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Abstract

Three universal approximation formulas given by so called disjunctive, conjunctive and additive

normal forms are recalled. Properties and relations between all three formulas are studied. The

quality of approximation is shown and the role of genetic algorithms in the field of fuzzy approximation

is explained.
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1 Introduction

Originally, the notion of normal form has been introduced for Boolean functions. There, normal forms
had a simplifying as well as unifying character. Moreover, they are equal to the original function.

The generalization considered below is based on the shape of the classical normal forms for Boolean
functions, where the operations on {0, 1} are replaced by generalized ones on [0, 1]. And moreover, fuzzy
relations are used instead of Boolean functions, see e.g. [9, 5, 10]. Having such a generalization, we can
formulate problems whose solutions clarify the relationship between normal forms and the initial fuzzy
relation.

In this work, we will follow the approach introduced in [9] and generalized in [2]. There, normal forms
in disjunctive and conjunctive form are considered. Moreover, we will generalize the additive normal
form introduced in [11] and elaborate its properties. We will establish a family of additive normal forms
which will include the original motivation case published in [11]. Moreover, the conditional equivalence
of this additive normal forms will be partially clarified.

Additionally, we are interested in formulas minimizing some fixed criterion. It leads to the formulation
of an optimization problem, which we will solve using genetic algorithms.

2 Preliminaries

2.1 t-norms

In this subsection, we recall basic facts from the theory of t-norms. For more details we refer to [7].

Definition 1 Let ∗ : [0, 1]2 → [0, 1] be a commutative, associative, non-decreasing mapping such that
x ∗ 1 = x for all x ∈ [0, 1]. Then ∗ is called triangular norm.

Typical t-norms are the minimum, the product and the  Lukasiewicz t-norm ⊗:

x ⊗ y = max(x + y − 1, 0).

It follows from the definition of a t-norm that it is a monoidal operation on [0, 1]. Furthermore,
〈[0, 1],∧,∨〉 is a complete lattice. Therefore, we can define the residuation operation (also residuum) in
the following form.

Definition 2 Let ∗ be a left-continuous t-norm. The residuation operation →∗: [0, 1]2 → [0, 1] is defined
by

x →∗ y =
∨

{z ∈ [0, 1] |x ∗ z ≤ y}. (1)

Moreover, we will use the following operations

x ↔∗ y = (x →∗ y) ∧ (y →∗ x) (2)

called biresiduation (also biresiduum) and

x ⊕ y = min(1, x + y) (3)

called  Lukasiewicz t-conorm. It is worth to mention the following equality

(1 − x) ⊕ y = x →⊗ y. (4)
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2.2 Extensionality of fuzzy relations

Below, we will introduce generalized definition of the extensionality property, where we assume that the
description of an interrelation between elements x and y expressed by R(x,y) may be arbitrary.

Let M be some nonempty set of objects.

Definition 3 A fuzzy relation P : Mn → [0, 1] is extensional w.r.t. binary fuzzy relation R on Mn and
t-norm ∗ if for each u = (u1, . . . , un) and v = (v1, . . . , vn) ∈ M ,

R(u,v) ∗ P (u) ≤ P (v). (5)

Usually, the extensionality is defined w.r.t. a similarity relation. The given definition of the generalized
extensionality has been already motivated and discussed in [3, 4].

Remark 1 For more details on this topic we refer to [6, 4, 5, 10].

3 Normal forms

First of all, we recall discrete disjunctive and conjunctive normal forms introduced in [9, 10] for an n-ary
fuzzy relation. For more details we refer to [5, 11].

In the sequel, we will assume that ∗ is a left-continuous t-norm, F is an n-ary fuzzy relation on M , R
is a binary fuzzy relation on Mn, and Ck = {ci ∈ Mn| i = 1, . . . , k}, k ∈ N.

The discrete disjunctive and conjunctive normal forms are given as follows:

FDNF,∗(x) =
∨

c∈Ck

(R(c,x) ∗ F (c)), (6)

FCNF,∗(x) =
∧

c∈Ck

(R(x, c) →∗ F (c)), (7)

respectively.
The following definition of an additive normal form is taken from [11] and extended. There, the

approximating formula consists of two main parts: (1) description of neighborhoods of some fixed nodes
in the form of similarity relations (reflexive, symmetric, and ∗-transitive) joined by the  Lukasiewicz t-
norm, (2) the concrete values of a given function in these nodes. Moreover, parts (1) and (2) are joined
by the product t-norm, and finally, they are tagged together by the addition ( Lukasiewicz t-conorm).
Below, an arbitrary t-norm is considered instead of the product.

Definition 4 Let F be an n-ary fuzzy relation on M and R be a binary fuzzy relation on Mn. The
additive normal form of F w.r.t. a t-norm ∗ is given by the following formula

FANF,∗(x) =
⊕

c∈Ck

(R(c,x) ∗ F (c)). (8)

It has been already shown [2] that the discrete disjunctive and conjunctive normal forms give lower
and upper approximation of an extensional fuzzy relation, respectively i.e.

FDNF,∗(x) ≤ F (x) ≤ FCNF,∗(x). (9)

We do not obtain similar result for the discrete additive normal form. But we can at least compare
FANF,∗(x) with FDNF,∗(x) and FCNF,⊗(x) whenever R fulfils an additional property called orthogonality.

Definition 5 Let R be a binary fuzzy relation on Mn. We say that R fulfils the orthogonality property
if ⊕

c∈Ck,c6=d

R(c,x) = 1 − R(d,x), (10)

is valid for each x ∈ Mn and d ∈ Ck.
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The relationship between normal forms is shown in the following proposition.

Proposition 1 Let R be a binary fuzzy relation on Mn and F be an n-ary fuzzy relation on M . If R is
symmetric and fulfils orthogonality condition (10) then

FDNF,∗(x) ≤ FANF,∗(x), (11)

FANF,∗(x) ≤ FCNF,⊗(x), (12)

for all x ∈ Mn.

proof: The technique of the proof is analogous to that of [11]. �

Let us illustrate the relationships between normal forms on the following example.

Example 1 Let us consider the following one-dimensional case where the approximated fuzzy relation

F (x) = 0.4 sin(4x) + 0.4

is defined on M = [0, 1] and let k = 10. Binary fuzzy relation R is given as

R(x,y) = (x ↔⊗ y)9,

while the nodes ci are defined as ci = (i − 1)/k for i = 1, . . . , k. Finally, let ∗ be the product t-norm ⊙.
Then, we obtain a relationship between the conjunctive, the disjunctive and the additive normal forms

which is illustrated on Figure 1. From Figure 2, it is clear that the additive normal form is absolutely the
best approximation formula from the set of normal forms for the fuzzy relation F with respect to R and
the given number and distribution of nodes ci over M and its error is even not visible.
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Figure 1: Relationship between normal forms from Example 1. The black line represents FANF,⊙, the
dashed gray line is for FDNF,⊙ and the solid gray line belongs to FCNF,⊙.

Normal forms give an approximate representation of a given fuzzy relation. This fact is further
expressed on the basis of the biresidual operation. Since the biresiduum belongs to the class of similarity
relations (also called equivalences), therefore in the sequel, we will use the term equivalence instead of
biresiduum. The next result is taken from [5] and it shows that an arbitrary extensional formula is
equivalent to its normal form. This equivalence is bounded from below by a function independent of the
original fuzzy relation.
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Figure 2: Error of approximation from Example 1. The black line represents FANF,⊙, the dashed gray
line is for FDNF,⊙ and the solid gray line belongs to FCNF,⊙.

Theorem 1 Let R be a binary fuzzy relation on Mn and F be an n-ary fuzzy relation on M . If F is
extensional w.r.t. R and a left-continuous t-norm ∗ then

FDNF,∗(x) ↔∗ F (x) ≥ C∗(x), (13)

FCNF,∗(x) ↔∗ F (x) ≥ C∗(x), (14)

for all x ∈ Mn, where

C∗(x) =
∨

c∈Ck

(R(x, c) ∗ R(c,x)). (15)

The similar result can be obtained for a special class of FANF,∗’s. This class is specified by properties of
∗ and it is known that the class of t-norms is partially ordered set w.r.t. the pointwise order (see [7]). To
formulate and prove Theorem 2, the notion of weaker and stronger t-norm will be used.

We say that a t-norm ∗1 is weaker than ∗2 if a∗1 b ≤ a∗2 b for all a, b ∈ [0, 1]. Then, we write ∗1 ≤ ∗2.
Analogously, we say that ∗1 is stronger than ∗2 if a ∗1 b ≥ a ∗2 b for all a, b ∈ [0, 1], and we write ∗1 ≥ ∗2

(see [7]).

Theorem 2 Let R be a symmetric binary fuzzy relation on Mn and R fulfils orthogonality condition (10).
Let F be extensional w.r.t. R and ⊗ and moreover, let F be extensional w.r.t. R and a left-continuous
t-norm ∗.

• If ∗ is weaker than ⊗, then
FANF,∗(x) ↔∗ F (x) ≥ C∗(x), (16)

for x ∈ Mn.

• If ∗ is stronger than ⊗ then

FANF,∗(x) ↔⊗ F (x) ≥ C⊗(x), (17)

for x ∈ Mn.
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proof: Using Theorem 1 we get

F (x) →∗ FDNF,∗(x) ≥ C∗(x),

FCNF,⊗(x) →⊗ F (x) ≥ C⊗(x)

and Proposition 1 implies

F (x) →∗ FANF,∗(x) ≥ C∗(x), (18)

FANF,∗(x) →⊗ F (x) ≥ C⊗(x). (19)

If ∗ is weaker than ⊗ then

FANF,∗(x) →∗ F (x) ≥ FANF,∗(x) →⊗ F (x)

and
C⊗(x) ≥ C∗(x)

and therefore
FANF,∗(x) →∗ F (x) ≥ C∗(x)

which together with (18) proves (16).
If ∗ is stronger than ⊗ then

F (x) →⊗ FANF,∗(x) ≥ F (x) →∗ FANF,∗(x)

and
C∗(x) ≥ C⊗(x)

and therefore
F (x) →⊗ FANF,∗(x) ≥ C⊗(x)

which together with (19) proves (17). �

4 Genetic algorithm in construction of normal forms

In this section, we focus on the problem of the proper distribution of the nodes used in the construction
of normal forms by minimizing an error function. In [4], there has been shown that for the same error
function the distribution of the nodes used in the construction of FCNF and FDNF is different. Therefore,
each of three normal forms must be constructed separately and independently of the other ones.

Let R(x,y) = R1(x1, y1) ∗ · · · ∗ Rn(xn, yn) and fuzzy relations Ri(x, y) be given by

Ri(x, y) = (x →∗ y)ki(x,y) ∗ (y →∗ x)li(x,y)

and ki, li are determined on the basis of Theorem 4 from [3]. Then for introduced normal forms the error
functions, which are to be minimized, are given as follows:

eD(C)NF,∗ = sup
x∈Mn

g(FD(C)NF,∗(x) ↔∗ F (x)), (20)

eANF,∗ =
∑

x∈Mn

(g(FANF,∗(x) ↔∗ F (x))2, (21)

where g is an additive generator of the t-norm ∗. It is worth mentioning that while optimizing the
distribution of the nodes for FANF,∗ the orthogonality property (10) should be kept.

We have chosen genetic algorithms as an optimization tool for this particular problem because of their
advantageous behavior in the case of complex problems. At this stage of investigation the simple genetic
algorithm (SGA) is considered and classical binary coding is used (see [1, 8]).

Now, we are able to describe formally the algorithm searching for a normal form (NF) approximating
the given fuzzy relation with desired accuracy ε.
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Algorithm:

Inputs: ε, MaxNumber

begin
NumberOfNodes = 0 ;
BestNodes = [ ] ;
eNF,∗ = 1 ;
whi l e (eNF,∗ > ε) and
( NumberOfNodes < MaxNumber) do
begin

NumberOfNodes = . . .
NumberOfNodes + 1 ;

[ BestNodes , eNF,∗ ] = . . .
SGA( NumberOfNodes ) ;

end
end

Output: BestNodes

Remark 2 The standard genetic algorithm called in the algorithm above has the following attributes:

• the initial population is generated randomly,

• an array of nodes is coded the same as multidimensional point (see [8]) representing one individual,

• the best representative of a population is the one with the minimal evaluation value,

• the set of nodes forming parameter C of the normal forms is given as a set of all n - dimensional
permutations from {c1, . . . , ck}, ci ∈ M . It implies that we construct normal forms in kn nodes,

• the stopping condition in SGA is analyzed from p previous generations (including the actual one)
on the basis of the following characteristic

△(p) =

j−1∑

i=j−p

|ei
NF,∗ − ei+1

NF,∗|, (22)

where j is the index of the actual generation and ei
NF,∗ is the error of approximation of the best

individuum in the i’th population. Then, SGA runs either until △(p) < d (parameter d is set by a
user) or until the number of populations reaches its maximum value.

Example 2 Let us consider n = 1 and F (x) = 0.25 sin(20x)+0.5, x ∈ [0, 1] and the  Lukasiewicz t-norm
∗ = ⊗. We have applied the genetic algorithm in the form described above to minimize error functions
(20) and (21), respectively.

The additive normal form for F constructed using the genetic algorithm is depicted on Fig. 3 by the
dashed line. Fuzzy relations R(ci,x) with nodes ci found by the genetic algorithm are shown on Fig. 4.
Finally, the error of approximation is displayed on Fig. 5. Concerning the disjunctive and conjunctive
normal forms constructed using the genetic algorithm (described above) we refer to [4].

5 Conclusion

We have presented the specific approach to approximation of extensional fuzzy relations given by the
so-called normal forms. Besides already introduced disjunctive and conjunctive normal forms we have
extended this class of approximating formulas by the generalized additive normal form.
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Figure 3: F (solid line) and its FANF,⊗ (dashed line). The dots represent FANF,⊗(ci).

Figure 4: Fuzzy relations R(ci,x) with nodes ci found by the genetic algorithm.

Properties of such approximate representation of a fuzzy relation by normal forms have been presented
as well, namely the conditional equivalence property and the fact that disjunctive (conjunctive) normal
forms are lower (upper) bounds of the original fuzzy relation. Conditions, under which introduced
additive normal forms lie between these bounds, have been formulated as well as conditions under which
the additive normal forms are conditionally equivalent.

Finally, optimized automatic construction of any of normal forms with help of the simple genetic
algorithm has been justified. The greatest advantage of this approximation method together with the
above given algorithm lies in automatization of building an approximation formula for given fuzzy relation
without complicated coding of: 1) fuzzy sets covering the domain, and 2) fuzzy relations joining them, into
the genetic information. It follows from the fact that we work with pre-set description of neighborhoods
for each node ci ∈ Mn which eliminates a time-consuming process of tricky coding and decoding of fuzzy
sets describing the domain of the approximated fuzzy relation F .
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Figure 5: Error of FANF,⊗. The dots represent the error in ci.
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