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Irina Perfilieva

University of Ostrava
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Abstract

This paper is focused on the evolution of the theory of fuzzy IF-THEN rules and its
contribution to the establishment of fuzzy logic. I advocate that Hájek’s fuzzy logic
is a right methodology for development of special logical theories. A theory of fuzzy
IF-THEN rules (as a special theory in this sense) is proposed. This theory is for all
practitioners who want to create a system of fuzzy IF-THEN rules free of conflicts
(logically consistent) and rich enough to be able to make non-trivial conclusions or
answer inquires.

Key words: Fuzzy logic, deduction theory, fuzzy IF-THEN rules, system of fuzzy
relation equations

1 Introduction

The theory of fuzzy sets introduced and elaborated by Lotfi A. Zadeh attracted researches
from many areas. Due to the brightly formulated ideas and postulates, it became the basis
of many modern branches of computer science and mathematics. However, the mostly
known and used notion is not the notion of fuzzy set, but the notion of fuzzy logic which
is used whenever one operates with fuzzy sets or simply uses lattice operations over the
interval [0, 1]. This makes pure logicians upset, but on the other hand, this fact realizes
expectations of the great logician Alfred Tarski who foresaw a remarkable impact of a
logic especially on applications. By this, he meant the methodological aspect of logic:

⋆ This paper is dedicated to Lotfi A. Zadeh whose ideas inspired logicians to break limits.
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the research project MSM 6198898701 of MŠMT ČR
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treatment of notions, establishment of a correct system of definitions, deduction, analysis
of consistency and completeness, etc.

The aim of this contribution as well as of the whole special issue is to stop for a moment
and look back at what has been achieved on a wide field of fuzzy logic. Of course, this
particular contribution will concern only one aspect of this direction, leaving other aspects
to other contributors. I will concentrate on the evolution of a theory of fuzzy IF-THEN
rules and on its contribution to the establishment of fuzzy logic. Moreover, I will consider
also the question “What is fuzzy logic?” in a light of the above mentioned evolution.

At the very beginning the theory of fuzzy IF-THEN rules was the closest one to a formal
logical theory. In fact, it had all attributes of a formal calculus: axioms (IF-THEN rules
themselves) and deduction rules (Compositional Rule of Inference, Generalized Modus
Ponens and others) which however, have been introduced semantically. The hope to elab-
orate a formal theory of fuzzy IF-THEN rules has been explicitly expressed by Lotfi A.
Zadeh when he characterized the agenda of fuzzy logic in narrow sense. However, many
attempts to build a rigorous formal logic theory of IF-THEN rules failed or were not
completed. In my opinion, the main source of difficulties stemmed from assigning truth
values to each rule independently from a truth value which can be calculated on the basis
of the principle of truth functionality. Therefore, a logical analysis of axioms (rules) which
are not absolutely true was impossible. Some exceptions are worth to be remarked - the
V. Novák’s formal logic theory of IF-THEN rules based on the fuzzy logic with evaluated
syntax [8] and Gottwald’s theory of fuzzy relation equations [3].

In [8], each rule is represented by a special fuzzy set of closed formulas whose membership
degrees are then propagated to their provability degrees so that a consistent use of seman-
tics in the syntactic theory is then enabled. The resulting theory is focused on a logical
analysis of a meaning of natural language expressions comprising also fuzzy IF-THEN
rules.

In [3], a system of fuzzy IF-THEN rules is characterized by formulas of a first order
language and modeled by a fuzzy relation. However, a deduction theory has not been
elaborated.

To conclude, there was no unique logical frame for elaboration on its base special logi-
cal theories including the theory of fuzzy IF-THEN rules. The situation has changed in
1998 with issuing the book of Peter Hájek “Metamathematics of Fuzzy Logic” [4]. This
fundamental book put fuzzy logic on the platform of a classical deduction theory and
showed that fuzzy logic is a specific many-valued logic. In Hájek’s book vague (fuzzy)
objects are put inside the deduction theory which is constructed traditionally using the
rules of Modus Ponens and Generalization. Only two truth constants are required: ⊤ and
⊥. Totally true statements containing (fuzzy) parameters, estimated on an extended truth
scale, are picked up as theorems. To be able to process fuzzy objects, some new logical
connectives (other than those used in classical logic) are involved. This book has been
taken with a great enthusiasm by a mathematical community and a lot of research work
has been done, and is doing on the basis of the new mathematical structures discovered
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in it. Many new fuzzy logics and algebraic structures appeared and continue to appear.
A certain kind of a competition (who will find a weaker fuzzy logic) has been captured
by Peter Hájek himself in his paper about flea logics. Therefore, a reasonable question
arises: is this the right direction that fuzzy logic should follow? Is it enough to estab-
lish a system of axioms and prove the completeness property with respect to specially
constructed structures of truth values? The most important question raised to the class
of thus developed fuzzy logics concerns the methodology that any logic is expected to
provide (in general). What would I gain or loose if my reasoning would proceed using BL
logic and not using MTL logic? (To be frank, the Hájek’s book provided methodology of
construction new fuzzy logics (calculi).)

Luckily, there are other attempts to take advantage of the new methodology proposed by
Peter Hájek in his “Metamathematics of Fuzzy Logic”. By this I mean theoretical aspects
of a fuzzy control elaborated by Hájek himself to demonstrate the new methodology in
work, a fuzzy type theory [7], a fuzzy mathematics [1], a theory of fuzzy approximation
[9], etc.

Summarizing,

Fuzzy logic is a special many-valued logic based on the classical deduction theory and
focused on dealing with vaguely delineated propositions. Fuzzy logic provides a method-
ology of analyzing knowledge based systems characterized by fuzzy IF-THEN rules.

I am advocating in favour of Hájek’s fuzzy logic regarding it as a suitable methodology
for analyzing related to it subjects. However, the place for a theory of fuzzy IF-THEN
rules (as a special logical theory) is still open and in the rest of this paper, I want to
suggest my contribution to this specific problem. I have been motivated by the following
two facts:

(i) there is a permanent interest in this topic, but not having a good theory, people act
blindly or, better say, intuitively;

(ii) having rich experience in the theory of fuzzy relation equations, I have realized that it
may be a right theoretical basis for the theory of fuzzy IF-THEN rules.

One chapter in Hájek’s book is devoted to the logical analysis of fuzzy IF-THEN rule
systems. In this chapter, the status quo has been fixed and some new aspects connecting
such systems with fuzzy functions have been realized. However, there was no dynamics in
the proposed presentation in the sense of changing or completing such systems. Therefore,
his theory of fuzzy IF-THEN rules has never been applied in practice.

Below, I would like to suggest another approach to the construction of the logical theory
of fuzzy IF-THEN rules which is based on Hájek’s BL-logic (and by this, verifies the
methodological message of his book). This theory is for all practitioners who want to
create a system of fuzzy IF-THEN rules free of conflicts (logically consistent) and rich
enough to be able to make non-trivial conclusions or answer inquires. This theory uses the
knowledge acquired from investigation of the problem of solvability of a system of fuzzy
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relation equations. Moreover, this theory demonstrates that the deduction rule known as
Generalized Modus Ponens works correctly only if a system of fuzzy IF-THEN rules is
modeled by a solvable system of fuzzy relation equations.

The paper is organized as follows: Section 2 gives a brief introduction to fuzzy IF-THEN
rules and their models, Section 3 introduces language and formulas of a logical theory of
IF-THEN rules and Section 4 characterizes consistency and completeness of the logical
theory.

2 Fuzzy Relation as a Model of Fuzzy IF–THEN Rules

By a system of fuzzy IF–THEN rules we mean the following set of formal expressions:

R1 : IF X is A1 THEN Y is B1

. . . . . . . . . . . . . . . . . . . . . . . . .

Rn : IF X is An THEN Y is Bn

(1)

where Ai ∈ F(X), Bi ∈ F(Y) and F(X), F(Y) are universes of fuzzy subsets on X,
respectively Y (see below for the precise definition).

Let us agree to model this system of fuzzy IF–THEN rules in a class of fuzzy relations on
F(X × Y). To be able to express the relationship between system (1) and its model, we
need to choose an appropriate algebra of operations over fuzzy subsets. For this purpose,
let us choose a BL-algebra

L = 〈[0, 1],∨,∧, ∗,→,0,1〉 (2)

with four binary operations and two constants (see [4] for details) extended by the binary
operation ↔ of equivalence:

x↔ y = (x→ y) ∧ (y → x).

The universes of fuzzy subsets on X and Y will be defined as universes of functions
(membership functions) as follows:

F(X) = [0, 1]X and F(Y) = [0, 1]Y.

Fuzzy relations will be identified with fuzzy sets on cartesian products, for example binary
fuzzy relations are elements from F(X × Y), etc.

Saying that a fuzzy relation R ∈ F(X × Y) is a model of fuzzy IF–THEN rules (and
therefore, of a dependence, partially given by them), we specify how this model can be
used in computation.
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Definition 1

We say that a fuzzy set B ∈ F(Y) is an output of the (fuzzy) model R ∈ F(X×Y) given
input A ∈ F(X) if

B(y) =
∨

x∈X

(A(x) ∗R(x, y)) (3)

(in short, B = A ◦R and in words, B is the result of sup−∗ composition between a fuzzy
set A and a fuzzy relation R).

Recall that equation (3) realizes the Compositional Rule of Inference (CRI) first intro-
duced by L.A. Zadeh in [14].

Till now, we did not put any restriction on a fuzzy relation which models a set of fuzzy
IF-THEN rules. We are going to do it below, considering different relations between the
original data contained in fuzzy IF-THEN rules and their model.

Definition 2

We say that a model R ∈ F(X×Y) is a correct model of fuzzy IF-THEN rules (1) which
are based on the data (Ai, Bi), i = 1, . . . , n, (cf. [5]) if for all i = 1, . . . , n

Ai ◦R = Bi. (4)

It is easy to see that a model is correct if and only if it gives a solution to the system of
fuzzy relation equations expressed by (4) where the fuzzy sets Ai and Bi are given by (1).
At this point, we may refer to different criteria of solvability (see Introduction) which tell
us when we may expect to have a correct model. We recall the following one to which we
will refer later.

Proposition 1

If system (4) is solvable with respect to an unknown fuzzy relation R then the relation

R̂(x, y) =
n∧

i=1

(Ai(x) → Bi(y)) (5)

is the greatest solution to (4) (see [3,13]).

3 Logical Theory of IF–THEN Rules. Language and Formulas

We are going to construct a special predicate theory of fuzzy IF-THEN rules. This is sup-
posed to be a formal deduction theory to be able to infer logically supported conclusions.

For the basic predicate calculus we chose the Hájek’s BL∀ [4] which means that basic
logical connectives will be interpreted by operations of a some BL-algebra and quantifiers
by the operations of supremum and infimum (see the details below). Some unexplained
notation is taken from [4] as well.
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For simplicity, we consider the theory of fuzzy IF-THEN rules with one-place antecedent
only but it is not difficult to generalize the theory to the more complex case. For the same
reason, the language will contain unary and binary special predicates only.

Suppose that our language Jn, n ≥ 1, consist of six subsets:

(i) At most countable set of predicate symbols P each together with its arity ; we will
distinguish special unary predicate symbols A1, . . . , An ∈ P and B1, . . . , Bn ∈ P,
and a special binary predicate symbol R ∈ P.

(ii) A set X = {x, y, . . .} of object variables.
(iii) A set A = {a, b, . . .} of object constants.
(iv) A set C = {∧,∨,&,→,¬,≡, ◦} of connectives.
(v) The set Q = {∀,∃} of quantifiers.
(vi) The set T C = {⊥,⊤} of truth constants.

The notions of term and formula are defined as in the classical predicate logic with the
following additional abbreviation: if ϕ(x) is a formula where x is a free variable then the
following construction is a formula too:

(ϕ ◦R)(y) = (∃x)(ϕ(x)&R(x, y)).

Let Jn be a predicate language as above and let L be a BL-algebra

〈L,∨,∧, ∗,→,0,1〉

extended by the operations ¬,↔. An L-structure for Jn is a tuple M = 〈M, {rP | P ∈
P}, {ma | a ∈ A}〉 where M 6= ∅ and for each k-ary predicate P ∈ P (including special
ones), rP : Mk −→ L is an k-ary L-fuzzy relation on M , for each object constant a ∈ A,
ma is an element of M . An M-evaluation of object variables and values of terms and
formulas are defined as in [4].

The structure M is L-safe if all the needed infima and suprema exist, i.e. ‖ϕ‖L
M,v is defined

for all ϕ, v.

Remark 1

For simplicity, we did not use many-sorted predicates in our language though it would be
better to assume that special predicates Ai and Bi contain variables of different sorts. We
refer to [4] for the extension to a many-sorted predicate calculus.

4 Logical Theory of IF–THEN Rules. Consistency and Completeness

The special theory Rn of n IF-THEN rules (over a given predicate language Jn) consists
of:
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• all axioms of the Hájek’s BL∀,
• special axioms:

SA1 R(x, y) →
∧n

i=1(Ai(x) → Bi(y))
SA2i Bi(y) → (Ai ◦R)(y)

where i = 1, . . . , n (so that we have n axioms of type SA2),
• deduction rules:

MP (modus ponens): from ϕ, and ϕ→ ψ infer ψ,
Gen (generalization): from ϕ infer (∀x)ϕ,
CRI (compositional rule of inference): from ϕ, and R infer ϕ ◦R.

Let L be a linearly ordered BL-algebra and M an L-safe structure for Jn where we
additionally assume that fuzzy relations interpreting Ai, Bi, R are denoted by the same
symbols. We say that M is an L-model for the theory Rn if all axioms of Rn are 1-true in
M. Two models of the same theory Rn are data-connected if they differ in interpretation
of the binary predicate R. The set of data-connected models of Rn will be denoted by
MRn

. We may prove the following:

Proposition 2

M is an L-model for the theory Rn if and only if the binary fuzzy relation R(x, y) solves
the system of fuzzy relation equations

Bi(y) =
∨

x∈M

(Ai(x) ∗X(x, y)), i = 1, . . . , n (6)

(in short, Bi = Ai ◦R) with respect to an unknown X.

We say that a theory is consistent if it has a model. By Proposition 2, the theory Rn

is consistent because there always exist unary fuzzy relations (fuzzy sets) A1, . . . , An,
B1, . . . , Bn and binary fuzzy relation R such that the system (6) is solvable (see e.g. [10]).

Remark 2

By using different symbols A1, . . . , An for antecedents, we insure the theory Rn against
inconsistency. If there were two rules with the same antecedents, but different consequents,
we cannot find a model which meets all requirements, and therefore, such a theory cannot
be consistent.

We present some examples of provable formulas. Let A be an arbitrary unary predicate,
then for each i = 1, . . . , n, Rn proves the following:

(∀y)(Bi(y) ≡ (Ai ◦
n∧

i=1

(Ai → Bi))(y)), (7)

R(x, y) → (A(x) → (A ◦R)(y)), (8)

(∀x)(A(x) ≡ Ai(x)) → (∀y)((A ◦R)(y) ≡ Bi). (9)

By (7), in each L-model for Rn the fuzzy relation
∧n

i=1(Ai(x) → Bi(y)) solves the system
(6). By (8), we are able to make a conclusion (A ◦R) from the assumption (input) given
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by A. Precisely, the implication A(x) → (A ◦R)(y) can be consistently added to the rule
base R comprised of fuzzy IF-THEN rules Ai(x) → Bi(y). Formula (9) establishes the
property which can be recognized as the Generalized Modus Ponens [14]. According to it,
a conclusion (A ◦R) made from the assumption A is close to one of Bi if A is close to one
of Ai. However, we prefer to call this property the Principle of Relative Distinguishability
and reformulate it as follows:

We distinguish a conclusion (A ◦ R) among different Bi at the degree not greater than
the degree of distinguishability A among Ai.

There are other general and specific properties which characterize the system of fuzzy
IF-THEN rules and which may be proved formally in Rn. We will leave the details for a
special paper, focusing here on a completeness of Rn. In our treatment, completeness will
be tightly joined with a possibility of extension. Let us explain what we have in mind.

Logical theory of fuzzy IF-THEN rules aims to make inferences with antecedents different
from those formalized by Ai (cf. (8)). For this purpose, the deduction rule CRI has
been proposed. However, if we cannot relate a given antecedent, say A, to any of Ai, the
conclusion, obtained by the deduction, is so general that it does not express any specific
property or constraint. In this case, some additional information (in the form of a new
fuzzy IF-THEN rule) is required. Logically, this means that we would like to extend our
special theory by adding new special axioms. This must be done carefully, keeping the
consistency of the original theory. In case when an eligible extension does not keep the
consistency of the original consistent theory, we say that it is complete. Formally, we will
define the notions of extended theory and complete theory as follows.

Definition 3

Let the language Jn be extended to Jn+1 by adding two special unary predicate symbols
An+1 and Bn+1. We say that the theory Rn+1 extends Rn if it has two more axioms:
SA1n+1 R(x, y) → (An+1(x) → Bn+1(y)),
SA2n+1 Bn+1(y) → (An+1 ◦R)(y).

Proposition 3

Let M be an L-model for the theory Rn where fuzzy relations, interpreting Ai, Bi, R, are
denoted by the same symbols. Then M can be expanded to an L-model for the theory
Rn+1 in the language Jn+1.

This proposition easily follows when expanding M by an arbitrary interpretation of An+1

and by the interpretation (An+1 ◦R) of Bn+1. This expansion of M will be further called
trivial.

Corollary 1

The theory Rn+1 extends Rn conservatively.

Definition 4

A theory Rk is complete with respect to its model M if its extension to Jk+1 admits only
trivial expansion of M.
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In case M1 and M2 are data-connected models of Rn, we can construct non-trivial ex-
pansions of both models. Denote by R1 and R2 different fuzzy relations interpreting the
binary predicate R in M1 and M2 respectively. Then expand M1 by an arbitrary inter-
pretation of An+1 and the interpretation of Bn+1 by (An+1 ◦ R2) and similarly for M2.
This type of expansion will be called trivial expansion within MRn

.

Definition 5

A theory Rk is complete with respect to all data-connected models if its extension to
Jk+1 admits only trivial expansions within MRn

.

To illustrate, why the notion of completeness is important for the development of the
theory of fuzzy IF-THEN rules, let us consider the example which L. Zadeh uses in his
lectures.

“Usually Robert returns from work at about 6 pm. What is the probability that Robert
is home at about 6.15 pm?”

This data may be rewritten in the following IF-THEN form:

IF the time is “about 6 pm” THEN Robert returns (home) from his work.
The time is “about 6.15 pm”.

What can be inferred from this (incomplete!) rule base about Robert’s position at about
6.15 pm?

Let us agree to use the truth estimation instead of the probabilistic one. According to
our Principle of Relative Distinguishability we can infer that the degree of truth of the
conclusion “at about 6.15 pm Robert is at home” is not greater than the degree of dis-
tinguishability between the propositions “the time is about 6 pm” and “the time is about
6.15 pm”. This conclusion is the only one which can be formally inferred from our special
theory. In order to be more precise, we shall complete the rule base. Then the specifica-
tion of the Robert position at the time about 6.15 pm” will be related to the additionally
obtained information about him at some later time instance.

In general, the idea of completion of the rule base system in order to make justified
conclusions is intuitively pursued by any researcher who aims at creation of a meaningful
data-base system, cf. [2]. The latter reference considers one practical example containing
an assertion extracted from the real economic report. In order to analyze the assertion
and be able to answer a question related to it, Diaz and Takagi in [2] created a knowledge
base formed by fuzzy IF-THEN rules. This rule base contains explanation of all used
special terms and their behavior with respect to the term in the question. By doing this,
they intuitively followed the procedure which in logical terminology means completion of
a set of special axioms. Moreover, the completion process had not been taken absolutely,
but relatively, to be able to answer the inquiry. This means that the Principle of Relative
Distinguishability has been applied in [2] (again intuitively). On the basis of this, the
authors were able to infer (with help of CRI) the non-trivial answer to their inquiry. The
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methodology which the authors of [2] followed is now a subject of the special logical theory
presented here. Let me express the hope that this special theory contributes to the goal
that fuzzy logic should consider with respect to applications.

5 Conclusion

Our main claim is that a fuzzy logic should provide a methodology for analysis of knowl-
edge based systems formed by fuzzy IF-THEN rules. An axiomatic approach to the con-
struction of a logical theory of fuzzy IF-THEN rules based on Hájek’s BL-logic has been
presented. The proposed theory aims at creation of a system of fuzzy IF-THEN rules free
of conflicts (logically consistent) and rich enough to be able to make non-trivial conclu-
sions or answer inquires. This theory uses the knowledge acquired from investigation of
the problem of solvability of a system of fuzzy relation equations. Moreover, this theory
demonstrates that the deduction rule known as Generalized Modus Ponens works cor-
rectly only if a system of fuzzy IF-THEN rules is modeled by a solvable system of fuzzy
relation equations. Some examples are included.
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