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ABSTRACT 

 

The paper is dedicated to simulation of intelligent sys-

tems that “imagine” their possible future states by medium 

of simulation models handled by some of their elements. 

The reason and importance for simulation of such systems, 

the techniques for implementing their “nested” simulation 

models and the obstacles related to the implementation are 

described and some applications are presented. 

1. Introduction 

Intelligence is a concept, rooting in the human activities 

but then generalized, among other for phenomena of com-

puter science; so one speaks on intelligent agents, intelligent 

control etc. The intelligence in that sense often replaces the 

human intelligence, models it and/or amplifies it. Under the 

term intelligence, one usually considers logical inference, 

adaptation, pattern recognition etc. Nevertheless, our own 

human experience reveals imagining as a very important 

component of the sort of thinking that is called intelligent.  

 

Imagining can overpass the natural laws and logic. Ne-

vertheless, let us consider the professional technical imagi-

ning in systems (that occur in simulation), i.e. let us limit 

our consideration to imagining controlled by the reason. 

Very often, such imagining concerns processes that will 

unwind during the time, often into the future. We have to 

concede the computer simulation as a model and amplifier 

of the mentioned type of the human imagining. Let S be an 

intelligent system of the mentioned type, for the behaviour 

of which the imagining is essential (i.e. if the imagining 

were not in S the behaviour of S would essentially change).  

 

There are a lot of such systems. Beside (groups of) hu-

mans in a lot of their situations, man-made systems that ap-

ply more or less continually simulation for affecting their 

operation are of the mentioned sort. Among the simulation-

ists it is spoken that “simulation is the worst method to get 

information on the studied system but often the only exact 

way for such an aim”. Therefore when it is clear that such a 

system S is well conceived (designed) and when it uses 

simulation for the mentioned aim, the simulation cannot be 

eliminated – otherwise S would be badly conceived, using 

that “nasty method of simulation” without reason. In the 

next text, the simulation model applied in the described 

manner be called internal model. 

 

Such a system S may be simulated before it physically 

exists (for example during the phase of its design). Let its 

model for that purpose be called external model. It should 

reflect the fact that among the components of S there is an 

information processing element C able to carry, to construct 

and to keep running the internal model and to have use of it 

for governing its own environment in S. If the external 

model did not reflect these properties of C the next dilemma 

would be present: either the external model would give false 

results on the future reality of S, or S would be badly de-

signed, using simulation without reason (the suppression of 

the internal model made in the external model could be 

transformed into the reality of S). 

 

The conclusion is that the external model M of S should 

contain the internal model m of S, nested inside. In general, 

an instance of the internal model may be step by step creat-

ed many times and in any case it can differ from the preced-

ing instances, reflecting the fact that the situation in S, vary-

ing in time, has to be reflected in the instance as its initial 

state. Using a model like M, we speak on nested simulat-

ion, expressing the pure fact that a model is nested inside 

another one, or we speak on reflective simulation, expres-

sing the fact that the internal model starts with reflecting the 

state of the external one. Reflective simulation is a special 

case of nested simulation. 

 

Although the reflective simulation is a suitable tool for 

anticipating the behaviour of man-made systems equipped 

by a simulating computer, requirements for it may come 

when a system is simulated, in which essential influence of 

imagining made by real humans (drivers, operators, etc.) is 

supposed. The internal models reflect such an imagining. 

2. Obstacles With Nested Simulation 

Computer simulation is applied when the simulated 

system is rather complex. A program for a model of such a 

complex system is a complicated software product and 

therefore already since the fifties of the 20th century simula-



 

tion programming tools (SPTs) have been designed; their 

benefit resides in that their users have to describe something 

very similar to the simulated system and not the algorithm 

governing the computer model: such descriptions are auto-

matically converted into simulation models. One of the most 

useful tools of many SPTs is automatic scheduling of events 

coming from rather different sources, often almost indepen-

dently. The scheduling is based on the properties of Newto-

nian time axis and therefore the SPTs automatically intro-

duce one such axis for every simulation experiment.  

 

Unfortunately, in nested simulation at least two time ax-

es must be for disposal: when the internal model arises its 

time axis should start to exist and govern event scheduling 

during the whole existence of the model; when the internal 

model disappears and is later replaced by another internal 

model, a completely new time axis should arise; but simul-

taneously with this arising, manipulation and liquidation of 

various time axes of the internal models, exactly one stable 

time axis of the external model should exist.  

 

With the exception of the 3O-languages (see further), no 

SPT allows introducing more coexisting time axes. It seems 

to be one of the main reasons that the nested simulation is 

not in a common praxis, contrary to the fact that it appears 

very useful. 

 

The way to surmount this obstacle without loosing the 

merits of SPTs consists in using programming languages 

that are simultaneously object-oriented, process-oriented 

and block-oriented (let us speak on languages with three 

orientations, shortly on 3O-languages). By means of the 

classes, subclasses and methods offered by the object orien-

tation, one can define a set σ of methods for unerring mani-

pulation with a time axis and therefore for scheduling of 

events in a given model; the process orientation enables the 

user to describe the “life rules” for the objects related to 

different classes; and the block orientation enables to intro-

duce blocks, i.e. program components with local entities 

(classes, subprograms and variables), and – in brief – to set 

them among the steps of the life rules.  

 

Object orientation enables the user to specialize σ, i.e. 
to “tailor” it to a genuine “problem-oriented” simulation 

language L, oriented to a suitable set Z of systems and often 

using professional expressions similar to those used by the 

non-computer-oriented experts communicating on Z). The 

block B into which σ or its specialization was introduced as 
its local “possession” represents a description of a simulat-

ion experiment; when the computing process enters B a 

model M of the system described in B comes into being and 

dynamically progresses; a simulation experiment with M is 

being performed whenever the program run is being inside 

the block. Suppose B is a subblock, i.e. a block inside an-

other block A: then access to the values local in B (i.e. to the 

components of the state of M) is allowed from any place of 

A while B (and thus M) can offer its own instantaneous va-

lues to A. When the computing process leaves B the experi-

ment ends and M disappears (but the values transferred to A 

and assigned as its local values remain as long as A exists).  

 

The time axis T introduced by σ into B exists exactly 
when M exists. When the computing process again enters B 

a quite new simulation experiment with its new simulation 

model (including a new T) arises.  

 

Iterating entering and leaving such a block B may repre-

sent a simulation study, i.e. a sequence of simulation expe-

riments (Strauss et al., 1967). But the 3O-languages enable 

to nest a block b into the life rules of a class Ω of elements, 

introduced in B. And b can be equipped by σ, too, or by a 

specialization of σ; thus when the computing process is 

inside it, a simulation experiment with a model m runs, so 

that m models a system described in b. This simulation 

experiment has its own time axis t that is independent of T. 

While T and M remain when the computing process remains 

in B, t and m can disappear when the computing process 

leaves b, and they can newly start to exist as completely 

new entities when the computing process returns into b, 

although M and T are the same entities as before. 

 

The described nesting of b inside B is a good way how 

to nest model m into model M. The class that we designated 

Ω in the preceding text can represent a class of computers 

or of beings able to imagine. That class, being local in B, re-

presents elements that exist in the same “world” as the other 

elements of the simulated system S, and in M the instances 

of S are interpreted as existing in time represented by T, i.e. 

together with the other elements represented in M. Never-

theless, the instances of Ω have a phase Π of their lives, in 

which they are able to create models like m and to handle 

them like each of them would have its own time axis t that 

has no virtue to T. In fig. 1 the locality in blocks and other 

relations among the objects and blocks are depicted by 

means of so called Mejtsky’s diagrams, which are suitable 

graphical aids to understand complex relations in the run of 

the programs written in the 3O-langages – see (Mejtsky and 

Kindler, 1980, 1981); C is an instance of Ω. 

Fig. 1. Scheme of nested models: the circles E1,…, E5 and C represent 

components of the external model M, their horizontal bisectors are meta-

phors for their “lives” (dynamics): move along such a bisector from the 

left to the right is a certain image of the progress of the “lives” during the 

time. The same holds for the upper edges of the “scenes” that represent 

blocks. The “life” of C (may be of a computer able to simulate) illustrates 

a state when a subblock has been entered, forming the internal model m, 

the components of which are e1, … , e4.  
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Fig. 2. Rectifier model scheme. The full arrows represent the gas flow; 

the dotted arrows represent the flow of the boiling liquid. The properties 

of cell λ are being computed: four triplets of marked cells around it re-

present four “mathematicians” working with the approximations estima-

ted from the left, from the right, from above and from below. A similar 

approximation estimated from the past is not graphically represented. 

3. Application of Non-Reflective Nested Simulation  

Although it seems strange to apply nested simulation 

that is not reflective, i.e. to simulate systems containing ele-

ments that simulate something different from the same sys-

tem or its part, we can meet that phenomenon in applicat-

ions. It namely concerns the cases when the internal model 

realizes something that could be called pseudosimulation. 

Let us explain this term. 

 

A capable simulationist can view many phenomena as 

dynamic systems; among them, complex computing proces-

ses can exist and the simulationist can view them as interac-

tions of parallel processes in a certain fictitious time; if his 

duty is to algorithmize such a computing process (and pos-

sibly to do that in a manner opened for unexpected modifi-

cations in future) and if he has access to a suitable SPT, he 

can change his duty to use the SPT and to formulate a 

description of the corresponding fictitious dynamic system 

F, i.e. to program a simulation model m of F: the run of the 

demanded algorithm would produce the same effects as an 

experiment with m. Naturally, the manipulation with m may 

be far from satisfying essential aspects of simulation (often 

time maps something that is far from the physical time) and 

therefore we speak rather on pseudosimulation. 

 

Dahl (1966) was the first author who presented apposite 

examples of pseudosimulation – routines for computing the 

shortest path by using Lee’s (or Dijskstra’s) method, and for 

using Eratosthenes’ sieve to get prime numbers. In simulat-

ion practice, we often meet systems containing elements 

that can be declared more or les intelligent and that need to 

perform rather complex computation. The routines for such 

a computation are to be nested in the “life rules” of such 

elements. Of course, computing the shortest paths is a trans-

parent example of that and in case the routine is implement-

ed according to the Dahl’s conception, one meets nested 

simulation: the simulation model M of a “real” system con-

tains the model m of fictitious system F of multiplying 

pulses visioned by Dahl. 

 

This technique was applied in simulation of production 

halls served by induction-guided carriages (Kindler and 

Brejcha, 1990), of container yards (Blümel et al., 1997, 

chapter 4) and of regional bus service (Bulava, 2002). In 

case of the container yards with ground-moving transport 

tools, models of very similar fictitious systems were also 

used: when an empty place p for a container is determined 

and neighbouring places are already occupied, a danger ex-

ists that by placing the container to p a barrier of containers 

will be rounded off, which would forbid the ground moving 

vehicles to enter a certain part of the yard (Kindler, 2000). 

The first applications of nesting fictitious system simulation 

models inside models of real systems were collected and 

described by Kindler (1995). 

 

Among them a rather pregnant example concerns simu-

lation of rectifiers (distillation columns) – see e.g. (Kindler, 

2002). Their behaviour is described by a complex set Σ of 
partial differential equations, the solution of which is suppo-

sed smooth at every plate. This smoothness facilitates the 

computing. The plates of the column were discretized to 

cells and when the vector of the solution values has to be 

computed for a cell λ a certain game of fictitious “mathema-

ticians” is activated: they watch a near neighbourhood and a 

certain near history of λ, using splines they extrapolate the 

watched values to the present state of λ and offer the extra-
polations as approximations of the solution, competing to 

give values, which might conform with Σ (see Fig. 2). The 
fictitious world of the mathematicians has no material relat-

ion to the chemistry of the column and is modelled by a 

model nested inside the model of the column. 

 

There is also a case of inverse nesting, where a model M 

of fictitious session of mutually discussing experts {ei} con-

trols a simulation study, namely a set {mi} of models that 

may concern real world; every expert ei is modelled to have 

his own computer with a simulation model mi, and – conti-

nuously during the discussing – he watches mi, compares its 

behaviour with that of the other models, possibly modifies it 

during its run (or even refuses it, starting to experiment with 

a quite new model (Weinberger, 1987, 1988)). Model M has 

appeared excellent optimization software and – having use 

of the possibility to change the formulation of {mi} and the 

constraints to them – it was applied in a large spectrum of 

applications, starting from the industrial production (Wein-



 

berger and Mojka, 1983) and ending in biomedical domain 

(Faber and Weinberger, 1988). 

4. Obstacles With Reflective Simulation 

In chapter 2, it was told that a suitable specialisation of 

σ represents a genuine problem oriented simulation lan-

guage L. In case the nested simulation is not reflective, the 

specialisation of σ for the description of M is far from that 

for the description of m. In case of reflective simulation, 

both the models concern similar systems (exactly: systems 

defined at the same “thing”) and an opportunity exists to use 

something like L for description of the external model M 

and for the internal one m, too. It would be silly to suppose 

the use of rather different specialisations of σ for formulat-

ing M and m, i.e. to describe M in a language different from 

that in which m is described. 

 

Satisfying this natural and rightful demand carries a ha-

zard of a dangerous programming error, called transplantat-

ion. Its substance consists in erroneous mixing elements of 

different models. The simplest way to do this error is to as-

sign an element belonging to a model m a name N determi-

ned for elements belonging to another model M.  

 

Let us illustrate a possible progression of the consequen-

ces of such an error at an example of a patient-in-bed sector 

of a hospital. Suppose that the specialisation of σ respects 
that every patient V has two attributes, namely his bed and 

his predecessor (representing e.g. the last patient who enter-

ed the room before V), and that it is meaningful to apply  

• content for every bed, representing the patient who 

is placed there (in case a bed is empty the value of 

content is none), and  

• the (right hand) neighbour for any bed.  

Suppose L is used for describing two different models M 

and m of the same patient-in-bed sector. In the following 

explication (but not in L!), let the elements of M be denoted 

by capital letters and the corresponding elements of m by 

lower case letters. A lot of other values can be computed at 

the basis of the attributes. For example, the (right hand) 

neighbour of a patient Q can be computed as the content of 

the neighbour of the Q’s bed.  

In such sense, assume that model M should reflect the 

following state of the simulated system (see Fig, 3): 

• Q is a patient returning from a certain treatment and 

should be placed at bed B; 

• B is the neighbour of bed A where a patient P is 

placed, and C is the neighbour of bed B; 

• patient R is placed at C;  

• the patients entered the room in order R, Q and P. 

 

Let the other model m be reflecting the same state and 

let the error consists so that bed b is assigned to Q. The im-

minent consequences are that patient r will figure as the Q’s 

neighbour and that Q will figure as the p’s neighbour. Not 

only two elements Q and b supposing to belong to different 

worlds, but already four elements Q, b, p and r are reshuf-

fled into mutual relations. But the relation of predecessor 

engulfs other elements into the hodge-podge of the both 

models, e.g. both P (as the predecessor of Q) and p (as the 

predecessor of the predecessor of the Q’s neighbour). So 

after the mentioned “small” error the computing may pro-

ceed by regular steps but makes increasing chaos, handling 

together the elements of both the models.  

 

According to what was just written, the chaos may seem 

being similar to what could follow an error in two-way list 

processing (a maze of predecessors and successors relations 

muddled among elements of many lists). Nevertheless, the 

chaos caused by transplantation is much more dangerous: 

the maze in the relations among the element of different mo-

dels leads to chaos in the event evidence – those belonging 

to the time axes of both the models are chaotically mixed, 

which leads to a chaos of computing steps that should per-

form the elements of both the models and such a “wild run” 

continues until a fatal error (e.g. in applying a non-existing 

address), from which the reverse track leading to the first 

“small proper error of the  author of the model” cannot be 

discovered. 

 

There are only three 3O-languages that are implement-

ed: SIMULA (Dahl et al., 1968) (Simula Standard, 1989), 

BETA (Madsen et al., 1993) and JAVA. Although nowa-

days JAVA is rather popular, it is not safe against transplan-

tation, because its syntax is very free. Yet some occasions 

of transplantation are previewed but possibility of them is 

tested during the computing, which is one of the reasons 

that the models compiled from JAVA run slowly. 

 

The syntax of SIMULA is rather limited; one of the rea-

sons of that is to prevent transplantation. That is good, as all 

errors are detected already during the compilation and the 

  …              A               B             C               … 

  …               P                               R               … 

  …              a               b               c  
             … 

Q 

q 

none 

neighbour  

(bed to bed) 

neighbour 

(patient to patient) 

successor  

(patient to patient) 

  …               p                                r                … 

Fig. 3. Transplantation error and its near future consequences. Full 

lines represent values of attributes, dashed lines represent examples 

of values computed on the basis of the attributes. 



 

corresponding tests do not burden the model runs. BETA 

seems to be a certain compromise between SIMULA and 

JAVA, having rather free syntax and testing the critical 

events during the run of compiled programs. Unfortunately, 

the programs compiled from BETA are burden by the tests. 

5. Use of SIMULA 

Contrary to its “nominal” age of almost 40 years, SIMU-

LA appears an excellent tool namely for its security and for 

quickness of the programs compiled in it. Its integral com-

ponent is class called SIMULATION, which represents what 

we introduced in section 2 under symbol σ. Although this 
language appeared an excellent tool for simulation and for 

implementing problem-oriented SPTs without necessity to 

construct compilers for them, its security against transplan-

tation seemed to be a property dear-bought at the cost of 

possibility to implement reflective simulation.  

 

The security consists in that the models (i.e. the program 

components having use of SIMULATION) cannot receive 

names, i.e. cannot be identified; therefore it is not possible 

to use a technique sometimes called qualification (and in 

some object-oriented languages introduced under term dot-

notation); if a value is identified e. g. as x both in models M 

and m, it is not possible to express “x of M” and “x of m” 

and thus to distinguish them. But such a distinguishing is 

necessary in forming the internal model, as it should start 

from a state constructed as a certain “copy” of the state of 

the external model, instantaneous at the moment of the 

demand to form and apply the internal model.  

 

For example, if an element of the simulated system is re-

presented under name H in both the models M and m and if 

we would like to transfer the numerical value of its attribute 

called e.g. temperature from M to the initial state of m, we 

would like to write something like (in SIMULA syntax) 

m.H.temperature:=M.H.temperature            (5.1) 

but it is not possible. Another example that looked like it 

could not be formulated by means offered by SIMULATION 

is the following statement: 

“During the time interval <T1,T2> the computer (a 

component of system S simulated in the external model) 

simulates in the internal model, what could happen is S 

during the time interval <t1,t2>.” 

The synthesis of the mentioned three orientations, which 

exists in the 3O-languages, is a revolutionary step in the de-

velopment of the formal systems. The 3O-languages can be 

compared with formal theories able to generate and handle 

other formal theories and able to manage them to interact, 

admitting dynamic representation of their entities. Such the-

ories were studied neither by logic nor by mathematics and 

therefore the 3O-languages, being without theoretical sup-

port of the common exact sciences, represent a branch plen-

ty of surprises. Cognizing them is like cognizing powerful 

mathematical theories rooting in some axioms and definit-

ions that – gradually in time – appear so fruitful that a lot of 

non-trivial consequences can be discovered. 

So the SIMULA users thought during almost 25 years of 

its existence that the troubles mentioned above are essential.  

But in 1993 a method was discovered how to overcome the 

limitation (Kindler, 1993). It needed a certain sophisticated 

wit; discovering the wit was a certain analogy of discover-

ing and proving a new and unexpected theorem in mathema-

tics – once it is known it can be used for further develop-

ment. The wit consists in furnishing the simulated computer 

C by one or more methods, the names of which are the same 

as those of the entities identified by the same names in both 

the models, and the results of which are those of the extern-

al model. The essence of the wit is chalked out in fig. 4 pre-

sented by means of name X. B is the block corresponding to 

model M and b is the block corresponding to model m. 

Note that in practice it is not necessary to introduce such 

auxiliary methods for every name used in both models: after 

the mentioned way is constructed for one pair of elements, 

then many other entities are often accessible by means of 

pointers leading to them from those elements; see curved 

arrows in fig. 4, leading from the elements X – if e.g. U is 

formulated as X.mother (in SIMULA: mother of X) then 

inside b the age of U can be copied from the external model 

into the internal one by X.mother.age:=C.X.mother.age. 

6. Applications 

SIMULA (and the wit just mentioned) was applied in 

several situations, namely in the branch of the container 

yards, in that of circular conveyors and in that of simple 

queuing systems with intelligent control. Let us mention 

some details of those applications. 

6.1 Container Yards 

On the nesting simulation of container yards a mention 

was already made in section 2. The objective to form a 

universal simulation model of container yards opened to a 

spectrum as large as possible, i.e. to a spectrum of parame-

ters concerning not only the quantitative aspects but also 

combinatorial and control ones. Simulation discovered a 

U 

Y X 

V

Z 
Y 

C 

B 

b 
X 

U V 

Fig. 4. A “naked” identifier X designates X of m whenever occurs in the 

description B of m, otherwise it designates X of M. It is true in C (but out-

side the description b of m), too. Therefore a method called X and intro-

duced for C (so that C can perform it whenever gets a message like “X of 

C”) can be programmed so that the result of it is X of M. The message 

can be applied anywhere inside B, and therefore inside the b, too, where 

it permits the access to X of M. So “X” and “X of M” can communicate in-

side m but – as “X of C” represents a result of a function and not a vari-

able – no assigning for “X of C” is possible. 
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deadlock danger in any container yard using two or more 

ground-moving vehicles for its internal transport, in case 

they do not intelligently anticipate their future. The sub-

stance of the danger consists in the fact that the computing 

of the (shortest) path of a vehicle is based on a certain 

(instantaneous) state of the yard but the application of the 

path takes some future time, during which the state often 

changes; a change can lock a place that is expected to be 

used at the path. A combination more locks is not excluded 

and sooner or later the simulation experiments fall asleep in 

states with totally frozen moving.  

 

It is the drivers’ anticipation (and that of the organizers), 

which protects the container yards against the deadlocks. A 

driver of a vehicle can see other vehicles and containers that 

could become barriers for his movement, and – according to 

watching their eventual activities (moving inclusive) – he 

imagines whether and how long they might be barriers. If he 

were able of a greater information processing (namely of re-

membering much more information on the past events and 

of much quicker deduction) his moving would be more ef-

fective. In simulation models, an ideal mode of the drivers’ 

imagination can be modelled by simulation (and possibly 

used as a component of the automation of the yard control). 

 

The simulation of container yards with such a generaliz-

ed imagining was implemented during 1995-2000 under two 

projects of European Commission, controlled from the Ger-

man Fraunhofer Institute for Factory Operation and Auto-

mation in Magdeburg. The external models simulate the 

container yards according to their material substance, while 

the determinination of the path of any vehicle is organized 

as a cycle of two phases: 

• the shortest path P is computed as a sequence of 

places free of containers; 

• simulation of the future is performed, using a nested 

model of the yard, where P is applied for the given 

vehicle V; the simulation experiment is concluded 

either (1) by the event when V accesses the target, 

or (2) by a conflict between V and a barrier. In case 

(1) P is assigned to V as its safe path. In case (2) a 

fictitious container is put at the place of the conflict 

and the cycle continues from its first phase. 

The fictitious containers exist only in the nested models and 

are deleted as soon as a safe path is found. When a vehicle 

gets a safe path no future event can cause its modification. 

Theoretically, the described technique can finish by inform-

ation that there is no safe path for a given vehicle and its 

given target, but in simulation of a bit realistic cases we did 

not met this case. 

 

Note that the application uses two different kinds of 

internal models. The first phase is nested simulation that is 

not reflective (mentioned already in section 2) while the se-

cond one represents a “pure” reflective simulation (Kindler, 

2000). This case illustrates that the relations between reflec-

tive simulation and non-reflective nested simulation may be 

more complex (Kindler, Krivy, Tanguy, 2004). 

6.2 Simulation of Circular Conveyors 

Another example of application is simulation of circular 

conveyors chalked out in fig. 5. The simulated systems are 

composed of a main cycle and of several working areas 

connected to the main cycle (in fig. 5, there are five such 

areas). The main cycle serves for transporting the objects 

(“parcels”) to the working areas (from the entry place of the 

main cycle or from another working area) or to the place of 

exit. The parcels can rotate several times at the main cycle, 

but to minimize that is one of the control objectives. 

 The important parts of the working areas are 

represented by small horizontal segments. The processing 

of the parcels is performed at its central place, one parcel 

can enter and wait for to be accepted for processing and one 

processed parcel can wait there to be allowed to leave the 

working area for the main cycle (in case of a danger of 

crash there). Suppose the conveyor is under design with a 

clear idea that when it works it will be controlled by a 

computer able to simulate; so it will be able to anticipate 

consequences of certain decisions and therefore to check 

their quality. In the simulation during the design phase, the 

mentioned tests for the quality were nested inside the used 

models as their internal ones. The following decision tests 

were included: 

• A parcel comes to the conveyor in a situation when 

rather many parcels are placed there; should the 

parcel enter immediately to the main cycle or should 

it wait some time? Note that if it enters immediately 

it might uselessly complete a full cycle, obstructing 

other parcels to return from working areas. 

• A fault comes, causing a working area inaccessible; 

should the fault be immediately repaired (at the cost 

of interrupting the complete conveyor functions) or 

would it be possible to continue its operating during 

a certain time, in order to finish a certain production 

task?  

• A fault comes like in the preceding point; would it 

be possible to continue so that the function of the in-

accessible working area(s) will be supplied by other 

ones (by i.e. by a “reconfiguration” of the system)? 

See (Kindler, Coudert and Berruet, 2004) or also 

(Berruet, Coudert and Kindler, 2004).  

A very stimulating case, which belongs to the category 

of the reflective simulation of systems with automated 

operational transport was presented by Kindler, Krivy, 

Fig. 5. A scheme of circular conveyor: the parcels are represented by 

boxes with 3 symbols (e.g. 1B0) representing the states of the parcels. 



 

Lacomme and Tanguy (2004). Its complexity does not 

allow describing it here.  

6.3 Simulation of Simple Queuing System 

This example can be considered as a popular demo-in-

stance of the reflective simulation models, as it concerns a 

system similar to that everyone encounters. It concerns a 

system S composed of transactions (“customers”), facilities 

(“tellers”), queues of waiting transactions and a dispatcher 

D. Time to time, D watches the queue lengths and may in-

tend to lock a teller with rather short queue or open a locked 

teller (in case such a teller exists) in case the queues are 

rather long. But he has a computer, simulates the possible 

consequences of his decision and – according to the simula-

ted data – he can change the decision (in attenuated or amp-

lified sense). See e.g. (Kindler, 1996). 

 

Using SIMULA for implementation of the model of S 

enabled interesting enrichments of it. So it was possible to 

model D’s computer C of a certain low rate and causing es-

sential delay of the internal simulation: while C is simulat-

ing its environment changes. Moreover, once having descri-

bed D it was possible introducing his “colleague” d (by a 

simple statement), and then to simulate S under different re-

lations between D and d: the dispatchers can use computers 

of different rates and they can apply different criteria of de-

cisions, different overlapping of their model runs and small 

or greater mutual communication (Kindler, 2002). 

7. CONCLUSIONS  

The wit mentioned in section 5 makes the reflective si-

mulation possible but it would be suitable to try leading the 

practice of the reflective simulation to a simpler handling. 

An effort exists to arrange it, namely by forming a new 

version of the set σ (see section 2), that would allow giving 
names to the models. Having use of the fact that in order to 

get such a device σ should allow the models to be mapped 

as objects and not as blocks, the effort was fruitful (see fig. 

6). The device is called SIMULAT and can be applied in-

stead of standard SIMULA class SIMULATION mentioned 

above. Nowadays SIMULAT is tested concerning its effi-

ciency and some other properties specific for SIMULA. 

Surprising is the fact, that the other properties of SIMULA 

make the use of SIMULAT quite safe concerning the trans-

plantation, too. 

 

To acquire a sufficiently large spectrum of experiences 

with the nested and reflective simulation, a lot of further 

models should be implemented in order to obtain a real 

image of that domain and to generalize the empirical evid-

ences as truly as possible. The reflective simulation models 

of hospitals appear a fruitful step and it is expected that mo-

dels of personal career can illustrate the reflective simulat-

ion from another viewpoint that those viewed from industry, 

logistics and queuing systems. 

 

It is possible to nest an internal model µ into an internal 
model m nested in an external model M. In such a case there 

are three levels of simulation models inside a simulation 

study. The first steps were made in simulation of competing 

systems (Blümel, 1996) and the implemented model was 

like a pair <S1,S2> of those mentioned in par. 6.3. The 

essential contribution was in that the dispatcher D1 of S1 

was modelled as simulating not only its environment, i.e. S1 

and S2, but – as a part of its interest about the future of S2 – 

its simulating dispatcher D2 (Blümel and Kindler, 1997). 

 

A surprising way of the further development designated 

Novak (2000), embroidering the models mentioned in 6.1. 

He unified the fictitious “pulses” used in the Dahl’s method 

applied in the non-reflective nested simulation phase, with 

the “elements modelling almost real transport tools” applied 

in the reflective simulation phase; the synthesis allowed get-

ting better results than those mentioned in par. 6.1, i.e. com-

puted by using the pair of the strictly separated nested simu-

lation experiments; briefly said, the synthesis allowed to en-

rich the abstract pulses (figuring in the Dahl’s method) by 

abilities viewed at the vehicles, among other by the ability 

to return; it enables a completely automated offering of new 

occasions for the vehicles to prevent a crash – while the me-

thod mentioned in par. 6.1 always ends in a deviation the 

Novak’s technique offers what one often encounters in the 

real life: vehicle V approaching to a crash can bend aside 

and when the other actor of the possible crash departs V  

returns to its basic path; the deflecting and return may take 

less time than a deviation without return. The synthesis of 

abstract fictitious components with “real” ones, viewed and 

supposed in the combined elements, may become a fruitful 

and stimulating way for the future simulationists’ thinking. 

ΣΣΣΣ    

E5 

E4 

E2 

E1 

E3 

Fig. 6. Σ is a block corresponding to a simulation study. Inside it, the 

object M represents a simulation experiment and – may be said – the 

external model of a certain system S, containing the representations of 

the elements of S (including the computer C and the internal model m). 

The internal model reflects the elements of S, too. The statements like 

(5.1) can be simply used. For example, an attribute x of E2 belonging to 

the external model can be read and assigned to the attribute x of E2

belonging to the internal model by SIMULA statement m.E2.x:=M.E2.x. 
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As the last aspect of the reflective simulation, it is to 

note a software system for automatic generating of reflect-

ive simulation models, the implementation of which was be-

gun during 2000-2003 in a collaboration between Ostrava 

University Faculty of Sciences (Czech republic) and labora-

tory LIMOS of Blaise Pascal University in Clermont-Fer-

rand (France) under the bilateral convention on Barrande 

project system commonly superintended by  Czech Ministry 

of Education, Youth and Sports and French Foreign Minist-

ry. The given objective was an automatic translation of a 

(SIMULA) description δ of a conventional simulation mo-

del of a system S to a description ∆ of a simulation model of 

S enriched by a class of “simulation professionals”, i.e. of 

elements able to react to certain simple signals so that they 

detect all details of the state of S and generate a simulation 

model m according to the state they detected (Kindler, Kri-

vy and Tanguy, 2003). 
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