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AbstratFuzzy transform from [15℄ has been originally presented as an approximation method for ontin-uous funtions. In fat, one an say that only the name indiate the onnetion to fuzzy methods,otherwise, it belongs to the lassial approximation tehniques.In this paper, we introdue a lass of approximating formulas. Sine, they arose as a generalizationof the lassial normal forms, onsequently, we denote them by the same term. Moreover, we will showthat fuzzy transform from [15℄ is a part of the larger group of formulas whih are aimed at olletinga partial knowledge about some real system or proess. In this way, we vindiate its appertain to thelass of fuzzy methods.Keywords: Disjuntive, onjuntive and additive normal forms; Fuzzy relation; ApproximationFuzzy transform1 IntrodutionThe notion of normal forms is well known from the lassial logi and has been generalized into fuzzylogi in many di�erent ways. As an example, let us remind the results of P. Cintula and B. Gerla [3℄,where the introdued normal forms represent formulas of propositional G�odel logi. The representationof funtions represented by formulas of propositional  Lukasiewiz and Goguen logis an be found in thework [1℄. From the other valuable results in this �eld we an reommend [11, 7, 2℄.In this paper, we onsider a diret generalization of the normal forms for the boolean funtionsassoiated with the formulas of lassial propositional logiDNFf (x) = _f(x)=1x�11 ^ : : : ^ x�nn ; (1)CNFf (x) = _f(x)=0x�11 _ : : : _ x�nn ; (2)into the fuzzy ase, suh that we exhange f0; 1g-valued operations by [0; 1℄-valued ones. This gener-alization, as we will see later, an be extended and further used for an approximate representation ofextensional fuzzy relations (interpretation of fuzzy prediate formulas). Approximate representation inlogial framework means that a formula is equivalent to its normal form (disjuntive, onjuntive oradditive) under the speial ondition. The shemati representation to whih we refer as onditionalequivalene or logial approximation, looks as follows:Condition � (Extensional Formula $ Normal Form): (3)In fat, normal forms aggregate available loal information about a fuzzy relation. This loal infor-mation onsists of two parts ombined by onjuntion: the �rst part haraterizes a loal domain byits membership funtion, and the seond part desribes a value of the fuzzy relation provided that itsarguments lie inside the respetive loal domain. Thus, the normal forms an be viewed as olletionsof fuzzy IF-THEN rules and onsequently they relate to the problemati of the approximate inferene.The fuzzy approah is reently widely used in pratial appliations where robustness of a system isdemanded.We will introdue two types of normal forms, namely in�nite and disrete (or �nite) normal forms(see [6, 5℄). We will see that the �rst one ould be viewed as an preise representation of the initial fuzzyrelation while the seond one serves us as an "universal" approximation formula. On the algebrai levelwe do not have the notion of a limit at disposal. This is the main argument for having normal forms ofthe in�nite type whih serves there as an limit element of a sequene of the �nite normal forms wherethe number of nodes speifying them inrease. The ondition whih implies the equivalene (estimationof an approximation error) of normal forms and initial formula will be presented as well.Finally, we will show the onrete method for onstrution of additive normal forms using F-transform.F-transform appeared to be elegant and very powerful tool for approximation of ontinuous funtions.Here, the F-transform is introdued as a part of muh general lass of formulas, namely normal forms,and it is used for approximation of extensional fuzzy relations. The detailed presentation of F-transforman be found in [12, 15℄. 2



2 PreliminariesA fuzzy relation is nothing else than a fuzzy subset of a Cartesian produt of non-empty sets. Its valuesare interpreted as degrees to whih are partiular individuals in relation.De�nition 1 Let M be a non-empty set of objets. A funtion R : Mn ! L is alled n-ary L-fuzzyrelation on M .Very natural is to put L = [0; 1℄. In this ase we will use notions fuzzy set and fuzzy relation instead[0; 1℄-fuzzy set and [0; 1℄-fuzzy relation, respetively.2.1 Elements form the analysis of t-normsOriginal motivation for introduing the lass of generalized multipliations known as triangular norms(t-norms) was not logial. The main idea was to generalize the onept of the triangular inequality. Sinet-norms preserve the fundamental properties of the risp onjuntion, onsequently they beome to beinteresting for fuzzy logi as a natural generalization.De�nition 2 A funtion � : [0; 1℄2 ! [0; 1℄ is alled triangular norm (t-norm) if it is ommutative,assoiative, non-dereasing mapping ful�lling boundary ondition, i.e. if for all x; y; z 2 [0; 1℄:x � y = y � x (ommutativity);x � (y � z) = (x � y) � z (assoiativity);x � y =) x � z � y � z (monotoniity);x � 1 = x (boundary ondition):Example 1 Below, we show the most known examples of ontinuous t-norms whih serve as naturalinterpretations of a generalized onjuntion:(1) Minimum t-norm x � y = x ^ y,(2) Produt t-norm x � y = x � y,(3)  Lukasiewiz t-norm x � y = max(0; x+ y � 1).A onept assoiated with the t-norm is alled t-onorm whih orresponds due to its behavior to ageneralization of the lassial onnetive 'or'.De�nition 3 The t-onorm is a binary operation O : [0; 1℄ � [0; 1℄ ! [0; 1℄ whih has the propertiesof ommutativity, assoiativity and monotoniity from De�nition 2 and ful�lls the following boundaryondition for all x 2 [0; 1℄: 0Ox = x:A t-onorm dual to the given t-norm � is given byaOb = 1� (1� a) � (1� b):Example 2 The most important t-onorms dual to the t-norms from Example 1 are:(1) Maximum t-onorm (dual to minimum) xOy = x _ y,(2) Produt t-onorm (dual to produt) xOy = x+ y � x � y,(3)  Lukasiewiz t-onorm (dual to  Lukasiewiz t-norm) xOy = min(1; x+ y).Let us stress that maximum is the least t-onorm i.e. x_y � xOy for all x; y 2 [0; 1℄ and for any t-onormO (see [11℄).It follows from the de�nition of the t-norm that it is a monoidal operation on [0; 1℄. Furthermore,< [0; 1℄;^;_ > is a omplete lattie. Therefore, we an introdue the residuation operation in thefollowing form. 3



De�nition 4 Let � be a t-norm. The residuation operation !�: [0; 1℄2 ! [0; 1℄ is de�ned byx!� y =_fz jx � z � yg: (4)Let us remind that the only neessary ondition for an existene of the unique residuation operation isthat the respetive t-norm is left-ontinuous (see [9℄).Moreover, we will use the following derived operationsxn = x � : : : � x| {z }n�times ;x$� y = (x!� y) ^ (y !� x):In the sequel, we denote  Lukasiewiz operations t-norm, t-onorm and residuation as 
; � and ! L,respetively. It is worth to mention the following relation between  Lukasiewiz t-onorm and residuation:(1� x) � y = x! L y (5)Lemma 1 Let � be a t-norm and !� its residuation. Then the following properties hold for all x; y; z 2[0; 1℄: x � y � x; (6)x � y � z () y � x!� z; (7)x � y =) x!� y = 1; (8)x � y =) y !� z � x!� z; (9)x � y =) z !� x � z !� y; (10)Interesting t-norms are those having additive generators.De�nition 5 Let g : [0; 1℄ ! [0;1℄ be a ontinuous stritly dereasing funtion suh that g(1) = 0 and� is a t-norm. Then g is an additive generator of � ifx � y = g(�1)(g(x) + g(y)) (11)holds for all x; y 2 [0; 1℄. Moreover, the funtion g(�1) : [0;1℄ ! [0; 1℄ suh thatg(�1)(y) = � g�1(y) if y 2 [0; g(0)℄0 if y 2 (g(0);1℄is alled the pseudoinverse of g.Additive ontinuous generators for t-norms are determined uniquely up to a positive multipliativeonstant.Example 3 The following are examples of additive generators for ontinuous t-norms:(1) g L(x) = 1� x generates  Lukasiewiz t-norm,(2) gP (x) = � lnx generates produt t-norm.For the t-norm � generated by a ontinuous additive generator g, the orresponding residuation isgiven by x!� y = g(�1)(max(0; g(y)� g(x))); (12)and the orresponding biresiduation operation byx$� y = g(�1)(jg(x)� g(y)j): (13)4



De�nition 6 A t-norm � is alled Arhimedean if for every x; y 2 (0; 1) there exists n 2 N suh thatxn < y.The following theorem (see [9℄) haraterizes the lass of generated t-norms.Theorem 1 A t-norm � : [0; 1℄2 ! [0; 1℄ is a ontinuous Arhimedean t-norm if and only if it has anadditive generator.Let us remind the result in [9℄, where the authors proved that arbitrary ontinuous t-norm ouldbe approximated with arbitrary preision by a t-norm onstruted as an ombination of those havingadditive generators.De�nition 7 Let � be a t-norm generated by the additive generator g. Then� � is alled nilpotent if g(0) < +1,� � is alled strit if g(0) = +1.Theorem 2 demonstrates that ontinuous Arhimedean t-norms an be divided in two disjoint lasses,namely nilpotent and strit (see [9℄ or Theorem 2.10 in [11℄).Theorem 2 Let � be a ontinuous Arhimedean t-norm. Then, � is nilpotent if and only if � is notstrit.Remark 1 Let � be a t-norm with with an additive generator thenlimn!1(x!� y)n = � 1 if x � y;0 otherwise.Let us denote (x!� y)1 = limn!1(x!� y)n (14)and additionally (x!� y)0 = 1: (15)2.2 Extensional fuzzy relationsExtensionality is well known notion from the lassial set theory. A generalized version of this notion hasbeen introdued by F. Klawonn and R. Kruse in [8℄. There, the extensional fuzzy relations are de�nedw.r.t. a similarity relation on their domain.Below, we present a more general ase of extensionality. The reason omes from the fat that ex-tensional fuzzy relations de�ned w.r.t. similarity have properties relating to Lipshitz ontinuity. Let usreall the paper [10℄ where it has been proved that in a t-norm based algebra, the extensionality of afuzzy relation w.r.t. a similarity is equivalent to Lipshitz ontinuity w.r.t. the pseudo-metri induedby the similarity.The following generalized notion desribes better harater of a given relation.Let M be some nonempty set of objets and L be some sale of truth values suh that it inlude 0 asminimal element and 1 as maximal one.De�nition 8 Let E be a binary fuzzy relation on M and f(x1; : : : ; xn) be an L-valued funtion and let1; : : : ; n 2 M . We say that f is extensional w.r.t E and �;~ if for all 1; : : : ; n; x1; : : : ; xn 2 M thefollowing holds truth E(x1; 1) � � � � �E(xn; n)~ f(x1; : : : ; xn) � f(1; : : : ; n); (16)where �;~ are arbitrary left-ontinuous t-norms. If � = ~ then we speak about extensionality of f w.r.tE and �. 5



Later on, we will work also with L-fuzzy relations extensional w.r.t. binary L-fuzzy relations whihare supposed to ful�ll some of the following properties.De�nition 9 Let � be a t-norm and onsider a binary L-fuzzy relation R on a domain M . Then1. R is alled reexive if R(x; x) = 1; for all x 2M ,2. R is alled symmetri if R(x; y) = R(y; x); for all x; y 2M ,3. R is alled �-transitive if R(x; y) �R(y; z) � R(x; z); for all x; y; z 2M .The extensionality property is losely related to a Lipshitz ontinuity. Later, we will use the resultfrom [10℄.Theorem 3 Let � be a t-norm generated by a ontinuous additive generator g. Moreover, let f(x) be ann-ary fuzzy relation on M and g Æ f Æ T�1 Æ g�1 has bounded partial derivatives on [0; g(0)℄. Then f(x)is extensional w.r.t. similarity S and �, whereS(x; y) = (T (x) $ T (y))~k: (17)The parameter in the relation S is omputed as followsk = maxi=1;:::;n ki; whereki = maxx2[0;g(0)℄nj�(g Æ f Æ T�1 Æ g�1)�xi (x)jfor all i = 1; : : : ; n. Moreover, g(S(x; y)) is Lipshitz ontinuous on M . An operation ~x rounds up x tothe nearest integer.A neessary ondition for f to be extensional is the ontinuity of f . A suÆient ondition is theboundedness of the �rst partial derivatives of g Æ f Æ T�1 Æ g�1 on (0; g(0)).3 Representation of fuzzy relations by in�nite normal formsIn this setion, we are going to introdue speial formulas of the in�nite type. We show that theseformulas an be viewed as universal representation formulas having on mind the extensionality propertyof an original fuzzy relation. But from the other side, we want to stress that they are not suitable forrepresentation of the given fuzzy relation beause it brings no simpli�ation. Normal forms of the in�nitetype mirror here limit elements of the normal forms of the disrete type.De�nition 10 Let f(x1; : : : ; xn) be an n-ary fuzzy relation, E be a binary fuzzy relation on M and �;~be left-ontinuous t-norms.The following formulas are disjuntive normal form of f , onjuntive normal form of f and additivenormal form of ffDNF (x1; : : : ; xn) = _1;:::;n2M(E(1; x1) � � � � �E(n; xn)~ f(1; : : : ; n)) (18)fCNF (x1; : : : ; xn) = ^1;:::;n2M(E(x1; 1) � � � � �E(xn; n) !~ f(1; : : : ; n)); (19)fANF (x1; : : : ; xn) = M1;:::;n2M(E(1; x1) � � � � �E(n; xn)~ f(1; : : : ; n)); (20)respetively. 6



Later, we will need a speial property of the binary fuzzy relation being a part of an additive normalform. It an be viewed as a generalization of the lassial orthogonality.De�nition 11 Let E be a binary fuzzy relation on M and � be a t-norm. We say that E ful�ls theorthogonality property of the in�nite type ifM1;:::;n2M1;:::;n 6=d1;:::;dn (E(1; x1) � � � � �E(n; xn)) = 1� (E(d1; x1) � � � � �E(dn; xn)): (21)is valid for eah x1; : : : ; xn 2M .The following theorem relates to the properties of disjuntive and onjuntive normal forms of thein�nite type with respet to an original fuzzy relation. In fat, it shows that based on the extensionalityproperty the original formula is equal to its normal form.Theorem 4 Let f(x1; : : : ; xn) be an n-ary fuzzy relation and E(x; y) be a reexive binary fuzzy relationon M . If f is extensional w.r.t E and left-ontinuous t-norms �;~ thenf(x1; : : : ; xn) = fDNF (x1; : : : ; xn); (22)f(x1; : : : ; xn) = fCNF (x1; : : : ; xn): (23)for all x1; : : : ; xn 2M .Proof. 1 It is suÆient to onsider the ase n=2.Sine f(x1; x2) � f(x1; x2) and E is reexive, we obtainf(x1; x2) � E(x1; x1) �E(x2; x2)~ f(x1; x2);E(x1; x1) �E(x2; x2)~ f(x1; x2) � _1;22M(E(1; x1) �E(2; x2)~ f(1; 2));f(x1; x2) � fDNF (x1; x2):On the other hand, from extensionality of f we haveE(1; x1) �E(2; x2)~ f(1; 2) � f(x1; x2);_1;22M(E(1; x1) �E(2; x2)~ f(1; 2)) � f(x1; x2):And that is why f(x1; x2) = fDNF (x1; x2).Similarly, the following proves the seond formula.E(x1; x1) �E(x2; x2) !~ f(x1; x2) � E(x1; x1) �E(x2; x2) !~ f(x1; x2);^1;22M(E(x1; 1) �E(x2; 2) !~ f(1; 2)) � E(x1; x1) �E(x2; x2) !~ f(x1; x2);due to (1) and reexivity of E we obtainE(x1; x1) �E(x2; x2)~ ^1;22M(E(x1; 1) �E(x2; 2) !~ f(1; 2)) � f(x1; x2);fCNF (x1; x2) � f(x1; x2):On the other hand, from extensionality we haveE(x1; 1) �E(x2; 2)~ f(x1; x2) � f(1; 2);and beause of (1) f(x1; x2) � E(x1; 1) �E(x2; 2) !~ f(1; 2);f(x1; x2) � ^1;22M(E(x1; 1) �E(x2; 2) !~ f(1; 2));whih implies that f(x1; x2) = fCNF (x1; x2). 7



Now, we are going to prove an analogous result for additive normal forms. We �nd out that extension-ality of f w.r.t. E is de�ient requirement in this ase and we have to demand some kind of orthogonalityfrom the reexive binary fuzzy relation E.Theorem 5 Let f(x1; : : : ; xn) be an n-ary fuzzy relation and E(x; y) be a reexive binary fuzzy relationon M . Moreover, let E ful�lls the orthogonality ondition of the in�nite type. ThenfANF (x1; : : : ; xn) = f(x1; : : : ; xn): (24)for all x1; : : : ; xn 2M .Proof. 2 The ase n = 2. Sine E(x1; x1) �E(x2; x2) = 1we obtain the following equality M1;22M1;2 6=x1;x2 (E(1; x1) �E(2; x2)) = 0: (25)From (25), reexivity of E and boundary ondition of a any t-norm we havefANF (x1; x2) = M1;22M((E(1; x1) �E(2; x2))~ f(1; 2)) =M1;22M1;2 6=x1;x2 ((E(1; x1) �E(2; x2))~ f(1; 2))�� (E(x1; x1) �E(x2; x2)~ f(x1; x2)) = f(x1; x2):4 Disrete normal forms and their approximation abilitiesNormal forms from this setion are introdued espeially with the aim to have approximations of a fuzzyrelation with arbitrary preision. The information about the error of approximation is ontained in thebelow proved ondition of onditional equivalene.De�nition 12 Let f(x1; : : : ; xn) be an n-ary fuzzy relation, E(x; y) be a binary fuzzy relation on Mand �;~ be left-ontinuous t-norms.The following formulas are the disrete disjuntive normal form of f , the disrete onjuntive normalform of f and the disrete additive normal form of ffDNF (x1; : : : ; xn) = k_i1;:::;in=1(E(i1 ; x1) � � � � �E(in ; xn)~ f(i1 ; : : : ; in)) (26)fCNF (x1; : : : ; xn) = k̂i1;:::;in=1(E(x1; i1) � � � � �E(xn; in) !~ f(i1 ; : : : ; in)); (27)fANF (x1; : : : ; xn) = kMi1;:::;in=1(E(i1 ; x1) � � � � �E(in ; xn)~ f(i1 ; : : : ; in)); (28)respetively.Similarly to the in�nite ase, we introdue a generalized orthogonality of the �nite type.De�nition 13 Let E be a binary fuzzy relation on M and � be a t-norm. We say that E ful�lls theorthogonality property of the �nite type ifkMi1;:::;in=1i1;:::;in 6=j1;:::;jn (E(i1 ; x1) � � � � �E(in ; xn)) = 1� (E(j1 ; x1) � � � � �E(jn ; xn)): (29)is valid for eah x1; : : : ; xn 2M . 8



As we will see, the disrete disjuntive and/or onjuntive normalforms give lower and/or upperapproximation of an extensionalfuzzy relation, respetively. Moreover, the reexivity requirement on Eis not neessary in this ase.Proposition 1 Let f(x1; : : : ; xn) be an n-ary fuzzy relation, E(x; y) be a binary fuzzy relation on M and�;~ be left-ontinuous t-norms.If f is extensional w.r.t E and �;~ thenf(x1; : : : ; xn) � fDNF (x1; : : : ; xn); (30)f(x1; : : : ; xn) � fCNF (x1; : : : ; xn): (31)for all x1; : : : ; xn 2M .Proof. 3 It is suÆient to prove the ase n = 2. From extensionality of f we haveE(i1 ; x1) �E(i2 ; x2)~ f(i1 ; i2) � f(x1; x2);k_i1;i2=1E(i1 ; x1) �E(i2 ; x2)~ f(i1 ; i2) � f(x1; x2);and that is why f(x1; x2) � fDNF (x1; x2).Similarly, E(x1; i1) �E(x2; i2)~ f(x1; x2) � f(i1 ; i2);and (1) implies f(x1; x2) � E(x1; i1) �E(x2; i2) !~ f(i1 ; i2);f(x1; x2) � k̂i1;i2=1(E(x1; i1) �E(x2; i2) !~ f(i1 ; i2));i.e. f(x1; x2) � fCNF (x1; x2).Considering the symmetry of the binary fuzzy relation E, we are able to prove the following relation-ship between disjuntive and onjuntive normal forms with respet to additive normal form.Proposition 2 Let f(x1; : : : ; xn) be an extensional n-ary fuzzy relation w.r.t. binary reexive and sym-metri fuzzy relation E and left-ontinuous t-norms �;~ and moreover w.r.t. E and �;
, where 
 is Lukasiewiz t-norm. Furthermore, the orthogonality ondition (29) holds truth. ThenfDNF (x1; : : : ; xn) � fANF (x1; : : : ; xn); (32)fANF (x1; : : : ; xn) � fCNF (x1; : : : ; xn); (33)for all x1; : : : ; xn 2 M , where fANF ; fDNF are built with help of �;~, while fCNF is onstruted withhelp of �;
.Proof. 4 Sine the fat that supremum is the least t-onorm, we obtain that fDNF (x1; : : : ; xn) � fANF (x1; : : : ; xn).It is suÆient to onsider the ase n = 2.E(x1; i1) �E(x2; i2)~ f(i1 ; i2) � E(x1; i1) �E(x2; i2);kMi1;i2=1i1;i2 6=j1;j2 (E(x1; i1) �E(x2; i2)~ f(i1 ; i1)) � kMi1;i2=1i1;i2 6=j1;j2 (E(x1; i1) �E(x2; i2));and easily from the orthogonality assumption we havekMi1;i2=1i1;i2 6=j1;j2 (E(x1; i1) �E(x2; i2)~ f(i1 ; i2)) � 1�E(x1; j1) �E(x2; j2);9



kMi1;i2=1(E(x1; i1) �E(x2; i2)~ f(i1 ; i2)) �(1�E(x1; j1) �E(x2; j2))� (E(x1; j1) �E(x2; j2)~ f(j1 ; j2));kMi1;i2=1(E(x1; i1) �E(x2; i2)~ f(i1 ; i2)) � (1�E(x1; j1) �E(x2; j2))� f(j1 ; j2):From the property (5) we obtainkMi1;i2=1(E(x1; i1) �E(x2; i2)~ f(i1 ; i2)) � E(x1; j1) �E(x2; j2) ! L f(j1 ; j2);and �nallykMi1;i2=1(E(x1; i1) �E(x2; i2)~ f(i1 ; i2)) � k̂j1;j2=1(E(x1; j1) �E(x2; j2) ! L f(j1 ; j2));whih implies fANF (x1; : : : ; xn) � fCNF (x1; : : : ; xn):Let us illustrate the relationships between normal forms on the following example.Example 4 Let us onsider the following one-dimensional ase where the approximated fuzzy relationf(x) = sin(x) + 0:1is de�ned on M = [0; 1℄. A binary fuzzy relation E is given asE(x; y) = (x$ L y)9;while the nodes i are de�ned as i = (i� 1)=k for i = 1; : : : ; 10. Finally, let ~ be produt t-norm.Then, we obtain a relationship between onjuntive, disjuntive and additive normal forms whih isillustrated on Figure 1. From Figure 1(), it is lear that additive normal form is absolutely the bestapproximation formula from the set of normal forms for the funtion f with respet to E and suh anumber and distribution of the nodes i over M . This fat immediately follows from Proposition 1 andProposition 2.It has been mentioned that a onditional equivalene of the form (3) gives a lower boundary forthe value of an equivalene (biresiduum) between the normal forms and the original fuzzy relation.Considering a t-norm with the additive generator g, we an rewrite (3) into the following formj g(Extensional Formula)� g(Normal Form)j � Error = g(Condition);whih allows us to speak about an approximation on the pseudo-metri spae generated by g. Let usremind that g(S(x; y)) de�nes a pseudo-metri on M if S is a similarity relation on M .Theorem 6 Let all the assumptions of Proposition 1 be valid.If f is extensional w.r.t E and t-norms �;~ thenfDNF (x1; : : : ; xn) $~ f(x1; : : : ; xn) � C(x1; : : : ; xn); (34)fCNF (x1; : : : ; xn) $~ f(x1; : : : ; xn) � C(x1; : : : ; xn) (35)for all x1; : : : ; xn 2M , whereC(x1; : : : ; xn) = k_i1;:::;in(E(x1; i1) � � � � �E(xn; in))~ (E(i1 ; x1) � � � � �E(in ; xn)): (36)10
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Proof. 5 Only the ase n = 2 will be onsidered. From extensionality(E(x1; i1) �E(x2; i2))~ f(x1; x2) � f(i1 ; i2)and monotoniity of t-norms we obtain(E(i1 ; x1) �E(i2 ; x2))~ (E(x1; i1) �E(x2; i2))~ f(x1; x2) � (E(i1 ; x1) �E(i2 ; x2))~ f(i1 ; i2);(E(i1 ; x1) �E(i2 ; x2))~ (E(x1; i1) �E(x2; i2))~ f(x1; x2) � fDNF (x1; x2):Now, we apply (1)k_i1;i2=1(E(i1 ; x1) �E(i2 ; x2))~ (E(x1; i1) �E(x2; i2)) � f(x1; x2) !~ fDNF (x1; x2);and sine fDNF (x1; x2) � f(x1; x2);we obtain 1 � fDNF (x1; x2) !~ f(x1; x2)what proves (34).Using ('1 !~  1)~ ('2 !~  2) � ('1 ~ '2) !~ ( 1 ~  2) we obtain(E(x1; i1) �E(x2; i2) !~ f(i1 ; i2))~ (E(i1 ; x1) �E(i2 ; x2) !~ E(i1 ; x1) �E(i2 ; x2)) �((E(x1; i1) �E(x2; i2))~ (E(i1 ; x1) �E(i2 ; x2))) !~ (f(i1 ; i2)~ (E(i1 ; x1) �E(i2 ; x2))):Sine the property (1) (E(i1 ; x1) �E(i2 ; x2)) !~ (E(i1 ; x1) �E(i2 ; x2)) = 1and applying (1) twie gives us(E(x1; i1) �E(x2; i2))~ (E(i1 ; x1) �E(i2 ; x2)) �((E(x1; i1) �E(x2; i2)) !~ f(i1 ; i2)) !~ (E(i1 ; x1) �E(i2 ; x2)~ f(i1 ; i2)):Beause of the property (1) of the residuation operation(E(x1; i1) �E(x2; i2))~ (E(i1 ; x1) �E(i2 ; x2)) �k̂i1;i2=1((E(x1; i1) �E(x2; i2)) !~ f(i1 ; i2)) !~ (E(i1 ; x1) �E(i2 ; x2)~ f(i1 ; i2)):Finally, from extensionality (E(i1 ; x1) �E(i2 ; x2))~ f(i1 ; i2) � f(x1; x2)and with help of (1) we obtaink_i1;i2=1(E(x1; i1) �E(x2; i2))~ (E(i1 ; x1) �E(i2 ; x2)) � fCNF (x1; x2) !~ f(x1; x2):And similarly to the proof of (34) sinef(x1; x2) � fCNF (x1; x2)we obviously obtain the proof of (35). 12



Conditional equivalene for additive normal form an be proved under the muh strit requirements.Additionally, this equivalene is only of the  Lukasiewiz sense.Theorem 7 Let all the assumptions of Proposition 1 be valid. Moreover, let f is extensional w.r.t E and�;~, f is extensional w.r.t. E and t-norms �;
, where 
 is  Lukasiewiz t-norm, and let the orthogonalityondition of the �nite type holds truth. ThenfANF (x1; : : : ; xn) $ L f(x1; : : : ; xn) � C(x1; : : : ; xn); (37)for x1; : : : ; xn 2M , where C is given by (36).Proof. 6 The ase n = 2 is suÆient. Easily, due to the fat that maximum is the least t-onormfANF (x1; x2) � k_i1;i2=1E(i1 ; x1) �E(i2 ; x2)~ f(i1 ; i2);from extensionality w.r.t. E; �;
: E(x1; i1) �E(x2; i2)
 f(x1; x2) � f(i1 ; i2) we obtainfANF (x1; x2) � k_i1;i2=1(E(i1 ; x1) �E(i2 ; x2)~ (E(x1; i1) �E(x2; i2)
 f(x1; x2)));fANF (x1; x2) � k_i1;i2=1((E(i1 ; x1) �E(i2 ; x2))~ (E(x1; i1) �E(x2; i2)))
 f(x1; x2);and from (1) f(x1; x2) ! L fANF (x1; x2) � C(x1; x2):The other side an be proven as followsE(i1 ; x1) �E(i2 ; x2)~ f(i1 ; i2) � E(i1 ; x1) �E(i2 ; x2);kMi1;i2=1i1;i2 6=j1;j2 E(i1 ; x1) �E(i2 ; x2)~ f(i1 ; i2) � kMi1;i2=1i1;i2 6=j1;j2 E(i1 ; x1) �E(i2 ; x2);kMi1;i2=1i1;i2 6=j1;j2 E(i1 ; x1) �E(i2 ; x2)~ f(i1 ; i2) � (1�E(j1 ; x1) �E(j2 ; x2));fANF (x1; x2) � (1�E(j1 ; x1) �E(j2 ; x2))� (E(j1 ; x1) �E(j2 ; x2)~ f(j1 ; j2));what is due to (5)fANF (x1; x2) � (E(j1 ; x1) �E(j2 ; x2)) ! L (E(j1 ; x1) �E(j2 ; x2)~ f(j1 ; j2));and beause of (1)(E(j1 ; x1) �E(j2 ; x2))
 fANF (x1; x2) � E(j1 ; x1) �E(j2 ; x2)~ f(j1 ; j2):Now, we apply extensionality w.r.t. E; �;~(E(j1 ; x1) �E(j2 ; x2))
 fANF (x1; x2) � f(x1; x2);and again sine 1 (E(j1 ; x1) �E(j2 ; x2)) � fANF (x1; x2) ! L f(x1; x2);(E(j1 ; x1) �E(j2 ; x2))~ (E(x1; j1) �E(x2; j2)) � fANF (x1; x2) ! L f(x1; x2);whih follows C(x1; x2) � fANF (x1; x2) ! L f(x1; x2);13



If we work with symmetrial E and  Lukasiewiz t-norm then we obtain a onrete ase of the intro-dued onditional equivalene of the additive normal form as a straight orollary of the Proposition 2.The fat that the additive normal form lies between the disjuntive and the onjuntive normal formsdiretly implies the following result.Corollary 1 Let f be an extensional fuzzy relation w.r.t. binary fuzzy relation E and the left-ontinuoust-norms �;
, where 
 is  Lukasiewiz t-norm. Moreover, let E ful�lls the orthogonality ondition (29).If E is reexive and symmetri thenfANF (x1; : : : ; xn) $~ f(x1; : : : ; xn) � C(x1; : : : ; xn) (38)for all x1; : : : ; xn 2M , where C is a modi�ation of (36), where ~ is replaed by 
.5 F-transform as an example of additive normal formsIn this setion we deal with a fuzzy approximation method alled fuzzy transform (F-transform) [12,13, 15℄. The main idea of F-transform onsists in the replaement of an original ontinuous funtion byits simpli�ed disrete representation in omplex omputations. Results of suh omputations are latertransformed bak to the spae of ontinuous funtions and reet in additive normal form.5.1 Original onept of F-transformThis subsetion onsist of the original de�nitions of F-transform (diret and inverse) mainly taken from[12, 13℄ for the 1-dimensional ase and from [15℄ for its generalization to the higher dimension. In thesequel, an interval [a; b℄ of real numbers will be denoted by symbol M .De�nition 14 Let i = a+h �(i�1) be nodes on M where h = (b�a)(k�1); k � 2 and i = 1; : : : ; k: Wesay that funtions A1(x); : : : Ak(x) de�ned on M are basi funtions if eah of them ful�lls the followingonditions:� Ai : M ! [0; 1℄; Ai(i) = 1;� Ai(x) = 0 if x 62 (i�1; i+1) where �1 = a; k+1 = b;� Ai(x) is ontinuous,� Ai(x) stritly inreases on [i�1; i℄ and stritly dereases on [i; i+1℄;� Pki=1 Ai(x) = 1; for all x 2MThese basi funtions forming together a fuzzy partition of M play a ruial role in further de�nitions.De�nition 15 Let f(x) be any ontinuous funtion on M and A1; : : : ; Ak(x) are basi funtions formingfuzzy partition. We say that the k-tuple of real numbers [F1; : : : ; Fk℄ is the F-transform of f with respetto A1(x); : : : ; Ak(x) if Fi = R ba f(x)Ai(x) dxR ba Ai(x) dx (39)The omponents Fi of the F-transform serve us as a disrete representation of values of f above thenon-zero domains of Ai. In fat, we are averaging all the values above suh intervals [i�1; i+1℄ and thesefuzzy sets Ai are used as weights in this averaging.To obtain an approximation of funtion f we must somehow transform the disrete representationbak to the spae of ontinuous funtions. For this purpose an inverse F-transform is used.
14



De�nition 16 Let [F1; : : : ; Fk℄ be the F-transform of a funtion f(x) with respet to A1(x); : : : ; Ak(x):The funtion fFk (x) = kXi=1 FiAi(x) (40)will be alled the inverse F-transform.The onept of F-transform an be straightly generalized for funtions with more variables. Forinstane, let us onsider a ontinuous funtion with two variables f(x1; x2) de�ned on a domain M =[a; b℄2. Then the formula de�ning the F-transform is modi�ed into the following oneFij = R ba R ba f(x1; x2)Ai(x1)Aj(x2)dx1dx2R ba R ba Ai(x1)Aj(x2)dx1dx2 : (41)And analogously to the one-dimensional ase, the inverse F-transform is given as followsfFn (x1; x2) = kXi;j=1Ai(x1)Aj(x2)Fij : (42)5.2 F-transform for fuzzy relationsHere, we debunk F-transform as a speial ase of additive normal form and so, we an bring to bear allthe results from the theory of the normal forms introdued above on this speial additive normal forms.Let M = [a; b ℄ � R and f be a fuzzy set f : M ! [0; 1℄ and let Ek be de�ned as followsEk(x; y) = (T (x) $ L T (y))k; (43)where k 2 N and T : M ! [0; 1℄ is given by T (x) = x� ab� a : (44)It is lear that Ek is similarity relation for eah k. In general, T an be arbitrary ontinuous stritlyinreasing funtion suh that T (a) = 0 and T (b) = 1.As the next step, we will introdue a generalized F-transform for a lass of fuzzy sets with ontinuousmembership funtions. Taking into aount the phenomenon of vagueness then the ontinuity of fuzzysets is a natural requirement.De�nition 17 Let f be a fuzzy set on M with the ontinuous membership funtion and Ek be a binaryfuzzy relation de�ned by (43). Then a fuzzy set Fk given byFk(x) = bRa Ek(x; y)� f(y)dybRa Ek(x; y)dy ; (45)is alled the F-transform of f(x) w.r.t. Ek.The following lemma relates to the extensionality of the F-transform.Lemma 2 Let Ek and Fk be as above. Then, Fk is extensional w.r.t. Ek and produt t-norm �.Proof. 7 From the transitivity and symmetry of Ek, we obtain the following inequalitiesEk(x; y)�Ek(x; z) � Ek(y; z) andEk(x; y)�Ek(y; z) � Ek(x; z);15



the monotoniity of � implies thatEk(x; y)�Ek(x; z)� f(z) � Ek(y; z)� f(z);and then bZa Ek(x; y)�Ek(x; z)� f(z) dz � bZa Ek(y; z)� f(z) dz;bZa Ek(x; y)�Ek(y; z) dz � bZa Ek(x; z) dz;beause we integrate over z, we haveEk(x; y)� bZa Ek(x; z)� f(z) dz � bZa Ek(y; z)� f(z) dz;Ek(x; y)� bZa Ek(y; z) dz � bZa Ek(x; z) dz;the property (1) of � followsEk(x; y) � bZa Ek(x; z)� f(z) dz !� bZa Ek(y; z)� f(z) dz;Ek(x; y) � bZa 1Ek(x; z) dz !� bZa 1Ek(y; z) dz;and thusEk(x; y) � 0� bZa Ek(x; z)� f(z) dz !� bZa Ek(y; z)� f(z) dz1A��0� bZa 1Ek(x; z) dz !� bZa 1Ek(y; z) dz1A ;sine � satis�es (a1 !� a2)� (b1 !� b2) � (a1 � b1 !� a2 � b2) thenEk(x; y) � bRa Ek(x; z)� f(z) dzbRa Ek(x; z) dz !� bRa Ek(y; z)� f(z) dzbRa Ek(y; z) dz ;or equivalently Ek(x; y) � Fk(x) !� Fk(y):Now, let us repeat the formula de�ning the orthogonality property for Ekk+1Mi=1i6=j Ek(i; x) = 1�Ek(j ; x): (46)16
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(b) M = [0; 1℄ and T (x) = x2Figure 2: An example of basi funtions given as Ek(i; x), where i for i = 1; : : : ; k + 1 are distributedover [a; b℄ suh that Ek ful�lls the orthogonality property.This leads to (k + 1) equidistant nodes ̂i = (i� 1)=k, i = 1; : : : ; (k + 1) on [0; 1℄, whih de�ne nodesi 2M as i = T�1(̂i).It is worth of mentioning that fuzzy relation Ek(i; x), where nodes i are hosen to hold the orthog-onality ondition (46), determine so alled basi funtions from De�nition 14 of the triangular shape(see �gure 2). Moreover, let us stress that values Fk(i) exatly orrespond to the omponents of theF-transform Fi from De�nition 15.Lemma 3 Let Ek be a binary fuzzy relation on M = [a; b℄ given by (43) and 1 = a. Then, Ek ful�llsthe orthogonality property of the �nite type (46) if and only if i = T�1((i� 1)=k), i = 1; : : : ; (k + 1).Proof. 8 Let us denote x̂ = T (x) and ŷ = T (y) and evaluate relation Ek(x; y). Keeping in mind thatxk = x
 x(k�1) we get that Ek(x; y) = (x̂$ L ŷ)k = 0 ^ (1� kjx̂� ŷj):Now, we assume that there exist ̂i 2 [0; 1℄ for i = 1; : : : ; k+1 suh that they the following orthogonalityondition k+1Mi=1i6=j Ek(i; x) = 1�Ek(j ; x);is valid for arbitrary j and x 2M .For the left hand side we writek+1Mi=1i6=j Ek(i; x) = 1 ^ k+1Xi=1i6=j (0 _ (1� kĵi � x̂j));while for the right hand side the following holds1�Ek(j ; x) = 1� (0 ^ (1� kĵj � x̂j))and both sides are equal.This equality must hold for eah x 2 M and thus also for x = j , where j 2 f1; : : : ; k + 1g. Let us�x some j and put x = j i.e. x̂ = ̂j . Then, the right hand side obviously equals to 0. Further, the lefthand side equals to 0 if and only if all the summands from the left hand side equal to 0 i.e.0 ^ (1� kĵi � ̂j j) = 0 for all i = 1; : : : ; k + 1; i 6= j;17



whih implies ĵi � ̂j j � 1=k. Sine j has been hosen arbitrarily we obtainĵi � ̂j j � 1=k for all i; j = 1; : : : ; k + 1; i 6= j: (47)If we �x ̂1 = 0 then only a distribution of the nodes ̂i given by ̂i = (i � 1)=k, for i = 1; : : : ; k + 1,ful�lls the ondition (47), whih proves the laim of this lemma.Let us use the following denotationsE1(x; y) = limk!1Ek(x; y) = (1 x = y;0 otherwise:F1(x) = limk!1Fk(x) = f(x);If we speify an additive normal form of the in�nite type suh that it gives the formula of the F-transformthen we an formulate the following result.Proposition 3 The in�nite variant of the orthogonality (21) is ful�lled only by E1 and additionallyfFT (x) = fANF (x) = M2M(E1(; x)� F1()) = f(x): (48)Proof. 9 It is easy to see that fFT (x) = f(x).Let us prove the �rst laim by ontradition. Assume that the orthogonality (21) is ful�lled by EkM2M6=d Ek(; x) = 1�Ek(d; x)for some �nite k <1. Let us hoose d = x. Then the right hand side of the in�nite orthogonality is asfollows 1�Ek(d; x) = 1�Ek(x; x) = 0:That means that M2M6=d Ek(; x) = 0:It is possible if and only if Ek(; x) = 0 for all  6= x. But then k = 1, whih ontradits with theassumption. Thus, (21) holds only for E1.For pratial appliations we need to have a �nite disrete ase of an approximating formula.De�nition 18 Let f : M ! [0; 1℄ be a fuzzy set, T : M ! [0; 1℄ be a transformation funtion and Ekbe given by formula (43). Furthermore, let Fk(x) be the F-transform of f w.r.t. Ek. Then the additivenormal form of Fk(x) w.r.t. Ek and the produt t-norm �fkFT (x) = (k+1)Mi=1 (Ek(i; x)� Fk(i)) (49)will be alled the disrete F-transform of f w.r.t. Ek.In the following proposition, we show the onditional equivalene for F-transform.Proposition 4 Let f , Fk and Ek be as above and Ek satis�es the orthogonality requirement for 1; : : : ; k+1then C(x) � Fk(x) $ L fkFT (x); (50)for all x 2M . The ondition C(x) is given byC(x) = k+1_i=1 E2k(i; x):18
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(b) An error of approximation given bye(x) = jf2FT (x)� f(x)jFigure 3: An example of fkFT given by (49) for f(x) = 1 ^ (x2 + 0:1) on M = [0; 1℄.Proof. 10 From Lemma 2, we know that Fk is extensional w.r.t. Ek and �. Using the fat thatEk(x; y)
 p � Ek(x; y)� p;holds for arbitrary p, we obtain that Fk is also extensional w.r.t. Ek and 
. Finally, applying Theorem7, we have k+1_i=1 E2k(i; x) � Fk(x) $
 fkFT (x): (51)All the results from this setion are established for 1-dimensional ase with the aim of having bettertranspareny. Nevertheless, a generalization is straightforward and leads to the following formulafkFT (x1; : : : ; xn) = (k+1)Mi1;:::;in=1(Ek(i1 ; x1)� � � � �Ek(in ; xn)� Fk(i1 ; : : : ; in));where Fk is given byFk(x1; : : : ; xn) = bRa � � � bRa Ek(x1; y1)� � � � �Ek(xn; yn)� f(y1; : : : ; yn) dy1 : : : ; dynbRa bRa Ek(x1; y1)� � � � �Ek(xn; yn) dy1 : : : ; dyn :Let us illustrate properties of F-transform fFT on the following example.Example 5 Let f(x) = 1 ^ (x2 + 0:1) be a fuzzy relation on M = [0; 1℄ and let ~ be produt t-norm.Considering k = 3, we obtain thatjFk(x) � f3FT (x)j � 1� 4_i=1E23(i; x):The �nal approximation is depited on Figure 3.
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