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Abstra
tFuzzy transform from [15℄ has been originally presented as an approximation method for 
ontin-uous fun
tions. In fa
t, one 
an say that only the name indi
ate the 
onne
tion to fuzzy methods,otherwise, it belongs to the 
lassi
al approximation te
hniques.In this paper, we introdu
e a 
lass of approximating formulas. Sin
e, they arose as a generalizationof the 
lassi
al normal forms, 
onsequently, we denote them by the same term. Moreover, we will showthat fuzzy transform from [15℄ is a part of the larger group of formulas whi
h are aimed at 
olle
tinga partial knowledge about some real system or pro
ess. In this way, we vindi
ate its appertain to the
lass of fuzzy methods.Keywords: Disjun
tive, 
onjun
tive and additive normal forms; Fuzzy relation; ApproximationFuzzy transform1 Introdu
tionThe notion of normal forms is well known from the 
lassi
al logi
 and has been generalized into fuzzylogi
 in many di�erent ways. As an example, let us remind the results of P. Cintula and B. Gerla [3℄,where the introdu
ed normal forms represent formulas of propositional G�odel logi
. The representationof fun
tions represented by formulas of propositional  Lukasiewi
z and Goguen logi
s 
an be found in thework [1℄. From the other valuable results in this �eld we 
an re
ommend [11, 7, 2℄.In this paper, we 
onsider a dire
t generalization of the normal forms for the boolean fun
tionsasso
iated with the formulas of 
lassi
al propositional logi
DNFf (x) = _f(x)=1x�11 ^ : : : ^ x�nn ; (1)CNFf (x) = _f(x)=0x�11 _ : : : _ x�nn ; (2)into the fuzzy 
ase, su
h that we ex
hange f0; 1g-valued operations by [0; 1℄-valued ones. This gener-alization, as we will see later, 
an be extended and further used for an approximate representation ofextensional fuzzy relations (interpretation of fuzzy predi
ate formulas). Approximate representation inlogi
al framework means that a formula is equivalent to its normal form (disjun
tive, 
onjun
tive oradditive) under the spe
ial 
ondition. The s
hemati
 representation to whi
h we refer as 
onditionalequivalen
e or logi
al approximation, looks as follows:Condition � (Extensional Formula $ Normal Form): (3)In fa
t, normal forms aggregate available lo
al information about a fuzzy relation. This lo
al infor-mation 
onsists of two parts 
ombined by 
onjun
tion: the �rst part 
hara
terizes a lo
al domain byits membership fun
tion, and the se
ond part des
ribes a value of the fuzzy relation provided that itsarguments lie inside the respe
tive lo
al domain. Thus, the normal forms 
an be viewed as 
olle
tionsof fuzzy IF-THEN rules and 
onsequently they relate to the problemati
 of the approximate inferen
e.The fuzzy approa
h is re
ently widely used in pra
ti
al appli
ations where robustness of a system isdemanded.We will introdu
e two types of normal forms, namely in�nite and dis
rete (or �nite) normal forms(see [6, 5℄). We will see that the �rst one 
ould be viewed as an pre
ise representation of the initial fuzzyrelation while the se
ond one serves us as an "universal" approximation formula. On the algebrai
 levelwe do not have the notion of a limit at disposal. This is the main argument for having normal forms ofthe in�nite type whi
h serves there as an limit element of a sequen
e of the �nite normal forms wherethe number of nodes spe
ifying them in
rease. The 
ondition whi
h implies the equivalen
e (estimationof an approximation error) of normal forms and initial formula will be presented as well.Finally, we will show the 
on
rete method for 
onstru
tion of additive normal forms using F-transform.F-transform appeared to be elegant and very powerful tool for approximation of 
ontinuous fun
tions.Here, the F-transform is introdu
ed as a part of mu
h general 
lass of formulas, namely normal forms,and it is used for approximation of extensional fuzzy relations. The detailed presentation of F-transform
an be found in [12, 15℄. 2



2 PreliminariesA fuzzy relation is nothing else than a fuzzy subset of a Cartesian produ
t of non-empty sets. Its valuesare interpreted as degrees to whi
h are parti
ular individuals in relation.De�nition 1 Let M be a non-empty set of obje
ts. A fun
tion R : Mn ! L is 
alled n-ary L-fuzzyrelation on M .Very natural is to put L = [0; 1℄. In this 
ase we will use notions fuzzy set and fuzzy relation instead[0; 1℄-fuzzy set and [0; 1℄-fuzzy relation, respe
tively.2.1 Elements form the analysis of t-normsOriginal motivation for introdu
ing the 
lass of generalized multipli
ations known as triangular norms(t-norms) was not logi
al. The main idea was to generalize the 
on
ept of the triangular inequality. Sin
et-norms preserve the fundamental properties of the 
risp 
onjun
tion, 
onsequently they be
ome to beinteresting for fuzzy logi
 as a natural generalization.De�nition 2 A fun
tion � : [0; 1℄2 ! [0; 1℄ is 
alled triangular norm (t-norm) if it is 
ommutative,asso
iative, non-de
reasing mapping ful�lling boundary 
ondition, i.e. if for all x; y; z 2 [0; 1℄:x � y = y � x (
ommutativity);x � (y � z) = (x � y) � z (asso
iativity);x � y =) x � z � y � z (monotoni
ity);x � 1 = x (boundary 
ondition):Example 1 Below, we show the most known examples of 
ontinuous t-norms whi
h serve as naturalinterpretations of a generalized 
onjun
tion:(1) Minimum t-norm x � y = x ^ y,(2) Produ
t t-norm x � y = x � y,(3)  Lukasiewi
z t-norm x � y = max(0; x+ y � 1).A 
on
ept asso
iated with the t-norm is 
alled t-
onorm whi
h 
orresponds due to its behavior to ageneralization of the 
lassi
al 
onne
tive 'or'.De�nition 3 The t-
onorm is a binary operation O : [0; 1℄ � [0; 1℄ ! [0; 1℄ whi
h has the propertiesof 
ommutativity, asso
iativity and monotoni
ity from De�nition 2 and ful�lls the following boundary
ondition for all x 2 [0; 1℄: 0Ox = x:A t-
onorm dual to the given t-norm � is given byaOb = 1� (1� a) � (1� b):Example 2 The most important t-
onorms dual to the t-norms from Example 1 are:(1) Maximum t-
onorm (dual to minimum) xOy = x _ y,(2) Produ
t t-
onorm (dual to produ
t) xOy = x+ y � x � y,(3)  Lukasiewi
z t-
onorm (dual to  Lukasiewi
z t-norm) xOy = min(1; x+ y).Let us stress that maximum is the least t-
onorm i.e. x_y � xOy for all x; y 2 [0; 1℄ and for any t-
onormO (see [11℄).It follows from the de�nition of the t-norm that it is a monoidal operation on [0; 1℄. Furthermore,< [0; 1℄;^;_ > is a 
omplete latti
e. Therefore, we 
an introdu
e the residuation operation in thefollowing form. 3



De�nition 4 Let � be a t-norm. The residuation operation !�: [0; 1℄2 ! [0; 1℄ is de�ned byx!� y =_fz jx � z � yg: (4)Let us remind that the only ne
essary 
ondition for an existen
e of the unique residuation operation isthat the respe
tive t-norm is left-
ontinuous (see [9℄).Moreover, we will use the following derived operationsxn = x � : : : � x| {z }n�times ;x$� y = (x!� y) ^ (y !� x):In the sequel, we denote  Lukasiewi
z operations t-norm, t-
onorm and residuation as 
; � and ! L,respe
tively. It is worth to mention the following relation between  Lukasiewi
z t-
onorm and residuation:(1� x) � y = x! L y (5)Lemma 1 Let � be a t-norm and !� its residuation. Then the following properties hold for all x; y; z 2[0; 1℄: x � y � x; (6)x � y � z () y � x!� z; (7)x � y =) x!� y = 1; (8)x � y =) y !� z � x!� z; (9)x � y =) z !� x � z !� y; (10)Interesting t-norms are those having additive generators.De�nition 5 Let g : [0; 1℄ ! [0;1℄ be a 
ontinuous stri
tly de
reasing fun
tion su
h that g(1) = 0 and� is a t-norm. Then g is an additive generator of � ifx � y = g(�1)(g(x) + g(y)) (11)holds for all x; y 2 [0; 1℄. Moreover, the fun
tion g(�1) : [0;1℄ ! [0; 1℄ su
h thatg(�1)(y) = � g�1(y) if y 2 [0; g(0)℄0 if y 2 (g(0);1℄is 
alled the pseudoinverse of g.Additive 
ontinuous generators for t-norms are determined uniquely up to a positive multipli
ative
onstant.Example 3 The following are examples of additive generators for 
ontinuous t-norms:(1) g L(x) = 1� x generates  Lukasiewi
z t-norm,(2) gP (x) = � lnx generates produ
t t-norm.For the t-norm � generated by a 
ontinuous additive generator g, the 
orresponding residuation isgiven by x!� y = g(�1)(max(0; g(y)� g(x))); (12)and the 
orresponding biresiduation operation byx$� y = g(�1)(jg(x)� g(y)j): (13)4



De�nition 6 A t-norm � is 
alled Ar
himedean if for every x; y 2 (0; 1) there exists n 2 N su
h thatxn < y.The following theorem (see [9℄) 
hara
terizes the 
lass of generated t-norms.Theorem 1 A t-norm � : [0; 1℄2 ! [0; 1℄ is a 
ontinuous Ar
himedean t-norm if and only if it has anadditive generator.Let us remind the result in [9℄, where the authors proved that arbitrary 
ontinuous t-norm 
ouldbe approximated with arbitrary pre
ision by a t-norm 
onstru
ted as an 
ombination of those havingadditive generators.De�nition 7 Let � be a t-norm generated by the additive generator g. Then� � is 
alled nilpotent if g(0) < +1,� � is 
alled stri
t if g(0) = +1.Theorem 2 demonstrates that 
ontinuous Ar
himedean t-norms 
an be divided in two disjoint 
lasses,namely nilpotent and stri
t (see [9℄ or Theorem 2.10 in [11℄).Theorem 2 Let � be a 
ontinuous Ar
himedean t-norm. Then, � is nilpotent if and only if � is notstri
t.Remark 1 Let � be a t-norm with with an additive generator thenlimn!1(x!� y)n = � 1 if x � y;0 otherwise.Let us denote (x!� y)1 = limn!1(x!� y)n (14)and additionally (x!� y)0 = 1: (15)2.2 Extensional fuzzy relationsExtensionality is well known notion from the 
lassi
al set theory. A generalized version of this notion hasbeen introdu
ed by F. Klawonn and R. Kruse in [8℄. There, the extensional fuzzy relations are de�nedw.r.t. a similarity relation on their domain.Below, we present a more general 
ase of extensionality. The reason 
omes from the fa
t that ex-tensional fuzzy relations de�ned w.r.t. similarity have properties relating to Lips
hitz 
ontinuity. Let usre
all the paper [10℄ where it has been proved that in a t-norm based algebra, the extensionality of afuzzy relation w.r.t. a similarity is equivalent to Lips
hitz 
ontinuity w.r.t. the pseudo-metri
 indu
edby the similarity.The following generalized notion des
ribes better 
hara
ter of a given relation.Let M be some nonempty set of obje
ts and L be some s
ale of truth values su
h that it in
lude 0 asminimal element and 1 as maximal one.De�nition 8 Let E be a binary fuzzy relation on M and f(x1; : : : ; xn) be an L-valued fun
tion and let
1; : : : ; 
n 2 M . We say that f is extensional w.r.t E and �;~ if for all 
1; : : : ; 
n; x1; : : : ; xn 2 M thefollowing holds truth E(x1; 
1) � � � � �E(xn; 
n)~ f(x1; : : : ; xn) � f(
1; : : : ; 
n); (16)where �;~ are arbitrary left-
ontinuous t-norms. If � = ~ then we speak about extensionality of f w.r.tE and �. 5



Later on, we will work also with L-fuzzy relations extensional w.r.t. binary L-fuzzy relations whi
hare supposed to ful�ll some of the following properties.De�nition 9 Let � be a t-norm and 
onsider a binary L-fuzzy relation R on a domain M . Then1. R is 
alled re
exive if R(x; x) = 1; for all x 2M ,2. R is 
alled symmetri
 if R(x; y) = R(y; x); for all x; y 2M ,3. R is 
alled �-transitive if R(x; y) �R(y; z) � R(x; z); for all x; y; z 2M .The extensionality property is 
losely related to a Lips
hitz 
ontinuity. Later, we will use the resultfrom [10℄.Theorem 3 Let � be a t-norm generated by a 
ontinuous additive generator g. Moreover, let f(x) be ann-ary fuzzy relation on M and g Æ f Æ T�1 Æ g�1 has bounded partial derivatives on [0; g(0)℄. Then f(x)is extensional w.r.t. similarity S and �, whereS(x; y) = (T (x) $ T (y))~k: (17)The parameter in the relation S is 
omputed as followsk = maxi=1;:::;n ki; whereki = maxx2[0;g(0)℄nj�(g Æ f Æ T�1 Æ g�1)�xi (x)jfor all i = 1; : : : ; n. Moreover, g(S(x; y)) is Lips
hitz 
ontinuous on M . An operation ~x rounds up x tothe nearest integer.A ne
essary 
ondition for f to be extensional is the 
ontinuity of f . A suÆ
ient 
ondition is theboundedness of the �rst partial derivatives of g Æ f Æ T�1 Æ g�1 on (0; g(0)).3 Representation of fuzzy relations by in�nite normal formsIn this se
tion, we are going to introdu
e spe
ial formulas of the in�nite type. We show that theseformulas 
an be viewed as universal representation formulas having on mind the extensionality propertyof an original fuzzy relation. But from the other side, we want to stress that they are not suitable forrepresentation of the given fuzzy relation be
ause it brings no simpli�
ation. Normal forms of the in�nitetype mirror here limit elements of the normal forms of the dis
rete type.De�nition 10 Let f(x1; : : : ; xn) be an n-ary fuzzy relation, E be a binary fuzzy relation on M and �;~be left-
ontinuous t-norms.The following formulas are disjun
tive normal form of f , 
onjun
tive normal form of f and additivenormal form of ffDNF (x1; : : : ; xn) = _
1;:::;
n2M(E(
1; x1) � � � � �E(
n; xn)~ f(
1; : : : ; 
n)) (18)fCNF (x1; : : : ; xn) = ^
1;:::;
n2M(E(x1; 
1) � � � � �E(xn; 
n) !~ f(
1; : : : ; 
n)); (19)fANF (x1; : : : ; xn) = M
1;:::;
n2M(E(
1; x1) � � � � �E(
n; xn)~ f(
1; : : : ; 
n)); (20)respe
tively. 6



Later, we will need a spe
ial property of the binary fuzzy relation being a part of an additive normalform. It 
an be viewed as a generalization of the 
lassi
al orthogonality.De�nition 11 Let E be a binary fuzzy relation on M and � be a t-norm. We say that E ful�ls theorthogonality property of the in�nite type ifM
1;:::;
n2M
1;:::;
n 6=d1;:::;dn (E(
1; x1) � � � � �E(
n; xn)) = 1� (E(d1; x1) � � � � �E(dn; xn)): (21)is valid for ea
h x1; : : : ; xn 2M .The following theorem relates to the properties of disjun
tive and 
onjun
tive normal forms of thein�nite type with respe
t to an original fuzzy relation. In fa
t, it shows that based on the extensionalityproperty the original formula is equal to its normal form.Theorem 4 Let f(x1; : : : ; xn) be an n-ary fuzzy relation and E(x; y) be a re
exive binary fuzzy relationon M . If f is extensional w.r.t E and left-
ontinuous t-norms �;~ thenf(x1; : : : ; xn) = fDNF (x1; : : : ; xn); (22)f(x1; : : : ; xn) = fCNF (x1; : : : ; xn): (23)for all x1; : : : ; xn 2M .Proof. 1 It is suÆ
ient to 
onsider the 
ase n=2.Sin
e f(x1; x2) � f(x1; x2) and E is re
exive, we obtainf(x1; x2) � E(x1; x1) �E(x2; x2)~ f(x1; x2);E(x1; x1) �E(x2; x2)~ f(x1; x2) � _
1;
22M(E(
1; x1) �E(
2; x2)~ f(
1; 
2));f(x1; x2) � fDNF (x1; x2):On the other hand, from extensionality of f we haveE(
1; x1) �E(
2; x2)~ f(
1; 
2) � f(x1; x2);_
1;
22M(E(
1; x1) �E(
2; x2)~ f(
1; 
2)) � f(x1; x2):And that is why f(x1; x2) = fDNF (x1; x2).Similarly, the following proves the se
ond formula.E(x1; x1) �E(x2; x2) !~ f(x1; x2) � E(x1; x1) �E(x2; x2) !~ f(x1; x2);^
1;
22M(E(x1; 
1) �E(x2; 
2) !~ f(
1; 
2)) � E(x1; x1) �E(x2; x2) !~ f(x1; x2);due to (1) and re
exivity of E we obtainE(x1; x1) �E(x2; x2)~ ^
1;
22M(E(x1; 
1) �E(x2; 
2) !~ f(
1; 
2)) � f(x1; x2);fCNF (x1; x2) � f(x1; x2):On the other hand, from extensionality we haveE(x1; 
1) �E(x2; 
2)~ f(x1; x2) � f(
1; 
2);and be
ause of (1) f(x1; x2) � E(x1; 
1) �E(x2; 
2) !~ f(
1; 
2);f(x1; x2) � ^
1;
22M(E(x1; 
1) �E(x2; 
2) !~ f(
1; 
2));whi
h implies that f(x1; x2) = fCNF (x1; x2). 7



Now, we are going to prove an analogous result for additive normal forms. We �nd out that extension-ality of f w.r.t. E is de�
ient requirement in this 
ase and we have to demand some kind of orthogonalityfrom the re
exive binary fuzzy relation E.Theorem 5 Let f(x1; : : : ; xn) be an n-ary fuzzy relation and E(x; y) be a re
exive binary fuzzy relationon M . Moreover, let E ful�lls the orthogonality 
ondition of the in�nite type. ThenfANF (x1; : : : ; xn) = f(x1; : : : ; xn): (24)for all x1; : : : ; xn 2M .Proof. 2 The 
ase n = 2. Sin
e E(x1; x1) �E(x2; x2) = 1we obtain the following equality M
1;
22M
1;
2 6=x1;x2 (E(
1; x1) �E(
2; x2)) = 0: (25)From (25), re
exivity of E and boundary 
ondition of a any t-norm we havefANF (x1; x2) = M
1;
22M((E(
1; x1) �E(
2; x2))~ f(
1; 
2)) =M
1;
22M
1;
2 6=x1;x2 ((E(
1; x1) �E(
2; x2))~ f(
1; 
2))�� (E(x1; x1) �E(x2; x2)~ f(x1; x2)) = f(x1; x2):4 Dis
rete normal forms and their approximation abilitiesNormal forms from this se
tion are introdu
ed espe
ially with the aim to have approximations of a fuzzyrelation with arbitrary pre
ision. The information about the error of approximation is 
ontained in thebelow proved 
ondition of 
onditional equivalen
e.De�nition 12 Let f(x1; : : : ; xn) be an n-ary fuzzy relation, E(x; y) be a binary fuzzy relation on Mand �;~ be left-
ontinuous t-norms.The following formulas are the dis
rete disjun
tive normal form of f , the dis
rete 
onjun
tive normalform of f and the dis
rete additive normal form of ffDNF (x1; : : : ; xn) = k_i1;:::;in=1(E(
i1 ; x1) � � � � �E(
in ; xn)~ f(
i1 ; : : : ; 
in)) (26)fCNF (x1; : : : ; xn) = k̂i1;:::;in=1(E(x1; 
i1) � � � � �E(xn; 
in) !~ f(
i1 ; : : : ; 
in)); (27)fANF (x1; : : : ; xn) = kMi1;:::;in=1(E(
i1 ; x1) � � � � �E(
in ; xn)~ f(
i1 ; : : : ; 
in)); (28)respe
tively.Similarly to the in�nite 
ase, we introdu
e a generalized orthogonality of the �nite type.De�nition 13 Let E be a binary fuzzy relation on M and � be a t-norm. We say that E ful�lls theorthogonality property of the �nite type ifkMi1;:::;in=1i1;:::;in 6=j1;:::;jn (E(
i1 ; x1) � � � � �E(
in ; xn)) = 1� (E(
j1 ; x1) � � � � �E(
jn ; xn)): (29)is valid for ea
h x1; : : : ; xn 2M . 8



As we will see, the dis
rete disjun
tive and/or 
onjun
tive normalforms give lower and/or upperapproximation of an extensionalfuzzy relation, respe
tively. Moreover, the re
exivity requirement on Eis not ne
essary in this 
ase.Proposition 1 Let f(x1; : : : ; xn) be an n-ary fuzzy relation, E(x; y) be a binary fuzzy relation on M and�;~ be left-
ontinuous t-norms.If f is extensional w.r.t E and �;~ thenf(x1; : : : ; xn) � fDNF (x1; : : : ; xn); (30)f(x1; : : : ; xn) � fCNF (x1; : : : ; xn): (31)for all x1; : : : ; xn 2M .Proof. 3 It is suÆ
ient to prove the 
ase n = 2. From extensionality of f we haveE(
i1 ; x1) �E(
i2 ; x2)~ f(
i1 ; 
i2) � f(x1; x2);k_i1;i2=1E(
i1 ; x1) �E(
i2 ; x2)~ f(
i1 ; 
i2) � f(x1; x2);and that is why f(x1; x2) � fDNF (x1; x2).Similarly, E(x1; 
i1) �E(x2; 
i2)~ f(x1; x2) � f(
i1 ; 
i2);and (1) implies f(x1; x2) � E(x1; 
i1) �E(x2; 
i2) !~ f(
i1 ; 
i2);f(x1; x2) � k̂i1;i2=1(E(x1; 
i1) �E(x2; 
i2) !~ f(
i1 ; 
i2));i.e. f(x1; x2) � fCNF (x1; x2).Considering the symmetry of the binary fuzzy relation E, we are able to prove the following relation-ship between disjun
tive and 
onjun
tive normal forms with respe
t to additive normal form.Proposition 2 Let f(x1; : : : ; xn) be an extensional n-ary fuzzy relation w.r.t. binary re
exive and sym-metri
 fuzzy relation E and left-
ontinuous t-norms �;~ and moreover w.r.t. E and �;
, where 
 is Lukasiewi
z t-norm. Furthermore, the orthogonality 
ondition (29) holds truth. ThenfDNF (x1; : : : ; xn) � fANF (x1; : : : ; xn); (32)fANF (x1; : : : ; xn) � fCNF (x1; : : : ; xn); (33)for all x1; : : : ; xn 2 M , where fANF ; fDNF are built with help of �;~, while fCNF is 
onstru
ted withhelp of �;
.Proof. 4 Sin
e the fa
t that supremum is the least t-
onorm, we obtain that fDNF (x1; : : : ; xn) � fANF (x1; : : : ; xn).It is suÆ
ient to 
onsider the 
ase n = 2.E(x1; 
i1) �E(x2; 
i2)~ f(
i1 ; 
i2) � E(x1; 
i1) �E(x2; 
i2);kMi1;i2=1i1;i2 6=j1;j2 (E(x1; 
i1) �E(x2; 
i2)~ f(
i1 ; 
i1)) � kMi1;i2=1i1;i2 6=j1;j2 (E(x1; 
i1) �E(x2; 
i2));and easily from the orthogonality assumption we havekMi1;i2=1i1;i2 6=j1;j2 (E(x1; 
i1) �E(x2; 
i2)~ f(
i1 ; 
i2)) � 1�E(x1; 
j1) �E(x2; 
j2);9



kMi1;i2=1(E(x1; 
i1) �E(x2; 
i2)~ f(
i1 ; 
i2)) �(1�E(x1; 
j1) �E(x2; 
j2))� (E(x1; 
j1) �E(x2; 
j2)~ f(
j1 ; 
j2));kMi1;i2=1(E(x1; 
i1) �E(x2; 
i2)~ f(
i1 ; 
i2)) � (1�E(x1; 
j1) �E(x2; 
j2))� f(
j1 ; 
j2):From the property (5) we obtainkMi1;i2=1(E(x1; 
i1) �E(x2; 
i2)~ f(
i1 ; 
i2)) � E(x1; 
j1) �E(x2; 
j2) ! L f(
j1 ; 
j2);and �nallykMi1;i2=1(E(x1; 
i1) �E(x2; 
i2)~ f(
i1 ; 
i2)) � k̂j1;j2=1(E(x1; 
j1) �E(x2; 
j2) ! L f(
j1 ; 
j2));whi
h implies fANF (x1; : : : ; xn) � fCNF (x1; : : : ; xn):Let us illustrate the relationships between normal forms on the following example.Example 4 Let us 
onsider the following one-dimensional 
ase where the approximated fuzzy relationf(x) = sin(x) + 0:1is de�ned on M = [0; 1℄. A binary fuzzy relation E is given asE(x; y) = (x$ L y)9;while the nodes 
i are de�ned as 
i = (i� 1)=k for i = 1; : : : ; 10. Finally, let ~ be produ
t t-norm.Then, we obtain a relationship between 
onjun
tive, disjun
tive and additive normal forms whi
h isillustrated on Figure 1. From Figure 1(
), it is 
lear that additive normal form is absolutely the bestapproximation formula from the set of normal forms for the fun
tion f with respe
t to E and su
h anumber and distribution of the nodes 
i over M . This fa
t immediately follows from Proposition 1 andProposition 2.It has been mentioned that a 
onditional equivalen
e of the form (3) gives a lower boundary forthe value of an equivalen
e (biresiduum) between the normal forms and the original fuzzy relation.Considering a t-norm with the additive generator g, we 
an rewrite (3) into the following formj g(Extensional Formula)� g(Normal Form)j � Error = g(Condition);whi
h allows us to speak about an approximation on the pseudo-metri
 spa
e generated by g. Let usremind that g(S(x; y)) de�nes a pseudo-metri
 on M if S is a similarity relation on M .Theorem 6 Let all the assumptions of Proposition 1 be valid.If f is extensional w.r.t E and t-norms �;~ thenfDNF (x1; : : : ; xn) $~ f(x1; : : : ; xn) � C(x1; : : : ; xn); (34)fCNF (x1; : : : ; xn) $~ f(x1; : : : ; xn) � C(x1; : : : ; xn) (35)for all x1; : : : ; xn 2M , whereC(x1; : : : ; xn) = k_i1;:::;in(E(x1; 
i1) � � � � �E(xn; 
in))~ (E(
i1 ; x1) � � � � �E(
in ; xn)): (36)10
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Proof. 5 Only the 
ase n = 2 will be 
onsidered. From extensionality(E(x1; 
i1) �E(x2; 
i2))~ f(x1; x2) � f(
i1 ; 
i2)and monotoni
ity of t-norms we obtain(E(
i1 ; x1) �E(
i2 ; x2))~ (E(x1; 
i1) �E(x2; 
i2))~ f(x1; x2) � (E(
i1 ; x1) �E(
i2 ; x2))~ f(
i1 ; 
i2);(E(
i1 ; x1) �E(
i2 ; x2))~ (E(x1; 
i1) �E(x2; 
i2))~ f(x1; x2) � fDNF (x1; x2):Now, we apply (1)k_i1;i2=1(E(
i1 ; x1) �E(
i2 ; x2))~ (E(x1; 
i1) �E(x2; 
i2)) � f(x1; x2) !~ fDNF (x1; x2);and sin
e fDNF (x1; x2) � f(x1; x2);we obtain 1 � fDNF (x1; x2) !~ f(x1; x2)what proves (34).Using ('1 !~  1)~ ('2 !~  2) � ('1 ~ '2) !~ ( 1 ~  2) we obtain(E(x1; 
i1) �E(x2; 
i2) !~ f(
i1 ; 
i2))~ (E(
i1 ; x1) �E(
i2 ; x2) !~ E(
i1 ; x1) �E(
i2 ; x2)) �((E(x1; 
i1) �E(x2; 
i2))~ (E(
i1 ; x1) �E(
i2 ; x2))) !~ (f(
i1 ; 
i2)~ (E(
i1 ; x1) �E(
i2 ; x2))):Sin
e the property (1) (E(
i1 ; x1) �E(
i2 ; x2)) !~ (E(
i1 ; x1) �E(
i2 ; x2)) = 1and applying (1) twi
e gives us(E(x1; 
i1) �E(x2; 
i2))~ (E(
i1 ; x1) �E(
i2 ; x2)) �((E(x1; 
i1) �E(x2; 
i2)) !~ f(
i1 ; 
i2)) !~ (E(
i1 ; x1) �E(
i2 ; x2)~ f(
i1 ; 
i2)):Be
ause of the property (1) of the residuation operation(E(x1; 
i1) �E(x2; 
i2))~ (E(
i1 ; x1) �E(
i2 ; x2)) �k̂i1;i2=1((E(x1; 
i1) �E(x2; 
i2)) !~ f(
i1 ; 
i2)) !~ (E(
i1 ; x1) �E(
i2 ; x2)~ f(
i1 ; 
i2)):Finally, from extensionality (E(
i1 ; x1) �E(
i2 ; x2))~ f(
i1 ; 
i2) � f(x1; x2)and with help of (1) we obtaink_i1;i2=1(E(x1; 
i1) �E(x2; 
i2))~ (E(
i1 ; x1) �E(
i2 ; x2)) � fCNF (x1; x2) !~ f(x1; x2):And similarly to the proof of (34) sin
ef(x1; x2) � fCNF (x1; x2)we obviously obtain the proof of (35). 12



Conditional equivalen
e for additive normal form 
an be proved under the mu
h stri
t requirements.Additionally, this equivalen
e is only of the  Lukasiewi
z sense.Theorem 7 Let all the assumptions of Proposition 1 be valid. Moreover, let f is extensional w.r.t E and�;~, f is extensional w.r.t. E and t-norms �;
, where 
 is  Lukasiewi
z t-norm, and let the orthogonality
ondition of the �nite type holds truth. ThenfANF (x1; : : : ; xn) $ L f(x1; : : : ; xn) � C(x1; : : : ; xn); (37)for x1; : : : ; xn 2M , where C is given by (36).Proof. 6 The 
ase n = 2 is suÆ
ient. Easily, due to the fa
t that maximum is the least t-
onormfANF (x1; x2) � k_i1;i2=1E(
i1 ; x1) �E(
i2 ; x2)~ f(
i1 ; 
i2);from extensionality w.r.t. E; �;
: E(x1; 
i1) �E(x2; 
i2)
 f(x1; x2) � f(
i1 ; 
i2) we obtainfANF (x1; x2) � k_i1;i2=1(E(
i1 ; x1) �E(
i2 ; x2)~ (E(x1; 
i1) �E(x2; 
i2)
 f(x1; x2)));fANF (x1; x2) � k_i1;i2=1((E(
i1 ; x1) �E(
i2 ; x2))~ (E(x1; 
i1) �E(x2; 
i2)))
 f(x1; x2);and from (1) f(x1; x2) ! L fANF (x1; x2) � C(x1; x2):The other side 
an be proven as followsE(
i1 ; x1) �E(
i2 ; x2)~ f(
i1 ; 
i2) � E(
i1 ; x1) �E(
i2 ; x2);kMi1;i2=1i1;i2 6=j1;j2 E(
i1 ; x1) �E(
i2 ; x2)~ f(
i1 ; 
i2) � kMi1;i2=1i1;i2 6=j1;j2 E(
i1 ; x1) �E(
i2 ; x2);kMi1;i2=1i1;i2 6=j1;j2 E(
i1 ; x1) �E(
i2 ; x2)~ f(
i1 ; 
i2) � (1�E(
j1 ; x1) �E(
j2 ; x2));fANF (x1; x2) � (1�E(
j1 ; x1) �E(
j2 ; x2))� (E(
j1 ; x1) �E(
j2 ; x2)~ f(
j1 ; 
j2));what is due to (5)fANF (x1; x2) � (E(
j1 ; x1) �E(
j2 ; x2)) ! L (E(
j1 ; x1) �E(
j2 ; x2)~ f(
j1 ; 
j2));and be
ause of (1)(E(
j1 ; x1) �E(
j2 ; x2))
 fANF (x1; x2) � E(
j1 ; x1) �E(
j2 ; x2)~ f(
j1 ; 
j2):Now, we apply extensionality w.r.t. E; �;~(E(
j1 ; x1) �E(
j2 ; x2))
 fANF (x1; x2) � f(x1; x2);and again sin
e 1 (E(
j1 ; x1) �E(
j2 ; x2)) � fANF (x1; x2) ! L f(x1; x2);(E(
j1 ; x1) �E(
j2 ; x2))~ (E(x1; 
j1) �E(x2; 
j2)) � fANF (x1; x2) ! L f(x1; x2);whi
h follows C(x1; x2) � fANF (x1; x2) ! L f(x1; x2);13



If we work with symmetri
al E and  Lukasiewi
z t-norm then we obtain a 
on
rete 
ase of the intro-du
ed 
onditional equivalen
e of the additive normal form as a straight 
orollary of the Proposition 2.The fa
t that the additive normal form lies between the disjun
tive and the 
onjun
tive normal formsdire
tly implies the following result.Corollary 1 Let f be an extensional fuzzy relation w.r.t. binary fuzzy relation E and the left-
ontinuoust-norms �;
, where 
 is  Lukasiewi
z t-norm. Moreover, let E ful�lls the orthogonality 
ondition (29).If E is re
exive and symmetri
 thenfANF (x1; : : : ; xn) $~ f(x1; : : : ; xn) � C(x1; : : : ; xn) (38)for all x1; : : : ; xn 2M , where C is a modi�
ation of (36), where ~ is repla
ed by 
.5 F-transform as an example of additive normal formsIn this se
tion we deal with a fuzzy approximation method 
alled fuzzy transform (F-transform) [12,13, 15℄. The main idea of F-transform 
onsists in the repla
ement of an original 
ontinuous fun
tion byits simpli�ed dis
rete representation in 
omplex 
omputations. Results of su
h 
omputations are latertransformed ba
k to the spa
e of 
ontinuous fun
tions and re
e
t in additive normal form.5.1 Original 
on
ept of F-transformThis subse
tion 
onsist of the original de�nitions of F-transform (dire
t and inverse) mainly taken from[12, 13℄ for the 1-dimensional 
ase and from [15℄ for its generalization to the higher dimension. In thesequel, an interval [a; b℄ of real numbers will be denoted by symbol M .De�nition 14 Let 
i = a+h �(i�1) be nodes on M where h = (b�a)(k�1); k � 2 and i = 1; : : : ; k: Wesay that fun
tions A1(x); : : : Ak(x) de�ned on M are basi
 fun
tions if ea
h of them ful�lls the following
onditions:� Ai : M ! [0; 1℄; Ai(
i) = 1;� Ai(x) = 0 if x 62 (
i�1; 
i+1) where 
�1 = a; 
k+1 = b;� Ai(x) is 
ontinuous,� Ai(x) stri
tly in
reases on [
i�1; 
i℄ and stri
tly de
reases on [
i; 
i+1℄;� Pki=1 Ai(x) = 1; for all x 2MThese basi
 fun
tions forming together a fuzzy partition of M play a 
ru
ial role in further de�nitions.De�nition 15 Let f(x) be any 
ontinuous fun
tion on M and A1; : : : ; Ak(x) are basi
 fun
tions formingfuzzy partition. We say that the k-tuple of real numbers [F1; : : : ; Fk℄ is the F-transform of f with respe
tto A1(x); : : : ; Ak(x) if Fi = R ba f(x)Ai(x) dxR ba Ai(x) dx (39)The 
omponents Fi of the F-transform serve us as a dis
rete representation of values of f above thenon-zero domains of Ai. In fa
t, we are averaging all the values above su
h intervals [
i�1; 
i+1℄ and thesefuzzy sets Ai are used as weights in this averaging.To obtain an approximation of fun
tion f we must somehow transform the dis
rete representationba
k to the spa
e of 
ontinuous fun
tions. For this purpose an inverse F-transform is used.
14



De�nition 16 Let [F1; : : : ; Fk℄ be the F-transform of a fun
tion f(x) with respe
t to A1(x); : : : ; Ak(x):The fun
tion fFk (x) = kXi=1 FiAi(x) (40)will be 
alled the inverse F-transform.The 
on
ept of F-transform 
an be straightly generalized for fun
tions with more variables. Forinstan
e, let us 
onsider a 
ontinuous fun
tion with two variables f(x1; x2) de�ned on a domain M =[a; b℄2. Then the formula de�ning the F-transform is modi�ed into the following oneFij = R ba R ba f(x1; x2)Ai(x1)Aj(x2)dx1dx2R ba R ba Ai(x1)Aj(x2)dx1dx2 : (41)And analogously to the one-dimensional 
ase, the inverse F-transform is given as followsfFn (x1; x2) = kXi;j=1Ai(x1)Aj(x2)Fij : (42)5.2 F-transform for fuzzy relationsHere, we debunk F-transform as a spe
ial 
ase of additive normal form and so, we 
an bring to bear allthe results from the theory of the normal forms introdu
ed above on this spe
ial additive normal forms.Let M = [a; b ℄ � R and f be a fuzzy set f : M ! [0; 1℄ and let Ek be de�ned as followsEk(x; y) = (T (x) $ L T (y))k; (43)where k 2 N and T : M ! [0; 1℄ is given by T (x) = x� ab� a : (44)It is 
lear that Ek is similarity relation for ea
h k. In general, T 
an be arbitrary 
ontinuous stri
tlyin
reasing fun
tion su
h that T (a) = 0 and T (b) = 1.As the next step, we will introdu
e a generalized F-transform for a 
lass of fuzzy sets with 
ontinuousmembership fun
tions. Taking into a

ount the phenomenon of vagueness then the 
ontinuity of fuzzysets is a natural requirement.De�nition 17 Let f be a fuzzy set on M with the 
ontinuous membership fun
tion and Ek be a binaryfuzzy relation de�ned by (43). Then a fuzzy set Fk given byFk(x) = bRa Ek(x; y)� f(y)dybRa Ek(x; y)dy ; (45)is 
alled the F-transform of f(x) w.r.t. Ek.The following lemma relates to the extensionality of the F-transform.Lemma 2 Let Ek and Fk be as above. Then, Fk is extensional w.r.t. Ek and produ
t t-norm �.Proof. 7 From the transitivity and symmetry of Ek, we obtain the following inequalitiesEk(x; y)�Ek(x; z) � Ek(y; z) andEk(x; y)�Ek(y; z) � Ek(x; z);15



the monotoni
ity of � implies thatEk(x; y)�Ek(x; z)� f(z) � Ek(y; z)� f(z);and then bZa Ek(x; y)�Ek(x; z)� f(z) dz � bZa Ek(y; z)� f(z) dz;bZa Ek(x; y)�Ek(y; z) dz � bZa Ek(x; z) dz;be
ause we integrate over z, we haveEk(x; y)� bZa Ek(x; z)� f(z) dz � bZa Ek(y; z)� f(z) dz;Ek(x; y)� bZa Ek(y; z) dz � bZa Ek(x; z) dz;the property (1) of � followsEk(x; y) � bZa Ek(x; z)� f(z) dz !� bZa Ek(y; z)� f(z) dz;Ek(x; y) � bZa 1Ek(x; z) dz !� bZa 1Ek(y; z) dz;and thusEk(x; y) � 0� bZa Ek(x; z)� f(z) dz !� bZa Ek(y; z)� f(z) dz1A��0� bZa 1Ek(x; z) dz !� bZa 1Ek(y; z) dz1A ;sin
e � satis�es (a1 !� a2)� (b1 !� b2) � (a1 � b1 !� a2 � b2) thenEk(x; y) � bRa Ek(x; z)� f(z) dzbRa Ek(x; z) dz !� bRa Ek(y; z)� f(z) dzbRa Ek(y; z) dz ;or equivalently Ek(x; y) � Fk(x) !� Fk(y):Now, let us repeat the formula de�ning the orthogonality property for Ekk+1Mi=1i6=j Ek(
i; x) = 1�Ek(
j ; x): (46)16
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(b) M = [0; 1℄ and T (x) = x2Figure 2: An example of basi
 fun
tions given as Ek(
i; x), where 
i for i = 1; : : : ; k + 1 are distributedover [a; b℄ su
h that Ek ful�lls the orthogonality property.This leads to (k + 1) equidistant nodes 
̂i = (i� 1)=k, i = 1; : : : ; (k + 1) on [0; 1℄, whi
h de�ne nodes
i 2M as 
i = T�1(
̂i).It is worth of mentioning that fuzzy relation Ek(
i; x), where nodes 
i are 
hosen to hold the orthog-onality 
ondition (46), determine so 
alled basi
 fun
tions from De�nition 14 of the triangular shape(see �gure 2). Moreover, let us stress that values Fk(
i) exa
tly 
orrespond to the 
omponents of theF-transform Fi from De�nition 15.Lemma 3 Let Ek be a binary fuzzy relation on M = [a; b℄ given by (43) and 
1 = a. Then, Ek ful�llsthe orthogonality property of the �nite type (46) if and only if 
i = T�1((i� 1)=k), i = 1; : : : ; (k + 1).Proof. 8 Let us denote x̂ = T (x) and ŷ = T (y) and evaluate relation Ek(x; y). Keeping in mind thatxk = x
 x(k�1) we get that Ek(x; y) = (x̂$ L ŷ)k = 0 ^ (1� kjx̂� ŷj):Now, we assume that there exist 
̂i 2 [0; 1℄ for i = 1; : : : ; k+1 su
h that they the following orthogonality
ondition k+1Mi=1i6=j Ek(
i; x) = 1�Ek(
j ; x);is valid for arbitrary j and x 2M .For the left hand side we writek+1Mi=1i6=j Ek(
i; x) = 1 ^ k+1Xi=1i6=j (0 _ (1� kj
̂i � x̂j));while for the right hand side the following holds1�Ek(
j ; x) = 1� (0 ^ (1� kj
̂j � x̂j))and both sides are equal.This equality must hold for ea
h x 2 M and thus also for x = 
j , where j 2 f1; : : : ; k + 1g. Let us�x some j and put x = 
j i.e. x̂ = 
̂j . Then, the right hand side obviously equals to 0. Further, the lefthand side equals to 0 if and only if all the summands from the left hand side equal to 0 i.e.0 ^ (1� kj
̂i � 
̂j j) = 0 for all i = 1; : : : ; k + 1; i 6= j;17



whi
h implies j
̂i � 
̂j j � 1=k. Sin
e j has been 
hosen arbitrarily we obtainj
̂i � 
̂j j � 1=k for all i; j = 1; : : : ; k + 1; i 6= j: (47)If we �x 
̂1 = 0 then only a distribution of the nodes 
̂i given by 
̂i = (i � 1)=k, for i = 1; : : : ; k + 1,ful�lls the 
ondition (47), whi
h proves the 
laim of this lemma.Let us use the following denotationsE1(x; y) = limk!1Ek(x; y) = (1 x = y;0 otherwise:F1(x) = limk!1Fk(x) = f(x);If we spe
ify an additive normal form of the in�nite type su
h that it gives the formula of the F-transformthen we 
an formulate the following result.Proposition 3 The in�nite variant of the orthogonality (21) is ful�lled only by E1 and additionallyfFT (x) = fANF (x) = M
2M(E1(
; x)� F1(
)) = f(x): (48)Proof. 9 It is easy to see that fFT (x) = f(x).Let us prove the �rst 
laim by 
ontradi
tion. Assume that the orthogonality (21) is ful�lled by EkM
2M
6=d Ek(
; x) = 1�Ek(d; x)for some �nite k <1. Let us 
hoose d = x. Then the right hand side of the in�nite orthogonality is asfollows 1�Ek(d; x) = 1�Ek(x; x) = 0:That means that M
2M
6=d Ek(
; x) = 0:It is possible if and only if Ek(
; x) = 0 for all 
 6= x. But then k = 1, whi
h 
ontradi
ts with theassumption. Thus, (21) holds only for E1.For pra
ti
al appli
ations we need to have a �nite dis
rete 
ase of an approximating formula.De�nition 18 Let f : M ! [0; 1℄ be a fuzzy set, T : M ! [0; 1℄ be a transformation fun
tion and Ekbe given by formula (43). Furthermore, let Fk(x) be the F-transform of f w.r.t. Ek. Then the additivenormal form of Fk(x) w.r.t. Ek and the produ
t t-norm �fkFT (x) = (k+1)Mi=1 (Ek(
i; x)� Fk(
i)) (49)will be 
alled the dis
rete F-transform of f w.r.t. Ek.In the following proposition, we show the 
onditional equivalen
e for F-transform.Proposition 4 Let f , Fk and Ek be as above and Ek satis�es the orthogonality requirement for 
1; : : : ; 
k+1then C(x) � Fk(x) $ L fkFT (x); (50)for all x 2M . The 
ondition C(x) is given byC(x) = k+1_i=1 E2k(
i; x):18
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(a) Original fun
tion and its approximation for k = 3 0 0.2 0.4 0.6 0.8 1
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(b) An error of approximation given bye(x) = jf2FT (x)� f(x)jFigure 3: An example of fkFT given by (49) for f(x) = 1 ^ (x2 + 0:1) on M = [0; 1℄.Proof. 10 From Lemma 2, we know that Fk is extensional w.r.t. Ek and �. Using the fa
t thatEk(x; y)
 p � Ek(x; y)� p;holds for arbitrary p, we obtain that Fk is also extensional w.r.t. Ek and 
. Finally, applying Theorem7, we have k+1_i=1 E2k(
i; x) � Fk(x) $
 fkFT (x): (51)All the results from this se
tion are established for 1-dimensional 
ase with the aim of having bettertransparen
y. Nevertheless, a generalization is straightforward and leads to the following formulafkFT (x1; : : : ; xn) = (k+1)Mi1;:::;in=1(Ek(
i1 ; x1)� � � � �Ek(
in ; xn)� Fk(
i1 ; : : : ; 
in));where Fk is given byFk(x1; : : : ; xn) = bRa � � � bRa Ek(x1; y1)� � � � �Ek(xn; yn)� f(y1; : : : ; yn) dy1 : : : ; dynbRa bRa Ek(x1; y1)� � � � �Ek(xn; yn) dy1 : : : ; dyn :Let us illustrate properties of F-transform fFT on the following example.Example 5 Let f(x) = 1 ^ (x2 + 0:1) be a fuzzy relation on M = [0; 1℄ and let ~ be produ
t t-norm.Considering k = 3, we obtain thatjFk(x) � f3FT (x)j � 1� 4_i=1E23(
i; x):The �nal approximation is depi
ted on Figure 3.
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6 Con
lusionIn this paper, we established the basis for further investigations of approximating abilities of normalforms. Su
h approa
h to an approximation of extensional fuzzy relations brings the new view on thisproblemati
 and simpli�es a further exploration of its properties.From the results of Se
tion 4, it follows that the symmetry plays a signi�
ant role in this �eld ofresear
h. This fa
t has been widely used in the last se
tion 
on
erning F-transform as an spe
ial 
ase ofadditive normal forms.Moreover, it has been shown that we 
an estimate an error of the approximation by F-transform forthe 
ase of a fun
tion with bounded partial derivatives. The estimation is given as a limitation of the
ondition C from the inequality of the 
onditional equivalen
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