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Abstract

An alternative version of the tableau decision making algorithm de-
fined in the ”Handbook of Description Logics” (Baader et col.) is pre-
sented. It is a version of semi-decidable tableau formal system that cor-
responds with that one of first order logic and shares its semantic sound-
ness and completeness. In examples the advantages of the transparent
tree-style representation algorithm, comparing with the algorithm of the
handbook, is demonstrated. It is shown that the tree representation of
the tableau proof gives a possibility of transparent creation of models in
the cases of direct tableau proofs. On the base of the properties of in-
direct tableau proofs is possible to define a dual Gentzen-like axiomatic
system for direct generation of theories consisting of logical consequences
of knowledge bases.

Key words: Description logic, semantic tableau

Introduction

It seams that the tableau decision making algorithm defined in the ”Handbook of
Description Logics” [Ba03] has been generally accepted by the description logic
community. Even if it has advantages in the properties of finality (decidability)
we would like to point out some of its inabilities or failings. After defining of
language and its semantics we’ll define our version of semi-decidable tableau
formal system that corresponds with that one of first order logic ([Lu03]) and
shares its semantic soundness and completeness. We enumerate cases of the
algorithm usage and show them in examples. We also point out in examples the
advantages of our transparent tree-style representation algorithm compared with
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the algorithm of the handbook [Ba03]. We’ll show that the tree representation of
the tableau proof gives us a possibility of transparent creation of models in the
cases of direct tableau proofs. On the base of the properties of indirect tableau
proofs we show a possibility to define a dual Gentzen-like axiomatic system
for direct generation of theories consisting of logical consequences of knowledge
bases. Generally we introduce an axiomatic system by

1. specifying a language for representation of knowledge concerning the spe-
cial reference system W ,

2. defining logical axioms that are logical valid formulas,

3. writing a knowledge base Σ representing relevant knowledge on W as a set
of special axioms (basic knowledge) of the theory,

4. defining an inference mechanism (set of rules) for building theories.

There are some special details in the frame of our approach concerning the
four points enumerated above that we have to make clear more precise.

1 Language LDL - formal definitions of syntax

and semantics

The language LDL of description logic (DL) we introduce here by the Backus-
Naur form is a special ALC(Q)-language. DL expressions represent knowledge
about a reference system W (world to be represented) by means of concepts and
roles they play in the context of the system. The ”Q” in brackets means that it
is possible, if necessary, to add number restriction constructors ∃>nR and ∃≥nR

to the LDL.

1.1 Specifying the language LDL of DL

Defining a language LDL, we distinguish between formulas of the language and
meta-language schemes. For individual objects names we don’t assume the
”unique name assumption”.

Definition 1 (LDL grammar rules) DLformulas of a language LDL are con-
cept formulas (Cformulas) or role formulas (Rformulas) or their instances, both
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created by a special set of DL constructors defined as follows:

< term > ::=< individual >

::=< variable >

< individual > ::= a/b/a1/ . . .

< variable > ::= x/y/x1/ . . .

< atomic role > ::= R/S/ . . .

< Rformula > ::=< atomic role >

::= (< Rformula >) ⊓ (< Rformula >)

::= ¬(< Rformula >)

< role instance > ::=< Rformula > (< term >, < term >)

< atomic concept > ::= A/B/ . . .

< Cformula > ::=< atomic concept >

::= ⊤

::= ⊥

::= ¬(< Cformula >)

::= (< Cformula >) ⊓ (< Cformula >)

::= (< Cformula >) ⊔ (< Cformula >)

::= ∃(< Rformula >).⊤

::= ∃(< Rformula >).(< Cformula >)

::= ∀(< Rformula >).(< Cformula >)

< concept instance > ::=< Cformula > (< term >)

(As the unary predicate symbols will represent concepts and binary predicate
symbols will represent roles, it isn’t necessary to write in the definitions of
concept and role expressions (atomic or composed) with explicit determinations
of n-arities of predicate symbols.)

1.2 Interpretation of DLformulas

Definition 2 (interpretation structure and rule)Interpretation structure of the
language LDL is a pair I = (∆I ,•I ), where the set ∆I is a universe of discourse,
•I is a denotation function that maps a Cformula C into it’s extent CI ⊆ ∆I

and Rformula R into it’s extent RI ⊆ ∆I × ∆I . For concepts C, D, roles R, S,
individuals c, d1, d2 and term t hold the following interpretation rules :

Rformula interpretation rules:

RI = {(d1, d2) | R(d1, d2)}

(R ⊓ S)I = RI ∩ SI

(¬R)I = (∆I × ∆I)\RI

(R(a, b))I = {(a, b)} ∈ RI

Cformula interpretation rules:

CI = {c | C(c)}

⊤I = ∆I

⊥I = ∅
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(¬C)I = ∆I\CI

(C ⊓ D)I = CI ∩ DI

(C ⊔ D)I = CI ∪ DI

(∀R.C)I = {d1 ∈ ∆I | ∀d2 : (d1, d2) ∈ RI → d2 ∈ CI}

(∃R.⊤)I = {d1 ∈ ∆I | ∃d2 : (d1, d2) ∈ RI}

(∃R.C)I = {d1 ∈ ∆I | ∃d2 : (d1, d2) ∈ RI ∧ d2 ∈ CI}

(C(a))I = {a} ∈ CI

1.3 Concept consistency, subsumption and taxonomy

Definition 3 (consistency of Rformula/Cformula in an interpretation) Rfor-
mula/Cformula is consistent in the interpretation I of the language LDL iff its
extent is nonempty in the interpretation I.

Definition 4 (concept subsumption) Let C, D be Cformulas of a DL language
LDL . C is subsumed by D, expressed by C ⊑ D, iff CI ⊆ DI for every
interpretation I of the language LDL, C is equivalent D, expressed by C ≡ D,
iff CI ≡ DI for every interpretation I of the language LDL.

2 Knowledge base in DL

Definition 5 (knowledge base) Given DL language LDL for representation of a
referent system (world) W , knowledge base (KB) S is a pair S = (T, A), where T

is the TBox of terminological axioms representing intensional knowledge about
W and A is the ABox of assertions representing some extensional knowledge
about W .

2.1 TBox and ABox of knowledge base

Definition 6 (axioms of TBox and ABox) Let C be a concept name, R be a role
name, t, s are names of terms of the LDL . Terminological axioms of TBox are
meta-language expressions that define concepts by Cformulas (tab.1, expressions
(1) - (3)). ABox (assertional box) is a box of DLformulas of a language LDL

representing extensional knowledge of knowledge base. The DLformulas of ABox
are concept instances or role instances (def. 1) having the forms of expressions
(4) - (5) (tab.1).

Expression (1) of the tab.1 says that an atomic concept belongs to the special
concept taxonomy (hierarchy, ontology) we treat within the referent system.
Definitions or specifications of concepts of TBoxes are meta-formulas. So, if
they ought to appear in formal proof sequences, they have to be remade into
DLformulas. We can construct DLformulas of ABox of the KB Σ using individual
object names or terms only if we previously have defined the corresponding TBox
concept or role symbols to be used within the ABox of the KB Σ .
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Table 1: Syntax and sematics of TBox and ABox expressions
Type of TBox expression Syntax Semantics

(1) atomic concept specification A ⊑ T AI ⊆ ∆I

(2) concept definition C ≡ D CI = DI

(3) concept specification (subsumption) C ⊑ D CI ⊆ DI

Type of ABox expression
(4) Concept assertion C(t) tI ∈ CI

(5) Role assertion R(s, t) (sI , tI) ∈ RI

2.2 Consistency and models of knowledge bases

To be able to make decisions about consistency of a KB we have to consider the
KB as a set of DLformulas. It means: to decide consistency of KB it is necessary
first to rewrite TBox expressions and ABox expressions into a set of DLformu-
las. We needn’t do anything with DLformulas of ABox but the expressions of
TBox aren’t DLformulas and we must remake them into the corresponding set
of DLformulas with the help of the following theorem.

Theorem 1 (consistency of TBox expressions) Let T = C ⊑ D, (T = C ≡ D)
be a TBox expression of a KB of a language LDL, let C, D be concepts. Then T

is consistent in an interpretation I iff ¬C⊔D, ((¬C⊔D)(¬D⊔C)) is consistent
in I.

Proof: According to the definition of concept subsumption D subsumes C, iff
CI ⊆ DI for every interpretation I, C is equivalent D, iff CI ≡ DI , (CI ⊆ DI

and DI ⊆ CI ) for every interpretation I. From the set-theory point of view
we can treat the meaning of the concept subsumption CI ⊆ DI as the union of
sets (∆I\CI) ∪ DI corresponding in the frame of DL semantics (def. 4) to the
disjunction of concepts ¬C⊔D. Similarly for the case of equivalency of concepts
we have the set ((∆I\CI) ∪ DI)((∆I DI) ∪ CI)), corresponding to the concept
conjunction (¬C ⊔ D) ⊓ (¬D ⊔ C)) in DL.

Immediately from the definition of the semantics of DLformulas (def. 4) of
ABox follows that the following theorem holds.

Theorem 2 (consistency of ABox formulas) Let A = C(a), ( A = R(a, b))
be a Cformula (Rformula) of the language LDL of an ABox of KB S, I be an
interpretation of the LDL. A is satisfied in the interpretation I iff aI ∈ CI ,
((aI , bI) ∈ RI) holds.

In the following text we shall use the knowledge base Σ = {TBox, ABox} remade
into a set S of DLformulas.
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Definition 7 (consistency and models of knowledge bases) Structure of an in-
terpretation I is a model of TBox T , (ABox A) of a knowledge base S iff all the
DLformulas created by rewriting of the TBox T (ABox A) definitions hold in
I. Structure of an interpretation I is a model of a knowledge base S, iff all the
DLformulas created by rewriting of the TBox T and all the formulas of ABox A

of the knowledge base S hold in I.

An important role in the frame of reasoning on knowledge bases play the
DLformulas that are logical valid. Those in all interpretations logical valid
formulas can become parts of any knowledge base because they don’t change its
set of models.

Definition 8 (logical validity of DLformula) DLformula is logical valid iff all
the applicable interpretations are its models.

Definition 9 (logical consequence of a KB) DLformula F is a logical conse-
quence of a knowledge base S (S| = F ) iff it holds in all models of the S.

3 Reasoning on knowledge bases

DLformulas in their transformed form represent a set of special axioms for build-
ing theory in a special formal system.

We require formal tools of reasoning on KB to be able to solve the following
tasks:

1. First, it is necessary for every KB to answer the question: Do the KB S

have a model or S isn’t a consistent set of DLformulas? If no, it has no
sense in this case to reason anything from S because it would be possible
to deduce from S some DLformula and its negation.

2. We require KB S to stay consistent after an adding a new knowledge T

into its TBox. In this case, solving the problem consists in decision of
the consistency of the set S ∪ T where T represents the new expression of
TBox transformed into the corresponding DLformula.

3. KB S has to stay consistent also after an adding a new knowledge A

into its ABox. In this case we can add a DLformula A into the ABox iff
the corresponding concepts or roles occurring in the A have been defined
or specified in the TBox of the S. Open world assumption assure the
possibility to add new instances of Cformulas (Rformulas).

4. We would like to decide if a DLformula F is a logical consequence of the
KB Σ . If yes, we expect S ∪ ¬F ought to be inconsistent.
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5. It would be useful for some proofs to use some convenient logical valid
DLformulas. Those DLformulas proved by means of unsatisfiability of
their negations can be added to any KB because their logical validity is
independent on concrete interpretations.

6. We would like to have to our disposal some generator of logical conse-
quences of the S.

All of the tasks 1 - 6 we can transform into problems of consistency (satisfi-
ability). In the remaining part of this paper we present a formal system based
on semantic tableau binary trees that may become a convenient tool for solving
those tasks. We also proof its semantic soundness and completeness and show
some examples of its practical using.

4 Tableau proofs

4.1 Definition of semantic tableau

Authors of the [Ba03] present tableaux algorithms by means of a collection of
so-called completion rules intended to generate completion of ABox completed
with respect to a corresponding TBox of a knowledge base S. An approach
we present here is a bit different. We define here our tableau algorithm in the
way similar to the tableau algorithm in predicate logic ([Lu03]) . We use a set
S of DLformulas of a KB containing DLformulas of ABox and transcriptionsof
definitions and specifications of TBox into Cformulas.

Definition 10 For a given set S of DLformulas we define the semantic tableaux
as a binary tree with labeled nodes according to the following construction rules:

1. Level 0: The root is labeled by the list of all DLformulas of S.

2. Construction of (n + 1)th level nodes:
α -rule: If the label list at a level n contains a α -DLformula (C(x)⊓D(x))
which we actually have chosen for the creation of a unique (n + 1)th level
node, we copy to it the label of the node n and add to the list both C(x)
and D(x) DLformulas.
β -rule: If the label list at a level n contains a β -DLformula (C(x)⊔D(x))
which we actually have chosen for the creation of two following level nodes,
we create two nodes at the level n + 1, copy to each one the label of the
node n and add to the list of the left node the DLformula C(x) and to the
right node the DLformula D(x).
γ -rule: If the label list at a level n contains a γ -DLformula ∀R.C(x)
which we actually have chosen for the creation of an unique (n+1)th level
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node, we copy to it the label of the node n and add to the list DLformulas
R(x, t),¬R(x, t) ⊔ C(t) for a term t of the language LDL.
δ -rule: If the label list at a level n contains a δ -DLformula ∃R.C(x))
(∃R.⊤) ) which we actually have chosen for the creation of an unique
(n + 1)th level node, we copy to the new node the label of the node n and
add to the list DLformulas R(x, a), C(a) (formula R(x, a)) with a new con-
stant term a.

3. If there exists a complementary pair of DLformulas in a label list of a node
n, we close the branch by the node n as a leave that makes the corresponding
branch closed.

4. If the condition 3 doesn’t happen, then: if there is no possibility for a node
n to apply rules α, β, γ, δ and to create a following level node, the node
n becomes a leaf that makes the branch finitely open, in the opposite case
the branch become potentially infinitely open.

Definition 11 Semantic tableau with all branches closed is a closed tableau.

4.2 Soundness and completeness

Theorem 3 (semantic soundness and completeness of the formal tableau proof)
A set S of DLformulas of the language LDL is inconsistent iff a closed semantic
tableau of S exists.
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1) Proof of the semantic soundness of the tableau algorithm is in fact a proof
of the semantic soundness of the rules α, β, γ, δ defined in the def.10. Proof by
induction on the sub-tree depth: If a sub-tree of a depth h with a root of a
level n closes then the list of DLformulas U(n) in its root label is inconsistent.
With h = 0 it is involved a leaf of the tableau. If the tableau closes the set
U(0) must contain a complementary pair of literals and it means that U(0) is
inconsistent. Let us assume the induction assumption until a depth h − 1: If a
semantic tableau sub-tree of a depth k < h closes, then the list of DLformulas in
its root label is inconsistent. Now let us consider a semantic tableau sub-tree of
the depth h with a root node n. To create the following node’s label we need to
use one of the α, β, γ, δ - rules. For the use of the α -rule (β -rule, γ -rule, δ-rule)
the list of DLformulas must have a form U, α (U, β, U, γ, U, δ), α -DLformula (β
-DLformula, γ -DLformula, δ-DLformula) has been specified in the def.10. 2a)
(2b, 2c, 2d), U is a list (event. empty) of DLformulas. a) Let in the case of the
α -rule the label of a node is U(n) = U, A1 ⊓ A2. Then the label of the unique
successor - the node n′ of the following level has according to the α -rule a form
U(n′) = U, A1, A2. As the depth of the node n′ is h−1, the induction assumption
holds. It means if the sub-tree of the node n′ closes, the set of DLformulas of
the U(n′) = U, A1, A2 is inconsistent. Let us assume the sub-tree of the node n′

closes. As n′ is a unique successor of n, the sub-tree of the node n must close. In
this case must be inconsistent the set of DLformulas U(n) = U, A1⊓A2. If there
would exist a set of objects that makes U, A1 ⊓A2 consistent, the set must fulfill
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also U, A1, A2 - that contradicts to the induction assumption. b) Let in the case
of the β -rule the label of a node is U(n) = U, B1 ⊔ B2. Then the label of two
successors - the nodes n′ and n′′ of the following level has according to the β -rule
forms U(n′) = U, B1, U(n′′) = U, B2. As the depth of the nodes n′, n′′ is h − 1,
the induction assumption holds - if the sub-trees of the nodes n′, n′′ closes, the
sets U(n′), U(n′′) are inconsistent. Let us assume the sub-trees of the nodes n′,
n′′ close. As n′, n′′ are successors of n, the sub-trees of the node n must close and
the sets U(n′), U(n′′) must be inconsistent. If there would exist a set of objects
that makes U, B1 ⊔ B2 consistent, the set must fulfill also U, B1 or U, B2, that
contradicts with the induction assumption. c) For using the γ -rule is necessary
a sub-tree root label of the depth h has to be of the form U(n) = U, ∀R.C.
Applying of the γ -rule now consists in creating a unique successor node with
the label U(n′) = U, ∀R.C, R(x, t),¬R(x, t) ⊔ C(t), t is a term, that belongs
to the sub-tree of a depth h − 1 fulfilling the induction assumption. So if the
sub-tree closes, the set U(n′) of its root label is inconsistent. It is obvious that
interpretation structures fulfilling ∀R.C must be the same as this one fulfilling
∀R.C, R(x, t),¬R(x, t)⊔C(t). d) For using the δ-rule is necessary, a sub-tree root
label of the depth h has to be of the form U(n) = U, ∃R.C. Applying of the δ-rule
creates an unique successor node with the label U(n′) = U, ∃R.C, R(x, d), C(d),
(d is a new constant term) that belongs to the sub-tree of a depth h−1 fulfilling
the induction assumption. If the sub-tree closes the set U(n′) of its root label is
inconsistent. It is obvious that interpretation structures fulfilling U, ∃R.C has
to be the same as this one fulfilling U, ∃R.C, R(x, d), C(d).
2) Proof of the semantic completeness: Using the indirect method we have
to proof: If there is some open branch in the tableau tree, then the set S is
consistent. We’ll utilize properties of model sets defined as follows.

Definition 12 (model set of DLformulas) A set U of DLformulas of the lan-
guage LDL is a model set if the following holds:

1. (1) If C(a) is an instantion of a concept C then C(a) 6∈ U or ¬C(a) 6∈ U .

2. (2) If A ∈ U is a α -DLformula consisting of components A1, A2, then
A1 ∈ U, A2 ∈ U .

3. (3) If B ∈ U is a β -DLformula consisting of components B1, B2, then
B1 ∈ U or B2 ∈ U .

4. (4) If A ∈ U is a γ-DLformula of the form ∀R.C, then R(x, t) ∈ U,¬R(x, t)⊔
C(t) ∈ U (t is a term).

5. (5) If A ∈ U is a δ-DLformula of the form ∃R.C, then R(x, d) ∈ U, C(d) ∈
U for a object d of the universe W .
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Lemma 1 Let V be an open branch of a semantic tableau of a DLformulas
set S. Then a set U = Σi=1,..nU(i) unifying all label lists along the branch V

represents a model set.

Proof: Applying tableau rules of the def. 10 guaranties that (2)-(5) holds. (1)
holds because for an open branch holds C(a) ∈ U or ¬C(a) ∈ U , not both
because the branch is open.

Lemma 2 If U is a model set, it is a consistent one.

Proof: For the model set U of DLformulas we define an interpretation of C(a)
in the following way: If C(a) ∈ U , then aI ∈ CI , if ¬C(a) ∈ U , then aI ∈ ¬CI .
Consistency of C(a),¬C(a) guaranties the fact that only one item of the pair
occurs in U . We’ll proof by induction on complexity of DLformula A ∈ U that
in the case of the interpretation defined above A must be consistent. 1. For
n = 1 is A consistent because in the case of A = C(a) C(a)holds , in the case of
A = ¬C(a) ¬C(a)holds. 2.

1. a) If A is a α -DLformula A1 ⊓A2 of complexity n, then according to (2)is
A1 ∈ U and A2 ∈ U, A1, A2 are formulas of complexity n − 1 fulfilling the
induction assumption AI

1 6= ⊘ a AI
2 6= ⊘. If A1 ⊓ A2 were inconsistent at

least one of DLformulas A1, A2 would have to be inconsistent contrary to
the induction assumption.

2. b) If A is a β -formula A1⊔A2 of complexity n, then according to (3) is A1 ∈
U or A2 ∈ U, A1, A2 of the complexity n−1 fulfill the induction assumption
AI

1 6= ⊘ a AI
2 6= ⊘. If A1 ⊔ A2 were inconsistent, both DLformulas A1, A2

would be inconsistent contrary to the induction assumption .

3. c) If A is a γ -DLformula ∀R.C of the complexity n, then according to
(4) besides A ∈ U also R(x, t) ∈ U,¬R(x, t) ⊔ C(t) ∈ U holds, t is a term
occurring in U . If ∀R.C were inconsistent both R(x, t) and C(t) wouldn’t
hold, contrary to the induction assumption.

4. d) If A is δ -DLformula R.C of the complexity n, then according to (5)
besides A ∈ U also R(x, d) ∈ U, C(d) ∈ U holds, d is a new constant term
not occurring until now in U . If R.C were inconsistent both R(x, d) and
C(d) wouldn’t hold contrary to the induction assumption.

Theorem 4 (completeness) If A is a logical valid DLformula of the language
LDL then a semantic tableau of ¬A closes.

Proof: Completeness of the semantic tableau formal system follows immediately
from the previous lemma. Open branch of the tableau induces a model set U so
that a model exists. The model fulfill also the DLformula A because A ∈ U .
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4.3 Using tableau proofs

The aim of the following examples is to show how to use direct or undirect
tableau proofs for solving the problems named in the previous parahraph. If it
would be usefull we shall use besides the tableau rules (def. 10) the following
valid equivalencies:

¬(C ⊔ D) ≡ ¬C ⊓ ¬D

(C ⊓ D) ≡ ¬C ⊔ ¬D

¬(∀R.C) ≡ ∃R.¬C

¬(∃R.C) ≡ ∀R.¬C

As variables play important role in applications of tableau rules we use them
during the proofs with respect to arities of concept and role predicate symbols.

Example 1:

We have constructed a closed tableau tree so the root DLformula is incon-
sistent. Now let us consider a dual tree: commas between DLformulas represent
logical disjunctions of negations of the tableau DLformulas, branching of the tree
represent logical conjunctions. The label of a leaf now contains a complementary
pair of DLformulas and represents a logical valid disjunction. It is possible to
consider it represents a logical axiom of a Gentzen-like axiomatic system with
dual rules to that of the semantic tableau formal system. On the base of closed
tableau tree we can create a dual tree representing a Gentzen-like proof. The
leaves of the tree are labeled by Gentzen axioms (disjunctions of DLformulas
- their logical validity are ensured by disjunctions of complementary pairs of
formulas). Gentzen-like system rules are dual rules to those of the tableau rules
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α, β, γ, δ . In the frame of the Gentzen-like system we can proof (see the follow-
ing example) the negated DLformula from Gentzen axioms.

Example 2:

Sometimes it may be usefull to add some logical valid formulas into a KB.
In the next example we prove some logical valid formulas corresponding to sub-
sumptions that can become a part of an arbitrary KB.

Example 3 Deciding of logical validity of the DLformulas corresponding to follow-
ing subsumptions:

1. a)∃R.(A ⊓ B) ⊑ ∃R.A ⊓ ∃R.B,

2. b)∃R.A ⊓ ∃R.B ⊑ ∃R.(A ⊓ B),

3. c)∀R.(C ⊔ D) ⊑ ∀R.C ⊔ ∀R.D,

4. d)∀R.C ⊔ ∀R.D ⊑ ∀R.(C ⊔ D)

14
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As the tableau tree in the example 3a) (3c), 3d)) closes the negation of the
DLformula corresponding to the subsumption a)( c), d)) must be inconsistent
and so the DLformula corresponding to a) ( c), d)) must be valid. In the case
of b) we can’t find a closed tableau tree, one of the branches stay open and it
is obvious that creating of further instances by the use of the γ , δ rules can’t
lead to a complementary pair of DLformulas (see [Lu05]). Nevertheless we can
obtain in all the cases 3a)- 3d) the same results with the rules of the [Ba03].
A question arises why the author of this paper recommends the γ -rule of the
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def.10 instead of that one of the [Ba03]. The answer follows from example of the
indirect tableau proof of logical validity of subsumption ∀R.A ⊑ ∃R.A (example
4). If we had to our disposal only the tableau rules of the [Lu03] we wouldn’t
be able to proof the valid subsumption ∀R.A ⊑ ∃R.A.
It is because DLformulas ∀R.A(x), ∀R.¬A(x) at the 3rd row doesn’t represent
a complementary pair of formulas and as there is no one rule to apply at the
level of the tree, the algorithm stops. Our γ -rule adds to the list of DLformulas
two new formulas R(x, y), ¬R(x, y)⊔C(y) expressing correctly the semantics of
the rule ∀R.C. On the other hand the ∀ -rule of the [Ba03] adds to the list only
the logical consequence C(y) of these two DLformulas and moreover it assumes
R(x, y) be present in the list before applying the ∀ -rule.

Example 4:
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In our last example we deduce some logical consequences of a part of the KB S

([Bu93]), example 3) in the Gentzen-like formal system using dual rules to our semantic
tableau formal system.
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Example 5:
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