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Abstract
Let V be a regular and permutable variety and A = (4, F) € V. Let § # C C A. We
get an explicite list L of polynomials such that C' is a congruence class of some 6 € Con A iff
C is closed under all terms of L. Morevover, if V is of a finite similarity type, L is finite. If
also A € V is finite, all polynomials of L can be considered to be unary. We get a formula for
the estimation of card L. The problem of deciding whether C' is a congruence class is a finite
algebra is in NP but for A € V it is in P.

1991 Mathematics Subject Classification: 08A30, 08A40, 08B05, 68Q25

Let A = (A, F) be an algebra, let § # C C A. It was proved by A. I. Mal’cev [5] that C is a class of
some # € Con A if and only if

either 7(C)NC =0 or 7(C)CC

for any translation of A. Let us recall that by a translation is in [5] meant a unary polynomial. Although
this characterization is simple and very useful thourough general algebra, its disadvantage is that an
algebra A = (A, F) can have an infinite number of unary polynomials even if A or F are finite. We
are going to give another polynomial characterization of congruence classes for algebras of regular and
permutable varieties where for F finite we need only a finite set of testing polynomials.

Recall that an algebra A4 = (A, F) is regular if § = @ for §,® € Con.A whenever they have a
congruence class in common. A is permutable if # 0o ® = ® o 0 for every #,® € Con A. A variety V is
regular or permutable if each A € V has this property.

The following Mal’cev type characterization was derived independently in [2], [3].



Proposition. A wvariety V is regular and permutable if and only if there exist n > 1 ternary terms
t1,---,tn and a (3 +n)—ary term q such that

ti(x,x,2) = =z for i=1,...,n
(*) r = q(xayazatl(xayaz)a"'7tn(x7y7z))
y = q(m,y,z,z,...,Z).

Throughout the paper all refered terms ¢1, .. .,t,, ¢ are those of (x).

Theorem 1. Let V be a reqular and permutable variety, let A= (A, F) €V and ) #C C A. Then C is
a class of some 6 € Con A if and only if the following conditions hold:
(4) if ti(aj,bj,¢) € C forc € C, i = 1,...,n, j = 1,....,m and f € F is m—ary then
ti(f(al, . ,am), f(bl, Ceey bm), C) e C;

(B) ifc,de C, a € A and ti(a,d,c) € C fori=1,...,n thena € C;
(O) ife,d € C then t;i(d,c,c) € C fori=1,...,n.

Proof: Consider A € V, 0 # C C A, ¢ € C and suppose (4), (B), (C). We prove that C is a class of
some 8 € Con A.
Introduce a binary relation 8 on A as follows:

(xx) (a,b)y €0 iff ti(a,b,c) € C,... tp(a,b,c) € C

for the terms t1,...,t, of (x). Since t;(a,a,c) = ¢ € C, 8 is reflexive. By (A) we easily infer that 6 is also
compatible with any m—ary operation f € F. Hence, by [6], 8 € Con A.

Let ¢ € [c]g. Then (x,c) € 8 and, by (xx), t;(z,c,c) € C for i = 1,...,n. By (B) we infer z € C, ie.
[c]o C C.

Suppose x € C. Using (C) we get t;(z,c,c) € C (i =1,...,n). By (xx) we have (z,c) € 6 thus z € [c]p.
Hence C C [c]p. We have proved that C is a congruence class of 6.

Conversely, let C' be a class of some § € Con A and ¢ € C. Suppose t;(aj,bj,c) € C for j = 1,...,m,
i=1,...,n and let f € F be m—ary. Then (t;(aj,b;,c),c) € 6 and, by (*), we obtain

a; = q(aj,bj,c,tl(aj,bj,c),...,tn(aj,bj,c))
bj = qlaj,bj,crc,...,c)
whence (aj,b;) € 6. Applying compatibility of § we conclude (f(ai,...,am), f(b1,...,bm)) € 8. Thus
<tl(f(a17 st 7am)7f(b17 et 7bm)7c)7c> =

= (ti(f(a'la' . '7a'm)7f(b17 .. '7bm)ac)7ti(f(b17 .. '7bm);f(b1;' . .,bm),C),C> €0
by (x) of Proposition. Hence, (4) holds.
Now, let t;(a,d,c) € C = [c]p for some d € C and i =1,...,n. Then (¢;(a,d,c),c) € § and, by (x),
a = q(a7d7 c;tl(a’;d;c)a"';tn(a’ada C))
d = qla,d,cc,...,c).
Hence (a,d) € 8. However, d € C = [c]y thus also a € C proving (B).

If ¢,d € C = [c]p then
<tt(d7 c, C),C> = (t](d7 c, C)ati(ca c, C)> €0

thus t;(d, ¢,c¢) € C as required in (C). ]
Let us introduce the following concept. If p(z1,...,%n,Y1,...,Ym) is an (m + n)—ary term of an

algebra A = (A, F) and C C A, we say that C is y—closed under p if p(ai1,...,an,¢1,...,¢n) € C for
any ai,-..,a, € A and any ci,...,c, € C.

Theorem 2. Let V be a reqular and permutable variety, let A= (A, F) €V and ) #C C A. Then C is
a congruence class of some 8 € Con A if and only if C is y—closed under the following terms:



(a) ti(f(q(xlaxiayaylla .. 7y1n)7 .. 7q(xm7$flmayaym17 e 7ymn))7

f($i77"'7x’lrn)7y)
for each m—ary f € F and everyi =1,...,n;

(b) q(l'ay7y,7y17 R 7yn)

(¢) rilyr,y2) = ti(ys,y2,y2) fori=1,...,n .

Proof: Let ) # C C A be y—closed under the terms of (a), (b) and (¢). By Theorem 1 we have to show
the validity of (4), (B) and (C).

Let t;(aj,bj,c) € Cfori=1,...,n,j=1,...,m and f € F be m—ary. By (a) and (*) of Proposition
we have

ti(f(ala' v ;am)af(bla s '7bm)ac) =
:ti(f(q(al,bl,c,tl(al,bl,c),...,tn(al,bl,c)),...,
q(am,bm,c,tl(am,bm,C), B 7tn(amabmac)))7f(b17 .- -:bm):c) eC

proving (A).
Suppose t;(a,d,c) € C for some ¢,d € C,a € Aandi=1,...,n. By (b) and (x) we obtain

a = q(a’ad;c;tl(a’;d;c)a"'7tn(aadac)) € C )

whence (B) is evident.
Clearly, from (¢) we infer (C).
By Theorem 1, C' is a class of some 8 € Con A.

Conversely, if C' is a congruence class of some 6 € Con A then the closeness under terms listed in (a),
(b) and (c) follows immediately from (*) and the substitution property of 6. i

Corollary 1. Let V be regular and permutable variety of a finite similarity type, let A = (A, F) € V,
) #C C A. Then C is a congruence class of some 6 € Con A if and only if C is y—closed under a finite
number h of terms of (a), (b),(c); especially, if k = card F then h < n(k + 1) + 1 where n is taken from
Proposition.

Examples. Let V be a variety of quasigroups, i.e. a variety of type (2,2,2) satisfying the identities
z-(r\y) =y (y/x)-z=y
a\(z-y) =y (y-z)/r=y.
Then V is regular and permutable since
tl(m;ya Z) = y/(Z\l')
q(z,y,2,u) = z(u\y)

are the terms of () of the Proposition. Let @ = (Q,-,\,/) € V and § # C C Q. By Theorem 2, C'is a
congruence class of some 6 € Con Q if and only if C is closed under the following terms (see also [1]):

p@y, 22,y1,y2,y3) = (2122)/(s\[(ys (1 \21)) (ys (y2\22))])
p2(®1,®2,y1,92,93) = (z1/22)/(ys\[(ys(y1\71))/ (y3(y2\z2))])
p3(®1,22,y1,92,93) = (z1\w2)/(y3\[(yz(y1\z1))\(y3(y2\z2))])
pa(y1,Y2,9Y3) = y1(y2\ys3)

p5(y1, Y2, 92) = y2/(y2\y1) -



Remark. Let us note that in the just presented example, n = 1, k = 3, the upper estimation of number

of terms is 1+ (3+ 1)+ 1 = 5 so the upper bound is reached. Consider a variety V of groups. V is regular
and permutable, one can take

ti(z,y,2) =xy 'z

q(z,y,2,u) =uz"y .

Following Theorem 2 we get the terms

(@1, y1,92,93) = y1ys ‘miyoys tay e
p2(T1,Y1,Y2) = 2y 'yey; Ty
p3(y1) = U

Pa(Y1,Y2,Y3) = sy 'y

p5(y1) = Y-

If a subset of a carrier set of a group is y—closed under p; then it is evidently y—closed under ps, p, and
ps. For example, substituing the unit element e for z; in p; we get py (variable indicies are unimportant).
Furthermore, the y—closeness under p; and p4 implies the y—closeness under p4(ys, p1 (mfl, Y1,Y2,Y3),Y1)-
Since the last term is the same as p», we have shown that in the case of groups we have only one
characterisctic term (p ), although the upper bound is 5.

Remark. Returning to Mal’cev result from the computational point of view, we must verify possible
infinite number of unary polynomials even in the case of finite algebra having finite similarity type. Our
method deals with a finite number of unary polynomials in the regular and permutable case:

Corollary 2. Let V be regular and permutable variety of a finite similarity type F, A€V, ) #C C A.
Then C is a class of some 6 € Con A iff it is closed under finite number h of unary polynomials.
Especially, if F ={fi;i=1,...,k} and each f; is o(f;)—ary, | = cardC, m = card A then

k
h S n Zm2‘7(fi)ln¢7(fi) + mln+1 +nl .
i=1

Proof: Consider any term of the form

ti(f(q(mlamllayaylla vee 7y1n);- .. ;q(mmamgnay;ymla‘ . '7ymn))7
f(mlln-'-;m;n);y)

of Theorem 2(a). It is clear that C is y — closed under this term if and only if it is closed under all the
unary polynomials (the variable is y)

ti(f(q(alaallay7clla .. -:Cln)a .. 7q(am7aflm7yacm17 .. -:Cmn))a
!

flay,,...;a0,),y)

where ay,al,...,am,al, € A, c11,...,¢mn € C. It is easy to see that the number of these terms is
m?? (Do) for each i = 1,...,n. Summing over F we get the number n Y5 m?7(f)[no(f) of unary
polynomials, the first term. Similarly, for conditions (b) and (c¢) of Theorem 2 we get the resting terms
mi™*! and nl. O

Let us think about the computational complexity of this problem. We are given an algebra A = (4, F)
with both A and F finite of a regular and permutable variety and a nonempty set C' C A. Decide whether
C is a congruence class of some 6 € Con A. Denote this problem by p. Furthermore, denote by py the
same problem for algebras of a given regular and permutable variety V only for which the terms g, t1,...,t,
are known. In the resting part let k,[, mf;, 0 have the same meaning as in Corollary 2.

Following the conventional approach (which is applicable for arbitrary algebras) one would generate
all the partitions of A with C' as a class. Note that in the case of regular algebras, if card C > 1 then the



partitions containing at least one singleton class can be omitted (there is only one congruence relation
with singleton classes, namely w), while the case card C' = 1 is trivial. For each such a partition we have
to testify the substitution property with respect to every operation f € F. Let us enumerate the number
of partitions to testify.

Using the Principle of Inclusion and Exclusion (see e.g. [4]) there are

> ([)er-or

onto mappings from a p—element A set onto an r—element set. Each such a mapping induces a partition
on A (its kernel). For each partition there are exactly ! mappings inducing it. Therefore, there are

1 « T .
=2 (=1 <Z> (r—a)?
i=0
partitions of a p—element set into 7 classes. The number of all partitions of a p—element set is thus
P 1< c(r
w0 =3 5 >0 ([) iy
r=1"" i=0

Little bit more complicated arguments using the Generalized principle of inclusion and exclusion ([4])
lead to the observation that there are

A o
"W =2 G L T

r=1 j
partitions of a p—element set containing at least one singleton class.
The problem py, is much more simple. By Theorem 2 it is enough to verify the y—closeness under the
listed terms. Arguments similar to those of Corollary 2 lead to the observation stating that there are

k
Z nm2e ) no(f+l 4 pymt2 4 g2

i=1

substitutions of variables necessary to check the y—closeness.

Recall that by a time complexity of a given algorithm is meant a function f : N — N such that
every problem of size n will by succesfully solved by this algorithm after at most f(n) computational
steps. A given problem is of time complexity f(n) if there is an algorithm solving it which is of time
complexity f(n). Problems which can be solved by nondeterministic algorithms (deterministic algorithms)
of polynomial (i.e. f is a polynomial) time complexity form the well-known class NP (P). Problems of
NP are exactly those ones for which there is a deterministic algorithm of polynomial time complexity
verifying the correctness of their solutions. The class P is considered as the class of tractable problems.
Algorithms of complexities greater than polynomial are considered as unusable.

Suppose one evaluation of any fundamental operation f € F represents one computational step. From
the above considerations it follows that by the conventional approach to solving our problem we have to
verify the substitution property for m(m —[) equivalence relations. In the case of regular algebras a little
work can be saved, we have only w(m — ) — 7'(m — [) equivalences to test. It is clear that in none of
these cases the computational time complexity is polynomial (it is much greater). On the contrary, for
algebras from regular and permutable varieties a polynomial number of computational steps is enough.
We have

Theorem 3. pe NP, py € P.
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