
∨

x∈
∏
Ci

(
∧

i

δi(xi, xi)) ⊗ β(b, f(x)) =
∨

x∈
∏
Ci

β(b, f(x)).
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(b) Let (si)i ∈
∏
i C(Ai), b ∈ B. Then we have

ζB.C∏ (f)((si)i)(b) = (1Ω, C∏ (f)((si)i)(b)) =

= (1Ω,
∨

x∈
∏
Ai

(
∧

i

si(xi)) ⊗ β(b, f(x))).

On the other hand we have

hom∏ (f).
∏

i

ζAi
((si)i)(b) = hom(f)(u hom((ζAi

(si))i))(b) =

= (1Ω,
∨

x∈
∏
Ai

(pr2.u hom((ζAi
(si))i))(x) ⊗ β(b, f(x))) =

= (1Ω,
∨

x∈
∏
Ai

pr2(
∧

i

(1Ω, si(xi))) ⊗ β(b, f(x))) =

= (1Ω,
∨

x∈
∏
Ai

(
∧

i

(si(xi)) ⊗ β(b, f(x)))).

Hence, the diagram commutes.
(c) It follows from (a) and Lemma 2.4.
(d) Let Ai,B and f be objects from the category SetF(Ω)0,1 for all i ∈ I. Let (si)i ∈

∏
i C(Ai). Let

(X,β) = σB.C∏ (f)((si)i), (Y, β) = sub∏ (f).
∏
i σAi

((si)i). Then we have

X = {b ∈ B :
∨

x∈
∏
Ai

uC((si)i)(x) ⊗ β(b, f(x)) = 1Ω},

Y = f(
∏

i

{x ∈ Ai : si(x) = 1Ω}).

Let b ∈ Y , then b = f(a), where si(ai) = 1Ω for all i ∈ I and we obtain

1Ω ≥
∨

x∈
∏
Ai

uC((si)i)(x) ⊗ β(b, f(x)) ≥

≥ uC((si)i)(a) =
∧

i

si(ai) = 1.

Hence, b ∈ X. Conversely, let b = f(a) ∈ X, then

1Ω =
∨

x∈
∏
Ai

uC((si)i)(x) ⊗ β(b, f(x)) =
∨

x∈
∏
Ai

uC((si)i)(x) ⊗ δ(a,x) ≤

≤
∨

x∈
∏
Ai

uC((si)i)(a) =
∧

i

si(ai) ≤ 1Ω.

Hence, si(ai) = 1Ω for all i ∈ I and b ∈ Y .
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