

UNIVERSITY OF OSTRAVA

Institute for Research and applications of Fuzzy Modeling

RReefflleeccttiivvee SSiimmuullaattiioonn -- SSiimmuullaattiioonn ooff SSyysstteemmss TThhaatt

SSiimmuullaattee

Evžen Kindler

Research report No. 85

2005

Submitted/to appear:

ESM - European Simulation and Modeling, Porto (Portugal), 2005

Supported by:

Institutional research scheme MSM6198898701 of the Czech Ministry of Education, Youth and Sport

UNIVERSITY OF OSTRAVA

Institute for Research and Applications of Fuzzy Modeling

30. dubna 22, 701 03 Ostrava 1, Czech Republic

tel.: +420-59-6160273 fax: +420-59-6120478

email: evzen.kindler@osu.cz

RReefflleeccttiivvee SSiimmuullaattiioonn -- SSiimmuullaattiioonn ooff SSyysstteemmss TThhaatt SSiimmuullaattee

Eugene Kindler

May, 2005

Ostrava University, Ostrava, Czech Republic

E-mail: kindler@ksi.mff.cuni.cz

KEYWORDS: Nested models, Reflective simulation,

Object-oriented programming

ABSTRACT

The paper is dedicated to simulation of intelligent sys-

tems that “imagine” their possible future states by medium

of simulation models handled by some of their elements.

The reason and importance for simulation of such systems,

the techniques for implementing their “nested” simulation

models and the obstacles related to the implementation are

described and some applications are presented.

1. Introduction

Intelligence is a concept, rooting in the human activities

but then generalized, among other for phenomena of com-

puter science; so one speaks on intelligent agents, intelligent

control etc. The intelligence in that sense often replaces the

human intelligence, models it and/or amplifies it. Under the

term intelligence, one usually considers logical inference,

adaptation, pattern recognition etc. Nevertheless, our own

human experience reveals imagining as a very important

component of the sort of thinking that is called intelligent.

Imagining can overpass the natural laws and logic. Ne-

vertheless, let us consider the professional technical imagi-

ning in systems (that occur in simulation), i.e. let us limit

our consideration to imagining controlled by the reason.

Very often, such imagining concerns processes that will

unwind during the time, often into the future. We have to

concede the computer simulation as a model and amplifier

of the mentioned type of the human imagining. Let S be an

intelligent system of the mentioned type, for the behaviour

of which the imagining is essential (i.e. if the imagining

were not in S the behaviour of S would essentially change).

There are a lot of such systems. Beside (groups of) hu-

mans in a lot of their situations, man-made systems that ap-

ply more or less continually simulation for affecting their

operation are of the mentioned sort. Among the simulation-

ists it is spoken that “simulation is the worst method to get

information on the studied system but often the only exact

way for such an aim”. Therefore when it is clear that such a

system S is well conceived (designed) and when it uses

simulation for the mentioned aim, the simulation cannot be

eliminated – otherwise S would be badly conceived, using

that “nasty method of simulation” without reason. In the

next text, the simulation model applied in the described

manner be called internal model.

Such a system S may be simulated before it physically

exists (for example during the phase of its design). Let its

model for that purpose be called external model. It should

reflect the fact that among the components of S there is an

information processing element C able to carry, to construct

and to keep running the internal model and to have use of it

for governing its own environment in S. If the external

model did not reflect these properties of C the next dilemma

would be present: either the external model would give false

results on the future reality of S, or S would be badly de-

signed, using simulation without reason (the suppression of

the internal model made in the external model could be

transformed into the reality of S).

The conclusion is that the external model M of S should

contain the internal model m of S, nested inside. In general,

an instance of the internal model may be step by step creat-

ed many times and in any case it can differ from the preced-

ing instances, reflecting the fact that the situation in S, vary-

ing in time, has to be reflected in the instance as its initial

state. Using a model like M, we speak on nested simulat-

ion, expressing the pure fact that a model is nested inside

another one, or we speak on reflective simulation, expres-

sing the fact that the internal model starts with reflecting the

state of the external one. Reflective simulation is a special

case of nested simulation.

Although the reflective simulation is a suitable tool for

anticipating the behaviour of man-made systems equipped

by a simulating computer, requirements for it may come

when a system is simulated, in which essential influence of

imagining made by real humans (drivers, operators, etc.) is

supposed. The internal models reflect such an imagining.

2. Obstacles With Nested Simulation

Computer simulation is applied when the simulated

system is rather complex. A program for a model of such a

complex system is a complicated software product and

therefore already since the fifties of the 20th century simula-

tion programming tools (SPTs) have been designed; their

benefit resides in that their users have to describe something

very similar to the simulated system and not the algorithm

governing the computer model: such descriptions are auto-

matically converted into simulation models. One of the most

useful tools of many SPTs is automatic scheduling of events

coming from rather different sources, often almost indepen-

dently. The scheduling is based on the properties of Newto-

nian time axis and therefore the SPTs automatically intro-

duce one such axis for every simulation experiment.

Unfortunately, in nested simulation at least two time ax-

es must be for disposal: when the internal model arises its

time axis should start to exist and govern event scheduling

during the whole existence of the model; when the internal

model disappears and is later replaced by another internal

model, a completely new time axis should arise; but simul-

taneously with this arising, manipulation and liquidation of

various time axes of the internal models, exactly one stable

time axis of the external model should exist.

With the exception of the 3O-languages (see further), no

SPT allows introducing more coexisting time axes. It seems

to be one of the main reasons that the nested simulation is

not in a common praxis, contrary to the fact that it appears

very useful.

The way to surmount this obstacle without loosing the

merits of SPTs consists in using programming languages

that are simultaneously object-oriented, process-oriented

and block-oriented (let us speak on languages with three

orientations, shortly on 3O-languages). By means of the

classes, subclasses and methods offered by the object orien-

tation, one can define a set σ of methods for unerring mani-

pulation with a time axis and therefore for scheduling of

events in a given model; the process orientation enables the

user to describe the “life rules” for the objects related to

different classes; and the block orientation enables to intro-

duce blocks, i.e. program components with local entities

(classes, subprograms and variables), and – in brief – to set

them among the steps of the life rules.

Object orientation enables the user to specialize σ, i.e.
to “tailor” it to a genuine “problem-oriented” simulation

language L, oriented to a suitable set Z of systems and often

using professional expressions similar to those used by the

non-computer-oriented experts communicating on Z). The

block B into which σ or its specialization was introduced as
its local “possession” represents a description of a simulat-

ion experiment; when the computing process enters B a

model M of the system described in B comes into being and

dynamically progresses; a simulation experiment with M is

being performed whenever the program run is being inside

the block. Suppose B is a subblock, i.e. a block inside an-

other block A: then access to the values local in B (i.e. to the

components of the state of M) is allowed from any place of

A while B (and thus M) can offer its own instantaneous va-

lues to A. When the computing process leaves B the experi-

ment ends and M disappears (but the values transferred to A

and assigned as its local values remain as long as A exists).

The time axis T introduced by σ into B exists exactly
when M exists. When the computing process again enters B

a quite new simulation experiment with its new simulation

model (including a new T) arises.

Iterating entering and leaving such a block B may repre-

sent a simulation study, i.e. a sequence of simulation expe-

riments (Strauss et al., 1967). But the 3O-languages enable

to nest a block b into the life rules of a class Ω of elements,

introduced in B. And b can be equipped by σ, too, or by a

specialization of σ; thus when the computing process is

inside it, a simulation experiment with a model m runs, so

that m models a system described in b. This simulation

experiment has its own time axis t that is independent of T.

While T and M remain when the computing process remains

in B, t and m can disappear when the computing process

leaves b, and they can newly start to exist as completely

new entities when the computing process returns into b,

although M and T are the same entities as before.

The described nesting of b inside B is a good way how

to nest model m into model M. The class that we designated

Ω in the preceding text can represent a class of computers

or of beings able to imagine. That class, being local in B, re-

presents elements that exist in the same “world” as the other

elements of the simulated system S, and in M the instances

of S are interpreted as existing in time represented by T, i.e.

together with the other elements represented in M. Never-

theless, the instances of Ω have a phase Π of their lives, in

which they are able to create models like m and to handle

them like each of them would have its own time axis t that

has no virtue to T. In fig. 1 the locality in blocks and other

relations among the objects and blocks are depicted by

means of so called Mejtsky’s diagrams, which are suitable

graphical aids to understand complex relations in the run of

the programs written in the 3O-langages – see (Mejtsky and

Kindler, 1980, 1981); C is an instance of Ω.

Fig. 1. Scheme of nested models: the circles E1,…, E5 and C represent

components of the external model M, their horizontal bisectors are meta-

phors for their “lives” (dynamics): move along such a bisector from the

left to the right is a certain image of the progress of the “lives” during the

time. The same holds for the upper edges of the “scenes” that represent

blocks. The “life” of C (may be of a computer able to simulate) illustrates

a state when a subblock has been entered, forming the internal model m,

the components of which are e1, … , e4.

e1

e4 e2

e3

E5

E4

E2

E1 C

M

m

E3

phase Π

λλλλ

BOILING
LIQUID

GAS

Fig. 2. Rectifier model scheme. The full arrows represent the gas flow;

the dotted arrows represent the flow of the boiling liquid. The properties

of cell λ are being computed: four triplets of marked cells around it re-

present four “mathematicians” working with the approximations estima-

ted from the left, from the right, from above and from below. A similar

approximation estimated from the past is not graphically represented.

3. Application of Non-Reflective Nested Simulation

Although it seems strange to apply nested simulation

that is not reflective, i.e. to simulate systems containing ele-

ments that simulate something different from the same sys-

tem or its part, we can meet that phenomenon in applicat-

ions. It namely concerns the cases when the internal model

realizes something that could be called pseudosimulation.

Let us explain this term.

A capable simulationist can view many phenomena as

dynamic systems; among them, complex computing proces-

ses can exist and the simulationist can view them as interac-

tions of parallel processes in a certain fictitious time; if his

duty is to algorithmize such a computing process (and pos-

sibly to do that in a manner opened for unexpected modifi-

cations in future) and if he has access to a suitable SPT, he

can change his duty to use the SPT and to formulate a

description of the corresponding fictitious dynamic system

F, i.e. to program a simulation model m of F: the run of the

demanded algorithm would produce the same effects as an

experiment with m. Naturally, the manipulation with m may

be far from satisfying essential aspects of simulation (often

time maps something that is far from the physical time) and

therefore we speak rather on pseudosimulation.

Dahl (1966) was the first author who presented apposite

examples of pseudosimulation – routines for computing the

shortest path by using Lee’s (or Dijskstra’s) method, and for

using Eratosthenes’ sieve to get prime numbers. In simulat-

ion practice, we often meet systems containing elements

that can be declared more or les intelligent and that need to

perform rather complex computation. The routines for such

a computation are to be nested in the “life rules” of such

elements. Of course, computing the shortest paths is a trans-

parent example of that and in case the routine is implement-

ed according to the Dahl’s conception, one meets nested

simulation: the simulation model M of a “real” system con-

tains the model m of fictitious system F of multiplying

pulses visioned by Dahl.

This technique was applied in simulation of production

halls served by induction-guided carriages (Kindler and

Brejcha, 1990), of container yards (Blümel et al., 1997,

chapter 4) and of regional bus service (Bulava, 2002). In

case of the container yards with ground-moving transport

tools, models of very similar fictitious systems were also

used: when an empty place p for a container is determined

and neighbouring places are already occupied, a danger ex-

ists that by placing the container to p a barrier of containers

will be rounded off, which would forbid the ground moving

vehicles to enter a certain part of the yard (Kindler, 2000).

The first applications of nesting fictitious system simulation

models inside models of real systems were collected and

described by Kindler (1995).

Among them a rather pregnant example concerns simu-

lation of rectifiers (distillation columns) – see e.g. (Kindler,

2002). Their behaviour is described by a complex set Σ of
partial differential equations, the solution of which is suppo-

sed smooth at every plate. This smoothness facilitates the

computing. The plates of the column were discretized to

cells and when the vector of the solution values has to be

computed for a cell λ a certain game of fictitious “mathema-

ticians” is activated: they watch a near neighbourhood and a

certain near history of λ, using splines they extrapolate the

watched values to the present state of λ and offer the extra-
polations as approximations of the solution, competing to

give values, which might conform with Σ (see Fig. 2). The
fictitious world of the mathematicians has no material relat-

ion to the chemistry of the column and is modelled by a

model nested inside the model of the column.

There is also a case of inverse nesting, where a model M

of fictitious session of mutually discussing experts {ei} con-

trols a simulation study, namely a set {mi} of models that

may concern real world; every expert ei is modelled to have

his own computer with a simulation model mi, and – conti-

nuously during the discussing – he watches mi, compares its

behaviour with that of the other models, possibly modifies it

during its run (or even refuses it, starting to experiment with

a quite new model (Weinberger, 1987, 1988)). Model M has

appeared excellent optimization software and – having use

of the possibility to change the formulation of {mi} and the

constraints to them – it was applied in a large spectrum of

applications, starting from the industrial production (Wein-

berger and Mojka, 1983) and ending in biomedical domain

(Faber and Weinberger, 1988).

4. Obstacles With Reflective Simulation

In chapter 2, it was told that a suitable specialisation of

σ represents a genuine problem oriented simulation lan-

guage L. In case the nested simulation is not reflective, the

specialisation of σ for the description of M is far from that

for the description of m. In case of reflective simulation,

both the models concern similar systems (exactly: systems

defined at the same “thing”) and an opportunity exists to use

something like L for description of the external model M

and for the internal one m, too. It would be silly to suppose

the use of rather different specialisations of σ for formulat-

ing M and m, i.e. to describe M in a language different from

that in which m is described.

Satisfying this natural and rightful demand carries a ha-

zard of a dangerous programming error, called transplantat-

ion. Its substance consists in erroneous mixing elements of

different models. The simplest way to do this error is to as-

sign an element belonging to a model m a name N determi-

ned for elements belonging to another model M.

Let us illustrate a possible progression of the consequen-

ces of such an error at an example of a patient-in-bed sector

of a hospital. Suppose that the specialisation of σ respects
that every patient V has two attributes, namely his bed and

his predecessor (representing e.g. the last patient who enter-

ed the room before V), and that it is meaningful to apply

• content for every bed, representing the patient who

is placed there (in case a bed is empty the value of

content is none), and

• the (right hand) neighbour for any bed.

Suppose L is used for describing two different models M

and m of the same patient-in-bed sector. In the following

explication (but not in L!), let the elements of M be denoted

by capital letters and the corresponding elements of m by

lower case letters. A lot of other values can be computed at

the basis of the attributes. For example, the (right hand)

neighbour of a patient Q can be computed as the content of

the neighbour of the Q’s bed.

In such sense, assume that model M should reflect the

following state of the simulated system (see Fig, 3):

• Q is a patient returning from a certain treatment and

should be placed at bed B;

• B is the neighbour of bed A where a patient P is

placed, and C is the neighbour of bed B;

• patient R is placed at C;

• the patients entered the room in order R, Q and P.

Let the other model m be reflecting the same state and

let the error consists so that bed b is assigned to Q. The im-

minent consequences are that patient r will figure as the Q’s

neighbour and that Q will figure as the p’s neighbour. Not

only two elements Q and b supposing to belong to different

worlds, but already four elements Q, b, p and r are reshuf-

fled into mutual relations. But the relation of predecessor

engulfs other elements into the hodge-podge of the both

models, e.g. both P (as the predecessor of Q) and p (as the

predecessor of the predecessor of the Q’s neighbour). So

after the mentioned “small” error the computing may pro-

ceed by regular steps but makes increasing chaos, handling

together the elements of both the models.

According to what was just written, the chaos may seem

being similar to what could follow an error in two-way list

processing (a maze of predecessors and successors relations

muddled among elements of many lists). Nevertheless, the

chaos caused by transplantation is much more dangerous:

the maze in the relations among the element of different mo-

dels leads to chaos in the event evidence – those belonging

to the time axes of both the models are chaotically mixed,

which leads to a chaos of computing steps that should per-

form the elements of both the models and such a “wild run”

continues until a fatal error (e.g. in applying a non-existing

address), from which the reverse track leading to the first

“small proper error of the author of the model” cannot be

discovered.

There are only three 3O-languages that are implement-

ed: SIMULA (Dahl et al., 1968) (Simula Standard, 1989),

BETA (Madsen et al., 1993) and JAVA. Although nowa-

days JAVA is rather popular, it is not safe against transplan-

tation, because its syntax is very free. Yet some occasions

of transplantation are previewed but possibility of them is

tested during the computing, which is one of the reasons

that the models compiled from JAVA run slowly.

The syntax of SIMULA is rather limited; one of the rea-

sons of that is to prevent transplantation. That is good, as all

errors are detected already during the compilation and the

 … A B C …

 … P R …

 … a b c
 …

Q

q

none

neighbour

(bed to bed)

neighbour

(patient to patient)

successor

(patient to patient)

 … p r …

Fig. 3. Transplantation error and its near future consequences. Full

lines represent values of attributes, dashed lines represent examples

of values computed on the basis of the attributes.

corresponding tests do not burden the model runs. BETA

seems to be a certain compromise between SIMULA and

JAVA, having rather free syntax and testing the critical

events during the run of compiled programs. Unfortunately,

the programs compiled from BETA are burden by the tests.

5. Use of SIMULA

Contrary to its “nominal” age of almost 40 years, SIMU-

LA appears an excellent tool namely for its security and for

quickness of the programs compiled in it. Its integral com-

ponent is class called SIMULATION, which represents what

we introduced in section 2 under symbol σ. Although this
language appeared an excellent tool for simulation and for

implementing problem-oriented SPTs without necessity to

construct compilers for them, its security against transplan-

tation seemed to be a property dear-bought at the cost of

possibility to implement reflective simulation.

The security consists in that the models (i.e. the program

components having use of SIMULATION) cannot receive

names, i.e. cannot be identified; therefore it is not possible

to use a technique sometimes called qualification (and in

some object-oriented languages introduced under term dot-

notation); if a value is identified e. g. as x both in models M

and m, it is not possible to express “x of M” and “x of m”

and thus to distinguish them. But such a distinguishing is

necessary in forming the internal model, as it should start

from a state constructed as a certain “copy” of the state of

the external model, instantaneous at the moment of the

demand to form and apply the internal model.

For example, if an element of the simulated system is re-

presented under name H in both the models M and m and if

we would like to transfer the numerical value of its attribute

called e.g. temperature from M to the initial state of m, we

would like to write something like (in SIMULA syntax)

m.H.temperature:=M.H.temperature (5.1)

but it is not possible. Another example that looked like it

could not be formulated by means offered by SIMULATION

is the following statement:

“During the time interval <T1,T2> the computer (a

component of system S simulated in the external model)

simulates in the internal model, what could happen is S

during the time interval <t1,t2>.”

The synthesis of the mentioned three orientations, which

exists in the 3O-languages, is a revolutionary step in the de-

velopment of the formal systems. The 3O-languages can be

compared with formal theories able to generate and handle

other formal theories and able to manage them to interact,

admitting dynamic representation of their entities. Such the-

ories were studied neither by logic nor by mathematics and

therefore the 3O-languages, being without theoretical sup-

port of the common exact sciences, represent a branch plen-

ty of surprises. Cognizing them is like cognizing powerful

mathematical theories rooting in some axioms and definit-

ions that – gradually in time – appear so fruitful that a lot of

non-trivial consequences can be discovered.

So the SIMULA users thought during almost 25 years of

its existence that the troubles mentioned above are essential.

But in 1993 a method was discovered how to overcome the

limitation (Kindler, 1993). It needed a certain sophisticated

wit; discovering the wit was a certain analogy of discover-

ing and proving a new and unexpected theorem in mathema-

tics – once it is known it can be used for further develop-

ment. The wit consists in furnishing the simulated computer

C by one or more methods, the names of which are the same

as those of the entities identified by the same names in both

the models, and the results of which are those of the extern-

al model. The essence of the wit is chalked out in fig. 4 pre-

sented by means of name X. B is the block corresponding to

model M and b is the block corresponding to model m.

Note that in practice it is not necessary to introduce such

auxiliary methods for every name used in both models: after

the mentioned way is constructed for one pair of elements,

then many other entities are often accessible by means of

pointers leading to them from those elements; see curved

arrows in fig. 4, leading from the elements X – if e.g. U is

formulated as X.mother (in SIMULA: mother of X) then

inside b the age of U can be copied from the external model

into the internal one by X.mother.age:=C.X.mother.age.

6. Applications

SIMULA (and the wit just mentioned) was applied in

several situations, namely in the branch of the container

yards, in that of circular conveyors and in that of simple

queuing systems with intelligent control. Let us mention

some details of those applications.

6.1 Container Yards

On the nesting simulation of container yards a mention

was already made in section 2. The objective to form a

universal simulation model of container yards opened to a

spectrum as large as possible, i.e. to a spectrum of parame-

ters concerning not only the quantitative aspects but also

combinatorial and control ones. Simulation discovered a

U

Y X

V

Z
Y

C

B

b
X

U V

Fig. 4. A “naked” identifier X designates X of m whenever occurs in the

description B of m, otherwise it designates X of M. It is true in C (but out-

side the description b of m), too. Therefore a method called X and intro-

duced for C (so that C can perform it whenever gets a message like “X of

C”) can be programmed so that the result of it is X of M. The message

can be applied anywhere inside B, and therefore inside the b, too, where

it permits the access to X of M. So “X” and “X of M” can communicate in-

side m but – as “X of C” represents a result of a function and not a vari-

able – no assigning for “X of C” is possible.

 X

deadlock danger in any container yard using two or more

ground-moving vehicles for its internal transport, in case

they do not intelligently anticipate their future. The sub-

stance of the danger consists in the fact that the computing

of the (shortest) path of a vehicle is based on a certain

(instantaneous) state of the yard but the application of the

path takes some future time, during which the state often

changes; a change can lock a place that is expected to be

used at the path. A combination more locks is not excluded

and sooner or later the simulation experiments fall asleep in

states with totally frozen moving.

It is the drivers’ anticipation (and that of the organizers),

which protects the container yards against the deadlocks. A

driver of a vehicle can see other vehicles and containers that

could become barriers for his movement, and – according to

watching their eventual activities (moving inclusive) – he

imagines whether and how long they might be barriers. If he

were able of a greater information processing (namely of re-

membering much more information on the past events and

of much quicker deduction) his moving would be more ef-

fective. In simulation models, an ideal mode of the drivers’

imagination can be modelled by simulation (and possibly

used as a component of the automation of the yard control).

The simulation of container yards with such a generaliz-

ed imagining was implemented during 1995-2000 under two

projects of European Commission, controlled from the Ger-

man Fraunhofer Institute for Factory Operation and Auto-

mation in Magdeburg. The external models simulate the

container yards according to their material substance, while

the determinination of the path of any vehicle is organized

as a cycle of two phases:

• the shortest path P is computed as a sequence of

places free of containers;

• simulation of the future is performed, using a nested

model of the yard, where P is applied for the given

vehicle V; the simulation experiment is concluded

either (1) by the event when V accesses the target,

or (2) by a conflict between V and a barrier. In case

(1) P is assigned to V as its safe path. In case (2) a

fictitious container is put at the place of the conflict

and the cycle continues from its first phase.

The fictitious containers exist only in the nested models and

are deleted as soon as a safe path is found. When a vehicle

gets a safe path no future event can cause its modification.

Theoretically, the described technique can finish by inform-

ation that there is no safe path for a given vehicle and its

given target, but in simulation of a bit realistic cases we did

not met this case.

Note that the application uses two different kinds of

internal models. The first phase is nested simulation that is

not reflective (mentioned already in section 2) while the se-

cond one represents a “pure” reflective simulation (Kindler,

2000). This case illustrates that the relations between reflec-

tive simulation and non-reflective nested simulation may be

more complex (Kindler, Krivy, Tanguy, 2004).

6.2 Simulation of Circular Conveyors

Another example of application is simulation of circular

conveyors chalked out in fig. 5. The simulated systems are

composed of a main cycle and of several working areas

connected to the main cycle (in fig. 5, there are five such

areas). The main cycle serves for transporting the objects

(“parcels”) to the working areas (from the entry place of the

main cycle or from another working area) or to the place of

exit. The parcels can rotate several times at the main cycle,

but to minimize that is one of the control objectives.

 The important parts of the working areas are

represented by small horizontal segments. The processing

of the parcels is performed at its central place, one parcel

can enter and wait for to be accepted for processing and one

processed parcel can wait there to be allowed to leave the

working area for the main cycle (in case of a danger of

crash there). Suppose the conveyor is under design with a

clear idea that when it works it will be controlled by a

computer able to simulate; so it will be able to anticipate

consequences of certain decisions and therefore to check

their quality. In the simulation during the design phase, the

mentioned tests for the quality were nested inside the used

models as their internal ones. The following decision tests

were included:

• A parcel comes to the conveyor in a situation when

rather many parcels are placed there; should the

parcel enter immediately to the main cycle or should

it wait some time? Note that if it enters immediately

it might uselessly complete a full cycle, obstructing

other parcels to return from working areas.

• A fault comes, causing a working area inaccessible;

should the fault be immediately repaired (at the cost

of interrupting the complete conveyor functions) or

would it be possible to continue its operating during

a certain time, in order to finish a certain production

task?

• A fault comes like in the preceding point; would it

be possible to continue so that the function of the in-

accessible working area(s) will be supplied by other

ones (by i.e. by a “reconfiguration” of the system)?

See (Kindler, Coudert and Berruet, 2004) or also

(Berruet, Coudert and Kindler, 2004).

A very stimulating case, which belongs to the category

of the reflective simulation of systems with automated

operational transport was presented by Kindler, Krivy,

Fig. 5. A scheme of circular conveyor: the parcels are represented by

boxes with 3 symbols (e.g. 1B0) representing the states of the parcels.

Lacomme and Tanguy (2004). Its complexity does not

allow describing it here.

6.3 Simulation of Simple Queuing System

This example can be considered as a popular demo-in-

stance of the reflective simulation models, as it concerns a

system similar to that everyone encounters. It concerns a

system S composed of transactions (“customers”), facilities

(“tellers”), queues of waiting transactions and a dispatcher

D. Time to time, D watches the queue lengths and may in-

tend to lock a teller with rather short queue or open a locked

teller (in case such a teller exists) in case the queues are

rather long. But he has a computer, simulates the possible

consequences of his decision and – according to the simula-

ted data – he can change the decision (in attenuated or amp-

lified sense). See e.g. (Kindler, 1996).

Using SIMULA for implementation of the model of S

enabled interesting enrichments of it. So it was possible to

model D’s computer C of a certain low rate and causing es-

sential delay of the internal simulation: while C is simulat-

ing its environment changes. Moreover, once having descri-

bed D it was possible introducing his “colleague” d (by a

simple statement), and then to simulate S under different re-

lations between D and d: the dispatchers can use computers

of different rates and they can apply different criteria of de-

cisions, different overlapping of their model runs and small

or greater mutual communication (Kindler, 2002).

7. CONCLUSIONS

The wit mentioned in section 5 makes the reflective si-

mulation possible but it would be suitable to try leading the

practice of the reflective simulation to a simpler handling.

An effort exists to arrange it, namely by forming a new

version of the set σ (see section 2), that would allow giving
names to the models. Having use of the fact that in order to

get such a device σ should allow the models to be mapped

as objects and not as blocks, the effort was fruitful (see fig.

6). The device is called SIMULAT and can be applied in-

stead of standard SIMULA class SIMULATION mentioned

above. Nowadays SIMULAT is tested concerning its effi-

ciency and some other properties specific for SIMULA.

Surprising is the fact, that the other properties of SIMULA

make the use of SIMULAT quite safe concerning the trans-

plantation, too.

To acquire a sufficiently large spectrum of experiences

with the nested and reflective simulation, a lot of further

models should be implemented in order to obtain a real

image of that domain and to generalize the empirical evid-

ences as truly as possible. The reflective simulation models

of hospitals appear a fruitful step and it is expected that mo-

dels of personal career can illustrate the reflective simulat-

ion from another viewpoint that those viewed from industry,

logistics and queuing systems.

It is possible to nest an internal model µ into an internal
model m nested in an external model M. In such a case there

are three levels of simulation models inside a simulation

study. The first steps were made in simulation of competing

systems (Blümel, 1996) and the implemented model was

like a pair <S1,S2> of those mentioned in par. 6.3. The

essential contribution was in that the dispatcher D1 of S1

was modelled as simulating not only its environment, i.e. S1

and S2, but – as a part of its interest about the future of S2 –

its simulating dispatcher D2 (Blümel and Kindler, 1997).

A surprising way of the further development designated

Novak (2000), embroidering the models mentioned in 6.1.

He unified the fictitious “pulses” used in the Dahl’s method

applied in the non-reflective nested simulation phase, with

the “elements modelling almost real transport tools” applied

in the reflective simulation phase; the synthesis allowed get-

ting better results than those mentioned in par. 6.1, i.e. com-

puted by using the pair of the strictly separated nested simu-

lation experiments; briefly said, the synthesis allowed to en-

rich the abstract pulses (figuring in the Dahl’s method) by

abilities viewed at the vehicles, among other by the ability

to return; it enables a completely automated offering of new

occasions for the vehicles to prevent a crash – while the me-

thod mentioned in par. 6.1 always ends in a deviation the

Novak’s technique offers what one often encounters in the

real life: vehicle V approaching to a crash can bend aside

and when the other actor of the possible crash departs V

returns to its basic path; the deflecting and return may take

less time than a deviation without return. The synthesis of

abstract fictitious components with “real” ones, viewed and

supposed in the combined elements, may become a fruitful

and stimulating way for the future simulationists’ thinking.

ΣΣΣΣ

E5

E4

E2

E1

E3

Fig. 6. Σ is a block corresponding to a simulation study. Inside it, the

object M represents a simulation experiment and – may be said – the

external model of a certain system S, containing the representations of

the elements of S (including the computer C and the internal model m).

The internal model reflects the elements of S, too. The statements like

(5.1) can be simply used. For example, an attribute x of E2 belonging to

the external model can be read and assigned to the attribute x of E2

belonging to the internal model by SIMULA statement m.E2.x:=M.E2.x.

 E1

 E4
E2

 E3
 m

M

C

 E5

As the last aspect of the reflective simulation, it is to

note a software system for automatic generating of reflect-

ive simulation models, the implementation of which was be-

gun during 2000-2003 in a collaboration between Ostrava

University Faculty of Sciences (Czech republic) and labora-

tory LIMOS of Blaise Pascal University in Clermont-Fer-

rand (France) under the bilateral convention on Barrande

project system commonly superintended by Czech Ministry

of Education, Youth and Sports and French Foreign Minist-

ry. The given objective was an automatic translation of a

(SIMULA) description δ of a conventional simulation mo-

del of a system S to a description ∆ of a simulation model of

S enriched by a class of “simulation professionals”, i.e. of

elements able to react to certain simple signals so that they

detect all details of the state of S and generate a simulation

model m according to the state they detected (Kindler, Kri-

vy and Tanguy, 2003).

References:

Berruet, P., Coudert, T. and Kindler, E. (2004): Conveyors With

Rollers as Anticipatory Systems: Their Simulation Models.

In: D. M. Dubois (editor): Computing Anticipatory Systems

CASYS 2003 – Sixth International Conference, Liege, Bel-

gium, 11-16 August 2003. American Institute of Physics,

Melville, New York, 2004 [AIP Conference Proceedings

Volume 718], pp. 582-592

Blümel, P. (1996): Mutual nesting of simulation models [master

thesis, in Czech]. Faculty of Mathematics and Physics,

Charles University, Prague

Blümel, E. et al. (1997): Managing and Controlling Growing

Harbour Terminals. The Society for Computer Simulation

International, San Diego, Erlangen, Ghent, Budapest

Blümel, P. and Kindler, E (1997): Simulation of Antagonist

Mutually Simulating Systems. In: O. Deussen, P. Lorenz

(editors): Simulation und Animation '97. Society for Comput-

er Simulation International, Erlangen, Ghent, Budapest, San

Diego, pp. 56-65

Bulava, P. (2002): Transport System in Havirov. In: Proceedings

of 28th ASU Conference – The Simulation Languages. FIT

VUT, Brno, pp.57-62

Dahl, O.-J. (1966): Discrete Event Simulation Languages. Norsk

Regnesentralen, Oslo. Reprinted in (Genuys, 1968)

Dahl, O.-J., Myhrhaug, B. and Nygaard, K. (1968): Common Base

Language, Norsk Regnesentralen, Oslo (1st ed.), 1972 (2nd

ed.), 1982 (3rd ed.), 1984 (4th ed.)

Faber, J. and J. Weinberger, J. (1988): Thalamocortical Reverber-

ation Circuit Simulation Using the Simula Language, Acta

Universitatis Carolinae Medica, 34, 149-248

Genuys, F (editor, 1968): Programming Languages. Academic

Press, London – New York

Kindler, E. (1993): SIMULA and concurrent engineering. ASU

Newsletter, 21, 1993, No 3, pp. 1-16

Kindler, E. (1995): Simulation of Systems Containing Simulating

Elements. In: M. Snorek, M. Sujansky and A. Verbraeck

(eds.): Modelling and Simulation 1995, Proceedings of the

1995 European Simulation Multiconference [Prague, June 1-

5, 1995]. Society for Computer Simulation International, San

Diego, 1995, pp. 609-613

Kindler, E. (1996): Reflective Simulation (First Experiences). In:

Simulation und Animation für Planung, Bildung und Präsen-

tation '96. [ASIM Mitteilungen, Heft Nr. 54], ASIM, Magde-

burg – Wien, 1996, pp. 39-50

Kindler, E. (2000): Nesting Simulation of a Container Terminal

Operating With its own Simulation Model. JORBEL (Belgian

Journal of Operations Research, Statistics and Computer

Sciences), 40, No. 3-4, pp. 169- 181

Kindler, E. (2002): When Everybody Anticipates in a Different

Way In: Daniel M. Dubois (editor): Computing Anticipat-

ory Systems CASYS 2001 – Fifth International Conference,

Liege, Belgium, 13-18 August 2001. American Institute of

Physics, Melville, New York, 2002 [AIP Conference Proce-

edings Volume 627], pp. 119-127

Kindler, E., Coudert, T. and Berruet, P. (2004): Component-

Based Simulation for a Reconfiguration Study of Transitic

Systems. SIMULATION, 80, 2004, No. 3, pp.153-163

Kindler, E. and Brejcha, M. (1990): An application of main class

nesting – Lee's algorithm. SIMULA Newsletter, 13, No.3,

(November), pp. 24-26

Kindler, E., Krivy, I., Lacomme, P. and Tanguy, A. (2004):

Reflective Simulation Models for Optimization of FMS. In:

European Simulation Multiconference ESM ’2004 [Paris,

October 25-27, 2004]. Eurosis, Ghent, pp. 94-98

Kindler, E., Krivy, I. and Tanguy, A. (2003): Automatisation de la

construction de modèles pour la simulation reflective (in

French). In: Y. Dallery, J.-C. Hennet, P. Lopez (Editeurs):

MOSIM’03 – Organisation et Conduit d’Activités dans l’In-

dustrie et les Services [Actes de la 4ème Conférence Franco-

phone de Modélisation et SIMulation 22-25, Toulouse,

France], SCSI & CNRS LAAS, Toulouse, France, pp. 379-

384

Kindler, E., Krivy, I. and Tanguy, A. (2004): Object-Oriented

System Analysis of Anticipatory Systems in Week Sense.

International Journal of Computing Anticipatory Systems,

14, 2004, pp. 271-285

Madsen, O. L., Møller-Pedersen, B. and Nygaard, K. (1993):

Object-Oriented Programming in the Beta Programming

Language. Addison Wesley, Harlow – Reading – Menlo Park

Mejtsky, J. and Kindler, E. (1980): Diagrams for Quasi-Parallel

Sequencing – Part I. SIMULA Newsletter, 8, No. 3, August

1980, pp. 46-49

Mejtsky, J. and Kindler, E. (1981):E.: Diagrams for Quasi-Parallel

Sequencing – Part II. SIMULA Newsletter, 9, No.1, Febru-

ary 1981, pp. 17-19

Novak, P. (2000): Reflective Simulation with Simula and Java. In:

Simulation und Visualisation 2000. The Society for Comput-

er Simulation International, European Publishing House,

Ghent, pp. 183-196

Simula Standard (1989). SIMULA a.s., Oslo

Strauss, J. C. et al. (1967): The SCi continuous system simulation

language. Simulation, 9, No. 6, pp. 291-303

Weinberger, J. (1987): Extremization of Vector Criteria of Simu-

lation Models by Means of Quasi-Parallel Handling, Comput-

ers and Artificial Intelligence, 3, 71-79.

Weinberger, J. (1988): Evolutional Approach to Extremization of

Vector Criteria of Simulation Models, Acta Universitatis Ca-

rolinae Medica, 34, 249-258

Weinberger, J. and Mojka, A. (1983): Optimization of an Indust-

rial Simulation Model by Means of Quasi-Parallel Handling,

Ekonomicko-matematický obzor (Economical and Mathema-

tical Review), 2, pp. 179-185

