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Editorial

A lot of conferences on soft computing and related topics are organized each
year all over the world. However, only few of them became the tradition that
can be ranked among most productive. As a rule, these conferences are smaller
in number of participants and so, less formal relations lead to discussions that
often lead to conceptually new ideas and solutions. I am convinced that the con-
ferences with the general title “The Logic of Soft Computing” that are usually
organized in parallel with workshops of the ERCIM working group on soft com-
puting are of this kind. Till now, they took place in Italy (Capri, Gargnano,
Sienna) and in Vienna in Austria. I am very proud that the fourth time we
have privilege to organize this conference in Ostrava in the Czech Republic.
This choice is not accidental. In 1996, the Institute for Research and Applica-
tions of Fuzzy Modeling of the University of Ostrava has been established as one
of few working places focused entirely on the topic of fuzzy modeling and soft
computing. Starting with 7 workers in the beginning, the results of this small
institute now reached more than 260 publications including 4 books. Besides
that, our results include also special software for fuzzy modeling (Linguistic
Fuzzy Logic Controller; LELC 2000) using which we have realized a number of
models and applications of various kinds.

I sincerely hope that this conference will be also very productive and suc-
cessful and that all participants will leave Ostrava with the feeling that they
spent nice time which brought them some new friendships and especially, new
hints and ideas for their own work. I want to thank to rector of the University
of Ostrava, Prof. Vladimir Baar, for taking the auspices over the conference,
to the municipal government of Ostrava for its generous support and to all who
spent their time to organize this conference.

Ostrava, October 4, 2005

Vilém Novak
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Axiomatizations of Fuzzy Set Theory:
A Critical Survey

Siegfried Gottwald
Institute for Logic and Philosophy of Science,
Leipzig University, Leipzig, Germany
Email: gottwald@uni-leipzig.de

1 Introduction

It was now exactly 40 years ago, in 1965, that the first three papers appeared
in print which discussed sets with a graded membership relation: two of them
by the now famous US-American Lotfi Zadeh, and one by a rather unknown
German mathematician Dieter Klaua.

The basic ideas of both authors differed slightly—but unessentially from a
mathematical point if view: Zadeh chose the real unit interval for the mem-
bership degrees, Klaua considered arbitrary finite subsets of equidistant points
from [0, 1] because he from the very beginning embedded his considerations into
the language of the (finitely valued) Lukasiewicz logics.

And for both approaches potential applications had been constitutive. Zadeh
clearly explained them: they arose out of his system theoretic investigations.
For Klaua! the stimulation came out of discussions with Karl Menger.

2 Classifying the Approaches

The approaches which have been presented toward the main problems of the
foundations for fuzzy set theory are rather inhomogeneous. So it is not suitable
to discuss them in chronological order. Instead we classify the approaches into
some types:

e axiomatic approaches toward fuzzy set theory;

e model oriented approaches toward some (kind of) standard model of the
universe of fuzzy sets;

e category theoretic approaches.

In this paper the first type of approaches shall be surveyed and explained with
their basic ideas and core results.

IPersonal communication to this author.
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3 Axiomatic Approaches

The paradigmatic classical system for these axiomatizations of fuzzy set theory is
almost always the system ZF. Only occasionally the system NBG is the reference
system. The approaches differ mainly w.r.t. the formalization of the generalized
membership predicate: either as ternary or even quaternary predicate treated
via classical logic, or as a binary predicate inside an elementary theory over
some suitable system of many-valued logic.

There is a wealth of such proposals summed up in the following list (which
is—hopefully—essentially complete). Some of these approaches shall be consid-
ered a bit more in detail.

e Membership degrees as fuzzy sets as proposed by E.W. Chapin Jr. [ND-
JFL 15 (1974), 16 (1975)].

e Semi-lattices as degree structures as proposed by A.J. Weidner [Ph.D.
Thesis, Univ. Notre Dame 1974; FSS 6 (1981)].

e An adaptation of the ZF-axiomatization proposed by H. Toth [J. Fuzzy
Math. 1 (1993)].

e An adaptation of the Bernays axiomatization by M. Demirci/D. Coker
[FSS 60 (1993)].

e An NBG-like axiomatization sketched by V. Novdk [FSS 3 (1980)].

e An embedding into NBG proposed by D.E. Tamir, Z.-Q. Cao, A. Kandel
and J.L. Mott [Information Sci. 52 (1990)].

e An axiomatization of so-called fuzzy objects by N. Prati [Stochastica 12

(1988)].

e An approach toward fuzzy sets as multisets as proposed by J. Lake [J.
London Math. Soc.(2) 12 (1976)] and realized by W.D. Blizard [FSS 33
(1989)].

e An axiomatization of fuzzy sets in LIl-logic offered by Béehounek and
Cintula [FSS 154 (2005)].

4 A General Remark

Summing up, there is a wealth of different proposals for axiomatizations of the
theory of fuzzy sets. However, up to now there is no common agreement whether
one of these proposals offers the right ideas, or whether all of them fall short of
what is needed for an axiomatization of the area of fuzzy sets.
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1 Introduction

Many-valued logics based on residuated bounded lattices were intensively stud-
ied, [10-12,17,21, 24, 25], even if the underlying lattice is not a chain (a first
attempt in this direction is described in [10, Section 15.2], compare [2, 7] and
also the paraconsistent logic in [5]).

Throughout this paper, let L = (L, <, %,—,0,1) be an integral commutative
residuated (-monoid with bottom element 0 and top element 1, and we shall
briefly call it a residuated bounded lattice.

The following types of residuated bounded lattices have been considered so
far:

e L is an infinite bounded chain (quite often represented by [0,1]): then * is
a left-continuous t-norm (with the additional requirement of divisibility,
ie., xx(z — y) = x Ay, x is even a continuous t-norm). Note that the
complete characterization of all left-continuous t-norms on [0, 1] is still an
open problem (for continuous t-norms, their structure as an ordinal sum
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of continuous Archimedean t-norms is well-known, see e.g. [16,20,23,15]).
For an overview of construction methods for left-continuous t-norms see

[13,19).

e L is a finite chain: then any t-norm * on L induces a residuated bounded
lattice (note that there are exactly 2°#*4(2)=2 divisible t-norms on L [18]).

e L is an abstract bounded lattice, * = A and the adjoint operation —
exists.

However, a deeper study of bounded lattices admitting the structure of a
residuated bounded lattice is still missing. The aim of this contribution is a
closer look at this problem.

2 Triangular norms on bounded lattices

Let (L,<,0,1) be a bounded lattice. An operation T: L? — L which turns L
into an ordered commutative semigroup with neutral element 1 will be called a
triangular norm or, briefly, a t-norm on L [6]. In fact, the triangular norms on
L considered here are commutative semigroups satisfying Conditions A and B
in [9], for concrete examples see [9, Examples 1.1-1.4].

For each bounded lattice (L, <,0,1), the following functions are t-norms:

e the strongest t-norm Ty defined by T (z,y) =z Ay,

e the weakest t-norm (drastic t-norm) T defined by Ti5(z,y) = 0 whenever
r#1and y# 1, and T5(z,y) = z Ay otherwise.

Observe that T # Tj5 whenever card(L) > 2.
Proposition 2.1 Let (L;, <;,0;,1;)iesr be a family of bounded lattices. Then:

(i) If0; =0 and 1; =1 for alli € I and if L;NL; = {0,1} fori # j, then the
horizontal sum (L,<,0,1) = H((L;,<;,0,1),i € I), given by L = U;esL;
and x <y if and only if x,y € L; and x <; y, is a bounded lattice.

(ii) ¢of I is a bounded chain and if for i < j, Ly N L; C {1;} N {0;}, and if
L; N L; # 0 implies L, = {1;} for each k € I, i < k < j, then the vertical
sum (L,<,0,1) = V({L;, <;,0;,1;),i € I), given by L = UjerL; and x <y
if and only if v,y € L; andx <;y, orx € L, y€ Ly and i < 7, 0 =0;,
and 1 = 1;«, where i, and i* are the bottom and the top element of I,
respectively, is a bounded lattice.

In the case that on each bounded lattice (L;, <;,0;,1;), ¢ € I, we have a
t-norm 7; acting on L;, we have the following results, see also [22].
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Proposition 2.2 Let (L,<,0,1) = H((L;,<;,0,1),i € I) be a horizontal sum
of bounded lattices and let, for each i € I, T; : Liz — L; be a t-norm on L;.
Then the function T : L?> — L given by

Te.y) = 4 W) (@y) € L,
’ TNy otherwise,

(1)

18 a t-norm.

Note that, in the second case of (1), we always get z Ay = 0 and that
the above construction method is the only way how to construct t-norms on
horizontal sums of bounded lattices, i.e., each t-norm T on such a lattice can be
represented in the form (1). For example, the drastic t-norm 7§ on a horizontal
sum L has just the form (1) with T; = 75",

Proposition 2.3 Let (L,<,0,1) = V({L;,<;,0;,1;), € I) be a vertical sum of
bounded lattices and let, for each i € I, T; : L = L; be a t-norm on L;. Then
the function T : L?> — L given by (1) is a t-norm (and it is called the ordinal
sum of the t-norms T;).

Note that the ordinal sum t-norm 7' given by (1) is the strongest t-norm
on L such that its restriction to L;? coincide with T}, and thus there are, in
general, t-norms acting on a vertical sum L of bounded lattices which cannot
be represented as an ordinal sum of t-norms. For example, the drastic t-norm
T on a vertical sum L of bounded lattices is an ordinal sum of drastic t-norms
TS only if L = L; for some i € I (i.e., L is a trivial vertical sum).

3 Bounded lattices admitting residuals
For finite lattices, we have the following characterization.

Proposition 3.1 Let (L,<,0,1) be a finite lattice. Then (L,<,A,—,0,1) is a
residuated bounded lattice if and only if for all u,v,y,z € L withu Ny < z and
vAy <z we have (uVv)Ay <z

As an easy corollary we see that each finite distributive lattice is a bounded
residuated lattice (with * = Ti;). We pose an open problem here: are there
non-distributive finite lattices admitting residuals?

Although T is a t-norm on L for each bounded lattice L, for x = T},
there is not always an adjoint operator — such that (L, <,%,—,0,1) is a resid-
uated bounded lattice. Especially for lattices which are horizontal sums the
residuation property is quite restrictive.

Proposition 3.2 Let (L,<,0,1) = H({L;,<;,0,1),i € I) be a horizontal sum
of bounded lattices where each L; is a proper subset of L. If x is an operation on
L such that the lattice L = (L, <, *,0,1) admits residuals then L is the diamond
lattice whose Hasse diagram is given in Figure 1 (left), and x = T;.
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Figure 1: The diamond lattice (left) and the lattice from Example 3.4

In all other cases, i.e., for all horizontal sums which are proper supersets of
the diamond lattice, there is no t-norm * admitting residuals.

On the other hand, for vertical sums of lattices and the corresponding ordinal
sums of t-norms we have the following positive result.

Proposition 3.3 Let (L, <,0,1) = V({L;,<;,),0;,1;),i € I) be a vertical sum
of bounded lattices and let * : L?> — L be an ordinal sum of t-norms on L, i.e.,
x = ((L;,*;),1 € I). Then (L, <,*,—,0,1) is a bounded residuated lattice if and
only if (Li, <i,*i,—i,04,1;) is a bounded residuated lattice for each i € I.

Observe that the ordinal sum is not only a construction method of bounded
residuated lattices, but in specific cases we have also a representation of
bounded residuated lattices as ordinal sums of special bounded residuated lat-
tices. For example, each divisible BL-algebra [11] is an ordinal sum of divisible
Archimedean BL-algebras and of trivial singleton BL-algebras (compare a sim-
ilar result for BL-chains [1,4]).

Note that in the proposition above the fact that % is an ordinal sum of
t-norms is crucial.

Example 3.4 Consider the lattice (L, <,0,1) whose Hasse diagram is given in
Figure 1 (right), and let * = Tj5. Then (L, <,*,—,0,1) is a bounded residuated
lattice, although L is a vertical sum of a horizontal sum not admitting residuals
and of a trivial 2-element lattice. Observe also that TI\IjI does not possess an
adjoint operation — in this case.

4 Conclusion

We have discussed the structural problems of bounded residuated lattices which
serve as the truth-values range for several approaches to many-valued logics. We
have shown that the horizontal sum construction of lattices is not compatible
(up to the trivial case leading to the diamond) with the structure of residuated
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lattices. On the other hand, the ordinal sum of residuated lattices (i.e., ordinal
sum of t-norms acting on a vertical sum of lattices) always yields a residuated
lattice. There are still many open problems in this field, as indicated in the last
example. Observe that L discussed there possesses the interval [0,a] on which
no residuals exist, although the entire lattice L admits residuals, thus excluding
the ”genuine” necessary condition for the existence of residuals — to require
this property from each subinterval [z,y] of L.
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On the Failure of Strong Standard
Completeness in IIMTL

Rostislav Horcik*

Institute of Computer Science
Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague, Czech Republic
and
Dept. of Mathematics, Faculty of Elec. Eng.
Czech Technical University in Prague
Technicka 2, 166 27 Prague 6, Czech Republic

It is well-known that Hajek’s basic fuzzy logic (BL), Lukasiewicz logic, and
product logic are not strongly standard complete, i.e. there is a theory T and
a formula ¢ such that in each standard algebra L we have e(y) = 1 for any
L-model e of T but Tt ¢. On the other hand, the monoidal t-norm based
logic (MTL), which arises from BL by omitting the divisibility axiom, enjoys
the strong standard completeness theorem. This is valid also for involutive
monoidal t-norm based logic (IMTL) which is an extension of MTL by the law
of involution. Thus it is natural to ask whether IIMTL (i.e. the extension
of MTL obtained by adding pseudocomplementation and cancellation) satisfies
this theorem as well. In this talk we are going to show that IIMTL is not
strongly standard complete like the product logic.

Let p, ¢, be propositional variables and

T = {—|—\T‘7p~>q7—|p~>q}u{(p" —7r)—q|neN}.
Further, let M be the set of all formulas constructed only from p,r and
T" ={p&(p =) =pA¢ | o9 € M}.

Finally, let 7= T UT"”. We claim that e(q) = 1 for each L-model e of T in
any standard [IMTL-chain L. Clearly, if e(p) = 1 or e(p) = 0 then p — ¢ or
—p — ¢ does the job. Thus suppose that e(p) # 0, 1. Further, e(r) # 0 because
of the formula ——r. Finally, if e(p™) < e(r) for some n € N then (p" — r) — ¢

*The work of the author was partly supported by the grant No. A100300503 of the Grant
Agency of the Academy of Sciences of the Czech Republic and partly by the Institutional
Research Plan AV0Z10300504.
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ensures that e(¢) = 1. Hence it is sufficient to prove that there is always n € N
such that e(p™) < e(r). In other words, this means that e(p) and e(r) belong to
the same Archimedean class provided that e(p) > e(r). The rest of the proof is
based on the following lemma.

Lemma 1 Let L = ([0,1],%,=,<,0,1) be a standard IMTL-chain, x,y € [0,1]
such that ™ > y for alln € N. Then there is m € N such that 2™ = y =
max [y|p(z), where F(x) is a filter generated by x and [y|p(4) is the equivalence
class w.r.t. F(z) containing y.

Thus suppose that e(p™) > e(r) for all n. Let a = e(p) and b = e(r). By the
latter lemma we know that there is m € N such that a™ = b = max [b]p ().
The maxima of the equivalence classes has the following property.

Lemma 2 LetL = (L,*,=,<,0,1) be an MTL-chain, y € L, and F be a filter
inL. Ify =max [y|p thenxz =y =y for allz € F.

If we let ¢ = p and ¢ = p™ — r, we get e(p — ¥) = e()) by the latter lemma
since e(p™ — 1) = a™ = b. Tt follows that

e(p&(p — ¥)) =e(p) xe(p™ — 1) <e(p™ — 1) =e(¥) =e(p A1),

where the strict inequality follows from cancellativity of . But it is a contra-
diction with the fact that e is a L-model of T since e(p&(p — ) = p AY) < 1.
Thus e(g) = 1 for each model e of T' in all standard IIMTL-chains.

Finally, we will show that T' t/ ¢q. For this purpose it is sufficient to prove that
for any finite subtheory T};, C T there is an L-model e of Ty;, such that e(q) < 1
for some IIMTL-algebra L. Let L be the standard product algebra [0, 1];; and
m € N be the maximal natural number such that (p™ — 7) — ¢ € Tp;. We
evaluate the propositional variables as follows:

)=l =5, )= g

Then we have e(——r) =e(p — ¢) = e(—p — ¢) =1 and for all n < m

1 1

1 1
€<pn - T) = 2_n = om+1 - gm+1-—n = 5 - €(Q) ’

Thus e((p™ — r) — ¢) = 1 for all possible n which may appear in T';,. From the
above-mentioned facts it follows that e is a [0, 1jg-model of T;, and e(q) < 1.
Hence the following result follows.

Theorem 3 IIMTL does not enjoy the strong standard completeness theorem.

Even since we have found the counterexample for Ty, in [0, 1)1, we know that
any logic between IIMTL and the product logic cannot be strongly standard
complete.
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Two notions of fuzzy lattice completion

Libor Béhounek*

In the framework of Henkin-style higher-order fuzzy logic we define two notions
of fuzzy lattice completion. Our attention is restricted to dense linear crisp
orderings, which are important for the theory of fuzzy real numbers. We inves-
tigate the properties of both notions and compare them with some results from
the literature.

The framework. In [2], the Henkin-style higher-order fuzzy logic LII has been
defined, and proposed as a foundational theory for formal fuzzy mathematics.
Recall that it is an axiomatic theory over the multi-sorted first-order logic LII,
with sorts for fuzzy classes of any finite order, tuples, comprehension terms,
crisp identity =, and typed membership predicate €, axiomatized by the class
comprehension schemes and the extensionality axioms for classes of all orders.
It can easily be generalized to other fuzzy logics: the present notions can in fact
be defined and the results proved already in the Henkin-style 3rd-order logic
BLA, which will be our framework in the present paper. We shall use standard
definitions of [2] and usual abbreviations of classical mathematics.

Cones, suprema, and infima. We fix an arbitrary binary fuzzy relation <.
Although the following notions are most meaningful for fuzzy (quasi)orderings,
we need not impose any restrictions on <.

By standard definitions one can define the upper cone Al =4 {z | (Va €
A)(a < x)} (and dually the lower cone A'). Several properties of cones known
from classical mathematics can be proved, e.g. that the transitivity of < implies
that A" is upper in <, the antitony of T w.r.t. C, and the closure and stability
properties of ATL. (All properties and definitions can of course be dualized.)

The usual definition of suprema as least upper bounds can then be formu-
lated as Sup A =q¢ A" N AT} and dually for Inf A (where N denotes the strong
intersection AN B =4 {z | + € A& x € B}). Notice that they are fuzzy
classes, since the property of being a bound is graded. Nevertheless, if < is
antisymmetric w.r.t. a relation F, then the suprema and infima are E-unique; if
furthermore Ker(E) is the identity relation, the unique element of Ker(Sup A)
is the supremum of A, denoted by sup A.

Some properties known from classical mathematics hold for fuzzy suprema,
e.g., the monotony w.r.t. C (antitony for infima). The property of lattice com-
pleteness is defined as the existence of a supremum for any class; the existence
of all infima then already follows, since suprema and infima are interdefinable
by Sup A = Inf A" and Inf A = Sup A’

*Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vo-
darenskou vézi 2, 182 07 Prague 8. E-mail: behounck@cs.cas.cz. Supported by grant No.
B100300502 of the Grant Agency of the Academy of Sciences of the Czech Republic.
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Fuzzy lattice completions of dense linear crisp orders. We restrict our
attention to linear crisp domains, since we aim at a formal theory of fuzzy
numbers constructed in the usual way, i.e. over some system of crisp numbers.
For simplicity, we only consider dense orderings here (the treatment of non-
dense orderings would need some special adjustments). The theory of fuzzy
lattice completions of dense linear crisp domains is directly applicable in the
construction of fuzzy reals over crisp rationals or reals (cf. [1]).

We distinguish two methods of fuzzy lattice completion for linear crisp
domains, which generally differ in fuzzy logic (unlike in classical logic): the
Dedekind completion by (fuzzy) Dedekind cuts, and the MacNeille completion
by (fuzzy) stable sets. Both methods directly generalize the classical Dedekind-
MacNeille completion by admitting fuzzy sets into the construction. Both meth-
ods yield complete lattices and preserve the existing suprema and infima. How-
ever, the resulting lattices cannot generally be characterized as the least com-
plete lattice extending the original order. (The latter is, of course, the crisp
Dedekind—MacNeille completion, since we start from a crisp order; the former
are just the least completions containing all fuzzy cuts or all fuzzy stable sets.)
We define the constructions for lower sets (both can of course be dualized for
upper sets).

Fuzzy MacNeille completion. We call A (lower) stable iff AT! = A. The
fuzzy MacNeille completion M(X) of X is the (crisp) class of all stable sub-
classes of X, ordered by inclusion. It is a complete lattice into which X is
embedded by assigning {z}' to z € X; the embedding preserves all suprema
and infima that already existed in X. The suprema and infima in M(X) are
unique w.r.t. bi-inclusion; due to the extensionality axiom, there is a unique
supA € Ker(SupA) for any A C M(X) (dtto for infima). Furthermore,
inf A=A and supA = (|JA)!, as in classical mathematics.

Fuzzy Dedekind completion. We call A a (lower) Dedekind cut iff it
satisfies the following two axioms:

AVz,y)lt<y— (ye A—z e A)], AWVz)[(Vy<z)(lye A) —ze A

Thus fuzzy cuts are lower, right-closed subsets of X (i.e., their membership
functions are non-increasing and left-continuous). The conditions reflect the
intuitive motivation that the membership = € A expresses (the truth value of)
the fact that  minorizes the fuzzy lattice-element represented by A. (The A’s
express the fact that any imperfection would strictly violate the motivation.)

Fuzzy Dedekind completion D(X) of X is the set of all Dedekind cuts on X
ordered by inclusion. The properties of MacNeille completions listed above hold
for Dedekind completions as well. The soundness of the axioms of Dedekind cuts
w.r.t. the intuitive motivation can be proved: it holds for Dedekind cuts that
r€ A {z}t C A

Comparing the two notions. In classical mathematics, M(X) = D(X).
This is also true in Lukasiewicz logic (where negation is involutive). Generally,
in any logic containing BLa we can prove M(X) C D(X), i.e., any stable class
is a Dedekind cut. The converse inclusion, however, is not valid over BLa. If
negation is strict, all cones (and therefore, all stable sets) are crisp, since y €
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Al = (Ya > y)~(a € A) for dense linear crisp <. Thus in SBLa (or stronger),
fuzzy MacNeille completions coincide with crisp MacNeille completions; fuzzy
Dedekind completions of non-empty sets, on the other hand, always contain
fuzzy cuts (in non-crisp models).

In Lukasiewicz logic, fuzzy completions of dense crisp linear orders show
rather special properties: not only M(X) = D(X), but also C is a weak (i.e.,
with strong disjunction) linear order on M(X) (= D(X)). Again, this property
cannot be proved generally (in logics where co-norm disjunction is present): in
particular, it fails for the Godel co-norm V (max-linearity is equivalent to the
excluded middle).

Comparison with results from the literature. Hohle’s paper [5] and a
chapter in Bélohldvek’s book [3] study the minimal lattice completion of fuzzy
orderings (by the construction that we call here the MacNeille completion). In
our present setting we are, on the other hand, concerned with lattice completions
of crisp orders by fuzzy sets (the latter is also studied towards the end of [5]).

Both [3] and [5] arrive at essentially the same results as the present paper
wherever our areas of interest intersect (fuzzy MacNeille completions of crisp
domains in [5], fuzzy suprema and infima in both), even though their definitions
slightly differ from ours (in [5], the setting is further complicated by considering
fuzzy domains of <). The most important difference is in the definitions of
antisymmetry, where both works use A instead of & (in [3], A for & is also used
in the definition of suprema and infima); such definitions are narrower, and thus
our results are more general. Reasons can be given why & rather than A should
(from the point of view of formal fuzzy logic) be used in the definitions; the
results of [3] and [5] are then well-motivated only in Gédel logic.

Incidentally, both notions defined in the present abstract satisfy Dubois and
Prade’s requirement of [4] that the cuts of fuzzy notions be the corresponding
crisp notions. This is a rather general feature of classical definitions transplanted
to formal fuzzy logic (which is a methodology of [2], foreshadowed already in [5]).
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Weakly implicative predicate fuzzy logics

Petr Cintula*

Institute of Computer Science, Academy of Sciences of the Czech Republic
cintula@cs.cas.cz

There are two classes of propositional logics related to the area of mathe-
matical fuzzy logics proposed in [3] (see also joint paper by the author and Libor
Béhounek [1] where philosophical, methodological, and pragmatical reasons for
introducing these two classes appear.)

After we recall same basic definitions we turn our attention to the first-order
variants of these two classes of logics. The results presented here are mainly
from the author’s thesis [2] and prepared paper [4]. Because of the lack of space
we present the basic definitions and theorems only and we completely disregard
the important concept of Baaz delta.

1 Weakly implicative (fuzzy) logics

The class of weakly implicative logics extends the well-known class of Rasiowa’s
implicative logics (see [7]) by omitting the rule ¢ F ¢ — ¢. A logic (represented
by the deductive closure F) is weakly implicative iff it contains a (definable)
connective — that satisfies the following conditions:

Fop—y
=¥ B ¥
e, v—ox B op—ox
o=, b—p F ocl..,0,...)—c(...,1,...) forall connectives ¢

Weakly implicative logics can be characterized as those which are complete w.r.t.
a class of ordered matrices (in which the set D of designated values is upper), if
the ordering of the elements of the matrix is defined as x <y =gt v —>y € D.
By (weakly implicative) fuzzy logics we call such weakly implicative logics
that are complete w.r.t. a class linearly ordered matrices. It turns out that this
class approximates well the bunch of logics studied in so-called “fuzzy logic in
narrow sense”. For logics with finitary rules only, the class of weakly implicative
fuzzy logics can be equivalently characterized by the following conditions:

e Each L-matrix is a subdirect product of linear ones.
(Subdirect representation property)

e Each theory in L can be extended to one whose Lindenbaum-Tarski matrix
is linear. (Linear extension property)

e T p—vhkyxand T, — ¢k yentails TFyx.  (Prelinearity property)

*The work was partly supported by grant A100300503 of the Grant Agency of the Academy
of Sciences of the Czech Republic and partly by Institutional Research Plan AV0Z10300504.
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Let us recall that BCI is an implicational fragment of intuitionistic linear
logic, it is not implicative logic, and it has the following presentation:

Fle—=1) = (0 —=x) = (¢ = X))
Flo—=®—=x) = ®—(¢—x)
Fo—op

(MP) o, = 1.

Let L be a finitary logic expanding BCI. Then the following are equivalent:

NAQT

e L has LDT (Local Deduction Theorem: for each theory T' and formulae
o, : T, p F 1 iff there is n such that T F ™ — 1).)

e L is pure (L has an axiomatic system where Modus Ponens is the only
deduction rule).

2 Predicate weakly implicative fuzzy logics

Now we move to the first-order logics. Our approach is inspired by the classical
first-order logic and by its modifications, the main sources are Hajek’s treatment
of basic predicate fuzzy logic (for details see [6]) and Rasiowa’s approach to first-
order implicative logics (see [7]).

We assume that the reader is familiar with the syntax and semantics of
some fuzzy predicate logic (see [6]). Let us just mention that by =pv- (FFLy)
we understand a consequence relation given by all safe B-models for all (linearly)
ordered L-matrices B. Let us fix a predicate language I'. For weakly implicative
logic L we define logic LY~ as:

(P) the axioms and rules resulting from the axioms and rules of L by the
substitution of the propositional variables by the formulas I'.
(Vz)p(x) — o(t), where ¢ is substitutable for z in .

o(t) — (3z)¢(z), where t is substitutable for z in .

) (Vz)(x — @) F (x — (Vx)p), where x is not free in y.

) (Vz)(p — x) F ((3x)¢ — x), where x is not free in x.

Gen) ¢F (Va)p.

A logic LV~ is nice if rules (RV2) and (RV2) can be replaced by their usual
axiomatic forms ((Vz)(x — ¢) = (x = (Va)p), (Vz)(¢ — x) = ((Fz)¢ = X))
It can be shown that logic LV~ is nice if L has the structural rule of exchange
and (definable) residual conjunction.

For each weakly implicative logic L we can easily get:

T '_LV’ %2 IFF T |:LV* ®.

For weakly implicative fuzzy logics, we further define stronger variant of
first-order calculi—the logic LYV—by adding the axiom of constant domains:

(V) (e V) — (¢ V (Yz)¥) x not free in .

Of course, this definition assumes that there is a connective V in the language
(new results by Petr Hajek show how to avoid this obstacle). We say that LV
is complete if for each predicate language I':

T }_LV %) IFF T |:LV @Y.
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We are not able to prove completeness of LV for all fuzzy logics L (so far).
However we present few rather strong sufficient (and necessary) conditions. For
finitary fuzzy logic L the following conditions are equivalent:

e LV is complete.
o Thiy IFF T Ly ¢, for all at most countable predicate languages T'.
e T p—vkpyxand T, ¥ — oty x entails T Fry x.

Observe that the last condition (prelinearity property) surely holds for L
(because L is propositional fuzzy logic) but we cannot prove (in general) that
this property is preserved by transition to the first order. We are able to it in
some cases only; finitary predicate fuzzy logic LV is complete if:

e LV has LDT (LDT is defined as in the propositional case).

e LV~ is nice and L has LDT.

e LV~ is nice and L is pure logic extending BCI.

e LV is an axiomatic extension of some complete fuzzy logic.

e LV is the intersection of an arbitrary class of complete fuzzy logics.

As corollary we get completeness for the following known fuzzy logics (for
their definitions see survey [5]): MTL, SMTL, IMTL, IIMTL, WNM, NM, BL,
SBL, Lukasiewicz, product, Goédel, and the “hoop” variants of all these logics.
By a small modification of the presented results we could get completeness also
for all above-mentioned logic with Baaz delta.
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Fuzzy Description Logics and the Semantic Web
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Extended Abstract: In the last decade a substantial amount of work has been carried out in the
context of Description Logics (DLs). DLs are a logical reconstruction of the so-called frame-based
knowledge representation languages, with the aim of providing a simple well-established Tarski-
style declarative semantics to capture the meaning of the most popular features of structured
representation of knowledge. Nowadays, DLs have gained even more popularity due to their
application in the context of the Semantic Web. Ontologies play a key role in the Semantic Web and
major effort has been put by the Semantic Web community into this issue. Informally, an ontology
consists of a hierarchical description of important concepts in a particular domain, along with the
description of the properties (of the instances) of each concept. DLs play a particular role in this
context as they are essentially the theoretical counterpart of the Web Ontology Language OWL DL,
the state of the art language to specify ontologies. Web content is then annotated by relying on the
concepts defined in a specific domain ontology.

However, OWL DL becomes less suitable in all those domains in which the concepts to be
represented have not a precise definition (which on the Web is likely the rule rather than an

exception).

We present the current state of the art of fuzzy description logics and present open issues to be
addressed to make them appealing for the Semantic Web.

Key Words : fuzzy logic, description logics, ontology representation
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BEST LOCATIONS FOR RIVER WATER QUALITY
MONITORING SENSORS THROUGH FUZZY INTERPOLATION

ANGELO MARCELLO ANILE, SALVATORE SPINELLA, AND MARCO OSTOICH

ABSTRACT. This work concerns the interpolation of environmental data us-
ing B-splines fuzzy in order to monitor water quality in a river. Sparse fuzzy
interpolated model is then queried in order to retrieve information useful for
planning precautionary measures. Moreover the information retrieved can be
used to improve the distribution of the monitoring sensors on the basin area
to optimize the coverage.

Geographical data concerning environment pollution consist of a large set
of temporal measurements (representing, e.g. hourly measurements for one
year) at a few scattered spacial sites. In this case the temporal data at a
given site must be summarized in some form in order to employ it as input
to build a spatial model. Summarizing the temporal data (data reduction)
will necessarily introduce some form of uncertainty which must be taken into
account. Fuzzy numbers can represent this uncertainty in a conservative way
without any statistical “a priori” hypothesis. This method has been employed
for ocean floor geographical data by [Patrikalakis et al 1995] (in the interval
case) and [Anile 2000] (for fuzzy numbers) and to environmental pollution data
by [Anile and Spinella 2004].

Fuzzy interpolation is carried out with B-splines to get a deterministic
model for environmental pollution data. Then the model is interrogated by
fuzzy queries to find the sites exceeding a quality threshold. The results sug-
gest the areas of the basin which should be subjected to a further rigorous
examinations.
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Fuzzy Petri nets in modelling business processes
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Abstrakt. To describe the ,,behaviour* of business processes are used final automats which have a lot
of restrictions. This can be simply solved by Petri nets which are more suitable because of their
precision and exact specification. In case of extensive real business processes, where connections
between individual activities it’s possible to describe only vaguely would be more suitable to use
classical Petri nets with applied fuzzy logic. This article is about description a application of fuzzy
Petri nets for modelling these business processes.

Key words: business processes, fuzzy modelling, Petri nets.

1 Business processes modelling

During business processes modelling is important to devotedly describe associations between
activities and roles represented by abilities of participants involved in the process as an activity we
understand on atomic (no more divisible) step in the process execution. Role is set of skills which
mutually supplement each other. Roles are assigned to individual activities to let them full fill in
scope of process execution.

Generally we have three basic approaches for process modelling which are based on elemental
types of used abstraction [5]:

1. Functional approach which is aimed at functions, their structures, inputs and outputs.

2. Approach of behaviour specifications aimed at operating aspect of process execution by
setting up the events and conditions according to which these individual activities can be executed.

3. Structural approach is aimed at static aspect of process. The goal is to affect entities and
sources appearing in process within their attributes, activities (services) and mutual relations.

To describe the behaviour of business processes are used the final automats, which have a lot
of restrictions e.g. in number of statuses in modelling complicated processes. In order to that are
often used Petri nets which were created for extension purposes of modelling possibilities of final
automats.

As an advantage of business process modelling by Petri nets we see their formal description
which supplements the graphic illustration. Thereby is permit precise and exact specification of
the process and so is possible to remove definiteness, uncertainty and contradiction. Except clear
graphic expression Petri nets have also very well defined mathematic basics which can be used in
various software tools for specification and analysis of business processes solved by IT.
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But anyway classical Petri nets can have certain problems in modelling of real and complicated
processes. From this reason were created extensions aimed at procuration of increase of modelling
power. It is about possibilities for:

e hierarchization,
e  Petri nets with additional time,
¢ Coloured Petri nets.

2 Fuzzy modelling

As another approach of description of real business processes is application of fuzzy modelling
[4]. If we would like to describe complicated reality then we can decide between relevance of
information, which is less exact, and accuracy of information which will be less relevant. If you
would increase the exact of processes description we get at the point when accuracy and relevance
become mutually contradictable characteristics. For instance process of car production is possible
to describe by few sentences where we globally describe individual parts of car and assembly
sequence. We found out this way how to assemble a car but we won’t know anything about the
relations between the individual components, machines and people. If we would like to know
more details we have to add data about machines’ permeability, performance of people, order of
tables etc. But the amount of information is increasing in this case. And they are more exact that
mean we will know more but just about a small part of processes in company. If we would like to
describe these all processes in company into such details it would end up with huge amount of
detail information which nobody would be able to read. A if so, than to understand to such amount
of information he would need to use natural language so I would refer to vague characteristic. In
other case he would get lost in such exact details because human mind is limited. We can see that
accuracy is just illusion, for it is essentially attainable. All these facts are in the background of
considerations of fuzzy logic founders [6]. Fuzzy logic basically comes from theory of fuzzy sets
and is concerned on vagueness described by mathematics.

In this context there is fuzzy set defined as a set which except of full or no membership permits
also partial membership. That means that the item belongs into a set with some particular degree
of membership. Function, which links to every single item from universum a degree of
membership, is called membership function. Fuzzy theory tries to cover the reality in its
vagueness and uncertainty. During nearly 40 years existence is worthy of many solutions of
technical problems which was impossible to solve by other tools in practise. To every single item
is possible to add the Degree of membership which expresses the measure of membership to
particular item into fuzzy set. For instance: when you try to manage complaint of supplier you can
set up the measure of membership of the same type of bug into fuzzy sets. You can decide which
parts are “good”, which parts is possible to “process yet” and which parts is necessary to “scrap”.
For classical deciding is in this case possible to set up limits of what is still admissible and what is
not any more too hard. We can add number from interval <0,1>, which express measure of our
conviction. Fuzzy theory notices vaguely specified requirements in question and adequately
calculate for that the degree of membership. Fuzzy logic let us use vagueness directly and knows
also how to represent it easily.
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3 Fuzzy Petri nets

Integration of fuzzy logic into classical Petri nets is possible to implement as following. Let’s use
definition of fuzzy logic Petri net.

FLPN = (P,T,F.My,D,h,a, &, 1) where
P={py, ..., pa} is final set of places,

T={ty, ..., tn} is final set of transitions,

FC (PxT) U(T x P) is flow relation, where is
VteT Ip,qe P:(p,t)v(t,q) eF,

Mo: P — {0,1} is initial marking,
D is final set of statements— PND=TND =,

PIeD].
h: P — D is associated function representing bijection from place to statement,

a: P —[0,1] is associated function representing a value in place from set of real numbers
from 0 to 1,
0,.:T—> [0,1] is associated function representing transition value from set of 0 to 1.

For V xe (PUT)

*x ={y| yFx} , input set (preset) element x
x* ={y| xFy}, output set (postset) element x

For Vp € P, valid for following:
M'(p)=M(p)+1, if pet’="t;
M'(p)=M(p)-1,ifpe’t—t;

M'(p) = M (p),otherwise,
a(p)=La(p)ifa, 20 Apet” Ap'et.

T is a(p)= A, mina(p') i
Vp'et

Pro t €
min{a(p')}z O Anpet’
Vp'e't
apro t € T is a(p) = A, maxa(p') if
Vp'e't
max{a(p‘)}z 0. Anpet’.
vp'e't

Now let’s express IF-THEN rules and their transformation into fuzzy logic by Petri nets.
Rule IF p1 THEN p2 let’s express
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Andin fuzzy logic o, =A4a,ifa, 26,.

Rule IF pl AND p2 THEN p3 is expressed:

And in fuzzy logic ﬂ min {a 0!2} proi=1 A 2.

O’Z(')AVD

Rule IF p1 OR p2 THEN p3 we express by inhibitive edges

3

And in fuzzy logic =1 o Max Ot 062} proi=1v 2.

a;20 \OR

\J

Rule IF p1 XOR p2 THEN p3 express by inhibitive edges

And in fuzzy logic o, = /1%,0,(051 if a, 2 '9:’“’“ na, =0,

OF
S
&

a, = itmaz ifa, > 9,m na, =0.

By the application of fuzzy logic into Petri nets spring up strong tool for modelling of real
business processes especially for:
- Easy comprehensibility and elaborate mathematic devise,
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- Quite easy and simple proposal,

- Modulability of solution — it is possible to add and delete individual modules without
necessity of recreating the whole system,

- Robustness of suggestion that means system is not necessary to modify in case of change
of solution parameters of task in frame of particular surroundings.

4 Integration of system for modelling of business processes with information
system QI

For securing good quality of company management is advantageous to integrate information
system with process system. This integration let us to do change in incorporation of information
system. His functions are machine-controlled and run by process system that means that
information system purvey an order of functions to users and at the same time hand over reports to
process system which evaluate them and according to the results process the movement in process
map. This way is implemented the run of functions of information system by process system.

University of Ostrava in Ostrava in cooperation with company DCC a.s. generate currently a
tool for process management and its implementation into information system QI [2]. The goal is to
create inside of the information QI a tool which will work on the basics of fuzzy Petri nets.
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1 Abstract

Let £ be the poset, under C, of subalgebras of the MV-algebra [0, 1]. £ then
has a unique maximal element, [0, 1].

L also contains atoms, that is subalgebras A C [0,1] such that A" C A,
then A’ = {0,1} or A’ = A. The algebra {0,3,1} is such an atom.

Since, for a maximal ideal M of an MV-algebra A, % € L, we have a
method to refine the structure of the maximal ideal space Max(A). Heuris-
tically, the ”smaller” the quotient %, the ”larger” the maximal ideal M. In
effect this provides a pre-order on the set of maximal ideals.

In this work we shall study these ideas for the set of maximal ideals of
”finite type”, that is maximal ideals M with % finite.

We shall first look at ”super maximal” ideals M, that is, those maximal
M such that % is a ”small” as possible, namely % = {0,1} Next we shall
look at some classes of ”big” maximal ideals M, that is, those maximal
ideals M which if not ”super maximal” are sucht hat % is an atom of L.

Given a subalgebra S C [0,1] it is easy to find MV-algebras A with a

maximal ideal M such that % = S. One need only form a product A’ x S.
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What we will show in this work is that given any MV-algebra A there are
subalgebras that contain maximal ideals of finite type, in fact of a prescribed
finite type.

Here our study will use a class of MV-polynomials we call ”symmetric”
which will permit us to construct the appropriate subalgebras.

The first part of this work concerns supermaximal ideals (considering
the Boolean algebra as an MV-algebra).

Given an MV-algebra, its set of idempotents, B(A), is a subalgebra
which is a Boolean algebra. We shall examine extensions of B(A) in A, that
is subalgebras A’ of A such that B(A) C A’ C A, that have supermaximal
ideals.

The second part of this work will take up the case of certain exten-
sions of B(A) which may have big maximal ideals, and we shall study some
properties of these algebras.

Both of these parts will be presented as a special case of subalgebras
determined by certain symmetric MV-polynomials.

Finally, as an application of a class of symmetric polynomials here de-
scribed, we show that some projective MV -subalgebras of the one-generated
free MV -algebra can be obtained via symmetric polynomials. Actually, such
projective MV -algebras are algebras of compositions of a given symmetric
polynomial and the McNaughton functions of one variable.
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Product logic and probabilistic Ulam
games
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Connections between games and many-valued logic have been shown first
by Mundici [M] for the case of the Ulam-Rényi game and Lukasiewicz logic.
In fact, Mundici showed that it is possible to code the information contained
in a sequence o of questions-answers (called record in [CM]) by means of a
function f, from Q into [0,1] called the truth-value function corresponding to
0. More precisely, if up to n lies are allowed, then for every z € Q, f,(z) =
ﬁr;—_lgh, where h is the numbers of questions answers which falsify x (repetitions
count, of course). Truth-value functions have a logic, which is precisely the
n-valued Lukasiewicz logic if n is the upperbound to the number of lies allowed
by the game. Moreover if one considers the logic of all truth-value functions
corresponding to all Ulam-Renyi games with an arbitrary number n of lies,
then the underlying logic is just the infinite-valued Lukasiewicz logic.

One may ask if similar games can be found for other many-valued logics. A
positive answer for the case of Hajek’s Basic Logic BL was given by Cicalese and
Mundici in [CM]. There the authors propose a multichannel variant of the Ulam-
Reényi game and prove that truth-value functions in such variant constitute a
complete game sematics for BL. Since a semantics for Godel logic can be
obtained as a particular case, what still remains open is a game semantics for
product logic.

Pelc’s game G(p,() is a probabilistic variant of Ulam game in which the
secret number is in ) and Responder gives the correct answer with probability
p> % Such a game seems to be a good candidate for a semantics for product
logic, in that the most natural interpretation of the conjunction of truth-value
functions is given by their pointwise product. In this game, the truth-value
function f, associated to a sequence o of questions-answers, is the function from
QY into [0, 1] such that for each € §,f,(x) expresses the conditional probability
of (the answers to the questions contained in) o given that the secret is x. Note
that, using the Bayes formula, f, allows us to compute the inverse conditional
probability, that is, the probability that the secret is x given the sequence o.
Thus a truth function gives us a complete information about what we know on
the ground of the sequence o.

Truth functions have an algebraic structure: if 7 is the justaposition of two
records o and p, then f; is the pointwise product of f, and f,. Morecover,
we can define a partial order between truth-value functions: f, < f, if for all
z € Q, fo(x) < fy(z). Thus truth-value functions constitute a partially ordered
monoid, the identity being the constantly 1 function fy.
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Lemma 1 Let p € [3,1]. A function f from  into [0,1] is a truth-value
function iff there are a natural numbers n, k, : © € Q such that for every x,
ke <nand f(z) = p* - (1 p)"~H=.

Since the conjunction (justaposition) of two records is interpreted as the product
of their truth-value functions, one might expect that the logic of such truth-value
functions could be product logic. However, this is not the case. More precisely,
we have the following situation:

Lemma 2 Let N = Card(Q2), and M be the partially ordered monoid of all
truth-value functions corresponding to G(Q,p). Then:

(a) M can be equipped with the structure of a prelinear residuated lattice iff
either p € {1,3} or N = 1.

(b) M has a minimum iff p = 1.

(c¢) If N =1, then M is divisible iff 1 — p is a power of p.

(d) If N > 1, then there are values of p such that M is not residueted.
However, its partial order is an inverse well quasi order, but possibly not a
lattice order.

Thus, M is a product algebra only of p = 1 (in fact, in this case it is a Boolean
algebra), and it can be a cancellative hoop only in some uninteresting cases.

In this paper we investigate a variant of probabilistic Ulam game in which
with an additional cost, depending on the size of S, Questioner can require that
the answer is absolutely reliable (i.e., correct with probability 1) if the unknown
number belongs to some set S and reliable with probability p otherwise.

1 A variant of Pelc’s game

We now consider a variant of Pelc’s game. For % < p < 1, the game G*(Q, p)
is defined as follows: Once again, Questioner has to guess a secret number con-
tained in a known finite search space Q. Each time Questioner chooses a subset
S of © and, with an additional cost ¢(S), which we will assume to be propor-
tional to the size of S, he can obtain a true answer with probability 1 if the
unknown number is in S and a true answer with probability p otherwise. Unlike
the case of Pelc’s game G(€2, p), Questioner has to guess the secret number with
probability 1. Even though the correct answer is required with probability 1,
the total cost (number of questions needed plus the sum of all additional costs)
when Questioner uses a given guessing strategy Y is a random variable X. The
aim of the game consists in finding strategies 3 such that the expected value
E(X) when Questioner play startegy ¥ is minimum.

Formally speaking, every question is your number in X? is accompanied by
a reliability set S C Q, which means that if the secret number is in S, then the
answer must be truthful with probability 1. Also in this case, to every record o
(i.e., to everey sequence o of triples (Q;, S;, 4;) : i = 1,...,n, where Q;,S; and
A; denote the ¥ question, the i*! reliability set and the i** answer respectively,
we associate a truth-value function f, from € into [0, 1] such that for all z € €,
fq(x) represents the probability of (the answers to the questions in) o given that
the secret number is z.

Also in the case of G*(£2,p), truth-value functions play a very important
role because for x € € the probability that x is the unknown secret given a
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sequence o can be computed from f, using the Bayes formula. Moreover, it is
readily seen that also in this case the truth-value function f; corresponding to
the justaposition 7 of two records ¢ and p is the pointwise product of f, and

fo-

2 The algebra of truth-value functions of the
game G*(€2,p).

Also in this case, truth-value functions of the game G*(€, p) can be character-
ized:

Lemma 3 A function f from Q into [0,1] is a truth-value functions of the game
G*(Q, p) iff for all z € Q, either f(x) = 0 or there are natural numbers n, k such
that f(z) =p™(1 — p)*. Thus if H denotes the submonoid of ([0,1],-,1,<)
generated by p, 1 —p and 0,
then the set S of truth-value functions is just H*.

Once again, it is readily seen that the truth-value function f. of the justapo-
sition 7 of two records o and p is the pointwise product of f; and f,. Moreover
truth-value functions can be partially ordered pointwise, exactly as in the case
of games G(Q, p).

We recall the following lemma, proved by Hércic [H:

Lemma 4 Any finitely generated totally ordered monoid is residuated.

Thus H is a residuated lattice. Since the restriction of product to its non-
zero elements is cancellative H is a IIMT L-algebra. Finally, since S =H*, and
both product and order in it are pointwise, we can give it the structure of a
IIMT L-algebra as well, just taking pointwise joins, meets and residuals. Of
course the residual of two truth-value functions f, and f, is the greatest truth-
value functions We will denote it by S.

Theorem 1 S is a product algebra iff 1 — p is a power of p. In this case, S
generates the whole variety of product algebras. If 1 — p is not a power of p,
then S is a IIMT L-algebra which is not a product algebra and which does not
generate the whole variety of IIMT L-algebras.

We now consider two kinds of algebraic interpretation of formulas of many-
valued logics. The first one, which we call interpretation of type 1, is as follows:

e We fix an arbitrary n > 0, and we take p to be a solution in [%, 1] of the
equation p"™ +p— 1 = 0. Note that such a solution exists and that it is %
iff n=1.

e We fix an arbitrary finite non-empty set  and we consider the game
G*(Q,p).

e We interprete atoms as arbitrary truth-value functions of G*(€, p), and
falsum as the identically 0 function on .

o We interprete conjunction & as product, V as join, A as meet and impli-
cation — as residual in S.
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Interpretations of type 2 are defined as interpretations of type 1, with the
difference that p is a number in [%, 1] such that 1 — p is not a power of p.

Theorem 2 The logic L1 of all interpretations of type 1 (i.e., the set of for-
mulas which take value 1 under any interpretation of type 1) is product logic,
and the logic Ly of all interpretations of type 2 is a power of p, and it is a logic
between IIMTL and product logic. In particular, the divisibility axiom is not
valid Lo, but the formula

(A— B)— B)?< AV BV-B,

although not provable in IMTL, is a tautology of Lo.
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Game semantics for product logic
Part 11

C. Marini ¥ G. Simi *

Abstract As the title suggests, this paper is the sequel of Montagna’s work about game
semantics for product logic. In the first part we investigate some natural strategies
for G*(2,p). In order to compare these strategies, we define the cost of a question
Q@ with reliability set S as 1+ a(Card(S)), with a > 0, and the cost of a sequence
o of questions-reliability sets-answer as the sum of the costs of the single questions-
reliability set-answers occurring in it. The cost of a strategy is the mean value of the
costs of the sequence o produced when Questioner discovers the secret playing the
strategy. We investigate the following cases:

1. p=1 (but p fixed) and N — +o0;

2. 3 <p< 2 (but p fixed) and N — +o0;
3. K%)<p<1andN—>+oo;

4. N sufficiently large but fixed and p — 1.

In the second part we shall introduce another variant of Gp (N, p), called G*(N), which
for every N constitutes a complete algebraic semantics for product logic.
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ABSTRACT

The only difference between traditional Renyi-Ulam games and multi-
channel games is that in the latter games answers can be sent on any one
among m channels ¢y, ..., ¢,,. Each channel ¢; is equipped with a parameter
e; =0,1,2,..., in such a way that, if more than e; erroneous answers happen
to be sent on ¢, still they are all counted as 1+ e;. After asking a question,
the Questioner chooses a channel ¢; and asks the Responder to send his reply
on ¢;. Further, for any x in the search space S, the information about = sent
on channel ¢; supersedes all past and future information about = sent on c;,
for j > 4. As in the traditional game, all that the Questioner knows about
the secret number is given by the multiset M of received answers: M is not
a set in general, because two equal answers to the same repeated question
carry more information than a single answer. The family of such multisets
naturally determines a partially ordered monoid M: the monoidal opera-
tion amounts to taking the disjoint union of two multisets, and M’ < M"
means that M’ contains more information than M”. It turns out that the
order structure can be expressed using the monoidal operation together with
a sort of negation operation, which is not involutive if m > 1. Using heavy
machinery from BL-algebras, the algebras of Hajek’s basic logic, we prove
that the problem of deciding if two states of knowledge M’ and M" are
equivalent in any possible multichannel game amounts to deciding equality
of BL-terms.
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Complexity of t-norm based fuzzy logics with
rational truth constants — abstract

Petr Hajek

If a continuous t-norm on [0, 1] maps pairs of rationals into rationals (call it 7-
admissible) then the corresponding fuzzy propositional calculus can be extended
by rational truth constants and “bookkeeping” axioms for them.

In the sequel, given an r-admissible t-norm *, we denote by RL(*) the ex-
tension of L£(*) by adding the truth constants 7 for each rational r € [0,1] to
the language, declaring that 7 denotes just r. Given an axiom system for L£(x),
(x r-admissible) the corresponding axiom system for RL(x) results by adding
the “bookkeeping” axioms for all rational 7, s € [0, 1] :

(t&s)=r%s, (F—35 =7=s,

For any r-admissible *, TAUT(RL(x)) denotes the set of all tautologies of
RL(x), similarly for SAT(RL(x)) and satisfiable formulas; furthermore,
SCONS(RL(x)) is the set of all pairs (¢, 1) such that ¢ is a semantic conse-
quence of ¢ in the sense of RL(x).

Theorem 1 For Lukasiewicz t-norm L, TAUT(RL(L)) and CSONS(RL(L))
are coNP-complete and SAT(RL(L)) is NP-complete.

For Gédel t-norm G, TAUT(RL(G)) and SCONS(RL(G)) is co-NP com-
plete and SAT(RL(G)) is NP-complete.

For the product t-norm II, the sets TAUT(RL(IL)), TAUT (RL(1I)) as well
as TAUT(RL(IT)) are in PSPACE.

For other continuous t-norms (having more than one component) we define a
natural notion of being strongly admissible. We restrict ourselves to r-admissible
t-norms with finitely many components, all having rational endpoints.

Theorem 2 If * is a strongly r-admissible t-norm with finitely many com-
ponents and having no Il-component then TAUT(RL(x)) is co-NP-complete,
SAT(RL(x)) is NP-complete (and SCONS(RL(*)) is co-NP-complete.

If % is any strongly r-admissible t-norm with finitely many components then

SAT(RL(%)), TAUT(RL(%)) and SCONS(RL(*)) are in PSPACE.

One can give an example of an r-admissible continuous t-norm with infinitely
many components, all being L, which is as undecidable as you want.
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Champions of fuzzy logic and soft computing like to emphasize that vague-
ness is not invariably pernicious, but — to the contrary — often adequate and
welcome in conveying information at the ‘right’ level of detail. E.g., it is taken
for granted that a fuzzy set is often more adequate than a crisp set as a formal
counterpart of, say, the set of ‘tall people’, or ‘fast cars’, or ‘relevant websites’
etc. Similarly, fuzzy relations often seem to capture more directly than crisp
(standard) relations the type and amount of information that is contained in
sentences of the form ‘X likes Y’, ‘A is relevant to B’ etc.

But note that concrete syntactical descriptions of a given fuzzy set (under-
stood here as a function with the real unit interval [0, 1] as codomain) are usually
more complez than a comparable description of a crisp set referring to the same
domain of objects. To give a concrete example, think of a direction given as a
reply to the request: ‘Point to the direction of the city centre’. With respect to a
fixed reference axis one may ‘classically’ use, e.g., an integer number between 0
and 360 to formally represent the indicated direction in terms of degrees. Fuzzy
logicians, of course, will rush to point out that a more adequate representation
of the presumably vague information involved, is achieved by a fuzzy (singleton)
set of such numbers. However, it should be clear that representing a fuzzy set
of, say, integers between 0 and 360 (with a total sum 1 of respective degrees of
membership) requires, in general, considerably more complex syntactic objects
than the representation of a single integer between 0 and 360. In other words:
the reduction (or even elimination) of redundant information that is often in-
tended in passing from crisp sets to fuzzy sets seems to result in an increased
descriptive complexity; which — from a purely quantitative point of view —
amounts to even more redundancy. We refer to this seemingly trivial dilemma
as ‘the enigma of quantifying vague information’.

Of course, there are many ways to formally deal with the challenge to quan-
tify vague and inexact information adequately. However, many approaches that
spring immediately to one’s mind do not fit in smoothly with classical descrip-
tive complexity and (Shannon style) information theory. We will use the basic
machinery of classical Kolmogorov complexity to explore some relevant options
in this context. However, in addressing the outlined foundational challenge, it
seems very important to us not to rush prematurely into concrete mathematical
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models. We rather suggest to place the phenomenon into the wider context of
the contemporary debate on theories of vagueness in analytic philosophy and
philosophical logic. In particular, we explain the connection between the out-
lined ‘enigma’ and so-called higher order vagueness in light of recent literature
on that topic. Moreover we hint at the possibility to employ probabilistic mod-
els of computation for quantifying vague (formal) description, in a way that is
somewhat analogous to the use of bets on dispersive elementary experiments
in dialogue game models of reasoning Lukasiwiecz, Gddel, and Product logic.
Following ideas that originated with Robin Giles in the 1970s, the latter models
have been recently studied in the context of analytic proof theory for t-norm
based fuzzy logics by A. Ciabbatoni, G. Metcalfe, and C. Fermiiller.
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MACIEJ FARULEWSKI On Nonassociative Lambek
Calculus

The Nonassociative Lambek Calculus (NL) (Lambek 1961) is a substruc-
tural logic used primarily as a type reduction system for categorial gram-
mars. This calculus was presented as a basic logic of types by Moortgat
(1997). Other logic of types can be treaded as axiomatic extensions of NL
(also enriched with additional operations). NL is strictly substructural logic
in the sense, that its Gentzen style form admits no structural rules.

The class of languages generated by categorial grammars based on NL
equals the class of context-free languages (Buszkowski 1986, Kandulski 1988),
and the same holds for the Associative Lambek Calculus (L). The decision
problem for NL is PTIME (de Groote 2002), while it is NP-complete for the
associative calculus (Pentus 2003).

The classical version of NL disallows sequents with empty premises and
uses product (multiplicative conjunction) and two residuation \,/ (impli-
cations) operators. We consider extension of NL with additive conjunction
and discjunction A,V. Languages generated by the associative calculus ex-
tended with A, V surpass the class of context free languages (Kanazawa
1992). In (Farulewski, 2005) the Finite Model Property (FMP) of L and NL
with A was proved by a refinement of methods used by Buszkowski (2002)
for product-free systems of that kind. Here we prove FMP for NL with A,V
using a modification of intutionistic phase space models from (Okada and
Terui 1999). We also consider languages generated by categorial grammars
based on NL with additives.

Buszkowski, W., 1986, ‘Generative capacity of Nonassociative Lambek
Calculus’, Bulletin of Polish Academy of Sciences. Mathematics 34.

Buszkowski, W., 2002, ‘Finite Models of Some Substructural Logics’,
Mathematical Logic Quarterly 48.

DE GROOTE, P., 2002, 'Classical Non-Associative Lambek Calculus’, Studia
Logica 1.

FARULEWSKI, M., ’On Finite Models of the Lambek Calculus’ Studia Log-
ica, to appear.
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Non-clausal Resolution
in Fuzzy Predicate Logic with Evaluated Syntax
background and implementation

Hashim Habiballa
Institute for Research and Applications of Fuzzy Modeling
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Hashim.Habiballa@osu.cz
http://www.volny.cz/habiballa/index.htm

Abstract

The presentation deals with the refutational resolution theorem proving system
for the Fuzzy Predicate Logic of First-Order (FPL) based on the general (non-clausal)
resolution rule. It is based on the Fuzzy Predicate Logic with Evaluated Syntax. There
is also presented an unification algorithm handling existentiality without the need of
skolemization. Its idea follows from the general resolution with existentiality for the
first-order logic. When the prover is constructed it provides the deductive system,
where existing resolution strategies and its implementations may be used with some
limitations arising from specific properties of the FPL.

Additionaly it presents recent advances in implementation of the above mentioned
ideas through an experimental application - Fuzzy Predicate Logic GEneralized Reso-
lution Deductive System. The application provides standard breadth-first search algo-
rithm and also originally developed technique DCF (Detection of Consequent Formu-
las) that is able to significantly reduce the number of produced resolvents. The DCF
method make the inference process practically usable since the standard breadth-first
search leads to the ”combinatorial explosion” during proof search.

The fuzzy predicate logic with evaluated syntax is a flexible and fully complete
formalism, which will be used for below presented extension. For the purposes of fuzzy
extension the Modus ponens rule was considered as an inspiration. We will suppose
that set of truth values is Lukasiewicz algebra. Therefore we will assume standard
notions of conjunction, disjunction etc. to be bound with Lukasiewicz operators.

General resolution for fuzzy predicate logic (GRppy)

o UGGl PG, .. Gy)
GR: a®b/FU[G/J-]VF’U[G/T]

(1)

where o is the union of the most general unifiers (mgu) of the atom pairs (G1, G;) and
(Gq, G;), Gi,.... Gy, Gy, ...,Gl,,G = Gyo. F is called positive and F’ is called negative
premise, G represents an occurrence of a subformula (mgu applies to all atoms occur-
ring in F, F”). The expression below the line represents the resolvent of premises on G.

Example: Proof of child’s happiness by rgg
Consider the following knowledge (significantly simplified in contrast to the reality)
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about child’s happiness. We suppose that a child is happy in the degree 0.8 if it has
mother and father. Further we suppose that a child is happy in the degree 0.5 if it
has a lot of toys (we suppose parents are a bit more important for children). We will
present several proofs and then we mark the best provability degree from the following
axioms. It was used the automated theorem prover of the author for classical logic.
Xa. steps represent application of simplification rules for | and T.

Common proof members (axioms):
1. 0.8 /VX[3Y [child(X,Y) & female(Y)]
& Y [child(X,Y) & male(Y)] = happy(X))
2. 0.5 VX [toys(X) = happy(X)]
3. 1/child(johana, hashim)
4. 1/child(johana, lucie)
5.1 /male(hashim)
6.1/ female(lucie)
7.0.9 /toys(johana)
8.1 /=happy(johana)

Proof 1:

9.0920.5/1V[T = happy(johana)]
9a. 0-4/happy(johana)

10. 12 0.4/1V-T

10a. 0-4/J_

(happy(johana) is provable in 0.4)

Proof 2:
9. 0.8 2 1/[3Y[child(johana,Y) & female(Y)]
& Y [child(johana,Y ) & male(Y)] = LIV-T
9a. 0.8 /=[3Y [child(johana,Y ) & female(Y)]
& Y [child(johana,Y ) & male(Y)]]
10. 0.8 ® 1 /=[[child(johana, lucie) & T]
& Y [child(johana,Y ) & male(Y)]|V L
10a. 0.8 /=[child(johana, lucie)
& Y [child(johana,Y ) & male(Y)]]
11. 0.8 ® 1 /=[child(johana, lucie)
&|child(johana, hashim) & T]|V L
11a. 0.8 /=[child(johana, lucie)
& child(johana, hashim)]
12. 0.8 ® 1 /[T & child(johana, hashim)|V L
12a. 0.8 /=[child(johana, hashim))]
13.08®1/-TVL
13a. O-S/J_
(happy(johana) is provable in 0.8)

(happy with parents - 0.8)
(happy with toys - 0.5)

(clear crisp fact)

(clear crisp fact)

(clear crisp fact)

(clear crisp fact)

(johana has a lot of toys - 0.9)
(negated goal - is johana happy?)

(rgr on 7.,2., Sbt(X) = johana)

(rgr on 9.,8.)

(rgr on 1..8., Sbt(X) = johana)
(rgr on 6.,9., Sbt(Y') = lucie)
(rgr on 5.,10., Sbt(Y') = hashim)

(rgr on 4.,11.)

(rgr on 3.,12.)

We have stated two different proofs and it is clear that several other proofs could
be constructed. Let us note that these proofs either consist of redundant steps or they
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are variants of Proof 1 and Proof 2, where only the order of resolutions is different.
So we can conclude that it is effectively provable that Johana is a happy child in the
degree 0.8.

The Non-clausal Refutational Resolution Theorem Prover forms a powerful infer-
ence system for automated theorem proving in fuzzy logic, which is significantly less
discovered area in contrast with classical logic. The main contribution lies in the ap-
plication into fuzzy logic, which gives a formalization of the refutational proving with
the resolution principle and therefore it is essential for practically successful theorem
proving in such areas like logic programming in fuzzy logic. Theoretical solution of
the prover needed also some new notions to be defined especially the notion of the
refutational proof and consequent notion of the refutation degree. The next interesting
area for the presented formalism is the field of semantic web and especially descrip-
tion logic, in which the author proposed also the usage of the resolution principle.
The recent idea of fuzzy description logic is naturally suitable for further extensions
with the presented inference rules and also reflects real situations as it could be ob-
served from the last example. The last but not least further application relates to the
previous author’s works in the implementation of the non-clausal resolution principle.
This implementation called GERDS (GEneralised Resolution Deductive System) will
be extended for usage in fuzzy logic and description logic.

References

[Ba97]  Bachmair, L., Ganzinger, H. A theory of resolution. Technical report: Max-Planck-Institut
fiir Informatik, 1997

[Ba01l]  Bachmair, L., Ganzinger, H. Resolution theorem proving. In Handbook of Automated Rea-
soning, MIT Press, 2001

[Ha00] Habiballa, H. Non-clausal resolution - theory and practice. Research report: University of
Ostrava, 2000, http://www.volny.cz/habiballa/files /gerds.pdf

[Ha02] Habiballa, H., Novdk, V. Fuzzy general resolution. Research report: Institute
for research and applications of fuzzy modeling, University of Ostrava, 2002,
http://ac030.0su.cz/irafm/ps/repd7.ps

[Ha05] Habiballa, H. Non-clausal Resolution Theorem Prover. Research report, No.64: University
of Ostrava, 2005, http://ac030.0su.cz/irafm/ps/rep64.ps.gz

[Ha05b] Habiballa, H. Non-clausal Resolution Theorem Proving for Description Logic. Research re-
port, No.66: University of Ostrava, 2005, http://ac030.0su.cz/irafm/ps/rep66.ps.gz

[Hj0o0]  Héjek, P. Metamathematics of fuzzy logic. Kluwer Academic Publishers - Dordrecht, 2000

[Hjo5]  Hajek, P. Making fuzzy description logic more general. Research report: Institute of Com-
puter Science, Czech Academy of Sciences, 2005

[Le95]  Lehmke, S. On resolution-based theorem proving in propositional fuzzy logic with bold
connectives. University of Dortmund, 1995

[No99]  Novék, V., Perfilieva, 1., Mockof, J. Mathematical principles of fuzzy logic. Kluwer Academic
Publishers, 1999

53



Generalized Quantifier Theory:
an(other) area where logic meets
linguistics and computer science

Dag Westerstahl

Abstract

GQ theory is an unusually clean and tidy logical framework. Interesting mathe-
matical facts are known about it, but it also has connections with linguistics and
with computer science. Below I present some of the interaction with linguistics,
not in the form of an overview but with a few chosen examples:

1. GQs were introduced in logic by Mostowski and Lindstrém in the 1950s
and 60s, but Frege formulated essentially the same notion in the 1890s, and in
fact Aristotle’s account of the four quantifiers in the square of opposition readily
extends to other quantifiers. There is a subtle but important — and often misun-
derstood — distinction between the ‘modern’ square and Aristotle’s, and clearing
that up highlights at least two facets of natural language semantics: the idea of
existential import and the distinction between meaning and presupposition or
implicature on the one hand, and the notion of negation on the other.

2. A type (1,1) (generalized) quantifier Q) associates with each universe M a
binary relation @, between subsets of M, and similarly for other types. Many
natural languages contain a wide range of simple or complex determiner expres-
sions that can be seen to denote type (1,1) quantifiers: no, every, at least
six, all but three, no ...except John, infinitely many, most, few, more
than two thirds, Mary’s, several students’, etc. These have two charac-
teristic properties, conservativity and extension, and a simple but fundamental
fact is that the operation of relativization is an isomorphism from the class of
type (1) quantifiers to the class of CONSERvV and EXT type (1,1) quantifiers
(where, for type (1) Q, (Q™") (A, B) & Qa(AN B)).

3. One area of fruitful interaction concerns monotonicity. The notion of a GQ
being increasing or decreasing in a given argument is standard, but NL quanti-
fiers also exhibit more subtle monotonicity properties, such as smoothness: the
conjunction of

(1) Q}\/I(A,B)&A,QA&AQB:AIHB = Q}\/](AI,B)
(2) QuAB)&ACA CM&A—B=A—B = Qu(A,B)
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There is the linguistic task of investigating the distribution of such properties,
and the logical task of their mathematical characterization. In fact several famil-
iar monotonicity properties, and also other properties of type (1,1) quantifiers
such as symmetry, can be seen as combinations of basic properties like (1) and
(2). Most type (1,1) NL quantifiers which are MONT (increasing in the right
argument) are in fact smooth (which is stronger), and it has been conjectured
that all of them are. But the logical representation provides a few counterex-
amples, not otherwise easily discoverable, e.g., at least three of the five or more
and at least two of most students’ are MONT but not smooth. Monotonicity is
furthermore instrumental in systematizing various other linguistic phenomena,
such as the distribution of so-called polarity items.

4. Logical GQs are usually supposed to satisfy IsoM (isomorphism closure),
but many determiner denotations don’t. They are nevertheless built from
higher-order ISOM operations; a typical case is the possessive determiners —
John’s, several professors’, at least two of most students’ — which
can be given with an operation Poss (the denotation of the genitive ’s) taking
two type (1,1) quantifiers, a set, and a binary relation as arguments; e.g., [[at
least two of most students’]] = Poss(most, student, at least two, R). Poss
has interesting properties; e.g. the monotonicity behavior of Poss(Q1, C, Q2, R),
which is predictable from that of @)1 and )2, is worth studying.

5. IsoM is one aspect of logicality. GQ theory applied to natural languages
offers a useful testing ground for an analysis of the notion of a logical constant,
where the logicality part may be separated from the constancy part.

6. A much debated issue among linguists is how NLs express existence, in
particular which determiners are adequate in existential-there sentences; cf.

(3) There are many/at least two/no/an even number of children in the garden.
(4) *There are every/most/all but three/the seven children in the garden.

Barwise and Cooper gave an explanation of terms of weak vs. strong Dets,
and Keenan one in terms of symmetry. Again a closer a look at the logical
representation of GQs reveals some examples that don’t fit these explanations,
but, although not (so far) discussed by linguists, turn out to occur in natural
languages.

7. Logical GQ theory has been quite successful in establishing facts about the
expressive power of logics with generalized quantifiers, mostly with the methods
introduced by Ehrenfeucht and Fraissé. May one draw any conclusions for
natural languages? The ideas of (compositional) translation and of relative
expressive power can be formulated for NLs too. These notions are always
relative to a synonymy relation: in logic it is logical equivalence (truth in the
same models), bur for NLs other notions are relevant as well. One may still
show that logical equivalence has a special place among these, and go on to
specify circumstances under which definability and undefinability results for
logical languages transfer to natural languages.
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Fuzzy logic as a logic of
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Although a great variety of logical calculi dealing with statements of fuzzy
nature has been defined in recent years and although many of these systems
are well-developed and perfectly understood, we can hardly claim that there
is similar clarity about the nature of the formalised statements themselves.
Fuzzy logic is based on the idea that a proposition can take as a truth value
not only 0 and 1, but also any real number in between. So the question is
immediate what a specific truth value actually expresses; an answer to this
question, however, is not part of the concept. It is certainly not in all cases
adequate to ask about the meaning of a single truth value; the set [0, 1] is
a set of grades, so what should count is the order relation between pairs
of truth values. However, there is probably only one fuzzy logic which is
based on [0, 1] as a bounded dense linear order — the Godel logic. As soon
as we wish to define more interesting connectives than just the infimum and
the supremum, we will make use of structure on [0, 1] which originates from
other concepts than the order. As a disjunction, for instance, we may take
the truncated addition; as a conjunction, we may take the product. However,
addition and multiplication are derived from our intuition about length or
area, and thus somewhat unrelated to the idea of a continuous set of grades.

Now that calculi like Lukasiewicz or product logic are quite popular not only
among mathematicians, but apparently also among practitioners, we may
ask about a reasonable interpretation of fuzzy statements in retrospect. Few
efforts in this directions have been made. Let us mention, as an example,
that finitely valued Lukasiewicz logic can be interpreted by means of Ulam
games [Mun], a variant of which even covers Basic Fuzzy Logic (BL) [CiMu].
Another approach is due to J. Paris [Par| and comes probably closest to
what we have in mind here; accordingly, the truth value of a proposition
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is the proportion of the ‘arguments’ which are associated to it and which
are ‘in favour’ of it; the product or the Godel logic finds a rather natural
interpretation in this way.

In our talk, we shall propose a framework of a still different kind. The aim
is to provide alternative semantics for propositional Lukasiewicz and prod-
uct logic. The idea is the following. Rather than dealing with propositions
which are subject to an assignment of unsharp truth values, we start with
a Boolean algebra, to be understood as a system of “usual”, that is, sharp
propositions. A fuzzy proposition is then a subset of this algebra (fulfilling
certain conditions). This is a simple way to express uncertainty; a set con-
taining more than one element is meant to express that there is no clarity
which of the elements expresses the actual situation.

More specifically, let (B; A, V, =, 0, 1) be the Boolean algebra freely generated
by some countable set {1, ¥s,...}. So B is the Lindenbaum algebra of the
classical propositional calculus, 1, ... being its variables, and every ¢ € B
expresses logical dependencies between them. Furthermore, let G be a group
of automorphisms of B.

Let a fuzzy proposition be a non-empty and proper subset of B which (i) is
an order-filter and (ii) invariant under every g € G. On the set P of all fuzzy
propositions, define

a0f = {prtgea, e, gAY >0}
a=0 = {& =1 or, forallp € a, pAE € f},
0 = B\{0},
1 = {1},

where o, § € P.

Now, let L(B,G) be a propositional logic with connectives ®,=and constant
0. Define a proposition to be true if it attains 1 under all evaluations based
on P and the operations above.

We do not know what L(B, G) is like if there are no assumptions on G. But
consider the case that G consist of all automorphisms g: B — B with finite
support. Here, I say that g has finite support if B = B, x B] such that
B, is finite and invariant under g and g is constant on Bj. Then the true
propositions of L(B,G) are the tautologies of Lukasiewicz logic.

A more special version of the same formalism goes as follows. Again, let B
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be the Boolean algebra freely generated by countably many elements. Now,
we endow B with a measure p: B — R* U {oo} which is strictly positive,
o-finite, and such that p(a) < p(f) implies that o/ < f and p(a’) = p(«)
for some o/. A fuzzy proposition takes the form {p: u(-¢) < m}, where
m € R is from the range of p.

Proceeding in a similar way as above, we arrive at Lukasiewicz logic if the
measure is totally finite, and else, after discarding the constant 0, at the
falsity-free version of product logic.
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Héjek defined in [6] the logic BL as a common fragment of the three main
fuzzy logics: Lukasiewicz logic, Product logic and Godel logic, semantically
defined from a continuous t-norm (the Lukasiewicz t-norm, the product reals
and the minimum, respectively). In particular, Product logic was proved to

be the axiomatic extension of BL obtained by adding:

@ A= — 0 (IT1),
and
= = ((pxx = ¥ *x) = (0 = ¥)) (T12),

where first one is the law of pseudocomplementation and the second one

expresses the law of cancellativity.

Actually, Hajek conjectured that BL was complete with respect to the
semantics given by continuous t-norms and their residua. This was proved
by Cignoli, Esteva, Godo and Torrens in [4]. Also in [6] an algebraic semantics
was given for BL-logic based on the variety of BL-algebras (bounded integral

commutative prelinear divisible residuated lattices).
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Nevertheless, the necessary and sufficient condition for a t-norm to have a
residuated implication is not the continuity, but the left-continuity. For that
reason, Esteva and Godo in [5] defined a weaker logic than BL, which they
called MTL (for Monoidal T-norm based Logic) aiming to capture the logic
of all left-continuous t-norms and their residua. Jenei and Montagna proved
in [7] that MTL was indeed complete with respect to the semantics given
by the class of all left-continuous t-norms and their residua, i.e. standard
complete.

Esteva and Godo gave also and algebraic semantics for MTL based on
MTL-algebras (bounded integral commutative prelinear residuated lattices).
This class is a variety that contains the class of BlL-algebras as a proper
subvariety and it is possible to prove that in fact it is an equivalent algebraic
semantics for MTL logic in the sense of Blok and Pigozzi [2]. Therefore,
MTL is an algebraizable logic, i.e. it belongs to the class of logics which
is better studied by Abstract Algebraic Logic and for which this discipline
gives a lot of important results. In particular, the study of its axiomatic
extensions is equivalent to the study of varieties of MTT-algebras, and there
is a correspondence between logical and algebraic properties. The structure
of BL-algebras is well-known and some important parts of their lattice of
subvarieties have been completely described, but in the framework of MTL,
i.e. when the property of divisibility is not assumed, few algebraic studies
have been done till now.

The talk is devoted to the investigation of some varieties of MTL-algebras,
or equivalently to some schematic extensions of MTL. We focus our attention
on the so called weakly cancellative MTL-algebras (WCMTL-algebras for
short) and on their logic, WCMTL. WCMTL-algebras are MTL-algebras in
which the monoid operation is either cancellative or has 0 as a result. The
interest of this variety and of its corresponding logic is motivated as follows:

e Both MV-algebras and Product algebras are weakly cancellative, hence
WCMTL-algebras are obtained from the join of the varieties of MV-
algebras and of Product algebras by removing divisibility. Moreover, it
will turn out that ITIMTL-algebras are just WCMTL-algebras without
zero divisors, and that MV-algebras are just the involutive WCMTL-
algebras.

e While the structure of involutive MTL-algebras seems to be very hard
to describe (every MTL-algebra generates an involutive one by discon-
nected rotation [8], so involutive MTL-algebras can contain the zero-
free reduct of any MTL-algebra), the structure of WCMTL-algebras,
although not easy, seems to be more accessible. Moreover some tech-
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niques introduced by Horcik for the study of IIMTL-algebras can be
successfully applied to WCMTL-algebras.

o WCOMTL-chains are either indecomposable as ordinal sums or are the
ordinal sum of a two-element chain and a cancellative (hence indecom-
posable) residuated lattice. So they constitute an interesting example
of indecomposable (or almost indecomposable) MTL-algebras. This
also suggest the investigation of the variety Q( WCMTL) generated by
all ordinal sums of zero-free subreducts of WCMTL-algebras. Interest-
ingly, the divisible Q(WCMTL)-algebras are precisely the BL-algebras.

We prove that, as in the case of BL-algebras (see [1]), all MTL-chains have
a maximum decomposition as ordinal sum of indecomposable totally ordered
semihoops. Then, we introduce weak cancellation to obtain a class of those
indecomposable semihoops. Moreover, some interesting properties of weak
cancellation are proved, obtaining a new axiomatization for the cancellative
fuzzy logics (Product logic and TIMTL) and defining a new hierarchy of fuzzy
logics. We study some properties of those logics, in particular we concentrate
in the task of deciding which of them enjoy standard completeness. We finish
with some concluding remarks and open problems.
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A logic for reasoning about fuzzy events

Tommaso Flaminio* Lluis Godof

Abstract

A fuzzy logical treatment of probability has been widely studied in these last
years. In particular, starting form a basic idea exposed by Héjek et al. in [5]
and later refined in [4], simple (i.e. unconditional) and conditional probability
of crisp events can be studied by using various kind of modal-fuzzy logic (see
[1, 2, 3, 4, 6]). The very basic idea allowing a treatment of simple probability
inside a fuzzy-logical setting consists in enlarging the language of Lukasiewicz
logic by means of a unary (fuzzy) modality P for probably, and defining a set of
axioms (FP) reflecting those of a probability measure. In such a logic (usually
denoted by FP(L)) there are two kinds of formulas: classical Boolean formulas
©, 1, ... (which are definable in ) and modal formulas: for each Boolean formula
@, Py is a modal formula and, moreover, such a class of modal formulas is taken
closed under the connectives of Lukasiewicz logic. In this setting the probability
of an event ¢ is interpreted as the truth value of the modal formula Py saying
“p is probable”.

In [4] Héjek also proposed a logic over Lukasiewicz predicate calculus LV
allowing a treatment of (simple) probability of fuzzy events (a notion early
defined by Zadeh and more recently considered and developed in the context of
MV-algenbras by e.g. Mundici, Riecan et al., Navara and others). This can be
done by assuming the logic of events be Lukasiewicz logic and not just Boolean
logic. To model probability Héjek introduces in LY a generalized fuzzy quantifier
standing for most. In our work however we want to remain at a propositional
level, using the same approach as in the above FP(L) logic, but considering
fuzzy events instead of Boolean events. We use F P(L, L) to denote such a logic.
This notation, even if it differs form the original Hajek’s notation, it allows us
to point out both, the logic of events (the first argument) and the logic which is
used in order to reason about modal-formulas Py, with ¢ being a Lukasiewicz
formula (the second argument).

In his monograph Héajek proposed two different (Kripke-style) probabilistic
semantics for this logic: a weak one and a strong one. These two kind of models
are defined as follows:

*Department of Mathematics and Computer Science, University of Siena, Pian dei Man-
tellini 44, 53100 Siena, Italy. E-mail: flaminio@unisi.it

TInstitut d’Investigacié en Intel-ligéncia Artificial, Campus UAB, 08193 Bellaterra, Spain.
E-mail: godo@iiia.csic.es
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(a) A weak-probabilistic model for FP(L,L) is a system M, = (W,e,I)
where: W is a non-empty set of possible words, e : W x V — [0,1] (being
V' the set of propositional variables on which fuzzy-events are built up
over) is such that, for each w € W, e(w,-) : V — [0,1] is an L-evaluation.
Finally I : Form(L) — [0, 1] satisfies the following:

(i) L =1, then I(p) = I(¥),

(i) I(1) =1,

(iii) I(=p) =1 1I(p),

(iv) Ip o) =1(p) + 1(¥) — I(p&y).

(b) A strong-probabilistic model for FP(L,L) is a system M, = (W,e, )
where: W and e are defined as in the case of a weak-probabilistic model,
7 : W — [0,1] satisfies the following:

Ywew T(w) = 1.

Given a modal formula Py of FP(L,L), and a strong-probabilistic Kripke
model M, for FP(L,L), the truth value of Py in M; is defined as

1Pella, = X uew e(w, @) - w(w).

Hajék shows his logic to be Pavelka-style complete w.r.t. weak-probabilistic
models. So far we have not been able yet to prove (usual) completeness results
for FP(L,L), either w.r.t. the classes of strong or weak probabilistic models.
The main difficulty which arises (for any of the two classes of models) can be
summarized as follows: Let 'U{®} be a finite set of modal formulas of F'P(L, L)
such that T' Fpp, 1y @. The usual strategy which allows to prove completeness
is based on translating proofs in FP(L,L) into proofs within a suitable theory
in Lukasiewicz logic. This is done using the the following trick:

I
I
I

(a) Define a translation * of modal formulas into plain Lukasiewicz logic for-
mulas. This can be done by introducing, for each atomic modal for-
mula Py a new propositional variable p, and then requiring that the
translation * will commute with the Lukasiewicz connectives (for instance

(Pp — Pp)* = (Pp)* — (Py)* = p, — py and so forth).

(b) Translate all modal formulas in I' U {®}, denote them I'* and ®* respec-
tively, and second translate all the (instances of) axioms for probability

(FP) and add all formulas p, for each L-tautology ¢, leading to a count-
able set of L-formulas denoted by (FP)*.

Now it is not difficult to prove that I' Fppy, 1) @ iff (FP)* U™ -, @*. Now,
each L-evaluation which is model of (F'P)* defines a weak-probabilistic model.
Unfortunately Lukasiewicz logic does not have strong standard completeness
for arbitrary theories (only for finite theories), that is, it is possible to find a
countable L-theory T and an L-formula ¢ such that T t/1, ¢, but T |=r, ¢ (see
[4] for more details). This shows that the usual technique cannot be used in
order to get the desired result.
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In this work we are going to show a preliminary result in this direction. In
particular we have proved that, for each n € N, the logic FP(Ly, L) is complete
w.r.t. the class of its strong-probabilistic models. The logic F P(L,,L) allows
us to treat the probability of only those events which can be described by using
the finite valued Lukasiewicz logic L,.

Strong-probabilistic models My = (W, e, ) for FP(L,,L) can be easily de-
fined just by stipulating that the evaluation e is an L, -evaluation. In particular
e will give back as output rational values: e: W x V — {0, %7 %7 o ”T’l, 1}.

Clearly FP(L,,L) is a weaker logic than F'P(L,L), but, on the other hand,
restricting ourselves to fuzzy events as formulas of L,, logic has the advantage
that we can suitably reduce the “translated set” (FP)* to a finite one (FP)°
such that (FP)*UT* by, ®* iff (FP)° U™ Fy, ®*. Now, since Lukasiewicz logic
is complete w.r.t. finite theories, we can conclude:

T Fpp, 1) @ iff (FP)° UT* by, @ iff (FP)° UT* =, ©*.

Now the strong probabilistic completeness of F'P(L,,, L) follows by using a result
proved by Paris in [7] which shows that each L,-model of (FP)°, which easily
induces a weak-probabilistic model for FP(L,,L), induces in fact a strong-
probabilistic Kripke model for FP(L,,L).
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Abstract

The finitely many-valued R-S memory circuit presented in [8] is con-
structed by two logical gates implementing the standard fuzzy Sheffer
operation i.e. @b = 1—min(a,b). There is a question why only this oper-
ation has been chosen when an abundance of fuzzy Sheffer operations as
well as other fuzzy operations is available. In this paper we find the set
of all fuzzy operations with which our R-S circuit works as it is supposed
to. We prove that no other operations are allowed in order to have an R-S
circuit with the correct behavior.

Figure 1: Scheme of an R-S memory circuit.

1 Introduction

A memory circuit is a logical circuit which is able to memorize a logical value.
Two states of the circuit are defined:

o In the open state the value of the output is given by the input.
e In the closed state the value of the output is kept.

In the two-valued logic the problem of memory circuits is already well solved;
for further details see e.g. [1, 2, 5]. In the many-valued logic there exist several
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approaches e.g. in [3, 4, 6, 7, 8, 9]. In our paper we focus on the many-valued
R-S memory circuit described in [8].

The two-valued R-S memory circuit, as described e.g. in [1, 2, 5], is a logi-
cal circuit consisting of two gates implementing Sheffer (negation of conjuction)
resp. Pierce operation (negation of disjunction) connected as shown in Figure 1.
A generalization of this circuit to the many-valued logic is based on a general-
ization of Sheffer resp. Pierce operation. It can be defined as a fuzzy negation
of a fuzzy conjuction resp. disjunction. Since we have an abundance of fuzzy
negations, conjuctions and disjunctions, we have an abundance of fuzzy Shef-
fer and Pierce operations as well. There is a question which of them may be
suitable for the many-valued R-S memory circuit. In this text we are going to
answer this question and show which operations are possible and why.

2 Many-valued R-S memory circuit

Let us have a set of logical values as the real interval [0,1]. Let = be a total
order of the interval [0,1] and let % be the greatest element defined by this
order.

Definition 2.1 A duality is a unary operation :[0,1] — [0,1] that satisfies
for every a € [0,1]:

=

> ll
SHES)

a = Fa

Now we are going to define the behavior of the many-valued R-S memory
circuit. The following properties are taken as a generalization of the two-valued
R-S memory circuit.

Definition 2.2 A many-valued R-S circuit, an R-S circuit for short, is a logical
circuit consisting of two gates implementing a fuzzy binary operation, two input
ports R, S, and two output ports Q1, Q2, connected as shown in Figure 1.

We expect the following properties of an R-S circuit:

1. Open state: If R=S (and thus R = S) then the dual values are passed to
the output regardless of the previous values of the outpul; i.e. Q1 =R =S5
and Q3 = S = R (and thus Q1 = Q2).

2. Closed state: If R = S = % and Q1 = Q3 then the values of the output
are kept.

8. IfR%=S, S %R, and Q1 = Qo then the values of the output are kept.

Note that the third property corresponds to the continuous transition from
the open to the closed state; the remembered value must not be lost during this
procedure.

Let us call the undefined binary operation in the R-S circuit an R-S opera-
tion. Its definition follows:

Definition 2.3 The R-S operation is a binary operation 1:10,1] % [0,1] — [0,1]
that satisfies for every a,b,z € [0,1]:
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1. Ifa=b then 1(1(z,a),d) =b and T(1(z,b),a) =a.

This axiom correspods to the open state of the R-S circuit (Definition 2.2,
Part 1). The variable x stands for the previous value of the output, a and
b for the values of the input. The axiom says that after one passing of
the signal through the eight-shaped inner loop of the circuit the output will
equal the input regardless of the previous value of the output.

2. 1(a, %) =1

This aziom correspods to the closed state of the R-S circuit (Definition 2.2,
Part 2) saying that if the input equals % then the output value is kept.

3. axb= T(a,b)=b

This axiom correspods to the state of the R-S circuit described in Defini-
tion 2.2, Part 3 saying that if the input increases then the output value is
kept.

It can be proven that Property 3 is a stronger variant of both Property 1
and Property 2. Thus the only condition which operation | must comply is:

ax=b=T1(a,b)=b

At this moment, we have an axiom which defines the R-S operation. If we
specify the duality (Definition 2.1) and the total order, the operation 7 is fully
defined. Nevertheless both operations  and T must be continuous in order to
be physically implementable. This requirement of continuity restricts the total
order »= only to > with the greatest element 1 resp. < with the greatest element
0; the operation of duality becomes a fuzzy negation and the R-S operation
becomes a fuzzy negation of the standard fuzzy conjunction (the minimum)
resp. a fuzzy negation of the standard fuzzy disjunction (the maximum).

3 Conclusion

We have proven that the only suitable operations in the many-valued R-S mem-
ory circuit are the fuzzy negation of minimum {(a,b) = a A b and the fuzzy
negation of maximum 7(a,b) = aVb. The only possibility of minimum and
maximum shows logical if we consider that they are the only continuous binary
operations which equal either its first or second argument. This property is
crucial since it is expected that the ouput of the circuit either equals the input
or it is kept; this property also assures that the output value is not lost when
changing from the open to the closed state.
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The aim of this talk is twofold: First we give a geometrical characterization
of commutative associative operations using the so-called rotation-invariance
property [5] and the notion of quantic nuclei of Rosenthal [7]. Then we shall
demonstrate how this geometrical understanding of associativity may be used
to obtain new results in the following topic:

Many authors have focused on the identification of small subsets of the unit
square which uniquely determine a continuous Archimedean t-norm. We briefly
summarize these results. Then other subsets of the unit square are shown to
admit the property that there exists a unique t-norm (either a nilpotent one
or a strict one or a left-continuous one) provided that its values are given on
that subset. The employed subsets are either vertical cuts of the graph of the
t-norm T, that is, functions of the form T(.,z), which can be considered as
intersections of the graph of the t-norm with vertical planes, or horizontal cuts,
that is, one-place functions of the form f. (z), which can be considered as limit
lines of intersections of the graph of the t-norm with horizontal planes.

We shall introduce the notion of involutive elements of left-continuous t-
norms. Then we prove Theorem 1, which says, roughly speaking, that two
involutive elements ensure the existence of other involutive elements. As a
by-product we obtain results concerning left-continuous t-norms (Theorem 2,
Theorem 3) and continuous Archimedean t-norms (Theorem 4).

Let T be a left-continuous t-norm. For any ¢ € [0,1] define the mapping
fe 0,1] = [0,1] by

fe(z) = max{y € [0,1] | T (z,y) < c}.

Let T be a left-continuous t-norm. We call an element c € [0, 1] involutive if
the restriction of the mapping f. to [c, 1] is an involution of [c, 1].

Theorem 1 Let T be a left-continuous t-norm. Assume that c,e € [0, 1] are
involutive. Then a = f. (f.(e)) is involutive as well, and for x € [0,1] we have

fo () = fe (fe(fe (2))) (1)

*Supported by the Bolyai Research Grant.
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Theorem 2 Let T be a left-continuous t-norm with the following property:
There exists {c, | n € N} C]0,1] such that lim,,_,, ¢, =0 and

fen () =min (1,14 ¢, — z) (2)
holds for all x € [0,1]. Then T is the Lukasiewicz t-norm.

Remark 1 The set {c, | n € IN} C]0,1] in Theorem 2 is minimal in the
following sense: Of course, dropping out any subset from a convergent sequence
such that the cardinality of the remaining sequence is still infinite results in
a convergent sequence with the same limit, thus such a subset can always be
left out from {c, | n € IN}. However, as shown by Example 1, antecedents of
Theorem 2 can not be relaxed such that the set {c,} becomes finite. Moreover,
not even a convergent sequence is sufficient if its limit differs from 0.

Example 1 Increasing bijections from [0,1] to [0,1] are called automor-
phisms of [0,1]. With any automorphism ¢ and with any t-norm 7 one can
define T,,, which is a t-norm and is called the ¢-transformation of T', as follows:

To(z,y) = ¢ (T(p(z). ¢(y)))

Let f and g be two automorphisms of [0, 1], as depicted respectively in Figure
1. It is easy to verify that the f-, and g-transformations of the Lukasiewicz
t-norm have elements, such that the corresponding level sets satisfy (2). For a
visualization see Figure 2.

Figure 1: Two automorphisms of [0, 1]

Example 2 The condition in (2) can not be relaxed by simply saying that
fe, (x) is involutive. A counterexample is the rotation ([?]) of the product t-
norm given as follows: Let T" be the linear transformation of the product t-norm

into [L, 1], that is, T(z,y) = ng—_lﬁ and let

2

T(x,y) if 2,y €]3,1]
(Tp).., (2,y) = 1—max{t€[%,l] | T(z,t) <1—y} ifme]%,l] andyé[(),%]
Pleot WO W =4 1 —max{t € [L,1] | T(y,t) <1-2} ifze(0,1]andye]L,1] -

0 if 2,y €[0,3]

70



Figure 2: Ty and T}, see Example 1

Then each element in [0, 5[ in involutive. The rotation of the product t-norm

(depicted in Figure 3) has exactly one point of discontinuity; hence it is not
isomorphic to the Lukasiewicz t-norm.

//’/Z//Z% Manmesy ““:‘::“
0 T,
4 il
I s
Dl
e

Figure 3: Rotation of the product t-norm

Theorem 3 Let T be a left-continuous t-norm with the following property:
There exists {¢, | n € N} C]0,1] such that lim, . ¢, = 0, limy, o 6‘311
and

. Cn,
fe,, (z) = min (17 ;) (3)
holds for all x € [0,1]. Then T is the product t-norm.

Theorem 4 Let A = {¢, | n € IN} C|0,1] such that lim, oo ¢, = 0.
Any nilpotent t-norm is determined by its c,-level sets. If in addition we have
lim,, — oo CC—:I =1 then any strict t-norm is determined by its c,-level sets.

Remark 2 Since the counterexamples of Examples 1, 2 are based on con-

tinuous Archimedean t-norms we obtain the minimality of the set {c, | n € IN}
in Theorem 4.
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Extended abstract. The possibility of weakening the structure of the underlying set of truth-
values for logic programming has been extensively studied in the recent years, and there are
approaches which are based either on the structure of lattice (residuated lattice [4,13] or multi-
adjoint lattice [9]), or on more restrictive structures, such as bilattices or trilattices [7], or on more
general structures such as algebraic domains [11]. One can also find some attempts aiming at
weakening the restrictions imposed on a (complete) lattice, namely, the “existence of least upper
bounds and greatest lower bounds” is relaxed to the “existence of minimal upper bounds and
maximal lower bounds”. In this direction, Benado [1] and Hansen [5] proposed definitions of a
structure so-called multilattice.

Recently an alternative notion of multi-lattice was introduced [2,8] as a theoretical tool to
deal with some problems in the theory of mechanized deduction in temporal logics. This kind of
structure also arises in the research area concerning fuzzy extensions of logic programming, in
a natural manner. For instance, one of the hypotheses of the main termination result for sorted
multi-adjoint logic programs [3] can be weakened only when the underlying set of truth-values is a
multilattice (as far as we know, the question of providing a counter-example on a lattice remains
open). Our aim in this work is to study the computational capabilities of this new structure in the
framework of extended logic programming and, specifically, in relation to its fixed point semantics.

Recall that a lattice is a poset such that the set of upper (lower) bounds has a unique minimal
(maximal) element, that is, a minimum (mazimum). In a multilattice, this property is relaxed
in the sense that minimal elements for the set of upper bounds should exist, but the uniqueness
condition is dropped.

Definition 1. A complete multilattice is a partially ordered set, (M, <), such that for every subset
X C M, the set of upper (lower) bounds of X has minimal (mazimal) elements, which are called
multi-suprema (multi-infima).

It is remarkable that, under suitable conditions, the set of fixed points of a mapping from M
to M does have a minimum and a maximum.

Theorem 1. Let f: M — M be an isotone and inflationary mapping on a multilattice, then its
set of fized points is nonempty and has a minimum element.

Regarding computational properties of multilattices, it is interesting to impose certain condi-
tions on the sets of upper (lower) bounds of a given set X. Specifically, we would like to ensure
that any upper (lower) bound is greater (less) than a minimal (maximal); this condition enables
to work on the set multi-suprema (multi-infima) as a set of “generators” of the bounds of X. This
leads to consistent multilattices, for which the following result can be shown, stating the existence
of some suprema and infima.

Lemma 1. Let M be a consistent multilattice without infinite antichains, then any chain in M
has a supremum and an infimum.

All the hypotheses are necessary for the existence of supremum and infimum of chains; in
particular, the condition on infinite antichains cannot be dropped.

We provide now a first approximation of the definition of an extended logic programming
paradigm in which the underlying set of truth-values is assumed to have structure of multilattice.
The proposed schema is an extension of the monotonic logic programs of [4].

The definition of logic program is given, as usual, as a set of rules and facts.
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Definition 2. An extended logic program is a set PP of rules of the form A «— B such that A is a
propositional symbol of II, and B is a formula of § built from propositional symbols and elements
of M by using monotone operators.

An interpretation is an assignment of truth-values to every propositional symbol in the lan-
guage.

A rule of an extended logic program is satisfied whenever the truth-value of the head of the rule
is greater or equal than the truth-value of its body.

Every extended program P has the top interpretation V as a model; regarding minimal models,
it is possible to prove the following lemma.

Lemma 2.

1. A chain of models {Iy}rex of P has an infimum in T which is a model of P.
2. Given an extended logic program P, there exist minimal models for P.

Definition 3. Given an extended logic program P, an interpretation I and a propositional symbol
A; we can define Tp(I)(A) as

multisup <{I(A)} U{I(B)|A—Be ]P’})

Some properties of this definition of the Tp operator are stated below, where Cg denotes the
Smyth-ordering between subsets of a poset:

Lemma 3. If I T J, then Tp(I)(A) Cg Tp(J)(A) for all propositional symbol A.

The definition of Tp proposed above generates some coherence problems, in that the resulting
‘value’ is not an element, but a subset of the multilattice. A possible solution to this problem would
be to consider a choice function ()* which, given an interpretation, for any propositional symbol
A selects an element in Tp(I)(A); this way, Tp(I)* represents actually an interpretation which,
by definition, is an inflationary operator. Note that, however, that for some choice functions, the
resulting operator Tp* might not be monotone in the set of interpretations, since it can lead to
incomparable interpretations.

We are interested in computing models of our extended programs by successive iteration of
Tp™. Therefore, we should characterize the models of PP in terms Tp. The following result, which
characterizes the models of our extended programs in terms of properties of Tp, can be proved:

Lemma 4. The four statements below are equivalent:

1. I is a model of P.

2. Te(I)(A) ={I(A)} for all AcII.

3. Te(I)* =1 for all choice function.

4. I €Tp(I), (abusing notation this means that I(A) € Tp(I)(A) for all A € II).

Note that item 4 above states that an interpretation I is a model of P if and only if it is a fixed
point of Tp, viewed as a non-deterministic operator.

Regarding the iterated application of the Tp operator, the use of choice functions is essential.
Let us consider a model I, that is, a fixed point of Tp, then for all propositional variable A, we
have that Tp(I)(A) = {I(A)}. Lemma 3 guides us in the choice after each application of Tp as
follows:

— For the base case, we have! A C I, then Tp(A)(A) Cg Tp(I)(A) = {I(A)}. This means that
there exists an element my(A) € Tp(a)(A) such that

my(A) < I(A)

This way we obtain an interpretation my satisfying m; C I such that for any propositional
variable A, mq(A) is an element of Tp(A)(A4).

! Here, as usual, A denotes the minimum interpretation.
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— This argument applies also to any successor ordinal: given my C I, there exists an element
mk+1(A) S T]p(mk)(A) such that

m(A) < my41(A4) < I1(A)

where the first inequality holds by the definition of Tp and the second inequality follows from
Lemma 3.

— For a limit ordinal o, Lemma 1 states that for all A the increasing sequence {m,(A)} has a
supremum, which is considered, by definition, to be mq(A).

As a result of the discussion above we obtain that we can choose suitable elements in the sets
generated by the application of Tp in such a way that we can construct a transfinite sequence of
interpretations my, satisfying

Note that the sequence of interpretations above, can be interpreted as the Kleene sequence which
allows to reach the minimal fixed point of Tp in the classical case.

Interestingly enough, if I is a minimal model of P, the previous sequence of interpretations can
be proved to converge to I.

Theorem 2. Let I be a minimal model of P, then the previous construction leads to a Kleene
sequence {my} which converges to I.

Conclusions and future work A fixed point semantics has been presented for multilattice-
based logic programming, together with some initial and encouraging results: in particular, we
have proved the existence of minimal models for any extended program and that any minimal
model can be attained by some Kleene-like sequence.

However, a number of theoretical problems have to be investigated in the future: such as the
constructive nature of minimal models (is it possible to construct suitable choice functions which
generate convergent sequence of interpretations with limit a minimal model?). Possible answers
should on a general theory of fixed points, relying on some of the ideas related to fixed points in
partially ordered sets [10] or, perhaps, in fuzzy extensions of Tarski’s theorem [12].
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Abstract

Axiomatizability for first order Godel logics has been completely characterized
using topological properties of the underlying truth value set. In the present talk we
will discuss three fragments of these logics, and characterize their axiomatizability.
The fragments are

* Prenex fragment
o | -free fragment
o J-fragment

For all three fragments we will show that it is axiomatizable if and only if the underly-
ing truth value set is either finite or uncountable.

*Supported by the European Union under EC-MC 008054 and FWF-grant #P16539-N04 of the Austrian
Science Fund.
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Proof Theory for (Fragments of) First Order
Lukasiewicz Logic

George Metcalfe

TU Wien, Vienna, Austria

Although the first-order Lukasiewicz logic VL based on the real unit interval [0, 1] is
famously not recursively axiomatizable, there exist both axiomatizations with infini-
tary rules, and interesting recursively axiomatizable fragments. In this work we begin
a proof-theoretic investigation of VL, focussing on fragments with a natural syntactic
characterization. Our starting point is the hypersequent calculus GL for propositional
Lukasiewicz logic based on a language with connective — and constant | : !

Initial Sequents

a5a D = (4) T5aW
Structural rules
G G| I'=A|I'=s A G|I'=A
—— (EW EC — (WL
G|F:sA( ) G| I'=A (EC) G|F,A¢A( )
G|F1,F2:>A1,A2 ) G|F1:>A1 G|F2:>A2 (M)
G|F1:>A1|F2$A2 G|F1,F2:>A1,A2
Logical Rules
G|I,B=AA G| I'=A G|IJA=B,A

(=) (=)

G|[,LA-B=A G|I'=A—B,A

Cut
G|F1,A=>A1 G|F2:>A,A2
G | F7F2 :>A1,A2
GL enjoys both cut-elimination and the subformula property; hence a natural first step

in investigating first-order fragments of VL is simply to extend GL with the “usual”
quantifier rules (i.e. the hypersequent versions of Gentzen’s quantifier rules for LK):

(CUT)

GIRAD =4 G| = Aa),A
i@ =2 Y G S veaw,a Y
a new

This calculus is sound and complete for the fragment of VL axiomatized by Hajek, but,
as we show with a suitable counter-example, fails to admit cut-elimination. On the other
hand, defining an infinitary rule a cut-free calculus is obtained that (using a version of
Herbrand’s theorem) is shown to be sound and complete for the whole of VL.

! Hypersequents are a natural generalization of sequents consisting of a multiset (intuitively, a
disjunction) of sequents written It = Ay | ... | [, = A,
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1 Motivation

Computer algebra allows to perform many operations which were considered
difficult, e.g., factorization, integration, symbolic solution of ODEs, etc. Logi-
cal operations are not always implemented. E.g., Maple 9 has a package logic
which was missing in several preceding versions. Except for packages for fuzzy
control, there seems to be no professional software for fuzzy logical tasks. Here
we summarize current situation in computer algebra support of testing tautolo-
gies in fuzzy logics.

2 Different approaches

Syntactical theorem proving was implemented in [9]. For a given set of axioms
and deduction rules, it generates provable formulas. This extensive approach
is necessarily ineffective and allows usually logical proofs of length up to 10.
However, it succeeded to prove the dependence of two axioms of basic logic
used in [7]. This approach is that it can only prove theorems, not recognize
formulas which are not provable.

There is an easy procedure going in the opposite direction: Try random
evaluations of the expression. If many trials did not found a counterexample,
it is highly probable that the formula is a tautology. However, this tool does
never guarantee a positive answer. It is implemented as an option in [5].

In the sequel, we deal with methods which allow to decide whether a formula
in a fuzzy logic is a tautology or not. Testing of tautologies in the Lukasiewicz
and other logics can be translated to a task of mixed integer programming
(see e.g. [7, 6, 8]). This approach seems to be promising, but no practical
implementation is known at the moment.
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3 Bounds for testing of tautologies in Lukasiewicz
logic

In Lukasiewicz logic, the evaluation is performed in an MV-algebra. Due to
Chang’s completeness theorem, a formula is a tautology of Lukasiewicz logic
iff it is evaluated to 1 in the standard MV-algebra, i.e., the real unit interval
[0,1] with the Lukasiewicz operations. Moreover, it is sufficient to consider
finite MV-algebras (MV-chains) of the form L,, = {0,2,..., 2= 1} for all
m € N. Mundici [10] proved that, for a given formula ¢, it is sufficient to
restrict attention to the cases m < B(¢), where B(¢) € N is a finite bound
dependent on formula ¢. This opens a possibility to decide in a finite time
whether ¢ is a tautology of Lukasiewicz logic. However, this has been possible
only theoretically until the bound was improved by Aguzzoli and others in [1,
2, 3]. We use the following notation:

e ¢ is the formula to be tested,

e M = #¢ is the number of variables in formula ¢, including multiple
occurrences,

e 7 is the number of different variables in formula ¢.

Theorem 1 [3] Formula ¢ is a tautology of Lukastewicz logic iff it is a tautology
in the MV-algebra Lon—1 (with 28 =1 + 1 truth values).

The complexity of a complete test is (2M 14 1)” in the worst case (when
¢ is a tautology).

Theorem 2 [3, p. 367] Formula ¢ is a tautology of Lukasiewicz logic iff it is a
tautology in the MV-algebras Ly, for allm < b(M,n) = {(%)HJ

Complexity arguments show that the second theorem leads to more efficient
programs (although it has one additional cycle). This method has been im-

fﬁf{”) (m+1)" in the worst

plemented by Brizkovd [5]. The complexity is
case.

4 Other fuzzy logics
Analogous principle is known to be applicable in Gédel logic:

Theorem 3 [/] Formula ¢ is a tautology of Godel logic iff it is a tautology in
the algebra with truth values {0, %, AN mT_l, 1} and the Gédel operations, where
m=n+1.

Also this principle is implemented in [3].
Several papers deal with the possibility of testing of tautologies in the prod-
uct logic. There is no non-Boolean finite-valued product logic, but the test can
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be reduced to a task analogous to that in Lukasiewicz logic. Again, finite com-
plexity is not enough, it is necessary to find a small bound in order to make the
program applicable. This still requires more attention.

There are also papers describing how the testing of tautologies can be per-
formed in fuzzy logics based on ordinal sums of the above t-norms, even in the
basic logic [8]. So far, their complexity seems far beyond the possibilities of
current technology. However, drastic simplification might be possible and allow
a reasonable implementation. This is subject to future study.

Acknowledgements. The first author was supported by the project
1M0021620808 of the Ministry of Education, Youth, and Sports of the Czech
Republic. The second author acknowledges the support by the Czech Ministry
of Education under project MSM 6840770012.

References

[1] Aguzzoli, S., Ciabattoni, A.: Finiteness in infinite-valued Lukasiewicz logic.
Journal of Logic, Language, and Information 9 (2000), 5-29.

[2] Aguzzoli, S., Ciabattoni, A., Di Nola, A.: Sequent calculi for finite-valued
Lukasiewicz logics via Boolean decompositions. J. Logic Computat. 10

(2000), 213-222.

[3] Aguzzoli, S., Gerla, B.: Finite-valued reductions of infinite-valued logics.
Arch. Math. Logic 41 (2002), 361-399.

[4] Baaz, M., Zach R.: Compact propositional Gédel logics. In Proc. 28th
Int. Symp. on Multiple Valued Logic. IEEE Computer Society Press, Los
Alamitos, CA, 1998.

[5] Bruzkova, L.: Automatic Theorem Proving in Fuzzy Logic. Diploma thesis,
CTU, Praha, 2005, http://cmp.felk.cvut.cz/ navara/tautologies.

[6] Ciabattoni, A., Fermueller, C.G., Metcalfe, G.: Uniform rules and dialogue
games for fuzzy logics. Preprint.

[7] Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers,
Dordrecht, 1998.

[8] Hanikova, Z.: A note on the complexity of propositional tautologies of
individual t-algebras. Neural Network World 5 (2002), 453-460.

[9] Lehmke, S.: Mechanical proof of the theory of P. Hijek’s ba-
sic many-valued propositional logic, preprint, http://www.cs.uni-
dortmund.de/ “lehmke /SimpleProver.

[10] Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete,
Theoretical Computer Science 52 (1987), 145-153.

80



Convergence of sequences of sets with respect to
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Let the pair 7 = (T, <7) denote a complete lattice, so that T is a nonempty
set and <7 is a partial ordering (relation) on 7" such that, for every A C T, the
supremum \/; A and the infimum A, w.r.to <7 are defined. By convention,
V70=07(=A\;T)and \; 0 =17(=\/;T) for the empty subset of T. The
index 7 is omitted, if no misunderstanding menaces. 7-(valued) possibilistic
space is a triple (€2, A, IT), where €2 is a nonempty set, A is a system of subsets
of O such that §,Q € A, and II is a 7-(valued normalized) possibilistic measure
on A, hence, II takes A into T,II(}) = @7,II(Q) = 17, and [I(AU B) =
II(A) v II(B) for each A, B, AU B € A. Tl is complete, if TI({J Ao) = V{II(A) :
A € A} for every Ay C A such that (JAg = Jyecy, A is in A Given a 7-
possibilistic space over a field A C P(£2), the [I-metric p on A is defined by
p(A,B) =II(A + B)((=II((A — B) U (B — A))) for every A, B € A. For each
A,B,C € A the relations (i) p(4,A) = @7, (i) p(4,B) = p(B, A), and (iii)
p(A,C) < p(A,B) V p(B,C) are valid.

Definition 1 Let (2, A 1I) be a T-possibilistic space over a o-field A. A se-
quence {4,132, C A converges (tends) to Ag € A in the Il-metric p({An}52, —
Ap(II), in symbols), if {p(An, 40)}32; \, @7 holds, i.e., if there exists a se-
quence {s,, }2 ; of elements of T such that, for each n =1,2,...,s, > s,41 and
sn > p(An, Ap) is valid and A2 s, = O7.

As a matter of fact, neither {A,}52; — (', A,(II) holds in general for any
nonincreasing nested sequence {A4,}>>, nor {4,}>2; — U,—, 4,(II) holds in
general for any nondecreasing nested sequence {4, }22 ;. If both these relations
are valid, the II-metric p is called reqular. As a matter of fact, both these
conditions, which can be called regularity from above and regularity from below
are equivalent.

Under the notations of Definition 1, if {A,} — A¢(IT) holds and A, € A is
such that II(A4p + A.)(= p(4o, As)) = @1, then {A,,} — A(II) holds as well.
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Definition 2 Let (Q, A, II) be as in Definition 1. II is continuous from above,
if for each nonincreasing sequence {A,}>2; C A the relation \°7, TI(4,) =
I(N,~, Ay) holds. II is continuous from below, if for each nondecreasing se-
quence {A,}>2, C A the relation \/,_ TI(4,) = TI(,—; A») holds.

Fact 1 Let 7 = (T, <7) be a complete lattice such that A ,g(sVt) =t for
every t € T and every S C T such that AS = O, let (Q, A II) be as in
Definition 1. Then (i) II is continuous from above iff the II-metric p is regular,
and (ii) if the Il-metric p is regular, then II is continuous from below. The
implication inverse to (ii) does not hold in general.

Fact 2 Let 7 = (T,<7) be a complete lattice satisfying this property: for
every countable subsets T1,T> C T such that ATy = AT = @7 and for every
t € T the identities /\{tl Vity ity € Th,te € TZ} = @T(Z (/\Tl) V (/\TQ))
and A{ty Vt:t; € Ty} = t(= (AT1) V t) are valid. Let (92, A, II) be as in
Definition 1, let the 7-possibilistic measure II be continuous from above on
A. Let {A,}°2, be a sequence of sets from A (not necessarily nested) such
that (2, Ue_, A = Up—; Mor_,, A holds, let Ay denote this set. Then
{An}22, — Ap(II) holds.

If I1; , II5 are 7 -possibilistic measures on A such that II; (A) < IIy(A) holds
for each A € A, then for each {A,,}52, C Asuch that {4, }22; — A¢(Il2) holds
for some Ag € A, the relation {A4,}5°,; — Ag(II;) holds as well. Consequently,
if {A,}52, is such that, for some ng, A, = Ag for every n > ngy (and only in
this case), {4,152, — Ag(II) holds for every 7-possibilistic measure IT on A.

Fact 3 Let (Q, A, 11) be a 7-possibilistic space over a o-field A C P(Q), let
{A,}52, be a nested nonincreasing (nondecreasing, resp.) sequence of sets
which tends to Ay = (),_; An (to Ao = U, An, resp.) w.r.to the I-metric
p. Then the sequence {Q — 4,122, tends to [J,, (2 — A,) (to e, (2 — Ay),
resp.) w.r.to the same Il-metric p.

Fact 4 Let 7 = (T, <) be a complete lattice satisfying the conditions imposed
on 7 in Fact 2, let (Q, A, II) be a T-possibilistic space over a o-field A C P(Q).
(i) Let {A,}5%,{Bn}5>, be nonincreasing sequences of sets from A, let
Ap, By € Abe such that ()~ A, D Ao,y B D Bo, {An}22, — Ap(Il) and
{Bn}22; — By(II) hold. Then {A, UB,}32,; — (Ao U By)(II) also holds.
(ii) Let {An}22,,{Bn}22; be nondecreasing sequences of sets from A, let
Ao, By € A be such that UOC A, C Ay, UZO:1 B, C By, {A7L}7°Lo=1 — Ao(H)

n=1

and {B,,}°2; — By(II) hold. Then {A,, U B,}?%; — (Ao U By)(Il) also holds.

Definition 3 Let 7 = (T, <7) and S = (S, <s) be complete lattices, let 0§ =
1s and 1§ = Og, let (Q, A1) be a T-possibilistic space over a o-field A C
P(Q), let A : Sx S — S be defined in the same way as p in the case of
complete lattice 7. let f,, : @ — S;n = 0,1,2,... be mappings such that, for
each s € S and each n = 1,2,..., the sets {w € Q : A(f,(w), fo(w)) > s} and
{w e Q: A(fu(w), folw) > s} are in A. The sequence {f,}22; of mappings
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converges (tends) to fo w.r.to the T-possibilistic measure I, if II({w € Q :
A(fn(w)v,fO(w)) > ®$}) N\ Q1 holds.

For each A C Q, its S-(valued) characteristic function (identifier) xa :  —
S is defined by ya(w) = 1s, if w € A, ya(w) = @7 otherwise. As could
be expected, the convergence of a sequence of sets w.r.to the II-metric p is
equivalent to the convergence of the corresponding S-characteristic functions
w.r.to 1L

Fact 5 Let the notations and conditions introduced in Definition 3 hold. A
sequence {A,}72; C A tends to Ay € A w.r.to the II-metric p iff the sequence
{xa, }25, of their S-characteristic functions tends to x4, w.r.to IL.

83



Group-like Structures In Monoidal Categories —
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Abstract

Let GG be an ordinary group. In particular, -, e and ¢ denote respectivly the
multiplication, the neutral element and the inversion in G'. In 1971, A . Rosen-
feld defines a fuzzy subgroup of G as a map g : G — [0,1] satisfying the
following axioms (cf. [6])

(G1)  min(p(91), u(92)) < plg1-92).
(G2)  ple) = 1.
(G3)  nlg) < plg))-

In 1979, J.M. Anthony and H. Sherwood refined the concept of fuzzy subgroups
by replacing the binary minimum by an arbitrary t-norm 7'. Thus a fuzzy sub-
group of G in the sense of Anthony and Sherwood is a map p : G — [0,1]
satisfying (G2), (G3) and the following axiom (cf. [1])

(G1)  T(u(g1). nlg2)) < plgr-g2).

From the point of view of many-valued logic (see also [2]) we can understand
Rosenfeld’s definition as subgroups of (¢ in the sense of Gédel’s logic, while in
the case of the t-norm T, determined by Lukasiewicz’ arithmetic conjunction

To(e,8) = max(a+3—1,0), a,3€]0,1]

we can view Anthony and Sherwood’s definition as subgroups of & in the sense
of Lukasiewicz’ logic.

If we identify the map g with the corresponding characteristic morphism of the
topos sh([0,1]) of sheaves on [0,1], then it is not difficult to see that Rosen-
feld’s fuzzy subgroups are nothing but subgroup objects of the simple sheaf G
generated by G (see also Theorem 3.5 and Remark 3.6 in [4]).

On this background we rise the following

Question: Does there exist a general categorical framework such that fuzzy sub-
groups in the sense of Lukasiewicz logic can be understood as subgroup objects?
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The aim of this talk is to solve this problem. For this pupose we first introduce
group-like structures in semimonoidal categories.

A semimonoidal category C = (Co,®@,a,f,7,n,¢) consists of a category Cy

with a terminal object 1, a bifunctor Cy x Cy SN Co , natural isomorphisms

® o (® x ide,) 2 .%o (¢de, x ®) and natural transformations

1o —t—ide,, _©1 ——ide,, ide, —— 1&_, ide, —— _®1

satisfying the following conditions:
(C1) For all Co-objects W, X, Y, 7 the pentagonal diagram

AWRQXY Z AWXYQZ
_ _

(WeX)eY)eZz WeX)e(Yez) We((XelYez)

aw xy Qidy tdy Raxy z

We(XeY)er

We((XeY)e7)

AWXQY Z
commutes.

(C2) For all Cy-objects X the subsequent diagrams:

A1x

X 219X X 2 1eXx 1e(1oX) 1el)eX
idx {x idx X idi@Lx L1@x
X X 19X — X — 10X
Zx ZX
Xelh)el =" . Xg(lol) (leX)el) 4 . 1g(Xal)
rx®id1h 1dx ®r1 Lx®idy 1d1@rx
1oX — X — 10X X9ol— X — 10X
T x rx X £x

are commutative, and also m = ¢1.

Proposition 1.1. Let C be a monoidal category with a terminal object. If the
unit object is isomorphic to the terminal object, then C is also a semimonoidal
category.

Example 1.2. Let C be a monoidal category with a terminal object 1 s.t. the
unit object is not necessarily isomorphic to 1. Then there exists an intrinsic
monoid on 1 in the sense of C, and the category of 1-biactions (cf. [5]) is a
semimonoidal category which is not necessarily monoidal.
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A quadruple (X,m,e,¢) is called a group-like object in a sense of the semi-
monoidal category C iff X is an object of C; and

XegX 22X, 1 —X, X ——X

are Cg-morphisms such that the following diagrams are commutative:

axxx 1dx ®m

X —— X (X®X) > XX

() meidx m (Associativity)

X®X X

e®idx idx ®e

19X — = XX +— X1

(IT) \ jm/ (Existence of Unity)
Lx X

(Ridx idx @t 0%

Ay XX — > XX —— X0 X A%
€ X € 1
(II1) )
X —— X
idx 1
X

(Existence of Antipode)

+

5%
where A% —~ - X ®X denotes the tensorial modification of the diagonal

X M X x X of X i.e. the following pullback square holds:

A% X

5X] waji@)

X@X —= X x X
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As an application of the these considerations we obtain the solution of the pre-
vious question:

Let M be the canonical MV -algebra given by the real unit interval [0,1]. Then
the category M-SET of M-valued sets (cf. [3]) is a monoidal category in which
the terminal object 1s not isomorphic to the unit object. Further, fuzzy sub-
groups in the sense of Anthony and Sherwood are subgroup objects in the sense
of the category of 1-biactions associated with M-SET.
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WEAK REFLECTIONS IN CATEGORIES
OF FUZZY SETS OVER MV-ALGEBRAS

JIRI MOCKOR

In a fuzzy set theory there are several categories of fuzzy sets over a complete
MYV-algebra Q = (L,®,—). The first one is a category Set(2) with objects (4, 0)
where A is a set and 0 : A x A — Q) is a similarity relation such that

(i) Ve e A) d(z,x) =1,
(i) (Vo,y e A) d(z,y) =0y, ),
(i) (Va,y,z€ A) 6(z,y) ©d(y,2) < 0(z,2).
A morphism f : (A,d) — (B,7) in Set(Q2) is a map f: A x B — € satisfying the
following conditions .
(1) (Va,z € A)(Vy € B) 6(x,2) @ f(x,y) < f(2,9),
(2) (Ve e A)(Vy,z€ B) ~(y,2) & f(x,y) < f(z,2),
(3) (Ve e A)(Vy,z€ B) f(x,y) @ f(x,2) <7(y,2),
(4) (Ve e A) 1=V{f(z,y):y e B}
The other category SetF({2) will have the same objects as the category Set((2).
A morphism f : (A,0) — (B,7v) in SetF(2) is a map f : A — B such that
(Ve,y € 4) (f(@). 7)) = oz.y).

In any of these categories K we can introduce a fuzzy subset of an object (A, d) as
a morphism s : (A, 6) — (€, <) in a corresponding category, in symbol s Ck (A,0).
Let Fx(A,0) ={s:s Ck (A, 0)} be the set of fuzzy subsets of (A,d) in a category
K. On these sets Fk (A, ) similarity relations can be defined such that we obtain
the following subcategories of K.

A full subcategory Fg. of a category SetF({2) with objects
SetF(Q)

(Fsetr()(4,0),0), where o(s,t) = ¢ 4 5(z) < t(z),
(2) A full subcategory ]:SetF(Q) of a category SetF({)) with objects

(Fsetr(a)(4,0),7), where 7(s,) = /. 4 5(z) ® £(),
(3) A full subcategory Fg. t() Of a category Set(Q2) with objects

(fSet (A 6) )

Theorem. Any of the above mentioned full subcategories is a weak reflective sub-
category in a corresponding category.
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LOGICS OF A CONTINUOUS T-NORM AND
ITS RESIDUUM WITH TRUTH-CONSTANTS

Francesc Esteva *IIIA - CSIC, 08193 Bellaterra, Spain
Email: esteva@iiia.csic.es

1 Abstract

In the context of fuzzy logical systems, introducing truth-constants in the lan-
guage is an elegant means to be able to explicitely reason with partial degrees
of truth. This goes back to Pavelka [9] who built a propositional many-valued
logical system over Lukasiewicz logic by adding into the language a truth con-
stant 7 for each real r € [0,1], together with a number of additional axioms.
Although the resulting logic (like Lukasiewicz logic) is not strongly complete,
Pavelka proved that his logic, which we shall call it PL, is complete in a weaker
sense. Namely, by defining the truth degree of a formula ¢ in a theory T as

|| ¢ |lr=inf{e(p) | e evaluation model of T}
and the degree of provability of ¢ in T as
| [r=sup{r [TFpL T — o},

Pavelka proved that these degrees coincide. This kind of completeness, is usually
known as Pavelka-style completeness, and strongly relies in the continuity of
Lukasiewicz truth functions. Novak extended Pavelka approach to Lukasiewicz
first order logic.

Later, Héjek [6] showed that Pavelka’s logic PL could be significantly sim-
plified while keeping the completeness results, indeed it is enough to extend the
language only by a countable number of truth-constants, one per each rational
in [0, 1], and by two additional axiom schemata, called book-keeping axioms:

T&S T %3
T—=85T=3s

where x and = are Lukasiewicz t-norm and its residuum respectively. He de-
noted this new system Rational Pavelka Logic, RPL for short. Moreover he
proved that RPL is strongly complete for finite theories.

Similar rational expansions for other popular fuzzy logics can be obviously
defined, but note that Pavelka-style completeness cannot be obtained since
Lukasiewicz logic is the only fuzzy logic with continuous truth-functions in the

*The results contained in this abstracts are mainly the results of a forthcoming paper with
Lluis Godo and Carles Noguera and contain also results obtained in collaboration with Petr
Savicki and Roberto Cignoli
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real unit interval [0, 1]. Among different works in this direction we may cite
[6] where an extension of Ga (the extension of Gédel logic with Baaz’s Delta
operator) with a finite number of rational truth-constants, and [4] where the
authors define logical systems obtained by adding (rational) truth-constants to
G.. (Godel logic with an involutive negation) and to II (Product logic) and II..
(Product logic with an involutive negation). In the case of the rational expan-
sions of IT and II.. an infinitary inference rule (from {¢ — 7 : 7 € QN [0,1]}
infer ¢ — 0) is introduced in order to get Pavelka’s style completeness.
Rational truth-constants have also considered in some stronger logics like in
the logic LH% [2], a logic that combines the connectives from both Lukasiewicz

and Product logics plus the truth-constant 1/2, and in the logic PL [7], a logic
which combines Lukasiewicz logic connectives plus the Product logic conjunction
(but not implication), as well as in some closely related logics.

More recently, in [1] and in [10] the authors considered the expansions with
rational truth-constants of Gédel and weak Nilpotent minimum logics (and some
of its extensions) in the first paper and of the product logic in the second paper.
We use the fact that the corresponding logics are algebraizable and the fact that
any algebra of the corresponding variety is subdirect product of linearly ordered
ones. Standard (weak) completeness is shown for those logics as well as finite
strong completeness when restricted to formulas of the kind 7 — ¢, where 7 de-
notes the truth constant r and ¢ is a formula without truth-constants. Actually,
this kind of formulas have been extensively considered in other frameworks for
reasoning with partial degrees of truth. In particular, these formulas correspond
to Novék’s evaluated formulas in [8]. Evaluated formulas are expressions a/A
where a is a truth value (from a given algebra) and A is a formula of a language
built using truth constants too. Our formula 7 — ¢ would be expressed as /¢
in Novak’s syntax. They also appear in the framework of abstract fuzzy logics
developed by Gerla [5] based on the notion of fuzzy consequence or deduction
operators over fuzzy sets of formulas, where the membership degree of formulas
are interpreted as lower bounds on their truth degrees.

In this talk we will present the results about the expansions of the three
main fuzzy logics corresponding to Lukasiewicz, product and minimum t-norms
and its residuum and their generalization to the expansion with truth-values of
any logic of a continuous t-norm and its residuum. From [3] we know that any of
these logics is finitely axiomatizable and from them we can study their expansion
wiith truth-value constants. We will present general completeness results for
logics defined by a t-norm that is a finite ordinal sum and its residuum. Finally
we will present some partial results for logics of t-norms that are ordinal sum
with infinite components and its rsiduum.

References

[1] F. EsteEvA, L. Gopo AND C. NOGUERA. On Rational Weak Nilpotent
Minimum Logics. To appear in Journal of Multiple-Valued Logic and Soft
Computing.

2] F. ESTEVA, L. Gopo AND F. MONTAGNA. The LIT and LII logics: two
complete fuzzy systems joining Lukasiewicz and Product logics. Archive for
Mathematical Logic 40 (2001) 39-67.

90



[3] F. EsTEvVA , L. Gopo, F.MONTAGNA. Equational characterization of the
subvarieties of BL generated by t-norm algebras Studia Logica Vol.76, 2
(2004) 161-200

[4] F. EsTEva, L. Gopo, P. HAJEK, M. NAVARA. Residuated fuzzy logic
with an involutive negation. Archive for Mathematical Logic 39 (2000) 103-
124.

[5] G. GERLA. Fuzzy Logic: Mathematical Tools for Approzimate Reasoning.
Trends in Logic 11, Kluwer, 2001.

[6] P. HAJEK. Metamathematics of Fuzzy Logic, Trends in Logic, vol.4 Kluwer,
1998.

[7] R. HORCIK AND P. CINTULA. Product Lukasiewicz Logic. Archive for
Mathematical Logic 43 (2004) 477-503.

[8] V. NovAk, I. PERFILIEVA, J. MOCKOR. Mathematical Principles of Fuzzy
Logic. Kluwer Academic Pub., 1999.

. PAVELKA. On Fuzzy Logic 1, 11, 111. Z. Math. Logic Grunlag. Mat
9 J. P On F Logic I, II, III. Z. Math. Logic Grunlag. Math 25
(1979) 45-52, 119-134, 447-464.

[10] P. Savickl, R. CigNoLl, F. EsTEvA, L. Gopo AND C. NOGUERA. On
Rational Product Logic. Submitted.

91



Fuzzy Approximation - Basic Concept and Overview of Recent
Applications
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In the contribution, we will present our attempt to the problematic of fuzzy
approximation. This notion may be understand as a theory studying properties
of special functions, relations or formulas having an approximating character.
In the sequel, we will focus to a special class of L-valued functions (where L is
a support of LII algebra) aggregating local information about some other fixed
function to be approximated. Moreover, we will show some applications where
particular techniques of fuzzy approximation have been successfully applied.

Acknowledgement: The hereby presented material was and is deeply in-
fluenced by the important, instructive and inspiring work in this field done by
1. Perfilieva, to whom all our gratefulness for her support and engagement goes.
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Software system LFLC2000, its current
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Abstract

Antonin Dvorak and Viktor Pavliska
University of Ostrava, Institute for Research and
Applications of Fuzzy Modeling,

30. dubna 22, 701 03 Ostrava, Czech Republic
email: antonin.dvorak@osu.cz
web: irafm.osu.cz/irafm
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In this contribution we present the software system LFLC2000 (Linguistic
Fuzzy Logic Controller). It is a complex tool for the design of linguistic descrip-
tions (i.e. sets of fuzzy IF-THEN rules). These description then can be used in
various application fields, e.g. in fuzzy control, decision making or data mining.
One such working industrial application is described in [2].

We sketch the unique methodology and theoretical results upon which is
LFLC2000 based (see [3, 1]). Then we present its current state and abilities.
Finally we discuss possible directions of its future development.

Acknowledgement: This investigation has been partially supported by project
1M6798555601 of the MSMT CR.
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This paper is focused on the development of the theory of fuzzy IF-THEN
rules and its contribution to the establishment of fuzzy logic. I advocate that
Hajek’s fuzzy logic is a right methodology for development of special logical
theories. A theory of fuzzy IF-THEN rules (as a special theory in this sense)
is proposed. This theory is for all practitioners who want to create a system of
fuzzy IF-THEN rules free of conflicts (logically consistent) and rich enough to
be able to make non-trivial conclusions or answer inquires.

94



Skolem Functions in Fuzzy Logics

Matthias Baaz

Technical University Vienna
Austria
baaz@logic.at

95



