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Abstract—In the first part of this contribution, we proposed
extensional fuzzy numbers and a working arithmetic for them
that may be abstracted to so-called many identities algebras (MI-
algebras, for short).

In this second part, we show that the proposed MI-algebras
give a framework not only for the arithmetic of extensional fuzzy
numbers, but also for other arithmetics of fuzzy numbers and
even more general sets of real vectors used in mathematical
morphology. This entitles us to develop a theory of MI-algebras
to study general properties of structures for which the standard
algebras are not appropriate. Some of the basic concepts and
properties are presented here.

I. INTRODUCTION

As it has been discussed in the first part of this contribution
[1], the standard arithmetics of fuzzy numbers often stemming
from the Zadeh’s extension principle or arithmetic of real
intervals do not satisfy several common properties of real
numbers. It is well know that an inverse element defined for
fuzzy sets is not closely connected with the identity element
as in the case of real numbers (e.g., a + (−a) 6= 0) and only
the subdistributivity is satisfied (see [2],[3],[4]), i.e.,

x(y + z) ⊆ xy + xz.

These drawbacks and a natural view on the generalization of
real numbers gave rise to the concept of extensional fuzzy
number. An extensional fuzzy number xS is the extensional
hull of a singleton x̃ with respect to a similarity relation S (see
Definition 4 in [1]). Simply speaking, each extensional fuzzy
number xS may be interpreted as a real number x over which
an uncertainty (imprecision, inaccuracy, etc.) is expressed by
a similarity relation S in such way that xS(y) = S(x, y) for
any y ∈ R. Hence, the arithmetic of extensional fuzzy numbers
may be divided to the standard arithmetic of real numbers and
appropriate fuzzy set operations with similarity relations. This
construction significantly simplifies the counting with fuzzy
numbers and, moreover, it imitates the practical calculation
with the imprecisely defined numbers, where intuitively

“about five” plus “about three” gives “about eight”.

In the case of the extensional fuzzy numbers, the adverb
“about” is naturally modelled by a similarity relation. Al-

though, the new arithmetic of extensional fuzzy numbers
provides the satisfaction of the distributivity, the problem of
inverse elements still remains. Observing that the equality
a + (−a) = 0 is rather artificial for (extensional) fuzzy num-
bers and the element a+(−a) expresses a (extensional) fuzzy
number about 0 (later called pseudoidentity), we introduced
in [1] several types of so-called many identities algebras (MI-
algebras, for short), namely, the MI-monoid, MI-group and
MI-field, without any further accompanied theory.

In this second part of our contribution, we will provide
a further justification for our step to introduce the concept
of MI-algebras. First, we will show that, although, the MI-
algebras were initiated by our analysis of properties of the
arithmetical operations with extensional fuzzy numbers, the
proposed definitions may be successfully used to classify the
properties of other arithmetical operations with real intervals,
fuzzy numbers and even (convex) sets of real vectors used
in the mathematical morphology (see [5]). Further, we will
demonstrate that a reasonable theory of MI-algebras may
be provided with similar results well known in the group
theory. Finally, we will propose a weaker definition of MI-
field introduced in [1].

II. MI-MONOIDS

Although, it is well known that the set of (extensional) fuzzy
numbers endowed by the addition or multiplication forms a
monoid, we will start with the extension of this basic algebraic
structure. The motivation for this step is an elimination of the
drawback with the property of inverse elements mentioned
above and discussed in [1]. Recall that MI stands for “Many
Identities” and these “identities” are used to model a fuzziness
(inaccuracy, uncertainty) in numbers.

Definition 1. A triplet (G, ◦, E) is said to be an MI-monoid,
if E is a non-empty subset of G and ◦ is a binary operation
on G such that for all x, y, z ∈ G and a, b ∈ E

(M1) x ◦ (y ◦ z) = (x ◦ y) ◦ z ,
(M2) ∃e ∈ E, ∀x ∈ G : x ◦ e = e ◦ x = x,
(M3) a ◦ b ∈ E,
(M4) x ◦ x = a then x ∈ E,



(M5) x ◦ a = a ◦ x.

Elements from E are called pseudoidentity elements (pseu-
doidentities, for short) and the element e ∈ E satisfying (M2)
is called (strong) identity element. An MI-monoid G is said
to be commutative or abelian, if x ◦ y = y ◦ x holds for any
x, y ∈ G.

Standardly, we write G = (G, ◦, E) and x◦y = xy. Clearly,
for commutative MI-monoids the axiom (M5) may be omitted.
One can simply verify that each MI-monoid possesses a unique
identity element (consider e1 = e1e2 = e2 for two identity
elements). In what follows, the identity element will be always
denoted by e. Note that, in contrast to exactly one identity
element, an MI-monoid can have an arbitrary number of
pseudoidentity elements (including no pseudoidentity element,
i.e. E \ {e} = ∅). One may imagine that a grater number
of pseudoidentities in G means more “fuzziness” in elements
from G.

Definition 2. An MI-monoid G is said to be good, if the
following condition is satisfied:

(M6) ∀x ∈ G, ∀a ∈ E : x ◦ a ∈ E then x ∈ E.

If G is a good MI-monoid, then we need not suppose e ∈ E
in (M2), but it suffices to put e ∈ G. In fact, by (M2) we have
ae = a for any a ∈ E. Hence, e ∈ E follows from (M6).

Remark 1. Trivially, each monoid G is an MI-monoid with
E = {e}. Moreover, one can simply check that (G, ◦, E) is
an MI-monoid if and only if (G, ◦) is a monoid and (E, ◦) is
a commutative monoid such that E ⊆ G and (M4) and (M5)
are satisfied. Thus an MI-monoid is a suitable combination of
two monoids, where the second one is, moreover, abelian.

Example 1. In [1], we have shown that the set of extensional
fuzzy numbers endowed by + and · forms good abelian
additive and multiplicative MI-monoids, respectively. Further,
the set of real intervals endowed by the standard interval
operations1 of + and · naturally forms non-good abelian
additive and multiplicative MI-monoids, respectively. Note that
using a suitable restriction of the set of pseudoidentities we
may also define a good MI-monoid of real intervals.

A standard approach to the arithmetic of fuzzy numbers by
the arithmetic of real intervals is demonstrated in the following
example (cf. [2],[4]).

Example 2. Let G be the MI-monoid of real intervals (see
Example 3 in [1]) and H be the set of all mappings g : [0, 1] →
G provided

g(α) ⊆ g(β) for all α, β ∈ [0, 1], α ≥ β,⋃

β<α

g(β) = g(α) for all α ∈]0, 1]. (1)

One can see that g represents a continuous and convex fuzzy
set in R with a finite support (a fuzzy number). More precisely,

1For details, we refer to [6],[7].

if g ∈ H , then

Ag(x) =
∨

α∈[0,1],
x∈g(α)

α

is a continuous and convex fuzzy set Ag : R→ [0, 1]. Put E0

the set of all g such that 0 ∈ g(α) for some α ∈ [0, 1] and
define pointwise g + g′ using the addition of real intervals.
Then (H, +, E0) is an abelian additive MI-monoid of fuzzy
numbers. Analogously, put E1 the set of all g such that 1 ∈
g(α) for some α ∈ [0, 1] and define pointwise g · g′ using the
multiplication of real intervals. Then (H, ·, E1) is an abelian
multiplicative MI-monoid of fuzzy numbers.2

As it has been discussed in [1], in practice, fuzzy numbers
are often represented by several parameters to simplify their
arithmetic ([4],[8]). It should be noted that the simplified
arithmetic is only an approximation of the standard arithmetic
of fuzzy numbers mentioned in the previous example.

Example 3. Let T be the set of all trapezoidal fuzzy num-
bers, i.e., fuzzy numbers given in a parametric form A =
〈aA, bA, cA, dA〉, where aA, bA, cA, dA ∈ R with aA ≤ bA ≤
cA ≤ dA, and defined as

A(x) =





0, x < aA or dA ≤ x;
(x− aA)/(bA − aA), aA ≤ x < bA;
1, bA ≤ x < cA;
(dA − x)/(dA − cA), cA ≤ x < dA.

Note that, although, we use the term “trapezoidal”, the set of
these fuzzy numbers contains also triangular fuzzy numbers
(i.e. bA = cA), or real intervals (i.e., aA = bA and cA = dA)
including one element intervals (singletons representing the
real numbers). Define the addition on T by

A + B = 〈aA, bA, cA, dA〉+ 〈aB , bB , cB , dB〉 =
〈aA + aB , bA + bB , cA + cB , dA + dB〉.

(2)

Put E0 the set of all trapezoidal fuzzy numbers A for which
0 ∈ (aA, dA), i.e., A is a pseudoidentity element, if A(0) > 0.
Clearly, 〈0, 0, 0, 0〉 is the identity element. One may simply
check that (T,+, E0) is a non-good abelian MI-monoid.
Further, define the multiplication on T by

A ·B =〈aA, bA, cA, dA〉 · 〈aB , bB , cB , dB〉 =
〈aA·B , bA·B , cA·B , dA·B〉,

(3)

where

aA·B =min(aAaB , aAdB , dAaB , dAdB)
bA·B =min(bAbB , bAcB , cAbB , cAcB),
cA·B =max(bAbB , bAcB , cAbB , cAcB),
dA·B =min(aAaB , aAdB , dAaB , dAdB).

Put E1 the set of all trapezoidal fuzzy numbers for which
1 ∈ (aA, dA), i.e., A is a pseudoidentity element, if A(1) > 0.
Clearly, 〈1, 1, 1, 1〉 is the identity element. Again, one may

2It is well known that the both presented arithmetical operations are
equivalent to that obtained by the Zadeh’s extension principle.



verify that (T, ·, E1) is a non-good abelian multiplicative MI-
monoid.

Example 4. In [9] (see also [8]), a parametric representation
of fuzzy numbers using monotonic interpolation is provided
and, for instance, the trapezoidal fuzzy numbers give an
example of such parametric representation. Let

0 = α0 < α1 < · · · < αN = 1 (4)

be real numbers for a finite decomposition of the unit interval.
Without detailed comment, considering the differentiable case,
an LU-fuzzy number A is represented by the following system
of vectors

A = (αi;u−i , δu−i , u+
i , δu+

i )i=0,...,N , (5)

with the data

u−0 ≤ u−1 ≤ · · · ≤ u−N ≤ u+
N ≤ u+

N−1 ≤ · · · ≤ u+
0

and the slopes

δu−i ≥ 0 and δu+
i ≤ 0.

Denote L the set of all LU-fuzzy numbers in the form (5) for
a fixed finite decomposition of [0, 1] determined by (4). Define
the addition on L by (αi is omitted here for simplicity)

(u−i , δu−i , u+
i , δu+

i )i=0,...,N + (v−i , δv−i , v+
i , δv+

i )i=0,...,N =
(u−i + v−i , δu−i + δv−i , u+

i + v+
i , δu+

i + δv+
i )i=0,...,N

Put E0 the set of all LU-fuzzy numbers of L such that
0 ∈ [u−i , u+

i ] for some i ∈ {0, . . . , N}. By the results in [8],
(L,+, E0) is a non-good abelian additive MI-monoid.

Further, define the multiplication on L by

(u−i , δu−i , u+
i ,δu+

i )i=0,...,N · (v−i , δv−i , v+
i , δv+

i )i=0,...,N =
((uv)−i , δ(uv)−i , (uv)+i , δ(uv)+i )i=0,...,N ,

where

(uv)−i =min(u−i v−i , u−i v+
i , u+

i v−i , u+
i v+

i ),
(uv)+i =max(u−i v−i , u−i v+

i , u+
i v−i , u+

i v+
i )

and

(uv)−i =δu
p−i
i v

q−i
i + u

p−i
i δv

q−i
i

(uv)+i =δu
p+

i
i v

q+
i

i + u
p+

i
i δv

q+
i

i

with (p−i , q−i ) being the pair associated to the combination of
superscripts + and - giving the minimum (uv)−i and (p+

i , q+
i )

being the pair associated to the combination of + and - giving
the maximum (uv)+i . Put E1 the set of all LU-fuzzy numbers
from L such that 1 ∈ [u−i , u+

i ] for some i ∈ {0, . . . , N}. By the
results in [8], (L, ·, E1) is a non-good abelian multiplicative
MI-monoid.

Remark 2. Although, the MI-monoids of fuzzy numbers in
Examples 2, 3 and 4 are defined to be non-good, one may
simply redefine E0 and E1 in such way that the goodness
will be satisfied. For instance, redefining E0 in Example 3
by E0 = {〈a, 0, 0, d〉 | a, d ∈ R, a ≤ 0 ≤ d}, we obtain a

good MI-monoid of trapezoidal fuzzy numbers. Nevertheless,
it should be noted that this redefinition seems to be artificial in
contrast to the definition of the good MI-monoid of extensional
fuzzy numbers proposed in [1]. Moreover, a natural definition
of MI-field of trapezoidal fuzzy numbers needs to suppose the
non-good abelian additive MI-monoid (consider Example 19).

Let us show two examples of MI-monoids that are not
purely fuzzy and generalize the interval arithmetic discussed
in Example 3 in [1].

Example 5. Let M be the set of all convex subsets of Rn and
a+b denote the addition of two vectors a,b ∈ Rn. Let ⊕ be
the Minkowski addition, i.e.,

A⊕B = {a + b | a ∈ A, b ∈ B}.
It is easy to see that ⊕ is commutative, associative and the set
containing only the null vector 0 is the identity element. Put
E0 the set of all sets in M that contains the null vector. Then
(M3) and (M5) are trivially satisfied. Since the sets from M
are convex, then A⊕A ∈ E0 implies the existence of a,b ∈ A
for which a + b = 0, whence b = −a. From the convexity of
A, we obtain 0 ∈ A by 0.5a + 0.5(−a) = 0 and A ∈ E0.
Thus, (M4) is satisfied and (M,⊕, E0) is an abelian additive
MI-monoid of convex sets in Rn.3

Example 6. Let Rn
+ denote the set of all positive real vectors

and a·b be the product of vectors a,b ∈ Rn
+ defined pointwise

(analogously to the addition of vectors). For simplicity, we
standardly use a · b = ab. A subset A of Rn

+ is said to be
product convex, if for any a,b ∈ A and λ ∈ [0, 1] we have
aλb1−λ ∈ A. Let N be the set of all convex subsets of Rn

with respect to · and + be the “Minkowski” multiplication
defined by

A¯B = {ab | a ∈ A, b ∈ B}.
Let us show that A ¯ B is product convex. If x,y ∈ A ¯ B
and λ ∈ [0, 1], then there exist a, c ∈ A and b,d ∈ B such
that x = ab and y = cd. Then xλy1−λ = (ab)λ(cd)1−λ =
(aλc1−λ)(bλd1−λ). Since aλc1−λ ∈ A and bλd1−λ ∈ B,
then xλy1−λ ∈ A and A¯B is product convex. It is easy to
see that ¯ is commutative, associative and the set containing
only the vector 1 = (1, . . . , 1) is the identity element. Put
E1 the set of all sets in N that contains 1. Again, (M3) and
(M5) are trivially satisfied. If A ¯ A ∈ E1, then there exist
a,b ∈ A for which ab = 1. Hence, we obtain b = a−1. Since
A is product convex, then a0.5(a−1)1−0.5 = a0.5a−0.5 = 1,
whence 1 ∈ A. Thus, (N,¯, E1) is an abelian multiplicative
MI-monoid of product convex sets in Rn

+.

So, one may see that the concept of MI-monoid may serve
as a basic algebraic structure for various types of objects and
operations defined on them (intervals, sets, fuzzy sets and their
arithmetics). This motivates us to develop a theory of MI-
monoids and also to introduce further types of MI-algebras.

3Note that the Minkovski addition is used to define the operation of dilation
which plays a central role in mathematical morphology (see e.g. [5]).



Let us start with the concept of MI-submonoid of an MI-
monoid.

Definition 3. Let G = (G, ◦, E) be an MI-monoid, H ⊆ G
and F ⊆ E be non-empty subsets. If H is itself MI-monoid
under the product of G, then H = (H, ◦, F ) is said to be
an MI-submonoid of G. This is denoted by H ≤ G. An MI-
submonoid H of G is said to be canonical, if F = H ∩ E.

The MI-submonoid (G, ◦, E) and ({e}, ◦, {e}) of an MI-
monoid (G, ◦, E) are called trivial.

Example 7. The real intervals with endpoints in the set of
integers, where the pseudoidentities are defined analogously
as for real intervals, form a canonical (additive and multi-
plicative) MI-submonoid of the MI-monoid of real intervals.

Example 8. The triangle fuzzy numbers with the pseudoiden-
tities defined as symmetric fuzzy sets around the zero, i.e.,
A(x) = A(−x) holds for any x ∈ R, form a non-canonical
(additive and multiplicative) MI-submonoid of the MI-monoid
of trapezoidal fuzzy numbers.

The following proposition shows the necessary and suf-
ficient condition under which subsets of G specify an MI-
submonoid of G.

Proposition 1. Let H ⊆ G and F ⊆ E be non-empty subsets
of an MI-monoid G. Then H ≤ G if and only if for all x, y ∈
H and a, b ∈ F

(i) xy ∈ H ,
(ii) e ∈ F ,

(iii) ab ∈ F ,
(iv) xx = a then x ∈ F .

For the canonical MI-submonoids, the previous a bit com-
plicated proposition may be significantly simplified. Moreover,
the form of the following statement is nearly identical to that
for monoids (see [10]).

Proposition 2. Let H ⊆ G be a non-empty subset of an MI-
monoid G = (G, ◦, E). Then H = (H, ◦, H ∩ E) is an MI-
submonoid of G if and only if xy ∈ H for all x, y ∈ H and
e ∈ H .

Example 9. Let (FS(R), +, E0
S) be an abelian additive MI-

monoid of extensional fuzzy numbers (see [1]) and T ⊆ S be
a subsystem of S , i.e. S∗ =

⋂S ∈ T and cl(S ∪ S′) ∈ T for
any S, S′ ∈ T . Using the previous theorem, one may simply
check that (FT (R), +, E0

T ), where clearly FT (R) ⊆ FS(R)
and E0

T = E0
S ∩ FT (R), is a canonical MI-submonoid of

FS(R).

Example 10. Let (H, ·, E1) be the multiplicative MI-monoid
and E0 be the set of pseudoidentities of the additive MI-
monoid (H, +, E0) of fuzzy numbers from Example 2. Then
(H \E0, ·, E1 \E0) is an MI-submonoid (of “non-zero fuzzy
numbers”) of (H, ·, E1).

Example 11. Let M+ be the set of all (non-negative) convex
sets in Rn

+ ∪ {0}. In Example 5, we defined an abelian MI-
monoid M = (M,⊕, E0), where ⊕ is the Minkowski addition.

Since 0 ∈ M+ and A⊕B ∈ M+ for any A,B ∈ M+, then,
by the previous proposition, (M+,⊕, E0∩M+) is a canonical
MI-submonoid of M .

A homomorphism of MI-monoids is proposed as follows.

Definition 4. Let G and H be MI-monoids. A mapping f :
G → H is a homomorphism of MI-monoids provided
(HM1) f(xy) = f(x)f(y) for all x, y ∈ G,
(HM2) f(eG) = eH ,
(HM3) f(a) ∈ EH for all a ∈ EG,
where eG and eH (EG and EH ) denote the identity elements
(the sets consist of the identity elements and the pseudoidenti-
ties) of G and H , respectively. If f is injective, f is said to be
a monomorphism. If f is surjective, f is said to be an epimor-
phism. If f is bijective and f(EG) = {f(a) | a ∈ EG} = EH ,
f is said to be an isomorphism. In this case G and H are
said to be isomorphic (written G ∼= H). A homomorphism
f : G → G is called an endomorphism and an isomorphism
f : G → G is called an automorphism.

One may simply check that the composition of two homo-
morphisms (monomorphisms, epimorphisms, etc.) is again a
homomorphism (monomorphism, epimorphism, etc.).

Example 12. Let (M,⊕, E0) and (N,¯, E1) be the MI-
monoids of convex and product convex sets introduced in
Examples 5 and 6, respectively. Then f : N → M given by
f(A) = {lna | a ∈ A}, where lna is defined pointwise, is an
isomorphism of the MI-monoids N and M . In fact, we have
f(ab) = lnab = lna+lnb = f(a)+f(b), f(1) = ln1 = 0
and if 1 ∈ A, then 0 ∈ f(A). Let A,B ∈ N . To check that
f(A) is a convex set, let a,b ∈ f(A) and λ ∈ [0, 1]. By the
definition of f , there are c,d ∈ A such that f(c) = a and
f(d) = b. Then

λa + (1− λ)b = λ ln c + (1− λ) lnd =

ln(cλd1−λ) = f(cλd1−λ).

Since cλd1−λ ∈ A, then λa + (1− λ)b ∈ f(A) and f(A) is
convex. Further, we have

f(A¯B) = {ln(ab) | a ∈ A, b ∈ B} =
{lna + lnb | a ∈ A, b ∈ B} = f(A)⊕ f(B),

whence (HM1) is satisfied. Obviously, f({1}) = {ln1} = {0}
and if A ∈ E1, then 0 ∈ f(A) and thus f(A) ∈ E0. Hence,
f is a homomorphism of N to M . If A 6= B, then there
is a ∈ A \ B. Since the natural logarithm is a bijection of
the set of positive real numbers to the set of real numbers, we
obtainf(a) 6∈ B and f is an injection of N to M . Let B ∈ M .
Put A = {eb | b ∈ B}, where again eb is defined pointwise.
Then f(A) = {ln eb | b ∈ B} = {b | b ∈ B} = B, whence f
is surjective. Finally, if f(A) = B and 0 ∈ B, then necessary
1 ∈ A and f(E1) = E0.

If we deal with pseudoidentities then it is reasonable to
introduce a relation ∼ on G defined as follows:

x ∼ y if and only if ax = by (6)



holds for some a, b ∈ E (cf. [3]). Note that x ∼ y if and only
if xa = ya which holds from (M5).

Lemma 1. The relation ∼ is a congruence on G.

One can see that G\ ∼ is a quotient MI-monoid of an MI-
monoid G by ∼.

Definition 5. An MI-monoid G is said to be unlimited in
fuzziness, if G\ ∼ = ({[e]}, ◦, {[e]}). An MI-monoid that is
not unlimited is called limited.

Trivial examples of unlimited MI-monoids are that with
G = (G, ◦, G), i.e., G contains only the neutral element and
eventually pseudoidentities. Indeed, if a, b ∈ G, then ab = ba
implies a ∼ b. A useful lemma stating a sufficient condition
for being unlimited in fuzziness is the following one.

Lemma 2. If for any x ∈ G there is a ∈ E such that xa ∈ E,
then (G, ◦, E) is unlimited in fuzziness.

Using this lemma, one may simply check that the MI-
monoids of real intervals, fuzzy numbers, trapezoidal fuzzy
numbers, representations of fuzzy numbers using monotonic
interpolation or convex and product convex sets are unlimited
in fuzziness. The MI-monoids of extensional fuzzy numbers
are examples of limited in fuzziness MI-monoids . Recall
that extensional fuzzy numbers form a good MI-monoid (see
[1]). A relation between “to be good” and “to be unlimited
fuzziness” is given in the following lemma.

Lemma 3. If G is unlimited in fuzziness with E ⊂ G, then G
is not good.

III. MI-GROUPS

In this section, we will continue in our developing of
a theory of MI-algebras and we will define an important
extension of groups to MI-groups. We say “important” because
the fuzzy numbers (real intervals, convex sets) endowed by an
operation do not keep the group structure, in contrast to the
monoid structure. Moreover, the groups and their theory play
a prominent role among algebraic structures and the same is
to be expected also for MI-groups.

Since the definition of MI-groups is a bit complicated to
imitate the important properties of groups, we will start with
a simpler structure called MI-pregroup. Let G = (G, ◦) be a
group and Gop = (G, ◦op) denote a dual group to G, where
x ◦op y = y ◦ x for any x, y ∈ G.4 Recall that to each x ∈ G
there exists an inverse element x−1 ∈ G such that x ◦ x−1 =
x−1 ◦ x = e. A simple consequence of the group definition
is the fact that each element of G has exactly one inverse
element, (x◦y)−1 = y−1◦x−1 = x−1◦opy−1 and (x−1)−1 =
x. If we define h : G → G by h(x) = x−1, then h is clearly
an isomorphism of G onto Gop that possesses the following
properties:

h(x)x = xh(x) = e, h(e) = e and h(h(x)) = x

4Obviously, (Gop)op = G. If G is abelian, then G = Gop.

describing the properties of inverse elements. One can prove
that a monoid G is a group if and only if there exists the unique
isomorphism h : G → Gop having the properties mentioned
above. This assertion motivates us to introduce an MI-pregroup
as follows. Analogously to a dual group Gop, we define a
dual MI-monoid Gop = (G, ◦op, E) to an MI-monoid G =
(G, ◦, E).

Definition 6. An MI-monoid G is said to be an MI-pregroup,
if there exists an MI-monoidal isomorphism h of G onto Gop

that satisfies
(G1) h(x)x ∈ E,
(G2) h(x)x = xh(x),
(G3) h(h(x)) = x

for any x ∈ G. The isomorphism h is called an inversion in
G and h(x) = xh is called an h-inverse element to x.

One can see that (G1) provides the difference between the
isomorphism that defines inverse elements in a group and the
isomorphism for an MI-pregroup. Nevertheless, as we have
mentioned above, pseudoidentities concentrate a fuzziness in
elements of a structure and it seems to be contra-intuitive to
require the satisfaction of the law h(x)x = e (cf. Subsec-
tion 3.4 in [3]). One can imagine this fact as the impossibility
to destroy the fuzziness in elements. On the other hand, we
have h(x)x ∼ e, i.e., h(x)x differs from e up to a pseudo
neutral element (up to a fuzziness).

Obviously, if h is the identity mapping, i.e., h = idG,
then (G2) and (G3) are trivially satisfied. Nevertheless, from
h(x)x = xx = a for some a ∈ E, we obtain x ∈ E (by
(M4)) and hence G = E. Thus the identity mapping defines
an inversion in G only if G consists of only pseudoidentities.
It should be noted that h(h(x)x) = h(x)x, i.e., h(y) = y
for y = h(x)x. An element x ∈ G with h(x) = x for an
isomorphism h of G onto Gop is said to be h-symmetric in G.
The set of all h-symmetric elements in G is denoted by Sh

G.

Lemma 4. If x ∈ G is h-symmetric, then x ∈ E ,i.e., Sh
G ⊆ E.

In the classical definition of group, the unique h-symmetric
element is e, i.e., e = e−1 = eh. The following statement
shows that h-symmetric elements in G are closed under the
product of G.

Lemma 5. If x, y ∈ G are h-symmetric, then xy is also h-
symmetric.

In contrast to exactly one inversion to each element in
groups, we can consider more than one inversion in MI-
pregroups. The following lemma shows a relation between two
inversions.

Lemma 6. If h and k are inversions in G, then for any x ∈ G
there exist a ∈ Sh

G and b ∈ Sk
G such that xha = ykb, i.e.,

xh ∼ yk.

Hence, one can see that two inversions of a single element
are different up to symmetric pseudoidentities. If Sh

G = Sk
G =

{e}, then clearly h = k and there is a unique inverse in an
MI-pregroup G.



Now, let us consider the trivial fact that holds in all groups:
ae = be then a = b. Replacing the identity element e by h-
symmetric elements s ∈ Sh

G, we obtain a natural condition for
MI-pregroups to be MI-groups.

Definition 7. An MI-pregroup is said to be an MI-group, if
the following cancellation property is held for any inversion
h in G:

(G4) if xa = ya for x, y ∈ G and a ∈ Sh
G then x = y.

An MI-group G is said to be good, if G is a good MI-monoid.

To avoid some technical problems with a possible existence
of more than one inversion in MI-groups, in the next part,
we deal with an MI-group (G, ◦, E, h) restricted to one
chosen inversion h in (G, ◦, E). In this case, the remaining
inversions in (G, ◦, E) are forgotten.5 Usually, if we deal with
more than one MI-group, we use the more precise denotation
G = (G, ·, EG, hG). On the other hand, we write only SG

instead of Sh
G, since only one inversion is considered. Let us

show several examples of MI-groups (restricted to a unique
inversion).

Example 13. In [1], we have shown that the abelian additive
and multiplicative MI-monoids of extensional fuzzy numbers
and real intervals are abelian additive and multiplicative MI-
groups, respectively.

Example 14. Let H be the abelian additive MI-monoid of
fuzzy numbers from Example 2 and put h(g)(α) = −g(α) for
any g ∈ H and α ∈ [0, 1], where −g(α) = [−g(α)+,−g(α)−]
for g(α) = [g(α)−, g(α)+] (see Example 5 in [1]). It is easy
to see that h(g) ∈ H and h is an inversion in H for which
h(g) = h(g′) implies g = g′ for any g, g′ ∈ SH . Hence,
(H, +, E0, h) is an abelian additive MI-group.

Let (H \ E0, ·, E1 \ E0) be the multiplicative MI-monoid
from Example 10 and put h(g)(α) = g(α)−1 for any g ∈
H \ E0 and α ∈ [0, 1], where g(α)−1 = [1/g(α)+, 1/g(α)−]
for g(α) = [g(α)−, g(α)+] (see Example 5 in [1]). Then (H \
E0, ·, E1 \ E0, h) is an abelian multiplicative MI-group.

Example 15. Let L be the additive MI-monoid from Example 4
and put h(u) = (−u+

i ,−δu+
i ,−u−i ,−δu−i )i=1,...,N for any

u ∈ L. Then (L, +, E0, h) is an abelian additive MI-group.
One may check that (L\E0, ·, E1\E0) is an MI-submonoid

of (L, ·, E1). If we define

h(u) = (1/u+
i ,−1/(u+

i )2δu+
i , 1/u−i ,−1/(u−i )2δu−i )i=1,...,N

for any u ∈ L \E0, then (L \E0, ·, E1 \E0, h) is an abelian
multiplicative MI-group.

Example 16. Let M be the additive MI-monoid from Ex-
ample 5 and put h(A) = −A = {−a | a ∈ A} for any
A ∈ M . Then (M,⊕, E0, h) is an abelian additive MI-group

5Later, we will show that if h and k are two inversions in an MI-group
(G, ◦, E), then the MI-groups (G, ◦, E, h) and (G, ◦, E, k) are isomorphic
(see Example 19).

of convex sets in Rn.6 Analogously, one may define an abelian
multiplicative MI-group N of product convex sets.

In what follows the restriction of a mapping h to a set
H ⊆ G is denoted by h » H . The concept of MI-subgroup of
an MI-group is naturally defined as follows.

Definition 8. Let G = (G, ◦, EG, hG) be an MI-group, H ⊆
G and EH ⊆ EG be non-empty sets and hH = hG » H . If
H = (H, ◦, EH , hH) is itself MI-group under the product of
G, then H is said to be an MI-subgroup of G. This is denoted
by H ≤ G. An MI-subgroup H of G is said to be canonical,
if EH = H ∩ EG.

Example 17. Let G be an MI-group. Clearly, G and
({e}, ◦, {e}, id{e}) are trivial MI-subgroup of G. Moreover,
(Sh

G, ◦, Sh
G, idSh

G
), where ◦ is the restriction of the product of

G to Sh
G, is an MI-subgroup of G. Note that this MI-subgroup

plays an analogous role as the trivial group ({e}, ◦) in the
classical group theory (see e.g. Theorem 1) and the elements
of SG perfectly simulate the properties of the identity element
in a group, i.e., the symmetric pseudoidentities are very close
to the identity element in a group.7

The following proposition shows the necessary and suf-
ficient condition under which subsets of G specify an MI-
subgroup of G.

Proposition 3. Let H ⊆ G and F ⊆ E be non-empty subsets
of an MI-group of G. Then H ≤ G if and only if for all
x, y ∈ H and a, b ∈ F

(i) xyhG ∈ H ,
(ii) eG ∈ F ,

(iii) ab ∈ F ,
(iv) xx = a then x ∈ F ,
(v) ahG ∈ F ,

(vi) xhGx ∈ F .

Again, the choice of F is the cause of many conditions
that have to be verified to declare H to be an MI-subgroup
of G. Let us show the necessary and sufficient conditions for
canonical MI-subgroups (cf. [10]).

Proposition 4. Let H ⊆ G be a non-empty subset of an MI-
group G and hH = hG » H . Then H = (H, ◦,H ∩E, hH) is
an MI-subgroup of G if and only if eG ∈ H and xyhG ∈ H
for all x, y ∈ H .

Definition 9. Let G and H be MI-groups. A mapping f :
G → H is a homomorphism of MI-groups provided
(HG1) f(xy) = f(x)f(y) for all x, y ∈ G,
(HG2) f(a) ∈ EH for all a ∈ EG,
(HG3) f(xhG) = (f(x))hH for all x ∈ G,
(HG4) f(a) = f(b) for a, b ∈ SG then a = b,

6Note that −A is called reflection of A and it is used to define erosion in
the mathematical morphology (see e.g. [5]).

7A reason why we do not consider E = Sh
G is closely related to our ap-

proach to the concept of MI-field when we cannot define the inverse elements
with respect to the multiplication also for non-symmetric pseudoidentities with
respect to addition (i.e., pseudozeros).



where EG and EH (hG and hH ) denote the sets consist of the
identity elements and the pseudoidentities (the inversions) of
G and H , respectively.

All concepts as monomorphism, epimorphism etc. of MI-
groups have the same meaning as for MI-monoids. Moreover,
if f : G → H and g : H → P , then g ◦ f is a homomorphism
of G to P . In fact, if a ∈ G, then f(ahG) = f(a)hH and
g(f(a)hH ) = g(f(a))hP . Hence, we obtain g(f(ahG)) =
g(f(a))hP and (HG3) is satisfied. Similarly, one can prove
the remaining conditions.

It should be noted that (HG4) is a redundant condition in the
classical group theory. However, if an MI-group contains a
symmetric pseudoidentity, then (HG4) cannot be proved from
(HG1)-(HG3). Nevertheless, (HG4) seems to be essential for
our further investigation of MI-groups.

Example 18. The isomorphism f of the MI-monoids N and
M defined in Example 16 is also an isomorphism of MI-groups
N and M .

Example 19. Let Gh = (G, ◦, E, h) and Gk = (G, ◦, E, k)
be MI-groups, where h and k be two inversions in (G, ◦, E).
Then f(x) = (xh)k for any x ∈ G defines an isomorphism
of Gh and Gk. In fact, f(xy) = ((xy)h)k = (yhxh)k =
(xh)k(yh)k = f(x)f(y) and (HG1) is proved. If a ∈ E, then
f(a) = (ah)k. Since ah ∈ E, then also f(a) = (ah)k ∈ E
and (HG2) is true. Since (xh)h = x by (G3), then f(xh) =
((xh)h)k = xk, whence (HG3) is fulfilled. If f(a) = f(b)
for a, b ∈ SGh

, then (ah)k = (bh)k implies a = b, because
the inversions h and k are the isomorphisms of G onto Gop,
i.e., (HG4) is also satisfied. One may see that f is a bijective
mapping and f(E) ⊆ E. If b ∈ E, then putting a = (bk)h we
obtain a ∈ E and f(a) = b, whence f(E) = E and f is an
isomorphism.

Proposition 5. Let f : G → H be a homomorphism of MI-
groups. Then

(i) f(SG) ⊆ SH .
(ii) f(eG) = eH .

An important concept for groups is the kernel of a homo-
morphism f : G → H , i.e., Ker f = {x ∈ G | f(x) = eH}.
For the MI-groups, we need a generalization of this concept.

Definition 10. Let f : G → H be a homomorphism of MI-
groups. The MI-kernel of f , denoted by MI-Ker f , is the set
{x ∈ G | f(x) ∈ SH}. If A is a subset of G, then f(A) =
{y ∈ H | y = f(x) for some x ∈ A} is the image of A. f(G)
is called the image of f and denoted by Im f . If B is a subset
of H , then f−1(B) = {x ∈ G | f(x) ∈ B} is the inverse
image of B.

A characterization of a monomorphism by MI-Ker and an
isomorphism by its inverse homomorphism is provided in the
following theorem.

Theorem 1. Let f : G → H be a homomorphism of MI-
groups. Then

(i) f is a monomorphism if and only if MI-Ker f = f(SG),

(ii) f is an isomorphism if and only if there is a homo-
morphism f−1 : H → G such that ff−1 = idG and
f−1f = idH .

IV. FULL MI-SUBGROUPS AND LAGRANGE’S THEOREM

In this section, we present only a part of MI-group theory
devoted to cosets and related notions. Let us start with the
concept of a closure of subsets of MI-groups.

Definition 11. Let G be an MI-group and H ⊆ G be a non-
empty subset. The set H is said to be closed under SG, if
xa ∈ H for x ∈ G and a ∈ SG implies x ∈ H . The set

Ĥ =
⋂
{K ⊆ G | K is closed under SG and H ⊆ K}

is called a closure of H under SG.

Obviously, Ĥ contains all elements that belongs under the
product of G with all hG-symmetric elements to H . Moreover,
if H is closed under SG, then H = Ĥ .

Proposition 6. If H ≤ G, then Ĥ ≤ G, where Ĥ =
(Ĥ, ◦, ÊH , hĤ).

The second concept is a generalization of “congruence
modulo”. Recall that the set of all h-symmetric elements forms
an MI-subgroup in each MI-group. In what follows, we restrict
ourselves to the closed MI-subgroups of G under SG and we
do not stress it below.

Definition 12. Let H be a closed MI-subgroup of an MI-group
G and x, y ∈ G. We say that x is right congruent to y modulo
H denoted x ≡r y (mod H), if there exists an hG-symmetric
element a ∈ H such that xayhG ∈ H . We say that x is left
congruent to y modulo H denoted x ≡l y (mod H), if there
exists an hG-symmetric element a ∈ H such that xhGay ∈ H .

If G is abelian then right and left congruence modulo
H coincide. To investigate analogous properties to that for
“congruence modulo” in the group theory, we restrict ourselves
to the following class of MI-subgroups.

Definition 13. An MI-subgroup H of an MI-group G is said
to be full and denoted by H ≤f G, if SG ⊆ H and H is
closed under SG.

Theorem 2. Let H be a full MI-subgroup of an MI-group G.
(i) Right (resp. left) congruence modulo H is an equivalence

relation on G.
(ii) The equivalence class of x ∈ G under right (resp. left)

congruence modulo H is the closure of Hx = {hx | h ∈
H}, (resp. xH = {xh | h ∈ H}) under SG.

(iii) |Ĥx| = |H| = |x̂H|.
If H ≤ G and x ∈ G, then a right coset of H in G is the

set Ĥx and a left coset of H in G is the set x̂H . Note that if
SG = {e} then Ĥx = Hx.

Definition 14. If H ≤f G, then the index of H in G, denoted
by [G : H], is the cardinal number of the set of distinct right
(resp. left) cosets of H in G.



Definition 15. If G is an MI-group, then the order of G,
denoted by |G|, is the cardinal number of the set G.

The last two theorems are well known in the group theory
(cf. [10]).

Theorem 3. If G is an MI-group and K ≤f H ≤f G, then

[G : K] = [G : H][H : K].

Theorem 4 (Lagrange). If G is a finite MI-group and H ≤f

G, then |H| divides |G| and [G : H] = |G| \ |H|.
V. MI-FIELDS

An original motivation of our analysis of properties of arith-
metical operations with fuzzy numbers was to develop working
arithmetics of fuzzy numbers. Our idea was to introduce
a structure of fuzzy numbers with appropriate arithmetical
operations that is very close to the field of real numbers. The
essential step in this conception was a generalization of group
structure leading to the notion of MI-group. Now, we are ready
to introduce a generalization of the field structure.

Definition 16. An algebra (G,+, ·, E0, E1) is said to be an
MI-field, if
(F1) (G, +, E0) is an abelian additive MI-group,
(F2) (G r E0, ·, E1 r E0) is an abelian multiplicative MI-

group,
(F3) for any x, y, z ∈ G the following

x(y + z) = xy + xz (distributive law)

holds.

Example 20. The set of extensional fuzzy numbers (under an
arbitrary system of similarity relations) endowed by + and ·
form an MI-field (see Example 6 in [1]).

As it has been discussed in Introduction, only the sub-
distributivity is satisfied for the arithmetical operations for
intervals and fuzzy numbers, i.e., x(y + z) ⊆ xy + xz.
Nevertheless, it is interesting that for any x, y, z we may find
a pseudoidentity a such that a + x(y + z) = xy + xz.8 This
motivate us to define a weaker algebraic structure to the MI-
field.

Definition 17. An algebra (G, +, ·, E0, E1) is said to be a
weak MI-field, if (F1), (F2) and
(WF3) for any x, y, z ∈ G there exists a ∈ E0 such that the

following

a + x(y + z) = xy + xz (weak distributive law)

holds.

Example 21. The sets of real intervals, fuzzy numbers, para-
metric representations endowed by the arithmetical operations
defined in Examples 1-4 form a weak MI-field. Note that M
does not form a weak MI-field, since M \ E0 contains also
sets that are not product convex.

8By (6), we may express this equality as x(y + z) ∼+ xy + xz, where
∼+ is the congruence on G with respect to +.

Using the concepts introduced for MI-groups, we may
simply define analogous concepts for (weak) MI-fields (e.g.
MI-subfield, homomorphism of (weak) MI-fields).

VI. CONCLUSION

In this second part of our contribution on extensional fuzzy
numbers and their arithmetics, we presented some of the
basic notions related to many identities algebras (namely, MI-
monoids, MI-groups and MI-fields) introduced in [1]. We
showed that many well known arithmetics for intervals, fuzzy
numbers including the proposed extensional fuzzy numbers
and sets of real vectors can be viewed from the MI-algebras
perspective. This fact enables us to investigate abstractly the
properties of structures of various types sets expressing the
imprecisely defined (not-necessary real) numbers. Moreover,
we think that the development of a theory of MI-algebraic
structures should be interesting from the theoretical as well
as practical point of view. Here, we presented only several
chosen results of the possible algebraic theory to demonstrate
its functionality and a close relation to the standard results
from the theory of monoids, groups and fields. It should be
noted that the results for MI-algebras cannot be obtained by a
trivial reconstruction of known proofs for algebras and these
proofs have to be designed by a novel consideration. Thus, the
development of a theory of MI-algebras becomes a challenge
for our future research.
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