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Abstract

Fuzzy transform from [15] has been originally presented as an approximation method for contin-
uous functions. In fact, one can say that only the name indicate the connection to fuzzy methods,
otherwise, it belongs to the classical approximation techniques.

In this paper, we introduce a class of approximating formulas. Since, they arose as a generalization
of the classical normal forms, consequently, we denote them by the same term. Moreover, we will show
that fuzzy transform from [15] is a part of the larger group of formulas which are aimed at collecting
a partial knowledge about some real system or process. In this way, we vindicate its appertain to the
class of fuzzy methods.

Keywords: Disjunctive, conjunctive and additive normal forms; Fuzzy relation; Approximation
Fuzzy transform

1 Introduction

The notion of normal forms is well known from the classical logic and has been generalized into fuzzy
logic in many different ways. As an example, let us remind the results of P. Cintula and B. Gerla [3],
where the introduced normal forms represent formulas of propositional Godel logic. The representation
of functions represented by formulas of propositional Lukasiewicz and Goguen logics can be found in the
work [1]. From the other valuable results in this field we can recommend [11, 7, 2].

In this paper, we consider a direct generalization of the normal forms for the boolean functions
associated with the formulas of classical propositional logic

DNF;(x) = \/ P A LA (1)
F(x)=1

CNFs(x)= \/ =2{'v...vag, (2)
f(x)=0

into the fuzzy case, such that we exchange {0,1}-valued operations by [0, 1]-valued ones. This gener-
alization, as we will see later, can be extended and further used for an approximate representation of
extensional fuzzy relations (interpretation of fuzzy predicate formulas). Approximate representation in
logical framework means that a formula is equivalent to its normal form (disjunctive, conjunctive or
additive) under the special condition. The schematic representation to which we refer as conditional
equivalence or logical approximation, looks as follows:

Condition < (Extensional Formula <+ Normal Form). (3)

In fact, normal forms aggregate available local information about a fuzzy relation. This local infor-
mation consists of two parts combined by conjunction: the first part characterizes a local domain by
its membership function, and the second part describes a value of the fuzzy relation provided that its
arguments lie inside the respective local domain. Thus, the normal forms can be viewed as collections
of fuzzy IF-THEN rules and consequently they relate to the problematic of the approximate inference.
The fuzzy approach is recently widely used in practical applications where robustness of a system is
demanded.

We will introduce two types of normal forms, namely infinite and discrete (or finite) normal forms
(see [6, 5]). We will see that the first one could be viewed as an precise representation of the initial fuzzy
relation while the second one serves us as an ”universal” approximation formula. On the algebraic level
we do not have the notion of a limit at disposal. This is the main argument for having normal forms of
the infinite type which serves there as an limit element of a sequence of the finite normal forms where
the number of nodes specifying them increase. The condition which implies the equivalence (estimation
of an approximation error) of normal forms and initial formula will be presented as well.

Finally, we will show the concrete method for construction of additive normal forms using F-transform.
F-transform appeared to be elegant and very powerful tool for approximation of continuous functions.
Here, the F-transform is introduced as a part of much general class of formulas, namely normal forms,
and it is used for approximation of extensional fuzzy relations. The detailed presentation of F-transform
can be found in [12, 15].



2 Preliminaries

A fuzzy relation is nothing else than a fuzzy subset of a Cartesian product of non-empty sets. Its values
are interpreted as degrees to which are particular individuals in relation.

Definition 1 Let M be a non-empty set of objects. A function R : M™ — L is called n-ary L-fuzzy
relation on M.

Very natural is to put L = [0, 1]. In this case we will use notions fuzzy set and fuzzy relation instead
[0, 1]-fuzzy set and [0, 1]-fuzzy relation, respectively.

2.1 Elements form the analysis of t-norms

Original motivation for introducing the class of generalized multiplications known as triangular norms
(t-norms) was not logical. The main idea was to generalize the concept of the triangular inequality. Since
t-norms preserve the fundamental properties of the crisp conjunction, consequently they become to be
interesting for fuzzy logic as a natural generalization.

Definition 2 A function * : [0,1]> — [0,1] is called triangular norm (t-norm) if it is commutative,
associative, non-decreasing mapping fulfilling boundary condition, i.e. if for all z,y,z € [0, 1]:

XY =y*x (commutativity),
zx(y*xz)=(r*xy)*xz (associativity),
r<y=—=xxz<yxz (monotonicity),

rxl=zx (boundary condition).

Example 1 Below, we show the most known examples of continuous t-norms which serve as natural
interpretations of a generalized conjunction:

(1) Minimum t-norm x xy =z Ay,
(2) Product t-norm xxy =1z -y,
(3) Lukasiewicz t-norm z xy = max(0,x +y — 1).

A concept associated with the t-norm is called t-conorm which corresponds due to its behavior to a
generalization of the classical connective ’or’.

Definition 3 The t-conorm is a binary operation Vv : [0,1] x [0,1] — [0, 1] which has the properties
of commutativity, associativity and monotonicity from Definition 2 and fulfills the following boundary
condition for all z € [0, 1]:

0ve = z.

A t-conorm dual to the given t-norm x* is given by
avb=1—(1—-a)*(1-0).
Example 2 The most important t-conorms dual to the t-norms from Ezample 1 are:
(1) Mazimum t-conorm (dual to minimum) xVy =z Vy,
(2) Product t-conorm (dual to product) xVy =x+y —x -y,
(3) Lukasiewicz t-conorm (dual to Lukasiewicz t-norm) xVy = min(1,z + y).

Let us stress that mazimum is the least t-conorm i.e. xVy < xVy for all z,y € [0, 1] and for any t-conorm
v (see [11]).

It follows from the definition of the t-norm that it is a monoidal operation on [0,1]. Furthermore,
< [0,1],A,V > is a complete lattice. Therefore, we can introduce the residuation operation in the
following form.



Definition 4 Let * be a t-norm. The residuation operation —.: [0,1]> — [0,1] is defined by

x—>*y:\/{z|x*z§y}. (4)

Let us remind that the only necessary condition for an existence of the unique residuation operation is
that the respective t-norm is left-continuous (see [9]).
Moreover, we will use the following derived operations

n—times

T Y= (T > y) Ay = x).

In the sequel, we denote Lukasiewicz operations t-norm, t-conorm and residuation as ®, ® and —y,
respectively. It is worth to mention the following relation between Lukasiewicz t-conorm and residuation:

l1-z)dy=2—=y1y (5)

Lemma 1 Let x be a t-norm and — . its residuation. Then the following properties hold for all x,y,z €
[0,1]:

zxy <, (6)

zxy <z y <z 2, (7)
r<y=z—>.y=1, (8)
r<y=y >, 2<T 2, 9)
r<y=z-3, <239, (10)

Interesting t-norms are those having additive generators.

Definition 5 Let g : [0,1] — [0, oo] be a continuous strictly decreasing function such that g(1) = 0 and
% is a t-norm. Then ¢ is an additive generator of * if

zxy =g (g(z) + g(y)) (11)

holds for all z,y € [0,1]. Moreover, the function g(-1) : [0, 00] = [0, 1] such that

1y _ [ 97 () ify €[0,9(0)]
97 —{ 0 if y € (9(0), 0]

is called the pseudoinverse of g.

Additive continuous generators for t-norms are determined uniquely up to a positive multiplicative
constant.

Example 3 The following are examples of additive generators for continuous t-norms:
(1) gz(x) =1 — 2 generates Lukasiewicz t-norm,
(2) gp(z) = —Inzx generates product t-norm.

For the t-norm x generated by a continuous additive generator g, the corresponding residuation is
given by

z =y =g (max(0, g(y) — g(x))), (12)
and the corresponding biresiduation operation by
z ey =9 (l9() = 9(w)D. (13)



Definition 6 A t-norm * is called Archimedean if for every z,y € (0,1) there exists n € N such that
" < y.

The following theorem (see [9]) characterizes the class of generated t-norms.

Theorem 1 A t-norm * : [0,1]%> — [0,1] is a continuous Archimedean t-norm if and only if it has an
additive generator.

Let us remind the result in [9], where the authors proved that arbitrary continuous t-norm could
be approximated with arbitrary precision by a t-norm constructed as an combination of those having
additive generators.

Definition 7 Let % be a t-norm generated by the additive generator g. Then
e x is called nilpotent if g(0) < +o0,

e x is called strict if g(0) = +o0.

Theorem 2 demonstrates that continuous Archimedean t-norms can be divided in two disjoint classes,
namely nilpotent and strict (see [9] or Theorem 2.10 in [11]).

Theorem 2 Let x be a continuous Archimedean t-norm. Then, x is nilpotent if and only if * is not
strict.

Remark 1 Let x be a t-norm with with an additive generator then

lim(a:—>*y)”:{ 1 lfﬂfgya

n— o0 0 otherwise.

Let us denote

(z = y)® = lim (xz =, y)" (14)
n—o0
and additionally
(x —.y)° =1 (15)

2.2 Extensional fuzzy relations

Extensionality is well known notion from the classical set theory. A generalized version of this notion has
been introduced by F. Klawonn and R. Kruse in [8]. There, the extensional fuzzy relations are defined
w.r.t. a similarity relation on their domain.

Below, we present a more general case of extensionality. The reason comes from the fact that ex-
tensional fuzzy relations defined w.r.t. similarity have properties relating to Lipschitz continuity. Let us
recall the paper [10] where it has been proved that in a t-norm based algebra, the extensionality of a
fuzzy relation w.r.t. a similarity is equivalent to Lipschitz continuity w.r.t. the pseudo-metric induced
by the similarity.

The following generalized notion describes better character of a given relation.

Let M be some nonempty set of objects and L be some scale of truth values such that it include 0 as
minimal element and 1 as maximal one.

Definition 8 Let E be a binary fuzzy relation on M and f(z1,...,2z,) be an L-valued function and let
c1,.--,cn € M. We say that f is extensional w.r.t E and %, ® if for all ¢1,...,¢cn,T1,--.,Tn € M the
following holds truth

E(zy1,c1) %% E(Tp,cn) ® f(21,...,2,) < fler, o en), (16)

where %, ® are arbitrary left-continuous t-norms. If * = ® then we speak about extensionality of f w.r.t
E and x.



Later on, we will work also with L-fuzzy relations extensional w.r.t. binary L-fuzzy relations which
are supposed to fulfill some of the following properties.

Definition 9 Let % be a t-norm and consider a binary L-fuzzy relation R on a domain M. Then

1. R is called reflexive if
R(z,z) =1,forall z € M,

2. R is called symmetric if
R(z,y) = R(y, z),for all z,y € M,

3. R is called x-transitive if

R(z,y) * R(y,z) < R(z, z),for all z,y,z € M.

The extensionality property is closely related to a Lipschitz continuity. Later, we will use the result
from [10].

Theorem 3 Let x be a t-norm generated by a continuous additive generator g. Moreover, let f(x) be an
n-ary fuzzy relation on M and go f o T~ o g=' has bounded partial derivatives on [0,g(0)]. Then f(x)
is extensional w.r.t. similarity S and %, where

S(z,y) = (T(z) & T(y)". (17)

The parameter in the relation S is computed as follows

k= _max k;, where
-1 -1
k= max (2WeSeT g7 )
x€[0,9(0)]" Ox;

foralli=1,...,n. Moreover, g(S(z,y)) is Lipschitz continuous on M. An operation & rounds up x to
the nearest integer.

A necessary condition for f to be extensional is the continuity of f. A sufficient condition is the
boundedness of the first partial derivatives of go fo T 1o g1 on (0, g(0)).

3 Representation of fuzzy relations by infinite normal forms

In this section, we are going to introduce special formulas of the infinite type. We show that these
formulas can be viewed as universal representation formulas having on mind the extensionality property
of an original fuzzy relation. But from the other side, we want to stress that they are not suitable for
representation of the given fuzzy relation because it brings no simplification. Normal forms of the infinite
type mirror here limit elements of the normal forms of the discrete type.

Definition 10 Let f(zi,...,x,) be an n-ary fuzzy relation, E be a binary fuzzy relation on M and *, ®
be left-continuous t-norms.

The following formulas are disjunctive normal form of f, conjunctive normal form of f and additive
normal form of f

fDNF(xla---axn): \/ (E(Claxl)*“'*E(Cnaxn)®f(cla"'7cn)) (18)
1yeesCn EM

fonr(@y,..oxn) = N\ (B@,er) s % E(@n,cn) —s fler,-..,n)), (19)
1 ...,CnEM

fanr(z1,...,2zy) = @ (E(ci,21) % - % E(cn,@n) ® f(c1,-..,¢n)), (20)
1yeesCn EM

respectively.



Later, we will need a special property of the binary fuzzy relation being a part of an additive normal
form. It can be viewed as a generalization of the classical orthogonality.

Definition 11 Let E be a binary fuzzy relation on M and x be a t-norm. We say that E fulfils the
orthogonality property of the infinite type if

D (E(cr,m1) %% E(cp,xn)) = 1 — (E(dy,x1) % - - % E(dy, ). (21)

is valid for each zy,...,z, € M.

The following theorem relates to the properties of disjunctive and conjunctive normal forms of the
infinite type with respect to an original fuzzy relation. In fact, it shows that based on the extensionality
property the original formula is equal to its normal form.

Theorem 4 Let f(x1,...,x,) be an n-ary fuzzy relation and E(x,y) be a reflexive binary fuzzy relation
on M. If f is extensional w.r.t E and left-continuous t-norms x, ® then
f@i,..,m0) = fonF(z, .0 70), (22)
f(xla"'axn):m(xla"'axn)- (23)

forall zy,...,z, € M.

Proof. 1 It is sufficient to consider the case n=2.
Since f(z1,22) < f(z1,22) and E is reflexive, we obtain

f(@1,22) < E(z1,31) * E(22,22) ® f(21,22),
E(z1, 1) % B(22,m2) ® f(z1,2) < \/  (Bler, 1) * E(ea,m2) ® f(e1,02)),
Cl,CQEM
f(z1,22) < fonr(T1,22).

On the other hand, from extensionality of f we have

E(er,@1) x E(c,22) ® f(e1,¢2) < f(z1,22),

V  (Bler, 1) x E(ea, ) ® f(er,00)) < fan,@2).
Cl,CQEM

And that is why f(z1,22) = fone(z1,22)-

Similarly, the following proves the second formula.

E(z1,21) % E(x2,72) =@ f(z1,22) < E(x1,21) % E(x2,22) = f(21,22),

/\ (E(71,c1) * E(22,¢2) =@ f(c1,02)) < E(w1,71) * E(z2,22) =8 f(21,72),
c1,c0€EM
due to (1) and reflexivity of E we obtain
E(zy,21) * E(x3,72) ® /\ (E(z1,¢1) % E(z2,02) =g f(e1,62)) < f(21,2),
c1,c0€M
fonr(rr,22) < f(21,22).

On the other hand, from extensionality we have

E(x1,¢1) * E(xa,02) ® f(z1,22) < f(c1,¢2),

and because of (1)
f(xr,m2) < E(zy,01) * E(22,02) =g fle1, c2),

flen,o) < N\ (Bl a)x B, e) —e fla,e)),
c1,c0€M

which implies that f(x1,x2) = fonr(z1,T2).



Now, we are going to prove an analogous result for additive normal forms. We find out that extension-
ality of f w.r.t. E is deficient requirement in this case and we have to demand some kind of orthogonality
from the reflexive binary fuzzy relation E.

Theorem 5 Let f(x1,...,2,) be an n-ary fuzzy relation and E(z,y) be a reflexive binary fuzzy relation
on M. Moreover, let E fulfills the orthogonality condition of the infinite type. Then
fane(z1,. ... xn) = f(z1,...,20). (24)

forall zy,...,z, € M.
Proof. 2 The case n = 2. Since

E(.’El,.’lfl) % E(QZQ,QZQ) =1
we obtain the following equality

P (Eler, 1) % E(cz,22)) = 0. (25)

c1.e0€EM
c1,c0#21,22

From (25), reflexivity of E and boundary condition of a any t-norm we have

fanr(zi,x2) = @ (E(ci,z1) * E(c2,22)) ® fc1,c2)) =
c1,c0€M

P (Bler, 1) x B(ez,22)) @ fler, 2))®

c1,c0€EM
c1,cpFwy, T2

© (E(z1,71) * E(72,22) ® f(21,22)) = f(T1,72).

4 Discrete normal forms and their approximation abilities

Normal forms from this section are introduced especially with the aim to have approximations of a fuzzy
relation with arbitrary precision. The information about the error of approximation is contained in the
below proved condition of conditional equivalence.

Definition 12 Let f(z1,...,2,) be an n-ary fuzzy relation, E(z,y) be a binary fuzzy relation on M
and *, ® be left-continuous t-norms.

The following formulas are the discrete disjunctive normal form of f, the discrete conjunctive normal
form of f and the discrete additive normal form of f

k
fonF(zr, .. 2n) = \/ (E(ciy,m1) * - % E(ci,, 70) ® f(ciyy- -5 ¢4,)) (26)
i1 yenyin=1
k
fenr(mi,. . m,) = /\ (E(w1,¢i,) %% E(zn, ci,) 26 flci, .-, ¢i)), (27)
11 yeenyin=1
k
fanrp(z1,. ., 20) = @ (E(ciy, 1) %+ % E(ci,, xn) ® f(ciy,---,¢i0)), (28)

U1 ,-enyin =1
respectively.
Similarly to the infinite case, we introduce a generalized orthogonality of the finite type.

Definition 13 Let E be a binary fuzzy relation on M and x be a t-norm. We say that E fulfills the
orthogonality property of the finite type if

k
D (B, m) =B, m) = 1= (B(cjy, 1) % - Blej,, 2n)). (29)
PG
is valid for each z1,...,2, € M



As we will see, the discrete disjunctive and/or conjunctive normalforms give lower and/or upper
approximation of an extensionalfuzzy relation, respectively. Moreover, the reflexivity requirement on E
is not necessary in this case.

Proposition 1 Let f(x1,...,x,) be an n-ary fuzzy relation, E(z,y) be a binary fuzzy relation on M and
x, ® be left-continuous t-norms.
If f is extensional w.r.t E and %, ® then

f@i,. . 20) > foNF(z1, .0 T0), (30)
f(wlv'--ax’n)SfCNF(fEla---;zn)- (31)

forall zy,...,z, € M.

Proof. 3 It is sufficient to prove the case n = 2. From extensionality of f we have

E(cilvxl) * E(ciwa) ® f(ciuczé) < f($17$2)a

k
\/ E(ciuwl) *E(Ci2,.’172) ®f(ci1aci2) < f(ajl:zQ):

i1,in=1
and that is why f(x1,22) > fonr(T1,T2).
Similarly,
E(z1,¢i,) % E(z2,¢i5) ® f(z1,22) < f(eiy,¢i),
and (1) implies
flz1,22) < E(x1,¢4) * E(x2,¢i,) —e fciy,Cin),
k

f(x17x2) < /\ (E(xlacil) *E(x%ciz) —® f(ci17ci2))7

i1,i0=1
i.e. f(wy,22) < fonr(z1,x2).

Considering the symmetry of the binary fuzzy relation E, we are able to prove the following relation-
ship between disjunctive and conjunctive normal forms with respect to additive normal form.

Proposition 2 Let f(x1,...,zy,) be an extensional n-ary fuzzy relation w.r.t. binary reflexive and sym-
metric fuzzy relation E and left-continuous t-norms %, ® and moreover w.r.t. E and x, ®, where ® is
Lukasiewicz t-norm. Furthermore, the orthogonality condition (29) holds truth. Then

fonr(i, .. zn) < fane(z1, ..., 20), (32)
fanr(z1, ..., 20) < fonp(T1,.. ., 20), (33)
for all x1,...,x, € M, where fanr, foNr are built with help of x,®, while fonp is constructed with
help of *,®.
Proof. 4 Since the fact that supremum is the least t-conorm, we obtain that fpnp(x1,...,2,) < fanrp(z1,...

It is sufficient to consider the case n = 2.

E(xlacil) * E(x%ciz) ® f(ciuciz) < E(xlacil) * E(x%ciz)a

k k
@ (E(wlacil)*E($2ﬂci2)®f(ci1aci1)) < @ (E(wlacil)*E("E?aczé)):
i1fllz‘;zi%j2 i1fllz‘;zi%j2

and easily from the orthogonality assumption we have

k
@ (E(xlacil) *E($27ci2) ®f(ci1aci2)) <1 _E(wlach) *E(:E?acjé):

i1,ip=1
i1,i0#71,d2

7xn)-



k
@ (E(xlvcil) *E($27ci2) ®f(cilaci2)) <

i1,in=1
(1= E(z1,¢5,) * E(x2,¢5)) ® (E(21,¢5,) * E(22,¢5,) ® f(cji, ¢50)),
k
@ (E(zlvcil) * E(:E?vclé) ® f(cilaciQ)) < (1 - E(zhc]'l) * E(:E?vcjé)) @ f(cjuc]é)'

i1,i2=1
From the property (5) we obtain

k
@ (E(zlvcil) * E(:E?vclé) ® f(cilaciQ)) < E(.’El,le) * E($2vcj2) —F f(cjlac]é)v

i1,i2=1
and finally

k k
@ (E(z1,¢iy) * E(z2,0i5) ® f(eiy,03)) < /\ (E(a:hcﬁ) * E(:L‘2,Cj2) —L f(cj17cj2))7

i1,i2=1 Ji,j2=1

which implies
fANF(xla-'-awn) S fCNF(fUI;---:zn)-

Let us illustrate the relationships between normal forms on the following example.
Example 4 Let us consider the following one-dimensional case where the approrimated fuzzy relation
f(z) =sin(z) + 0.1
is defined on M =1[0,1]. A binary fuzzy relation E is given as
E(z,y) = (z ¢ y)°,

while the nodes c; are defined as ¢; = (i — 1)/k for i =1,...,10. Finally, let ® be product t-norm.

Then, we obtain a relationship between conjunctive, disjunctive and additive normal forms which is
illustrated on Figure 1. From Figure 1(c), it is clear that additive normal form is absolutely the best
approzimation formula from the set of normal forms for the function f with respect to E and such a
number and distribution of the nodes c¢; over M. This fact immediately follows from Proposition 1 and
Proposition 2.

It has been mentioned that a conditional equivalence of the form (3) gives a lower boundary for
the value of an equivalence (biresiduum) between the normal forms and the original fuzzy relation.
Considering a t-norm with the additive generator g, we can rewrite (3) into the following form

| g(Extensional Formula) — g(Normal Form)| < Error = g(Condition),

which allows us to speak about an approximation on the pseudo-metric space generated by g. Let us
remind that g(S(z,v)) defines a pseudo-metric on M if S is a similarity relation on M.

Theorem 6 Let all the assumptions of Proposition 1 be valid.
If f is extensional w.r.t E and t-norms %, ® then

fDNF(wla- . .,.’En) e f(.’l?l, c. ,CEn) Z C(.’El, c. ,.’En), (34)
fC’NF(fEla---afEn) o f(a:l,...,a:n) > C(wl,...,wn) (35)
forall zy,...,x, € M, where
O(xla"'axn):
k
\/ (E(xlach)*"'*E(xnacin))®(E(Ci1ax1)*"'*E(Cinaxn))' (36)

10
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(a) A relationship between normal forms (b) An error of approximation
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(c) An error of approximation by additive normal form

Figure 1: An illustration of the approximation abilities of all three given normal forms for the fuzzy
relation from Example 4. The black line represents fanr(z), the dashed gray line is for fpnr(z) and
the smooth gray line belongs to fonr(z).
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Proof. 5 Only the case n = 2 will be considered. From extensionality
(E(x1,ciy) * E(x2,¢iy)) ® f(21,22) < f(eiy, ¢i)
and monotonicity of t-norms we obtain
(E(ciy, @) * E(ciy,x2)) ® (E(z1,¢4) * E(x2,¢5,)) ® f(x1,22) < (E(ciy, 21) * E(ciy, x2)) ® f(ciy, Cin),

(E(ciy,z1) * E(ciy,22)) ® (E(x1,64,) * E(22,¢43,)) ® f(21,22) < fone(z1,22).
Now, we apply (1)

k

\ (E(ci,,21) * E(ciy, 72)) ® (E(21,¢5,) % E(2,¢5,)) < f(21,22) 2 fonr(T1,72),
i1,i0=1
and since
fonp(z1,22) < f(x1,22),
we obtain

1 < fonr(z1,22) —e f(21,72)

what proves (34).
Using (p1 —e ¥1) ® (92 =g ¥2) < (01 ® 92) =e (Y1 ® ¢2) we obtain

(E(z1,c¢,) * E(xa,¢i,) =@ f(Ciy, i) ® (E(ciy, 1) * E(Ciy,2) —e E(ciy,x1) * Eciy, 22)) <
(B(z1,ciy) * E(z2,¢3y)) ® (E(ciy, @1) * E(ciy, ©2))) = e (f(Cirs Cin) ® (Elciy, 1) * E(ciy, T2)))-
Since the property (1)
(E(ciy, 1) x E(ciy; 2)) o (Elci, x1) * E(ciy, 2)) =1
and applying (1) twice gives us
(E(z1,ciy) * E(2,¢3,)) ® (E(ci,, 21) % E(ciy, ©2)) <
(B(z1,¢iy) * E(22,¢5,)) 2o f(CirsCin)) 2o (Elciy, @1) % E(ciy, 2) ® f(ciy, i))-
Because of the property (1) of the residuation operation
(E(1,ciy) * E(2,¢3y)) ® (E(ci,, 21) % E(ciy, ©2)) <

k
/\ ((E(xlach) *E(x%ciz)) —® f(cinciz)) —® (E(ciuxl) * E(Cima:?) ® f(ciuclé))'

i1,i0=1

Finally, from extensionality
(E(Ci1 ) xl) * E(cizaxQ)) ® f(ci1 ) ciz) S f(xla x?)
and with help of (1) we obtain

k
\ (E(z1,c:,) * B2, ¢i,)) ® (Eciy, 21) % E(ciy, 22)) < fonr (@1, 22) e f(21,2).

i1,i0=1
And similarly to the proof of (34) since

flz1,22) < fonr(zr,z2)

we obviously obtain the proof of (35).

12



Conditional equivalence for additive normal form can be proved under the much strict requirements.
Additionally, this equivalence is only of the Lukasiewicz sense.

Theorem 7 Let all the assumptions of Proposition 1 be valid. Moreover, let f is extensional w.r.t E and
x,®, [ is extensional w.r.t. E and t-norms x, ®, where ® is Lukasiewicz t-norm, and let the orthogonality
condition of the finite type holds truth. Then

fanr(x1,...,xn) < f(21,...,20) > C(21,.. ., 20), (37)
forxy,...,x, € M, where C is given by (36).

Proof. 6 The case n = 2 is sufficient. Easily, due to the fact that mazimum is the least t-conorm

K
fanr(,22) >\ E(ei,, 1) * E(ciy, 72) ® f(ciy, i),

i1,i0=1

from extensionality w.r.t. E,*,®: E(x1,¢;,) * E(x2,¢;,) ® f(x1,22) < f(ei,,¢i,) we obtain

k
fANF(ajl:xQ) > \/ (E(chaxl) * E(cizaxQ) ® (E(wlacil) * E($Qﬂci2) ® f(ajl:wQ)))a
i1,ia=1
k
fanr(zi,z2) >\ ((B(ci,,m1) * E(ciy, 22)) ® (B(21,¢5,) % B(w2,¢3,))) ® f(21,22),
i1,ia=1

and from (1)
f(x1,22) = fanr(z1,22) > C(x1, x2).

The other side can be proven as follows
E(Ciuxl) * E(Cizax2) ® f(cinciz) < E(Ciuxl) * E(C,’Z,:L‘g),

k k

@ E(ciy, 1) * E(ciy, x2) ® f(ciy,cip) < @ E(ciy, 1) * E(ciy, T2),
i Einia eI s
k
@ E(ciy,x1) * E(ciy, 22) ® flciy, cin) < (1= E(cjy,21) * E(cjy, 22)),
PR N

fanp(wy, wa) < (1= E(cjy, 21) * E(cj,, 22)) ® (E(cjy, 21) * E(¢jy, 22) ® f(cjy5¢5)),
what is due to (5)
fanrp(wy,x9) < (Elcjy, 21) * E(cjy, 22)) = (E(cjy, 21) * E(cj,, 22) ® f(cjys¢5)),
and because of (1)
(E(cjysx1) * E(cjy, 22)) © fanr (21, 22) < E(cjy,71) * E(cjy, 22) ® f(¢)1,¢5,)-
Now, we apply extensionality w.r.t. E x, &®
(E(cjy 1) * E(cjy,22)) ® fanr(z1,22) < f(21,22),

and again since 1
(E(cjy,m1) * E(cjy, 72)) < fanr(T1,22) =, f(21,72),
(E(cﬁ?xl) * E(cj27x2)) ® (E(xlacﬁ) * E(x%cjz)) < fANF(xlax2) - f(x17x2)7

which follows
C(x1,22) < fanr(x1,x2) = f(21,22),

13



If we work with symmetrical £ and Lukasiewicz t-norm then we obtain a concrete case of the intro-
duced conditional equivalence of the additive normal form as a straight corollary of the Proposition 2.
The fact that the additive normal form lies between the disjunctive and the conjunctive normal forms
directly implies the following result.

Corollary 1 Let f be an extensional fuzzy relation w.r.t. binary fuzzy relation E and the left-continuous
t-norms %, ®, where ® is Lukasiewicz t-norm. Moreover, let E fulfills the orthogonality condition (29).
If E is reflexive and symmetric then

fANF(wla---,zn) o f(:l}l,...,.’L”n) Z C’(.’El,...,.’En) (38)

forall x1,...,xy, € M, where C is a modification of (36), where ® is replaced by ®.

5 F-transform as an example of additive normal forms

In this section we deal with a fuzzy approximation method called fuzzy transform (F-transform) [12,
13, 15]. The main idea of F-transform consists in the replacement of an original continuous function by
its simplified discrete representation in complex computations. Results of such computations are later
transformed back to the space of continuous functions and reflect in additive normal form.

5.1 Original concept of F-transform

This subsection consist of the original definitions of F-transform (direct and inverse) mainly taken from
[12, 13] for the 1-dimensional case and from [15] for its generalization to the higher dimension. In the
sequel, an interval [a, b] of real numbers will be denoted by symbol M.

Definition 14 Let ¢; = a+h-(i—1) be nodes on M where h = (b—a)(k—1), k> 2andi=1,...,k We
say that functions A;(z),... Ax(z) defined on M are basic functions if each of them fulfills the following
conditions:

o Az M — [0, 1], AZ(CZ) = 1,

Ai(z) =01if z & (ci—1,ci11) where c_1 = a, cgr1 = b,

e A;(z) is continuous,

A;(z) strictly increases on [c;—1,¢;] and strictly decreases on [¢;, ¢it1],
. Zle Ai(z)y=1,forall z € M
These basic functions forming together a fuzzy partition of M play a crucial role in further definitions.

Definition 15 Let f(x) be any continuous function on M and Ai,..., Ax(x) are basic functions forming
fuzzy partition. We say that the k-tuple of real numbers [F}, ..., F}] is the F-transform of f with respect
to Ay (z),..., Ar(z) if

b
py = L @A) )
[, Ai(x) d
The components F; of the F-transform serve us as a discrete representation of values of f above the
non-zero domains of A;. In fact, we are averaging all the values above such intervals [¢;_1, ¢;+1] and these
fuzzy sets A; are used as weights in this averaging.
To obtain an approximation of function f we must somehow transform the discrete representation
back to the space of continuous functions. For this purpose an inverse F-transform is used.

14



Definition 16 Let [Fy, ..., F] be the F-transform of a function f(z) with respect to Ay (x),..., Ax(x).
The function

k
f @) = - Fdi) (10)

will be called the inverse F-transform.

The concept of F-transform can be straightly generalized for functions with more variables. For
instance, let us consider a continuous function with two variables f(z1,z2) defined on a domain M =
[a,b]?. Then the formula defining the F-transform is modified into the following one

LY Fr, @) i) Aj (w2) ey des

Fij = (41)
f; fab Al(xl)AJ (.’172)d.’171d.’172
And analogously to the one-dimensional case, the inverse F-transform is given as follows
k
Fl(er,me) = Ag(mr)Aj(2a) . (42)

4,j=1

5.2 F-transform for fuzzy relations

Here, we debunk F-transform as a special case of additive normal form and so, we can bring to bear all
the results from the theory of the normal forms introduced above on this special additive normal forms.
Let M =[a,b] C R and f be a fuzzy set f: M — [0,1] and let Ej be defined as follows

Ep(z,y) = (T(z) 3, T(y))", (43)

where k € Nand T : M — [0, 1] is given by

T—a
T(z) = T

(44)

It is clear that FEj, is similarity relation for each k. In general, T' can be arbitrary continuous strictly
increasing function such that T'(a) = 0 and T'(b) = 1.

As the next step, we will introduce a generalized F-transform for a class of fuzzy sets with continuous
membership functions. Taking into account the phenomenon of vagueness then the continuity of fuzzy
sets is a natural requirement.

Definition 17 Let f be a fuzzy set on M with the continuous membership function and Ej, be a binary
fuzzy relation defined by (43). Then a fuzzy set F}, given by

f Bu(ey) © f()dy

Fi(z) = *— , (45)

f Ey, (27, y)dy

a

is called the F-transform of f(z) w.r.t. Ej.

The following lemma relates to the extensionality of the F-transform.

Lemma 2 Let E; and Fj be as above. Then, F} is extensional w.r.t. Ej and product t-norm ©.
Proof. 7 From the transitivity and symmetry of Ey, we obtain the following inequalities

Ey(z,y) © Ex(x,2) < Ex(y,2) and
Ey(z,y) © Ex(y, 2) < Ey(, 2),

15



the monotonicity of ® implies that
Ey(z,y) © E(z,2) © f(2) < Ex(y,2) © f(2),

and then

b

a

b b
/ Eu(z,y) ® Buly, ) dz < / Ei(z, 2) dz,

because we integrate over z, we have

b b
Bi(z,y) ® / By(z,2) ® f(2) dz < / Ei(y,2) © f(2) dz

b b
Eu(z,y) © / Fuly,2) dz < / By, ) dz,

a

the property (1) of ® follows

b b
Ei(z.y) < / Ei(z,2) ® £(2) dz -0 / Ei(y,2) ® £(2) dz,

a

b b
1 1
By (x, </ dz — /7dz,
KD S | B © 70 ] B
a a

and thus

b b
Ep(z,y) < (/Ek(ﬂfaz)Gf(z) dz _)(D/Ek(yaz)Gf(z) dz) ©

a

b
1
© (/ Ek(xaz) dz e

since © satisfies (a1 —q az2) © (b =g b)) < (a1 ©® by =g a2 © ba) then

b

b b
JEr(z,2)© f(2)dz [ Egly,2) @ f(2)d
Ey(z,y) < +— o
[ Er(z,2) dz [ Er(y,2) dz

or equivalently
Ei(z,y) < Fir(z) =0 Fi(y)-

Now, let us repeat the formula defining the orthogonality property for Ej,

k+1
@Ek(ci,a:) =1- Ek(cj,a:).
i=1

i#]
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(a) M =10,1] and T'(z) is given by (44) (b) M =1[0,1] and T(z) = x>

Figure 2: An example of basic functions given as Ej(c;, ), where ¢; for i = 1,...,k + 1 are distributed
over [a, b] such that Ej, fulfills the orthogonality property.

This leads to (k + 1) equidistant nodes é; = (i — 1)/k, i =1,...,(k+ 1) on [0, 1], which define nodes
ci € M as ¢; = T_l(éi).

It is worth of mentioning that fuzzy relation Ej(c;, ), where nodes ¢; are chosen to hold the orthog-
onality condition (46), determine so called basic functions from Definition 14 of the triangular shape
(see figure 2). Moreover, let us stress that values Fj(c;) exactly correspond to the components of the
F-transform F; from Definition 15.

Lemma 3 Let E) be a binary fuzzy relation on M = [a,b] given by (43) and ¢; = a. Then, E}, fulfills
the orthogonality property of the finite type (46) if and only if c; =T~ ((i —1)/k),i=1,...,(k+1).

Proof. 8 Let us denote & = T'(z) and § = T(y) and evaluate relation Ey(z,y). Keeping in mind that
oF =z @ 2* =1 we get that

Ei(z,y) = (& 1 9)" =0A (1 - kl|Z ).

Now, we assume that there exist ¢; € [0,1] fori = 1,...,k+1 such that they the following orthogonality
condition

E+1
@ Ek(ci,x) =1- Ek(cj,:n),
7
is valid for arbitrary j and x € M.
For the left hand side we write
k+1 k+1
P Elcivz) =1AD (0V (1 - klé; — &),
i=1 i=1
i#j i#]

while for the right hand side the following holds
1—Eg(cj,z) =1—(0A(1—Eklé; —2))

and both sides are equal.

This equality must hold for each x € M and thus also for x = c;, where j € {1,...,k+ 1}. Let us
fiz some j and put x = cj i.e. £ =¢;. Then, the right hand side obviously equals to 0. Further, the left
hand side equals to 0 if and only if all the summands from the left hand side equal to O i.e.

OAN(I—kl&i—¢) =0 foralli=1,...,k+1,i#7,
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which implies |¢; — ¢;| > 1/k. Since j has been chosen arbitrarily we obtain
|6 —¢;| > 1k foralli,j=1,....k+1,i#j. (47)

If we fix ¢, = 0 then only a distribution of the nodes ¢; given by é; = (i — 1)/k, fori=1,...,k+1,
fulfills the condition (47), which proves the claim of this lemma.

Let us use the following denotations

1 z=y
Ey(z,y) = lim Eg(z,y) = ’
> (@Y) koo ¥ (@) { 0 otherwise.

Fo(z) = lim Fi(z) = f(z),

k—o0

If we specify an additive normal form of the infinite type such that it gives the formula of the F-transform
then we can formulate the following result.

Proposition 3 The infinite variant of the orthogonality (21) is fulfilled only by Es and additionally

Frr(@) = Fanr (@) = @) (Ex(c,2) © Fuo(c) = f(2). (48)

ceEM

Proof. 9 It is easy to see that frr(x) = f(z).
Let us prove the first claim by contradiction. Assume that the orthogonality (21) is fulfilled by Ej,

P Eilc,x) =1 - Ep(d, z)

ceM
c#d

for some finite k < co. Let us choose d = x. Then the right hand side of the infinite orthogonality is as
follows
1—-FEy(d,z) =1— Ep(z,z) =0.

That means that

@ Ei(c,z) =0.
cEM
c#td

It is possible if and only if Ex(c,z) = 0 for all ¢ # x. But then k = oo, which contradicts with the
assumption. Thus, (21) holds only for E.

For practical applications we need to have a finite discrete case of an approximating formula.

Definition 18 Let f : M — [0,1] be a fuzzy set, T : M — [0,1] be a transformation function and Ej,
be given by formula (43). Furthermore, let Fy(z) be the F-transform of f w.r.t. Ej;. Then the additive
normal form of Fy(z) w.r.t. Ej and the product t-norm ©®

(k+1)

fir(x) = @B (Br(ei,z) © Fy(ci)) (49)

i=1
will be called the discrete F-transform of f w.r.t. Ej.

In the following proposition, we show the conditional equivalence for F-transform.

Proposition 4 Let f, Fy, and E}, be as above and Ej, satisfies the orthogonality requirement for ey, ..., cp41
then

C(x) < Fy(2) &, fEr(2), (50)
for all x € M. The condition C(z) is given by

k41
C(z) = \/ Ei(ci,x).

18
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(b) An error of approximation given by
e(z) = [fpr(z) — f(2)]

(a) Original function and its approximation for k = 3

Figure 3: An example of fE.. given by (49) for f(z) = 1A (22 +0.1) on M = [0,1].

Proof. 10 From Lemma 2, we know that Fy, is extensional w.r.t. Ey and ®. Using the fact that
Ek(zay) ®p S Ek(.’lf,y) ®p,

holds for arbitrary p, we obtain that Fy, is also extensional w.r.t. Ey and ®. Finally, applying Theorem
(51)

7, we have
k+1
\/ Ei(ci,x) < Fi(2) &g fir(@).
=1

transparency. Nevertheless, a generalization is straightforward and leads to the following formu

(k+1)
@ (Ek(cilawl)®"'®Ek(cin7$n)®Fk(ci17 -7cin))7

7$n) =
01, tn=1

fﬁ‘T(wl, .

where F}, is given by
Ek(wlayl) ©--0 Ek(x’nay’n) © f(y17

la

All the results from this section are established for 1-dimensional case with the aim of having better

) dyt .., dyy

7$n)
Ek(xlayl) ®"'®Ek(xnayn) dyl 7dyn

R e
R

Fk(zl,...

Let us illustrate properties of F-transform frr on the following example.

Example 5 Let f(x) = 1A (2% +0.1) be a fuzzy relation on M = [0,1] and let ® be product t-norm.

Considering k = 3, we obtain that
4
|Fi(@) = fir(@)] < 1=\ Ej(ci, ).

i=1
The final approximation is depicted on Figure 3.
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6 Conclusion

In this paper, we established the basis for further investigations of approximating abilities of normal
forms. Such approach to an approximation of extensional fuzzy relations brings the new view on this
problematic and simplifies a further exploration of its properties.

From the results of Section 4, it follows that the symmetry plays a significant role in this field of
research. This fact has been widely used in the last section concerning F-transform as an special case of
additive normal forms.

Moreover, it has been shown that we can estimate an error of the approximation by F-transform for
the case of a function with bounded partial derivatives. The estimation is given as a limitation of the
condition C' from the inequality of the conditional equivalence.

The main goal of this work lies in introducing of F-transform as an eminent part of a larger group of
formulas intended for approximations of extensional fuzzy relations.
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