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A concept interpretation of patterns for bidirectional associative mem-
ory (BAM) is provided. Representation of hierarchical structures of con-
cepts (concept lattices) by bidirectional associative memories (BAM) is
presented. The constructive representation theorem provides a learning
rule for a training set which allows a concept interpretation. Examples
demonstrating the theorems are presented.

1 Introduction and preliminaries

When modeling intelligent systems, two levels have to be taken into account: the
microlevel and the macrolevel. This is because there are two corresponding levels
evidenced by biological systems which are held for intelligent: the level of brain
and the level of mental phenomena. The macrolevel (mental level) is supposed to
be implemented in the microlevel (brain level). The inspiration by the microlevel
gave a rise to the paradigm of artificial neural networks—systems which are based
on similar principles as their biological counterparts. On the other hand, there is
a lot of models inspired by the macrolevel. A challenging goal is the development
of architectures which exhibit both of the levels. On the macrolevel, a clear inter-
pretation of the system is possible, while on the microlevel, an analysis up to an
appropriate degree of exactness can be performed.

This paper deals with a (macrolevel) interpretation of the bidirectional asso-
ciative memory (Kosko (1987), Kosko (1988)). The interpretation is in terms of
concepts: BAM patterns are interpreted to represent concepts in the sense of Wille
(1982), Ganter and Wille (1996). Section 2 and Section 3 survey bidirectional asso-
ciative memories and fundamentals of concept lattices, respectively. In Section 4,
a concept interpretation of BAM patterns is proposed and discussed, learning rule
and representation theorem are presented. Section 5 contains illustrative examples.

2 Bidirectional associative memories

Associative memories represent a class of neural networks which aim at modeling of
the association phenomenon (Arbib (1995), Bélohlavek (1998)). Based on the early
models of Amari (1972) and Hopfield (1984), Kosko (1987), Kosko (1988) proposed
a bidirectional associative neural network called BAM (bidirectional associative
memory). BAM counsists of two layers of neurons. The first and the second layers
contain k£ and [ neurons, respectively, states (signals) of which are denoted by z;
(¢=1,...,k)and y; (j = 1,...,1). The states z; and y; take the values —1,1 by
bipolar and 0,1 by binary encoding (to which we restrict ourselves). Each (i-th)
neuron of the first layer is connected to each (j-th) neuron of the second layer by
a connection with the real weight w;;. A real threshold 67 (%) is assigned to the
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i-th neuron of the first layer (j-th neuron of the second layer). The dynamics is
bidirectional: given a pair (X,Y) = ((z1,..., k), (y1,---,y)) € {0,1}* x {0,1}' of
patterns of signals the signal is fed to the second layer to obtain a new pair (X,Y”),
then again to the first layer to obtain (X’,Y”) etc. The dynamics is given by the
formulas

1 for Zle wijz; > 05 1 for Zl.zl wijy; > 0F
y; =4 y; for Zle WiT; = 9;4 , wp=1% x for Y., wijy; =07 . (1)
0 for YF  wiya < 07 0 for >3, wijy; <07

The pair of patterns (X, Y) is called a stable point if the states of neurons, which
are set to (X,Y’), do not change under the above defined dynamics. The set of all
stable points of a BAM will be denoted by Stab(W, ©). Using appropriate energy
function, Kosko proved® that such a network is stable for any weights w;; and any
thresholds 9;”,9;4. Stability means that given any initial pattern (X,Y) of signals,
the net eventually stops after a finite number of steps (feeding signal from a layer
to a layer).

The aim of learning in the context of associative memories is to set the param-
eters of the net so that a prescribed training set of patterns is in some relation to
the set of all stable points. Usually, all training patterns have to become stable
points. Kosko proposes a kind of Hebbian learning, by which the weights w;; are
determined from the training set T'= {(X?,Y?) | p € P} by

wy = Y bip(a?) - bip(y?) (2)

peP

where bip maps 1 to 1 and 0 to —1, i.e. it changes the binary encoding to bipolar
one. Thresholds are set to 0. As may be easily checked, a one-element training set
will be learned completely by this rule. Another rule has been proposed by Wang et
al. (1990) where also a further theoretical analysis of BAM dynamics is provided.

3 Concepts and concept lattices

The notion of concept is central in human thinking. Also, the notion of concept
appears in the context of neural networks. Networks are seen as if extracting char-
acteristic features of input data. These characteristic features are considered to
represent concepts. Other attributes than the agregation function (selection of
characteristic features) are usually ignored.

In the programmatic paper Wille (1982) started the theory of concept lattices
which serves as a foundation of formal concept analysis (Ganter and Wille (1996)).
It is based on the traditional understanding of concepts of the Port-Royal school by
which a concept is determined by its extent and its intent. The extent of a concept
(e.g. DOG) is the collection of all objects which are covered by the concept (the
collection of all dogs) while the intent is the collection of all attributes (e.g. “to
bark”, “to be a mammal”, etc.) covered by the concept. The starting point of the
formalization is that of context, i.e. a triple (G, M, I}, where I C G x M. Elements
of G are interpreted as objects, elements of M as attributes, the fact (g,m) € I is
interpreted as “the object g has the attribute m”. According to the philosophical
tradition, a (formal) concept in a given context is any pair (A, B) of extent A C G
and intent B C M such that A = B :=q¢t {g € G | for all m € B it holds (g,m) €
I} and B = AT :=q¢r {m € M | for all g € A it holds (g,m) € I'}. In other words,
(A,B) is a concept if A = B¥ and B = A", i.e. A is the set of all objects which

Mn fact, in the original paper, only the dynamics without the thresholds is discussed.
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have all the attributes of B and, conversely, B is the set of all attributes which are
shared by all the objects of A.

The crucial relation between concepts is that of a hierarchical ordering. The
hierarchy of concepts plays a crucial role in conceptual reasoning. Denote B(G, M, I)
the set of all concepts in the context (G, M, I), i.e.

B(G,M,I)={(A,B)| A= B",B= A"}

and for (Al, B1>, (AQ, B2> € B(G, M, I) put (Al,Bl> S (AQ,BQ> iff Al g A2 (Wthh
is equivalent to B; D Bs). The relation < naturally models the relation “to be
a subconcept” (as an example, consider the concepts DOG and MAMMAL). The
fundamental structure of the set of all concepts given by a context is given by the
following proposition which is a part of the so called Main Theorem of Conceptual
Data Analysis.

Proposition (Wille (1982)) Let (G, M,I) be a context. Then the set B(G,M,I)
1s under the relation < introduced above a complete lattice where

N, By e Ty = (A5 €Jh ({455 €TDY)
V{4, B je Ty =(([{Bjsi € IDY [ {Bjid € T}) -

The lattice B(G, M, I) is called a concept lattice given by the context (G, M, I).
The complete lattice Birkhoff (1967) structure is a very natural one for conceptual
structures. Informally, it states that for each set of concepts there is their direct
generalization (supremum) as well as their direct specialization (infimum). Not that
the visualizable hierarchical structure of the revealed concepts is the basic tool of
conceptual data analysis. Further results can be found in Ganter and Wille (1996).

4 Representation and learning of concept lattices

Our aim now is to provide a conceptual interpretation of BAM and to show that
BAM'’s can represent lattices of concepts. To this end we accept the following
convention. For a set Z = {z1,...,2,} and a subset A C Z we denote by sz(A4) =
(a1, ...,an) € {0,1}" the characteristic vector of A, i.e. a; =1if z; € Aand a; =0
if z; & A.

Let us have a context (G, M,I) with both G and M finite, G = {g1,..., 9k},
M = {my,...,my}. Using the grandmother-cell idea (Arbib (1995)) we can consider
a BAM with & neurons in the first layer and [ neurons in the second layer with the
interpretation: Both of the layers represent subsets of G and M, respectively. The
set A C G is represented by the vector sg(A4) € {0,1}* of the states of the first
layer and similarly B C M is represented by sy (B) € {0,1}!. The i-th neuron of
the first layer therefore represents the object g; and the j-th neuron of the second
layer represents the property m;. The pairs of subsets of G' and M are thus in a
one-to-one correspondence with the pairs of states of the first and the second layer.

Example 1 In general, the concept interpretation of the patterns of states is
not possible. Namely, we easily find a BAM stable points of which cannot be
interpreted as concepts. Take e.g. k=1, m = 2, w1 = 1, w2 = —2, all thresh-
olds set to 0. Then Stab(W,0) = {(0,(0,0)), (0, (0,1)),(0,(1,1)),(1,(1,0))}. For
(sa(A1),sm(B1)) =(0,(0,0)), (sa(A2),sm(B2)) = (1,(1,1)) we have A; C Az but
B; 2 B, which contradicts the rule “the more common objects the less common
properties”.
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On the other hand, taking e.g. k=1 = 2, wyi = wya =
1, w2 = wy = -3, all thresholds set to —i.  Then Stab(W,0) =
£((0,0), (1, 1)), ((0,1), (0, 1)), ({1, 0), (1,0)), {(L, 1), (0,00} }. As can be easily verified,
Stab(W, ©) corresponds to B(G, M, I) for I = {{g1,m1), (92, m2)} by Stab(W,0) =
{(sa(A4), 53 (B)) | (4, B) € B(G, M, I)}.

The crucial question therefore is: Is there for each concept lattice B(G, M, ) a
BAM such that the set of all concepts of B(G, M, I) is (modulo the above corre-
spondence) precisely the set of all stable points of this BAM? The positive answer
is given by the following theorem.

Theorem 1 Let B(G, M, I) be a concept lattice given by the context (G, M, I) with
G and M finite. Then there is a BAM given by the weights W and thresholds ©
such that Stab(W,0) = {(sq(A),sm(B)) | (4, B) € B(G, M, I)}.

Proof Let G ={g1,...,91}, M ={m1,...,m;}. Define a BAM by the matrix W
given by
1 if(g;,mj)el
= : 3
Wi { —q if (gi,m;) &1 ®)
fori=1,...,k j=1,...,1 where ¢ = max{k,{} + 1. All the thresholds are set to
1
~i
Let (A,B) € B(G,M,I). We show that (sg(A),sum(B)) is a stable point of the
BAM. Initialize the network with (sq(A), sy (B)), i.e. £(0) = (z1(0),...,z,(0)) =
sa(A4), y(0) = (w1(0),...,5(0)) = sn(B). We show (z(1),y(1)) = (x(0),4(0)).
Clearly, (1) = z(0) (if the signal is fed forward the first layer does not change its
state). Consider now any y;. We distinguish two cases. First, let y;(0) = 1. Since
(A, B) is a concept, we have (g;,m;) € I (i.e. w;; = 1) for each i such that g; € A
(i.e. 2;(0) =1). We therefore have

u 1
S wigai(0) = 4] > —5 = 6! .
=1

By the activation dynamics of BAM we have y;(1) = 1. For y;(0) = 1 the state
therefore does not change. Second, let y;(0) = 0. Since (A, B) is a concept, there is
some ¢ such that z;(0) =1 (i.e. g; € A) but (g5, m;) ¢ I (i.e. wj; = —¢q). Denote by
K the set of all such i. Denote furthermore by K* the set of ¢ such that z;(0) =1
(i.e. g; € A) and (g;,m;) € I (i.e. w;; = 1). We have

k

1
Zwijxi(o) = Zwijxi(o) + Z wii(0) = —|K|g + [K™| < 5
i—1

iEK IEK*

since ¢ > k > |K*|, |K| > 1, and —|K|g+|K*| is an integer. By the BAM dynamics
we have y;(1) = 0, i.e. the state does not change. We have proved y(1) = y(0). We
should now show that z(2) = z(1) by the backward phase. The proof is completely
symmetric and we omit it. We have thus proved that (sg(4), sp(B)) is stable.

Conversely, let (sg(A),sp(B)Y = (x,y) € Stab(W,0). We show that (A, B) is
a concept of B(G,M,I), i.e. A" = B and B¥ = A. Again, due to symmetry
we show only AT = B. We reason as follows: m; € A" iff for each i such that
g; € A (ie. x; € 1) we have (g;,m;) € I (i.e. w;; = 1). The last assertion
holds iff Zle wi;T; > —%. (Indeed, the direction “=” is clear. Conversely, let

Zle wijw; > —%. If there would be some i such that g; € A (z; = 1) and

(g9s,mj) € I (wi; = —q) then Zle w;;r; < —%, a contradiction.) By the BAM
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dynamics, 3¢ wijz; > —1 iff y; = 1. To sum up, m; € A" iff y; = 1, hence
AT = B. The theorem is proved. O

Corollary 2 For each finite lattice L = (L, <) there is a BAM given by the weights
W and thresholds © such that under the relation < defined on Stab(W,©) by

(,y1) < (@2,y2)  iff i <was (Vi) iff yry > yoy (V)
(Stab(W,0),<) and (L, <) are isomorphic lattices.

Proof The proof follows from Theorem 1 by the fact that each complete lattice
L = (L, <) is isomorphic to the concept lattice B(L, L, <) (cf. Wille (1982)). |

The proof of the Theorem 1 gives also the rule (3) for learning the set of all
patterns (concepts) (A, B) of B(G, M,I) from the relation I. However, one might
be concerned with a situation where the training information is not in the form of
a binary relation but in the form of a training set

T ={(A",B*) | ACG, BC M, pe P}

of patterns. In this case, the fundamental question is whether 7" can be interpreted
as a (consistent) structure of concepts. Call T conceptually consistent if there is
a concept lattice B(G, M, I) such that T' C B(G, M,I). In the following we con-
centrate on the problem of finding necessary and sufficient condition for a training
set T to be conceptually consistent and on the problem of learning a conceptually
consistent training set.

Lemma 3 Let T = B(G, M, I). Then for It C G x M defined by
(gomyelIr iff FAB)eT:geAmeM 4)

it holds I = Ip.

Proof 1f (g, m) € It then for (A, B) of (4) we conclude from A" = B that (g,m) € I,
i.e. Iy C 1. Conversely, if (g,m) € I then for (4, B) = ({g}™, {g}") € B(G, M,I)
we have g € A,m € B, i.e. (g,m) € I;, which proves I C I. O

Lemma 4 For a conceptually consistent T let Iy be defined by (4). Then it holds
T CB(G,M,Ir).

Proof If T is conceptually consistent then 7' C B(G, M, I) for some I C G x M.
By Lemma 3, I C I. Denote the operators corresponding to I and I7 by T,+ and
Tr 41 respectively. Take (A4,B) € T. Since It C I, we have B = AT = {m €
M|Vge A: (gm)yeI}D{me M |Vge A: (g,m) € Ir} = A™. On the other
hand, since for every g € A, m € B we have (g,m) € Ir (by (4)), it holds A™* D B,
i.e. A’ = B. One would similarly obtain B** = A. To sum up, A’ = B and
B‘r = A ie. (A, B) € B(G,M,I7). |

We have the following criterion for a training set to be conceptually consistent.

Theorem 5 A training set T = {(AP,BP) | p € P} is conceptually consistent iff
for each p € P it holds

AP = {geG|VYmeB’I e€P:ge A’ me B"}
B? = {meM|Vge AP eP:ge A” me B"}.
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size from sun has moon
small medium large | near far | yes no
() (sm)  (s) | (dn) (df) | (my) (mn)
Mercury (Me) X X X
Venus (V) X X X
Earth (E) X X X
Mars (Ma) X X X
Jupiter (J) X X X
Saturn (S) X X X
Uranus (U) X X X
Neptune (N) X X X
Pluto (P) X X X

Table 1: Planets and their attributes.

Proof 1If T is conceptually consistent then the assertion follows from Lemma 4.
Conversely, if for each p € P the above equalities hold then T' C B(G, M, Iy). O

By the previous results, we have for a training set 7' = {(A?,BP) | ACG,B C
M,p € P} with |G| = k, |[M| = [ the following learning algorithm: For i =1,...,k,
j=1,...,1, set the weights by

o 1 ifdpe P: g€ AP, m € B?
Wi = —(maxk,l+1) otherwise
and the thresholds by
. 1 1

Call T learnable (by our algorithm) if for the weights and the thresholds
set according the algorithm it holds s(T) C Stab(W,0) where s(T) =
{(sa¢(A4),sm(B)) | (4, B) € T'}. The scopes and limits of the algorithm are desribed
by the following assertion.

Corollary 6 A training set T is learnable iff it is conceptually consistent.

Proof 1If T is conceptually consistent then the assertion follows from Lemma 4.
Conversely, if T is learnable then, by definition, s(T') C Stab(W,®). The assertion
then follows from the fact that if W and © are learned from 7' by our algorithm
then Stab(W,0) = s(B(G, M, Ir)) by Theorem 1. ad

5 Examples

Example 2 Let a context be given by the set G of nine planets (Mercury, ...,
Pluto), the set M of seven attributes (“size small”, ..., “does not have a moon”)
and the relation I between them depicted in Tab. 1 (see Wille (1982)). The BAM
learned from this context by Theorem 1 consists of nine and seven neurons in the
first and the second layer, respectively. The set of all stable points (i.e. concepts)
is depicted in Tab. 2. The approaximate linguistic description of the stable points
is as follows: 1 — the empty concept, 2 — “small planet without moon near to sun”,
3 — “small planet with moon(s) near to sun”, 4 — “small planet with moon(s) far
from sun”, 5 — “large planet with moon(s) far from sun”, 6 — “medium planet with
moon(s) far from sun”, 7 — “small planet near to sun”, 8 — “small planet with
moon(s)”, 9 — “planet far from sun”, 10 — “small planet”, 11 — “planet with moon”,
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Figure 1: Hierarchical structure (lattice) of stable points of the “planet example”.
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12 — “planet”. The conceptual hierarchy of the stable points (concept lattice) is
depicted in Fig. 1.

Example 3 Consider a BAM with 9 neurons in the first layer and 25 neurons in
the second layer. We will represent each state (X, Y’) of the net by a pair of bitmap
pictures, a 3x 3-bitmap for X and 5x5-bitmap for Y. If the neuron state is 0 (1) then
the corresponding pixel is white (black). Consider the training set 7" consisting of
six pairs (A4, B) such that (s¢(A), sy (B)) are represented by the pairs 5, 6, 9, 19, 22,
and 23 of Fig. 2. By Theorem 5 it is easy to verify that T is conceptually consistent.
The learning algorithm yields a BAM with 24 stable points depicted in Fig. 2. The
conceptual hierarchy of the stable points is visualized in Fig. 3. The patterns of T’
have been learned and completed into a complete conceptual structure. Note that
the concepts 6 and 19 of the training set are complementary concepts. The learned
structure of concepts contains additional pairs of complementary concepts (“oposite
concepts” in conceptual terms), e.g. 5 and 20 (5 isin T'), 7 and 18 (none of them is
in T') etc. Note that the pairs of complementary concepts, viewed from the lattice
point of view, form complementary elements in the lattice of concepts.
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