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Representation of concept lattices by bidirectionalassociative memoriesRadim BìlohlávekInstitute for Res. and Appl. of Fuzzy Modeling, University of Ostrava,Bráfova 7, CZ-701 03 Ostrava, Czech RepublicandDept. Computer Science, Technical University of Ostrava,tø. 17. listopadu, CZ-708 33 Ostrava, Czech RepublicA concept interpretation of patterns for bidirectional associative mem-ory (BAM) is provided. Representation of hierarchical structures of con-cepts (concept lattices) by bidirectional associative memories (BAM) ispresented. The constructive representation theorem provides a learningrule for a training set which allows a concept interpretation. Examplesdemonstrating the theorems are presented.1 Introduction and preliminariesWhen modeling intelligent systems, two levels have to be taken into account: themicrolevel and the macrolevel. This is because there are two corresponding levelsevidenced by biological systems which are held for intelligent: the level of brainand the level of mental phenomena. The macrolevel (mental level) is supposed tobe implemented in the microlevel (brain level). The inspiration by the microlevelgave a rise to the paradigm of arti�cial neural networks|systems which are basedon similar principles as their biological counterparts. On the other hand, there isa lot of models inspired by the macrolevel. A challenging goal is the developmentof architectures which exhibit both of the levels. On the macrolevel, a clear inter-pretation of the system is possible, while on the microlevel, an analysis up to anappropriate degree of exactness can be performed.This paper deals with a (macrolevel) interpretation of the bidirectional asso-ciative memory (Kosko (1987), Kosko (1988)). The interpretation is in terms ofconcepts: BAM patterns are interpreted to represent concepts in the sense of Wille(1982), Ganter and Wille (1996). Section 2 and Section 3 survey bidirectional asso-ciative memories and fundamentals of concept lattices, respectively. In Section 4,a concept interpretation of BAM patterns is proposed and discussed, learning ruleand representation theorem are presented. Section 5 contains illustrative examples.2 Bidirectional associative memoriesAssociative memories represent a class of neural networks which aim at modeling ofthe association phenomenon (Arbib (1995), Bìlohlávek (1998)). Based on the earlymodels of Amari (1972) and Hop�eld (1984), Kosko (1987), Kosko (1988) proposeda bidirectional associative neural network called BAM (bidirectional associativememory). BAM consists of two layers of neurons. The �rst and the second layerscontain k and l neurons, respectively, states (signals) of which are denoted by xi(i = 1; : : : ; k) and yj (j = 1; : : : ; l). The states xi and yj take the values �1; 1 bybipolar and 0; 1 by binary encoding (to which we restrict ourselves). Each (i-th)neuron of the �rst layer is connected to each (j-th) neuron of the second layer bya connection with the real weight wij . A real threshold �xi (�yj ) is assigned to the



Representation of concept lattices by BAM 3i-th neuron of the �rst layer (j-th neuron of the second layer). The dynamics isbidirectional: given a pair hX;Y i = hhx1; : : : ; xki; hy1; : : : ; ylii 2 f0; 1gk �f0; 1gl ofpatterns of signals the signal is fed to the second layer to obtain a new pair hX;Y 0i,then again to the �rst layer to obtain hX 0; Y 0i etc. The dynamics is given by theformulasy0j = 8><>: 1 for Pki=1 wijxi > �yjyj for Pki=1 wijxi = �yj0 for Pki=1 wijxi < �yj ; x0i = 8><>: 1 for Plj=1 wijy0j > �xixi for Plj=1 wijy0j = �xi0 for Plj=1 wijy0j < �xi : (1)The pair of patterns hX;Y i is called a stable point if the states of neurons, whichare set to hX;Y i, do not change under the above de�ned dynamics. The set of allstable points of a BAM will be denoted by Stab(W;�). Using appropriate energyfunction, Kosko proved1 that such a network is stable for any weights wij and anythresholds �xi ; �yj . Stability means that given any initial pattern hX;Y i of signals,the net eventually stops after a �nite number of steps (feeding signal from a layerto a layer).The aim of learning in the context of associative memories is to set the param-eters of the net so that a prescribed training set of patterns is in some relation tothe set of all stable points. Usually, all training patterns have to become stablepoints. Kosko proposes a kind of Hebbian learning, by which the weights wij aredetermined from the training set T = fhXp; Y pi j p 2 Pg bywij =Xp2P bip(xpi ) � bip(ypj ) (2)where bip maps 1 to 1 and 0 to �1, i.e. it changes the binary encoding to bipolarone. Thresholds are set to 0. As may be easily checked, a one-element training setwill be learned completely by this rule. Another rule has been proposed by Wang etal. (1990) where also a further theoretical analysis of BAM dynamics is provided.3 Concepts and concept latticesThe notion of concept is central in human thinking. Also, the notion of conceptappears in the context of neural networks. Networks are seen as if extracting char-acteristic features of input data. These characteristic features are considered torepresent concepts. Other attributes than the agregation function (selection ofcharacteristic features) are usually ignored.In the programmatic paper Wille (1982) started the theory of concept latticeswhich serves as a foundation of formal concept analysis (Ganter and Wille (1996)).It is based on the traditional understanding of concepts of the Port-Royal school bywhich a concept is determined by its extent and its intent. The extent of a concept(e.g. DOG) is the collection of all objects which are covered by the concept (thecollection of all dogs) while the intent is the collection of all attributes (e.g. \tobark", \to be a mammal", etc.) covered by the concept. The starting point of theformalization is that of context, i.e. a triple hG;M; Ii, where I � G�M . Elementsof G are interpreted as objects, elements of M as attributes, the fact hg;mi 2 I isinterpreted as \the object g has the attribute m". According to the philosophicaltradition, a (formal) concept in a given context is any pair hA;Bi of extent A � Gand intent B �M such that A = B# :=def fg 2 G j for all m 2 B it holds hg;mi 2Ig and B = A" :=def fm 2M j for all g 2 A it holds hg;mi 2 Ig. In other words,hA;Bi is a concept if A = B# and B = A", i.e. A is the set of all objects which1In fact, in the original paper, only the dynamics without the thresholds is discussed.



Representation of concept lattices by BAM 4have all the attributes of B and, conversely, B is the set of all attributes which areshared by all the objects of A.The crucial relation between concepts is that of a hierarchical ordering. Thehierarchy of concepts plays a crucial role in conceptual reasoning. Denote B(G;M; I)the set of all concepts in the context hG;M; Ii, i.e.B(G;M; I) = fhA;Bi j A = B#; B = A"gand for hA1; B1i; hA2; B2i 2 B(G;M; I) put hA1; B1i � hA2; B2i i� A1 � A2 (whichis equivalent to B1 � B2). The relation � naturally models the relation \to bea subconcept" (as an example, consider the concepts DOG and MAMMAL). Thefundamental structure of the set of all concepts given by a context is given by thefollowing proposition which is a part of the so called Main Theorem of ConceptualData Analysis.Proposition (Wille (1982)) Let hG;M; Ii be a context. Then the set B(G;M; I)is under the relation � introduced above a complete lattice where^fhAj ; Bji; j 2 Jg = h\fAj ; j 2 Jg; (\fAj ; j 2 Jg)"i ;_fhAj ; Bji; j 2 Jg = h(\fBj ; j 2 Jg)#;\fBj ; j 2 Jgi :The lattice B(G;M; I) is called a concept lattice given by the context hG;M; Ii.The complete lattice Birkho� (1967) structure is a very natural one for conceptualstructures. Informally, it states that for each set of concepts there is their directgeneralization (supremum) as well as their direct specialization (in�mum). Not thatthe visualizable hierarchical structure of the revealed concepts is the basic tool ofconceptual data analysis. Further results can be found in Ganter and Wille (1996).4 Representation and learning of concept latticesOur aim now is to provide a conceptual interpretation of BAM and to show thatBAM's can represent lattices of concepts. To this end we accept the followingconvention. For a set Z = fz1; : : : ; zng and a subset A � Z we denote by sZ(A) =ha1; : : : ; ani 2 f0; 1gn the characteristic vector of A, i.e. ai = 1 if zi 2 A and ai = 0if zi 62 A.Let us have a context hG;M; Ii with both G and M �nite, G = fg1; : : : ; gkg,M = fm1; : : : ;mlg. Using the grandmother-cell idea (Arbib (1995)) we can considera BAM with k neurons in the �rst layer and l neurons in the second layer with theinterpretation: Both of the layers represent subsets of G and M , respectively. Theset A � G is represented by the vector sG(A) 2 f0; 1gk of the states of the �rstlayer and similarly B � M is represented by sM (B) 2 f0; 1gl. The i-th neuron ofthe �rst layer therefore represents the object gi and the j-th neuron of the secondlayer represents the property mj . The pairs of subsets of G and M are thus in aone-to-one correspondence with the pairs of states of the �rst and the second layer.Example 1 In general, the concept interpretation of the patterns of states isnot possible. Namely, we easily �nd a BAM stable points of which cannot beinterpreted as concepts. Take e.g. k = 1, m = 2, w11 = 1, w12 = �2, all thresh-olds set to 0. Then Stab(W;�) = fh0; h0; 0ii; h0; h0; 1ii; h0; h1; 1ii; h1; h1; 0iig. ForhsG(A1); sM (B1)i = h0; h0; 0ii, hsA(A2); sM (B2)i = h1; h1; 1ii we have A1 � A2 butB1 6� B2 which contradicts the rule \the more common objects the less commonproperties".



Representation of concept lattices by BAM 5On the other hand, taking e.g. k = l = 2, w11 = w12 =1, w12 = w21 = �3, all thresholds set to � 12 . Then Stab(W;�) =fhh0; 0i; h1; 1ii; hh0; 1i; h0; 1ii; hh1; 0i; h1; 0ii; hh1; 1i; h0; 0iig. As can be easily veri�ed,Stab(W;�) corresponds to B(G;M; I) for I = fhg1;m1i; hg2;m2ig by Stab(W;�) =fhsG(A); sM (B)i j hA;Bi 2 B(G;M; I)g.The crucial question therefore is: Is there for each concept lattice B(G;M; I) aBAM such that the set of all concepts of B(G;M; I) is (modulo the above corre-spondence) precisely the set of all stable points of this BAM? The positive answeris given by the following theorem.Theorem 1 Let B(G;M; I) be a concept lattice given by the context hG;M; Ii withG and M �nite. Then there is a BAM given by the weights W and thresholds �such that Stab(W;�) = fhsG(A); sM (B)i j hA;Bi 2 B(G;M; I)g.Proof Let G = fg1; : : : ; gkg, M = fm1; : : : ;mlg. De�ne a BAM by the matrix Wgiven by wij = � 1 if hgi;mji 2 I�q if hgi;mji 62 I (3)for i = 1; : : : ; k, j = 1; : : : ; l where q = maxfk; lg+ 1. All the thresholds are set to� 12 .Let hA;Bi 2 B(G;M; I). We show that hsG(A); sM (B)i is a stable point of theBAM. Initialize the network with hsG(A); sM (B)i, i.e. x(0) = hx1(0); : : : ; xk(0)i =sG(A), y(0) = hy1(0); : : : ; yl(0)i = sM (B). We show hx(1); y(1)i = hx(0); y(0)i.Clearly, x(1) = x(0) (if the signal is fed forward the �rst layer does not change itsstate). Consider now any yj . We distinguish two cases. First, let yj(0) = 1. SincehA;Bi is a concept, we have hgi;mji 2 I (i.e. wij = 1) for each i such that gi 2 A(i.e. xi(0) = 1). We therefore havekXi=1 wijxi(0) = jAj � �12 = �yj :By the activation dynamics of BAM we have yj(1) = 1. For yj(0) = 1 the statetherefore does not change. Second, let yj(0) = 0. Since hA;Bi is a concept, there issome i such that xi(0) = 1 (i.e. gi 2 A) but hgi;mji 62 I (i.e. wij = �q). Denote byK the set of all such i. Denote furthermore by K� the set of i such that xi(0) = 1(i.e. gi 2 A) and hgi;mji 2 I (i.e. wij = 1). We havekXi=1 wijxi(0) =Xi2K wijxi(0) + Xi2K�wijxi(0) = �jKjq + jK�j < �12since q > k � jK�j, jKj � 1, and �jKjq+ jK�j is an integer. By the BAM dynamicswe have yj(1) = 0, i.e. the state does not change. We have proved y(1) = y(0). Weshould now show that x(2) = x(1) by the backward phase. The proof is completelysymmetric and we omit it. We have thus proved that hsG(A); sM (B)i is stable.Conversely, let hsG(A); sM (B)i = hx; yi 2 Stab(W;�). We show that hA;Bi isa concept of B(G;M; I), i.e. A" = B and B# = A. Again, due to symmetrywe show only A" = B. We reason as follows: mj 2 A" i� for each i such thatgi 2 A (i.e. xi 2 1) we have hgi;mji 2 I (i.e. wij = 1). The last assertionholds i� Pki=1 wijxi > � 12 . (Indeed, the direction \)" is clear. Conversely, letPki=1 wijxi > � 12 . If there would be some i such that gi 2 A (xi = 1) andhgi;mji 62 I (wij = �q) then Pki=1 wijxi < � 12 , a contradiction.) By the BAM



Representation of concept lattices by BAM 6dynamics, Pki=1 wijxi > � 12 i� yj = 1. To sum up, mj 2 A" i� yj = 1, henceA" = B. The theorem is proved. 2Corollary 2 For each �nite lattice L = hL;�i there is a BAM given by the weightsW and thresholds � such that under the relation � de�ned on Stab(W;�) byhx1; y1i � hx2; y2i i� x1i � x2i (8i)� i� y1j � y2j (8j)�hStab(W;�);�i and hL;�i are isomorphic lattices.Proof The proof follows from Theorem 1 by the fact that each complete latticeL = hL;�i is isomorphic to the concept lattice B(L;L;�) (cf. Wille (1982)). 2The proof of the Theorem 1 gives also the rule (3) for learning the set of allpatterns (concepts) hA;Bi of B(G;M; I) from the relation I . However, one mightbe concerned with a situation where the training information is not in the form ofa binary relation but in the form of a training setT = fhAp; Bpi j A � G; B �M; p 2 Pgof patterns. In this case, the fundamental question is whether T can be interpretedas a (consistent) structure of concepts. Call T conceptually consistent if there isa concept lattice B(G;M; I) such that T � B(G;M; I). In the following we con-centrate on the problem of �nding necessary and su�cient condition for a trainingset T to be conceptually consistent and on the problem of learning a conceptuallyconsistent training set.Lemma 3 Let T = B(G;M; I). Then for IT � G�M de�ned byhg;mi 2 IT i� 9hA;Bi 2 T : g 2 A;m 2M (4)it holds I = IT .Proof If hg;mi 2 IT then for hA;Bi of (4) we conclude from A" = B that hg;mi 2 I ,i.e. IT � I . Conversely, if hg;mi 2 I then for hA;Bi = hfgg"#; fgg"i 2 B(G;M; I)we have g 2 A;m 2 B, i.e. hg;mi 2 IT , which proves I � IT . 2Lemma 4 For a conceptually consistent T let IT be de�ned by (4). Then it holdsT � B(G;M; IT ).Proof If T is conceptually consistent then T � B(G;M; I) for some I � G �M .By Lemma 3, IT � I . Denote the operators corresponding to I and IT by "; # and"T ; #T , respectively. Take hA;Bi 2 T . Since IT � I , we have B = A" = fm 2M j 8g 2 A : hg;mi 2 Ig � fm 2 M j 8g 2 A : hg;mi 2 IT g = A"T . On the otherhand, since for every g 2 A, m 2 B we have hg;mi 2 IT (by (4)), it holds A"T � B,i.e. A"T = B. One would similarly obtain B#T = A. To sum up, A"T = B andB#T = A, i.e. hA;Bi 2 B(G;M; IT ). 2We have the following criterion for a training set to be conceptually consistent.Theorem 5 A training set T = fhAp; Bpi j p 2 Pg is conceptually consistent i�for each p 2 P it holdsAp = fg 2 G j 8m 2 Bp 9p0 2 P : g 2 Ap0 ;m 2 Bp0gBp = fm 2M j 8g 2 Ap 9p0 2 P : g 2 Ap0 ;m 2 Bp0g:



Representation of concept lattices by BAM 7size from sun has moonsmall medium large near far yes no(ss) (sm) (sl) (dn) (df) (my) (mn)Mercury (Me) � � �Venus (V) � � �Earth (E) � � �Mars (Ma) � � �Jupiter (J) � � �Saturn (S) � � �Uranus (U) � � �Neptune (N) � � �Pluto (P) � � �Table 1: Planets and their attributes.Proof If T is conceptually consistent then the assertion follows from Lemma 4.Conversely, if for each p 2 P the above equalities hold then T � B(G;M; IT ). 2By the previous results, we have for a training set T = fhAp; Bpi j A � G;B �M;p 2 Pg with jGj = k, jM j = l the following learning algorithm: For i = 1; : : : ; k,j = 1; : : : ; l, set the weights bywij = � 1 if 9p 2 P : g 2 Ap; m 2 Bp�(max k; l + 1) otherwiseand the thresholds by �xi = �12 ; �yj = �12 :Call T learnable (by our algorithm) if for the weights and the thresholdsset according the algorithm it holds s(T ) � Stab(W;�) where s(T ) =fhsG(A); sM (B)i j hA;Bi 2 Tg. The scopes and limits of the algorithm are desribedby the following assertion.Corollary 6 A training set T is learnable i� it is conceptually consistent.Proof If T is conceptually consistent then the assertion follows from Lemma 4.Conversely, if T is learnable then, by de�nition, s(T ) � Stab(W;�). The assertionthen follows from the fact that if W and � are learned from T by our algorithmthen Stab(W;�) = s(B(G;M; IT )) by Theorem 1. 25 ExamplesExample 2 Let a context be given by the set G of nine planets (Mercury, . . . ,Pluto), the set M of seven attributes (\size small", . . . , \does not have a moon")and the relation I between them depicted in Tab. 1 (see Wille (1982)). The BAMlearned from this context by Theorem 1 consists of nine and seven neurons in the�rst and the second layer, respectively. The set of all stable points (i.e. concepts)is depicted in Tab. 2. The approaximate linguistic description of the stable pointsis as follows: 1 { the empty concept, 2 { \small planet without moon near to sun",3 { \small planet with moon(s) near to sun", 4 { \small planet with moon(s) farfrom sun", 5 { \large planet with moon(s) far from sun", 6 { \medium planet withmoon(s) far from sun", 7 { \small planet near to sun", 8 { \small planet withmoon(s)", 9 { \planet far from sun", 10 { \small planet", 11 { \planet with moon",



Representation of concept lattices by BAM 8
no. extent intentMe V E Ma J S U N P ss sm sl dn df my mn1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 12 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 13 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 04 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 05 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 06 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 07 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 08 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 09 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 010 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 011 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 012 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0Table 2: Stable points of the \planet example".
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Figure 1: Hierarchical structure (lattice) of stable points of the \planet example".



Representation of concept lattices by BAM 912 { \planet". The conceptual hierarchy of the stable points (concept lattice) isdepicted in Fig. 1.Example 3 Consider a BAM with 9 neurons in the �rst layer and 25 neurons inthe second layer. We will represent each state hX;Y i of the net by a pair of bitmappictures, a 3�3-bitmap forX and 5�5-bitmap for Y . If the neuron state is 0 (1) thenthe corresponding pixel is white (black). Consider the training set T consisting ofsix pairs hA;Bi such that hsG(A); sM (B)i are represented by the pairs 5, 6, 9, 19, 22,and 23 of Fig. 2. By Theorem 5 it is easy to verify that T is conceptually consistent.The learning algorithm yields a BAM with 24 stable points depicted in Fig. 2. Theconceptual hierarchy of the stable points is visualized in Fig. 3. The patterns of Thave been learned and completed into a complete conceptual structure. Note thatthe concepts 6 and 19 of the training set are complementary concepts. The learnedstructure of concepts contains additional pairs of complementary concepts (\opositeconcepts" in conceptual terms), e.g. 5 and 20 (5 is in T ), 7 and 18 (none of them isin T ) etc. Note that the pairs of complementary concepts, viewed from the latticepoint of view, form complementary elements in the lattice of concepts.Acknowledgement. This work has been supported by grant no. 201/99/P060 ofthe Grant Agency of the Czech Republic and by the project VS96037 of the Ministryof Education of the Czech Republic.ReferencesAmari, S. 1972. Learning patterns and pattern sequences by self-organizing netsof thresholding elements. IEEE Trans. on Computers 21(no. 11), 461{482.Arbib, M. (Ed.) 1995. Handbook of brain theory and neural networks. MIT Press.Bìlohlávek, R. 1998. Network Processing Indeterminacy. Doctoral thesis,xviii+198 pp., Technical University of Ostrava.Birkho�, G. 1967. Lattice Theory, 3-rd edition. AMS Coll. Publ. 25, Providence,R.I. .Ganter, B., and Wille, R. 1996. Formal concept analysis. Springer-Verlag, Berlin.Hop�eld, J. J. 1984. Neurons with graded response have collective computationalproperties like those of two-state neurons. Proc. Natl. Acad. Sci. U.S.A. 81,3088{3092.Kosko, B. 1987. Adaptive bidirectional associative memory. Applied Optics26(no. 23), 4947{4960.Kosko, B. 1988. Bidirectional associative memory. IEEE Trans. Systems, Man,and Cybernetics 18(no. 1), 49{60.Ore, O. 1944. Galois connexions. Trans. AMS 55, 493{513.Wang, Y.-F., Cruz, J. B., jr., Mulligan, J. H., jr. 1990. Two coding strategiesfor bidirectional associative memory. IEEE Trans. Neural Networks 1(no. 1),81{92.Wille, R. 1982. Restructuring lattice theory: an approach based on hierarchies ofconcepts. In: I. Rival (ed.): Ordered Sets, Reidel, Dordrecht-Boston, 445{470.
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1 2 34 5 67 8 910 11 1213 14 1516 17 1819 20 2122 23 24Figure 2: Stable points.

12 3 45 6 78
910 11 1213 14 1516

1718 19 2021 22 2324

Figure 3: Hierarchical structure (lattice) of stable points.


