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Abstract

In this article, we propose an axiomatic system for fuzzy “cardinality” measures
(referred to as fuzzy c-measures for short) assigning to each finite fuzzy set a
generalized cardinal that expresses the number of elements that the fuzzy set
contains. The system generalizes an axiomatic system introduced by J. Casas-
novas and J. Torrens (2003). We show that each fuzzy c-measure is determined
by two appropriate homomorphisms between the reducts of residuated-dually
residuated (rdr-)lattices. For linearly ordered rdr-lattices, we prove that each
fuzzy c-measure is a product of a non-decreasing and a non-increasing fuzzy c-
measure, which indicates that there is a close relation between fuzzy c-measures
and FGCount, FLCount and FECount provided by L.A. Zadeh (1983) and gen-
eralized by M. Wygralak (2001). Finally, the relationship of fuzzy c-measures to
graded equipollence introduced in the first part of this contribution is analyzed.

Key words: residuated-dually residuated lattice, generalized cardinals, graded
equipollence, cardinality of finite fuzzy sets, fuzzy c-measures

1. Introduction

In fuzzy mathematics, the cardinality of a fuzzy set is a measure of the “num-
ber of elements belonging to the fuzzy set”. Analogous to the cardinal theory
of sets, there are two approaches to the cardinality of fuzzy sets: one approach
that is based on the concept of equipollence (equipotency, equinumerosity) and
the other approach that uses a set of numbers or a fuzzy generalization of these
numbers.

IThis work was supported by the European Regional Development Fund in the
IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070) and also partially sup-
ported by the Grant IAA108270901 of the GA AV ČR.
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The first approach has been discussed in the Part I of this contribution
devoted to the graded equipollence. The second approach can be divided to
scalar and fuzzy depending on the type of objects used to express the power of
the fuzzy sets.

Because the scalar approach is not the subject of this paper, let us say only
that a single number (usually a non-negative real number) is assigned to each
finite fuzzy set. Most of the definitions of scalar cardinality are included in the
axiomatic system proposed by M. Wygralak in [22] (see also [5, 23]).

In the fuzzy approach, the cardinality of the fuzzy sets is usually defined as a
mapping that assigns to each fuzzy set an appropriate fuzzy set in a universe of
cardinal numbers. Such fuzzy sets are usually referred to as generalized cardinals
(see, e.g., [7, 18, 19, 20]), and they are assumed to be convex. Let us recall that
a fuzzy set A : x → [0, 1] is said to be convex in x equipped with an ordering ≤
if

A(a) ∧A(c) ≤ A(b)

holds for all a, b, c ∈ x such that a ≤ b ≤ c. From the practice, one may see
that the cardinality of finite fuzzy sets plays a central role. The generalized
cardinals for finite fuzzy sets are usually convex fuzzy sets in the set of natural
numbers. The first definition of the cardinality of finite fuzzy sets that uses gen-
eralized natural numbers was proposed by L.A. Zadeh in [25]. When L.A. Zadeh
developed a computational approach to fuzzy quantifiers in natural language,1

he introduced in [24] three types of of finite fuzzy set cardinality expressions,
namely FGCount , FLCount , and FECount . Note that

FGCount(A)(k) =
∨
{a | |Aa| ≥ k}

expresses the degree to which A contains at least k elements. The dual variant

FLCount(A)(k) = 1− FGCount(A)(k + 1)

determines the degree to which A has at most k elements. The degree to which
A has exactly k elements is expressed by

FECount(A)(k) = FGCount(A)(k) ∧ FLCount(A)(k).

Further approaches to the definition of the cardinality for finite fuzzy sets can be
found in [6, 7, 15, 16]. The FGCount, FLCount and FECount were generalized,
and a cardinal theory of finite fuzzy sets over triangular norms was developed
by M. Wygralak in [22] (see also [23]). Note that all three types of fuzzy car-
dinalities were reasonably designed, but no unifying axiomatic system, which
would follow the scalar approach, was provided. An attempt to unify many of
the common definitions under an axiomatic system was proposed by J. Casas-
novas and J. Torrens in [3]. The axiomatic system defined an infinite class of

1For example, for nearly all is a fuzzy quantifier in “For nearly all students visited the
lecture”,few in “Few single women stayed at home”, or approximately half in “Approximately
half questions were not answered”.
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fuzzy cardinalities for finite fuzzy sets, which included the original definitions
of FGCount, FLCount, and FECount. Nevertheless, the axiomatic system was
designed to only deal with the operations of the minimum and the maximum in
the unit interval, and thus, Wygralak’s approach to the fuzzy cardinality over
triangular norms cannot be included in this system. An extension of FGCount
for fuzzy sets with the membership degrees in a linearly ordered lattice was
proposed by P. Lubczonok in [13]. An approach to the non-convex cardinality
of fuzzy sets was proposed in [4].

In [10], we introduced an axiomatic system for fuzzy cardinality measures
(referred to as fuzzy c-measures for short) that, in some sense, unifies the three
mentioned approaches to the cardinality of finite fuzzy sets. In this paper,
we slightly modify the original approach from [10] with respect to the purpose
of this contribution and elaborate fuzzy c-measures in details. It should be
noted that we use rather fuzzy c-measures as opposed to fuzzy cardinalities,
because not all fuzzy c-measures may be considered as a true cardinality of finite
fuzzy sets. The proposed system generalizes the axiomatic system provided by
J. Casasnovas and J. Torrens in [3], and a lot of the fuzzy cardinalities based
on the triangular norms suggested by Wygralak in [22, 23] can be introduced
using this system (see Corollary 3.11). Moreover, we do not restrict ourselves
to the unit interval here and consider a general structure called a residuated-
dually residuated lattice (rdr-lattice for short) defined in [10] (see also [9, 11]).
Analogous to the representations of scalar cardinalities and fuzzy cardinalities
using appropriate mappings provided in [21, 3], we prove that each fuzzy c-
measure can be represented by two special homomorphisms between the reducts
of an rdr-lattice. An interesting question is whether and how fuzzy c-measures
are related to the graded equipollence proposed in the first portion of this work.
A possible answer is given here as well.

The paper is structured as follows. The next section provides the necessary
preliminaries to understand the text of this paper. Section 3 is devoted to the
fuzzy c-measures, which include the axiomatic system, the basic properties, the
representation theorem, the characterizations of the fuzzy c-measures, and a
discussion concerning the valuation property. In Section 4, we show several re-
lations between the graded equipollence of finite fuzzy sets and the similarity of
the generalized cardinals obtained using the fuzzy c-measures, and we demon-
strate that, to some fuzzy c-measures, a corresponding non-graded equipollence
can be established. The last section concludes the work.

2. Preliminaries

In this section, we would like to summarize the basic notions and results
without any details from the Part I that are significant to understand the text
and make this paper more compact. A reader acquainted with the contents
of the first portion of this work may omit this preliminary and use it only for
references to results applied in the proofs.

As a structure for the membership degrees of fuzzy sets, we assume an rdr-
lattice L = 〈L,∧,∨,⊗,→,⊕,ª,⊥,>〉, i.e., a (bounded) residuated lattice ex-
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tended by a dual adjoint pair of operations (⊕,ª), i.e., α ≤ β ⊕ γ if and
only if α ª β ≤ γ. The least (greatest) element is denoted by ⊥ (>). An
rdr-lattice is said to be linearly ordered if the reduct 〈L,∧,∨,⊥,>〉 is a lin-
early ordered lattice. Further, an rdr-lattice satisfies the prelinearity axiom if
(α → β)∨ (β → α) = > for all α, β ∈ L. A simple example of a linearly ordered
rdr-lattice is an algebra derived by a left continuous t-norm T and a right con-
tinuous t-conorm S or an MV-algebra (see Ex. 2.1 and Ex. 2.2 in [9]). We shall
say that an rdr-lattice satisfies the conditional cancellation law for ⊗ (for ⊕) if
α ⊗ β = α ⊗ γ > ⊥ (α ⊕ β = α ⊕ γ < >) implies β = γ for any α, β, γ ∈ L.
For example, we can consider linearly ordered MV-algebras (see Ex. 2.2 in [9]
and Theorem 2.45 in [1]) or rdr-lattices determined by left-continuous t-norms
and right-continuous t-conorms (see Ex. 2.1. in [9] and Remark 2.19 in [12] or
Section 1.4 in [23]).

A framework for fuzzy sets is the class of all countable sets denoted by
Count. A subclass of Count contains all finite sets is denoted by Fin. A mapping
A : z → L is a fuzzy set (fuzzy class) in Count if z ∈ Count (z ⊆ Count). The
class of all fuzzy sets is denoted by Fcount. The set z = Dom(A) is called a
universe of discourse of A. The set {x ∈ z | A(x) > ⊥} is called a support of A
and is denoted by Supp(A). The empty mapping ∅ : ∅ → L is called the empty
fuzzy set, and a fuzzy set A is called a singleton if Dom(A) contains only one
element. A singleton is denoted by {α/x}, where α ∈ L and x ∈ Count. The
fuzzy set A is called crisp if A(x) ∈ {⊥,>} for any y ∈ z. Note that the empty
fuzzy set is crisp, since the presumption is trivially satisfied. The fuzzy sets A
and B are said to be the same (symbolically A = B) if Dom(A) = Dom(B) and
A(x) = B(x) for any x ∈ Dom(A) and to be equivalent (symbolically A ≡ B)
if Supp(A) = Supp(B) and A(x) = B(x) for any x ∈ Supp(A). The class of all
fuzzy sets equivalent to A is denoted by cls(A). The fuzzy sets A and B are
equivalent in the degree α (symbolically, [A ≈ B] = α) if

α =
∧

x∈Dom(A)∪Dom(B)

(A′(x) ↔ B′(x)), (1)

holds for A′ ∈ cls(A), B′ ∈ cls(B) with Dom(A′) = Dom(B′) = Dom(A) ∪
Dom(B). A fuzzy set A is said to be a fuzzy subset of a fuzzy set A if A(x) ≤
B(x) for any x ∈ Supp(A). Let A, B ∈ Fcount, x = Dom(A) ∪ Dom(B) and
A ≡ A′ and B ≡ B′ be such that Dom(A′) = Dom(B′) = x. Then, the union
of A and B is a mapping A∪B : x → L defined by (A∪B)(a) = A′(a)∨B′(a),
and the intersection of A and B is a mapping A ∩ B : x → L defined by
(A ∩ B)(a) = A′(a) ∧ B′(a) for any a ∈ x. A fuzzy set A is said to be finite if
Supp(A) ∈ Fin. The class of all finite fuzzy sets is denoted by Ffin.

Let x be a set equipped with an ordering relation ≤. A fuzzy set A : x → L
is a ¯-convex fuzzy set if A(a) ¯ A(c) ≤ A(b) holds for any a, b, c ∈ x with
a ≤ b ≤ c. A generalized cardinal is a ¯-convex fuzzy set with the set of natural
numbers N as its universe of discourse. The set of all generalized cardinals
is denoted by N, and the operation of addition on N is defined, by Zadeh’s
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extension principle, as

(A + B)(i) =
∨

k,l∈N
k+l=i

(A(k)¯B(l)). (2)

Define 0 : N → L by 0(k) = >, if k = 0, and 0(k) = ⊥, otherwise. Using
Theorem 4.1 in [9], the triplet N = (N,+,0) is an abelian monoid, where the
prelinearity of the rdr-lattice L must be supposed for ¯ = ∧.

Let A,B ∈ Ffin and |Dom(A)| = |Dom(B)|, i.e., they have the same cardi-
nality. The set Perm(A,B) contains all one-to-one mappings of Dom(A) onto
Dom(B). If f ∈ Perm(A,B), then

[A ∼¯f B] =
⊙

x∈Dom(A)

(A(x) ↔ B(f(x))) (3)

gives the degree to which f is a one-to-one mapping of A onto B with respect
to ¯. The degree to which the fuzzy sets A and B are equipollent with respect
to ¯ is denoted by [A ∼¯ B] and can be derived by the following theorem.

Theorem 2.1 [9] Let A, B ∈ Ffin. Then,

[A ∼¯ B] =
∨

f∈Perm(C,D)

[C ∼¯f D] (4)

for any C ∈ cls(A) and D ∈ cls(B) such that |Dom(C)| = |Dom(D)| = m.

To compute the degree to which A and B have the same cardinality, it is
sufficient to find a pair of equivalent fuzzy sets to A and B defined over finite
universes of discourse. The correctness of the definition of “to be equipollent”
is provided by the following corollaries.

Corollary 2.2 [9] If A ∈ Ffin, then [A ∼¯ B] = > for all B ∈ cls(A).

Corollary 2.3 [9] Let A, B ∈ Ffin, C ∈ cls(A), and D ∈ cls(B). Then,
[A ∼¯ B] = [C ∼¯ D].

The fuzzy class relation ∼¯ is a similarity relation (precisely ⊗-similarity) on
the class Ffin (Theorem 5.6 in [9]).

Let A ∈ Ffin be a finite fuzzy set and define a fuzzy class p¯A : N× Fin → L
by

p¯A(i, y) =
{ ∨

z⊆y,|z|=i

⊙
x∈z A(x), if y ⊆ Dom(A);

⊥, otherwise,
(5)

for any (i, y) ∈ N× Fin. The following proposition summarizes the basic prop-
erties of p¯A.
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Proposition 2.4 [9] Let A ∈ Ffin and y ∈ Fin such that y ⊆ Dom(A). Then,
for any i, j ∈ N, we have

(i) p¯A(i, y) ≤ p¯A(j, y), if i ≥ j,

(ii) p¯A(i, y) = ⊥, if i > |y|,
(iii) p¯A(0, y) = >,

(iv) p¯A(1, y) =
∨

x∈y A(x),

(v) p¯A(0, ∅) = > and p¯A(i, ∅) = ⊥ for any i > 0, and

(vi) p¯A(−, y) is a non-increasing generalized cardinal.

Proposition 2.5 [9] Let L be linearly ordered. Then, p⊗A(i, y) =
⊗i

k=0 p∧A(k, y)
for any A ∈ Ffin and (i, y) ∈ N× Fin.

Let L be linearly ordered and A ∈ Ffin. A set s ∈ Fin such that s ⊆ Supp(A)
is said to be a substantial segment of A with respect to ¯ if

(i)
⊙

x∈s A(x) > ⊥,

(ii) if z ∈ Fin such that s ⊂ z ⊆ Supp(A), then
⊙

x∈z A(x) = ⊥,

(iii) if y ⊆ Supp(A) satisfies (i) and (ii), then there exists a one-to-one mapping
f : y → s such that A(x) ≤ A(f(x)) for any x ∈ y.

The fuzzy set As = A » s is called a fuzzy substantial segment of A with respect
to ¯ (see Definition 7.1. and Remark 7.3. in [9]). Recall that A » s is the
restriction of A to s.

An important theorem in our investigation of the relation between the non-
graded equipollence2 and a fuzzy c-measure that provides non-increasing gen-
eralized cardinals is the following.

Theorem 2.6 [9] Let L be linearly ordered and, for ¯ = ⊗, satisfy the con-
ditional cancellation law for ⊗. Let A,B ∈ Ffin and y, y′ ∈ Fin such that
s ⊆ y ⊆ Dom(A) and t ⊆ y′ ⊆ Dom(B), where s and t are substantial segments
of A and B with respect to ¯, respectively. Then, [As ∼¯ Bt] = > if and only
if p¯A(−, y) = p¯B(−, y′).

The following theorem plays a significant role in the derivation of a relation
between the graded equipollence and a fuzzy c-measure.

Theorem 2.7 [9] Let L be linearly ordered, A,B ∈ Ffin and y, y′ ∈ Fin such
that Supp(A) ⊆ y ⊆ Dom(A) and Supp(B) ⊆ y′ ⊆ Dom(B). Then,

[A ∼∧ B] = [p∧A(−, y) ≈ p∧B(−, y′)]. (6)

2This means that we consider only the situation when fuzzy sets are or are not equipollent,
and two fuzzy sets A and B are equipollent if [A ∼¯ B] = >.

6



Let A ∈ Ffin be a finite fuzzy set and define a fuzzy class p¯A : N× Fin → L
by

p¯A(i, y) =
{ ∧

z⊆y,|z|=i

⊙
x∈z A(x), if y ⊆ Dom(A);

⊥, otherwise,
(7)

for any (i, y) ∈ N× Fin. It should be noted that p¯A is designed to be a dual to
p¯A. The basic properties of p¯A used in the text are mentioned in the following
proposition.

Proposition 2.8 [9] Let A ∈ Ffin and y ∈ Fin such that y ⊆ Dom(A). Then,
for any i, j ∈ N, we have

(i) p¯A(i, y) ≥ p¯A(j, y), if i ≥ j,

(ii) p¯A(i, y) = >, if i > |y|,
(iii) p¯A(0, y) = ⊥,

(iv) p¯A(1, y) =
∧

x∈y A(x),

(v) p¯A(0, ∅) = ⊥ and p¯A(i, ∅) = > for any i > 0, and

(vi) p¯A(−, y) is a non-decreasing generalized cardinal.

Proposition 2.9 [9] Let L be linearly ordered. Then, p⊕A(i, y) =
⊕i

k=0 p∨A(k, y)
for any A ∈ Ffin and (i, y) ∈ N× Fin.

Let L be linearly ordered and A ∈ Ffin. A set s ∈ Fin such that s ⊆ Supp(A)
is said to be a substantial segment of A with respect to ¯ if

(i)
⊙

x∈s A(x) < >,

(ii) if z ∈ Fin such that s ⊂ z ⊆ Supp(A), then
⊙

x∈z A(x) = >,

(iii) if y ⊆ Supp(A) satisfies (i) and (ii), then there exists a one-to-one mapping
f : y → s such that A(x) ≥ A(f(x)) for any x ∈ y.

The fuzzy set As = A » s is called a fuzzy substantial segment of A with respect
to ¯ (see Definition 7.2. and Remark 7.10. in [9]).

The following statement will be used to prove a relation between the non-
graded equipollence and a fuzzy c-measure that provides non-decreasing gener-
alized cardinals.

Theorem 2.10 [9] Let L be linearly ordered and, for ¯ = ⊕, satisfy the con-
ditional cancellation law for ⊕. Let A,B ∈ Ffin and y, y′ ∈ Fin such that
s ⊆ y ⊆ Supp(A) and t ⊆ y′ ⊆ Supp(B), where s and t are substantial segments
of A and B with respect to ¯, respectively. Then, [As ∼¯ Bt] = > if and only
if p¯A(−, y) = p¯B(−, y′).
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3. Fuzzy c-measures

In this section, we propose an axiomatic system for fuzzy measures that can
be understand as a natural generalization of the cardinality measure of finite
sets. The system is designed in such a way that the axiomatic system for fuzzy
cardinalities provided by J. Casasnovas and J. Torrens in [3] is a special case
where the unit interval and the operation of the minimum and the maximum
are assumed.3 Moreover, we obtain a wider class of models that can serve as
fuzzy measures that indicate the number of elements in a finite fuzzy set.

3.1. Axiomatic system
In the following text, we shall suppose that L is an rdr-lattice that satisfies

the prelinearity axiom if ¯ = ∧.

Definition 3.1 A class mapping C : Ffin → N is a fuzzy cardinality (c-
)measure of finite fuzzy sets with respect to ¯ if, for arbitrary A,B ∈ Ffin,
it satisfies the following axioms

(C1) if Supp(A) ∩ Supp(B) = ∅, then C(A ∪B) = C(A) + C(B),

(C2) if i, j ∈ N, i > |Supp(A)|, and j > |Supp(B)|, then C(A)(i) = C(B)(j),

(C3) if A is a crisp set, then C(A) is a crisp set and C(A)(|Supp(A)|) = >,

(C4) if α ∈ L, x, y ∈ Count and i ∈ N, then C({α/x})(i) = C({α/y})(i), and

(C5) if α, β ∈ L and x ∈ Count, then

C({α¯β/x})(0) = C({α/x})(0)¯ C({β/x})(0),
C({α¯ β/x})(1) = C({α/x})(1)¯ C({β/x})(1).

The axioms (C1)-(C5) are called the additivity, the variability, the consis-
tency, the singleton independency, the preservation of non-existence and exis-
tence, respectively. In the following text, for the sake of simplicity, we shall
often use only “c-measure” instead of “fuzzy c-measure of finite fuzzy sets”, and
we shall omit “with respect to ¯” when no confusion is possible.

Before we discuss the proposed axioms, let us note that C is a measure in
the following sense. We know that the inclusion relation ⊆ is a partial ordering
on Ffin. Let us define another partial ordering on Ffin as follows: A v B if
there exists x ∈ Fin such that B » x ≡ A, i.e., B » x and A are equivalent fuzzy
sets.4 One may simply check that A v B implies A′ v B′ for any A′ ∈ cls(A)
and B′ ∈ cls(B), and thus, v is correctly established. Let (N, +) be equipped

3In our conception, it means that the rdr-lattice is the corresponding extension of the Gödel
algebra on [0, 1].

4For the definition of equivalence of fuzzy sets, see Definition 3.4 in [9] or Preliminaries
here.

8



with the partial ordering ≤ defined as follows: A ≤ B if there exists C ∈ N
such that A + C = B.5 Then, it is easy to prove that

A v B then C(A) ≤ C(B). (8)

In fact, let us suppose A = B » x.6 Then, defining z = Dom(B) \ x and
B′ = B » z, we obviously obtain Supp(A) ∩ Supp(B′) = ∅ and B = A ∪ B′.
The desired inequality follows from the additivity of C. Thus, C is a monotone
mapping. Furthermore, all images of fuzzy sets of Ffin under C form a subset of
N, where C(∅) is the least element with respect to ≤.7 In this sense, C may be
regarded as a fuzzy measure (in a general conception) satisfying the additivity
axiom provided in (C1).

Now, let us comment on the proposed axioms. The first three axioms are
adopted from [3] and their motivation is as follows. The additivity of the c-
measures is the standard property of the cardinality of sets. Note that we
choose the intersection of the supports for the characterization of disjointness of
the fuzzy sets, because non-linear residuated lattices can be used in general. In
this case, we can determine two fuzzy sets with the same support that differ from
the empty fuzzy set, but their intersection is a fuzzy set equivalent to the empty
fuzzy set. In such cases, it is difficult to ensure additivity. One can see that
the intersection of fuzzy sets can be used for linearly ordered residuated lattices.
The variability states that the c-measures of fuzzy sets are not influenced by the
elements that do not belong to the supports. A consequence of this axiom is the
correctness of our axiomatic system, which means that the equivalent finite fuzzy
sets have the same c-measure. The axiom of consistency ensures the fact that the
c-measures are extensions of the cardinality measure (for the finite sets). The
singleton independency ensures that a form of elements does not influence the
value of a c-measure. Finally, the membership degree C({A(x)/x})(0) expresses
the degree to which {A(x)/x} may be considered as the empty set {⊥/x}, i.e.,
x does not belong to A. Analogously, the membership degree C({A(x)/x})(1)
determines the degree to which {A(x)/x} may be considered as the singleton
{>/x}, i.e., x belongs to A. Because α¯β ≥ α∨β, then one could deduce that
the singletons {α/x} and {β/x} are closer to the empty set {⊥/x} than the
singleton {α¯β/x}. From the closeness of the singletons to the empty set, one
could conclude that C({α¯β/x})(0) ≤ C({α/x})(0) and C({α¯β/x})(0) ≤

5Note that ≤ is well established, i.e., if A + C = B and B + D = A, then A = B. In fact,
one could prove that if A + C + D = A, then C + D = 0 or C + D = χN, where 0 is the
neutral element in the monoid N and χN is the characteristic function of N. If C + D = 0,
then C = D = 0. Hence, A + 0 = B implies A = B. If C + D = χN, then one can check
that at least one of the elements C and D is equal to χN. If C = χN, then A + χN = A and
A + χN = B imply A = B. If D = χN, then we can use the analogous equations B + χN = B
and B + χN = A, which imply A = B.

6Using Corollary 3.2 provided later, we can use such restriction without any impact on the
result.

7Note that ∅ is the least element in N with respect to ≤, and 0 < C(∅) for any c-measure
C (see Proposition 3.1).
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C({β/x})(0), which could be written as

C({α¯β/x})(0) ≤ C({α/x})(0) ∧ C({β/x})(0).

The “strong” relation in axiom (C5) stems from the previous inequality, where
we prefer the usage of the operation ¯, since it better corresponds to ¯ than
∧, and the equality that enables us a deeper investigation of the c-measures
properties. Analogously, one could deduce the second “strong” relation in axiom
(C5).

First, let us prove the correctness of the proposed definition. This correctness
means that the value of C for A does not depend on the choice of the fuzzy set
from the class cls(A) of all equivalent finite fuzzy sets (see also Definition 3.4
in [9]). Recall that 0 is the neutral element in the monoid N and the fuzzy set
(characteristic function) of natural numbers is denoted by χN, i.e., χN(n) = >
for any n ∈ N.

Proposition 3.1 Let C be a c-measure. Then, either C(A) = 0 for all A ∈
cls(∅) or C(A) = χN for all A ∈ cls(∅).

Proof. Since A ∈ cls(∅), then A is crisp and Supp(A) = ∅. According to (C3),
we obtain C(A)(i) ∈ {⊥,>} for each i ∈ N and C(A)(0) = >. As a consequence
of (C2), C(A)(i) = C(A)(j) for all i, j > 0. Therefore, either C(A)(i) = ⊥ for all
i > 0, or C(A)(i) = > for all i > 0, and thus, C(A) = 0, or C(A) = χN.

If A′ ∈ cls(∅), then C(A)(0) = C(A′)(0), and, by (C2), we have C(A)(i) =
C(A′)(i) for all i > 0. Hence, we obtain C(A) = C(A′), which concludes the
proof. 2

Proposition 3.2 Let A ∈ Ffin. Then, C(A) = C(B) for all B ∈ cls(A).

Proof. Let A ∈ Ffin and define C = A » Supp(A) and D = A » (Dom(A) \
Supp(A)). Obviously, C ≡ A, D ≡ ∅, A = C ∪D and Supp(C) ∩ Supp(D) = ∅.
Using the additivity property, we obtain

C(A) = C(C ∪D) = C(C) + C(D) = C(C) + C(∅) = C(C ∪ ∅) = C(C),

where C(D) = C(∅) is the consequence of Proposition 3.1. Let B ∈ cls(A).
Then, by the definition of the equivalence of fuzzy sets, C = B » Supp(B), and
analogous to A, one can check that C(B) = C(C). Hence, we obtain C(A) =
C(B). 2

Corollary 3.3 Let A ∈ Ffin. Then, either C(A)(i) = ⊥ for all i ∈ N such
that i > |Supp(A)| or C(A)(i) = > for all i ∈ N such that i > |Supp(A)|.

Proof. Using (C2), we obtain C(A)(i) = C(∅)(i) for any i > |Supp(A)|. Now,
it is sufficient to use Proposition 3.1. 2
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The following examples show the FGCount, FLCount and FECount ex-
pressed as c-measures of finite fuzzy sets for ¯ = ∧ (cf., [15, 3, 22, 23]). Let us
suppose that the structure of the membership degrees is the ÃLukasiewicz rdr-
lattice LÃL on [0, 1]; recall that α⊗β = max(0, α+β−1) and α → β = 1−α+β.
For the sake of simplicity, we shall restrict ourselves to fuzzy sets with non-empty
and finite universe. For the remaining fuzzy sets, we apply Proposition 3.2.

Example 3.1 The mappings Ck : Ffin → N, k = 1, 2, 3, defined by

C1(A)(i) = FGCount(A)(i) =
∨
{α | α ∈ [0, 1] & |Aα| ≥ i};

C2(A)(i) = FLCount(A)(i) = 1− C1(A)(i + 1);

C3(A)(i) = FECount(A)(i) = C1(A)(i) ∧ C2(A)(i),

are c-measures of the finite fuzzy sets with respect to ∧. A direct verification of
the satisfaction of all the axioms for Ck is a routine that takes over two pages;
therefore, we omit it here. Nevertheless, this statement can be also checked in-
directly using the representation theorem on page 21 and the theoretical result
presented in Corollary 3.12 on page 29. We recommend performing the following
simple derivation as a preview to cardinal theory based on c-measures and to re-
turn here after a carefully reading the above-mentioned statements. In order to
verify that Ck (k = 1, 2, 3) is a c-measure with respect to ∧, using Theorem 3.7
and Corollary 3.12, it is sufficient to define an appropriate ∧-homomorphism f
and an appropriate ∨d-homomorphism g between the reducts of LÃL (see Defi-
nition 3.2). Consider f, g, h : [0, 1] → [0, 1] defined by f(α) = α, g(α) = 1 − α,
and h(α) = 1 for any α ∈ [0, 1]. Note that f is the identity ∧-homomorphism,
and h is the trivial homomorphism for both cases: ∧ and ∨d. One can simply
check that f is a ∧-homomorphism, g is a ∨d-homomorphism, and h is a ∧-
homomorphism as well as a ∨d-homomorphism of the reducts.8 Furthermore,
it is easy to see that

p∧A(i, y) =
∨

z⊆y
|z|=i

∧
x∈z

A(x) =
∨
{α | α ∈ [0, 1] & |Aα| ≥ i},

where y = Dom(A). Finally, a simple consequence of Corollary 3.12 is

C1(A)(i) = Ch,f (A)(i) = f(p∧A(i, y)) = p∧A(i, y),

C2(A)(i) = Cg,h(A)(i) = g(p∧A(i + 1, y)) = 1− p∧A(i + 1, y),

C3(A)(i) = Cg,f (A)(i) = 1− p∧A(i + 1, y) ∧ p∧A(i, y),

and thus, Ck (k = 1, 2, 3) is a c-measure with respect to ∧. It should be noted
that we need not restrict ourselves to f, g as defined above, and f can be de-
fined as an arbitrary order-preserving mapping (i.e., f is a ∧-homomorphism),

8For example, g(α ∨ β) = 1− (α ∨ β) = (1− α) ∧ (1− β) = g(α) ∧ g(β) and g(0) = 1 (see
Definition 3.2).
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and g can be defined as an arbitrary order-reversing mapping (i.e., g is a ∨d-
homomorphism). Therefore, C with respect to ∧ can be defined by order-
preserving and -reversing mappings, which is one of the main result in [3].

Let A = {0.5/a, 0.8/b, 0.1/c, 0.4/d, 0/e}. Then,

C1(A) = {1/0, 0.8/1, 0.5/2, 0.4/3, 0.1/4, 0/5, 0/6, . . . },
C2(A) = {0.2/0, 0.5/1, 0.6/2, 0.9/3, 1/4, 1/5, 1/6, . . . },
C3(A) = {0.2/0, 0.5/1, 0.5/2, 0.4/3, 0.1/4, 0/0, 0/6 . . . }.

Recall that C1(A)(i) expresses the degree to which it is true that “A has at least
i elements”, e.g., A has at least 3 elements in degree 0.4. Similarly, C2(A)(i)
expresses the degree to which it is true that “A has at most i elements”, e.g.,
A has at most 3 elements in degree 0.9. Finally, C3(A)(i) indicates the degree
of the truth that “A has exactly i elements”, e.g., A has exactly 3 elements in
degree 0.4.

Note that Ck (k = 1, 2, 3) does not define a c-measure with respect to ⊗ in
general. Three c-measures with respect to ⊗ are given in the following example.

Example 3.2 Let C1 be the c-measure with respect to ∧ that was defined
above. The complement of A is a mapping A : Dom(A) → [0, 1] defined by
A(x) = 1−A(x) for all x ∈ Dom(A).9 Then,

C4(A)(i) =
{ >, i = 0,

C4(A)(i− 1)⊗ C1(A)(i), i > 0,

C5(A)(i) = C4(A)(m ¯ i),

C6(A)(i) = C5(A)(i)⊗ C4(A)(i),

where m = |Dom(A)| and m ¯ i = max(0,m − i), are the c-measures with
respect to ⊗. Again, a direct verification is rather complicated; therefore, we
omit it here. Instead, we can use the representation theorem on page 21 and
Theorem 3.10 on page 25. Take the following as a preview. Using these the-
orems, it is sufficient to find two appropriate mappings f, g : [0, 1] → [0, 1]
such that f is a ⊗-po-homomorphism, and g is a ⊕d-po-homomorphism (see
Definition 3.3). Set f(α) = α and g(α) = 1 − α for all α ∈ [0, 1]. Moreover,
consider the trivial homomorphism h(α) = 1 for all α ∈ [0, 1] that were de-
fined in the previous example. Trivially, f is a ⊗-po-homomorphism, and h is
a ⊗-po-homomorphism as well as a ⊕d-po-homomorphism. For g, we obtain
g(α ⊕ β) = 1 − (α ⊕ β) = 1 − max(1, α + β) = g(α) ⊗ g(β).10 Moreover, if

9Recall that we suppose that Dom(A) is a non-empty and finite set and note that if L is
an rdr-lattice, then the complement of a fuzzy set A is generally defined by A(x) = A(x) → ⊥
(see Definition 3.8 in [9]).

10In fact, if α + β ≥ 1, then 1− (α + β) = (1−α) + (1− β)− 1 ≤ 0 and g(α⊕ β) = 1− 1 =
0 = (1−α)⊗ (1−β) = g(α)⊗ g(β). If α + β < 1, then 1− (α + β) = (1−α)+ (1−β)− 1 > 0
and g(α⊕ β) = 1− (α + β) = (1− α) + (1− β)− 1 = g(α)⊗ g(β).
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α ≤ β, then g(α) ≥ g(β), and thus, g is a ⊕d-po-homomorphism. Further, one
can simply check (using Proposition 2.5) that

C4(A)(i) =
i⊗

k=0

C1(A)(k) =
i⊗

k=0

p∧A(k, y) = p⊗A(i, y), (9)

where y = Dom(A). Finally, we can put

C4(A)(i) = Ch,f (A)(i) = p⊗f(A)(i, y) = p⊗A(i, y),

C5(A)(i) = Cg,h(A)(i) = p⊗g(A)(m ¯ i, y) = p⊗
A
(m ¯ i, y) = C4(A)(m ¯ i),

C6(A)(i) = Cg,f (A)(i) = p⊗
A
(m ¯ i, y)⊗ p⊗A(i, y) = C5(A)(i)⊗ C4(A)(i),

where f(A) = f ◦A, g(A) = g◦A (see Definition 3.5), m = |y| = |Dom(A)|, and,
thus, Ck (k = 4, 5, 6) is a c-measure with respect to ⊗. It should be noted that
the choice of y (i.e., y = Dom(A) = Dom(A)) is substantial here, otherwise, we
cannot write p⊗

A
(m ¯ i, y) = C4(A)(m ¯ i). One can simply check that the same

is not true for the choice of y = Supp(A).
Let A = {0.5/a, 0.8/b, 0.1/c, 0.4/d, 0/e}. Then,

C4(A) = {1/0, 0.8/1, 0.3/2, 0/3, 0/4, 0/5, . . . },
C5(A) = {0/0, 0/1, 0.5/2, 0.9/3, 1/4, 1/5, . . . },
C6(A) = {0/0, 0/1, 0/2, 0/3, 0/4, 0/5, . . . },

where C5(A) is derived as follows. First, let us construct the complement of A,
i.e.,

A = {0.5/a, 0.2/b, 0.9/c, 0.6/d, 1/e}.

Furthermore, let us introduce

p∧
A
(−, y) = {1/0, 1/1, 0.9/2, 0.6/3, 0.5/4, 0.2/5, 0/6, . . . },

and, by (9),

p⊗
A
(−, y) = {1/0, 1/1, 0.9/2, 0.5/3, 0/4, 0/5, 0/6, . . . }.

Finally, let us define

C5(A) = p⊗
A
(5 ¯−, y) = {0/0, 0/1, 0.5/2, 0.9/3, 1/4, 1/5, 1/6, . . . }.

One can see that Ck (k = 4, 5, 6) is an example of generalized FGCounts,
FLCounts and FECounts provided by Wygralak in [22] (see also [23]). Note
that the fuzzy set A, for which C6(A) ≡ ∅ holds, is called a singular fuzzy set
in [8].
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The following example presents measures that are c-measures with respect
to ∧ as well as ⊗. Let us suppose that the structure of the membership degrees
is the Goguen rlr-lattice LP on [0, 1] (see Ex. 2.1 in [9]); recall that α⊗β = α ·β
and α ⊕ β = α + β − α · β, where · and + are the operations of addition and
multiplication of real numbers, respectively.

Example 3.3 Let C1 be the c-measure from Ex. 3.1 and, for any A ∈ Ffin such
that Supp(A) 6= ∅, let us define A∗ : Supp(A) → L as

A∗(x) =
{

1, if A(x) = 1;
0, otherwise,

and set A∗ = ∅, if Supp(A) = ∅. One may see that A∗ is a crisp set that
expresses the kernel (denoted by Ker(A)) of the fuzzy set A, i.e., the set Ker(A)
contains all elements from Dom(A) that belong to A in the degree 1. Note that
Ker(A) = Ker(A∗) = Supp(A∗). Then,

C7(A)(i) = C1(A∗)(i),

C8(A)(i) = C1(A∗)(m ¯ i),

C9(A)(i) = C8(A)(i)¯ C7(A)(i),

where A∗ is the complement of A∗ for Dom(A∗) 6= ∅ and ∅ = ∅, m = |Dom(A∗)|,
and ¯ is defined in Ex. 3.2, are c-measures with respect to ¯. Let us check this
statement directly. It is easy to see that C7 can be directly expressed as follows:

C7(A)(i) =
{

1, if |Ker(A)| ≥ i,
0, otherwise.

Since Ker(A) = Ker(A∗), then C7(A) = C7(A∗). Let A,B ∈ Ffin such that
Supp(A) ∩ Supp(B) = ∅ and i ∈ N. Then, C7(A ∪ B)(i) = 1 if and only if
|Ker(A∪B)| = |Ker(A)∪Ker(B)| ≥ i if and only if there exist k, l ∈ N such that
k+l = i and |Ker(A)| ≥ k and |Ker(B)| ≥ l if and only if C7(A)(k)¯C7(B)(l) = 1
for some k, l ∈ N if and only if (C7(A) + C7(B))(i) = 1. Hence, C7 is additive.
Since |Ker(A)| ≤ |Supp(A)|, then, by the definition, we obtain C7(A) = ⊥ for
any i > |Supp(A)| ≥ |Ker(A)|, and C7 satisfies the variability axiom. The
consistency and singleton independency axioms immediately follow from the
definition of C7. Let α, β ∈ L. Clearly, the preservation of the non-existence
axiom is trivially satisfied. If α¯ β = 1, then α = β = 1 and

1 = C7({α¯ β/x})(1) = C7({α/x})(1)¯ C7({β/x})(1) = 1¯ 1 = 1.

If α ¯ β < 1, then α < 1 or β < 1, which implies that C7({α/x})(1) = 0 or
C7({β/x})(1) = 0. Therefore, we obtain (supposing thatC7({α/x})(1) = 0)

0 = C7({α¯ β/x})(1) = C7({α/x})(1)¯ C7({β/x})(1) ≤ 0¯ 1 = 0.

Therefore, C7 satisfies the preservation of the existence axiom and is a c-measure
with respect to ¯.
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Further, one can express C8 as

C8(A)(i) =
{

1, if |Ker(A)| ≤ i,
0, otherwise.

This immediately follows from the fact that |Ker(A∗)| = m− |Ker(A∗)|, where
m = |Supp(A∗)| = |Dom(A∗)|. Hence, C8(A)(i) = C1(A∗)(m ¯ i) = > if and
only if m¯i ≤ |Ker(A∗)| = m−|Ker(A∗)| if and only if i ≥ |Ker(A∗)| = |Ker(A)|.
Because the verification of the axioms can be performed by analogy, as in the
case of C7, we shall only check that the preservation of the non-existence axiom
is satisfied. If α¯β = 1, then it is easy to see that α = 1 or β = 1 (for ⊕, we
obtain α = β = 1), and thus, C8({α/x})(0) = 0 or C8({β/x})(0) = 0. Hence,
we simply obtain (supposing C8({α/x})(0) = 0)

0 = C8({α¯β/x})(0) ≤ C8({α/x})(0)¯ C8({β/x})(0) ≤ 0¯ 1 = 0.

Note that this axiom would be false for an rdr-lattice with the operation ¯ for
which α¯β = >, but α, β < > (e.g., the ÃLukasiewicz rdr-lattice).

Finally, we have

C8(A)(i) =
{

1, if |Ker(A)| = i,
0, otherwise.

The verification is trivial; therefore, we completely omit it here.
Let A = {0.5/a, 1/b, 1/c, 0.4/d, 0/e}. Then,

C7(A) ={1/0, 1/1, 1/2, 0/3, 0/4, . . . },
C8(A) ={0/0, 0/1, 1/2, 1/3, 1/4, . . . },
C9(A) ={0/0, 0/1, 1/2, 0/3, 0/4, . . . }.

A consequence of the additivity of the c-measure is the following statement.

Proposition 3.4 Let C be a c-measure and A ∈ Ffin such that Supp(A) ⊆
{x1, . . . , xm}. Then,

C(A)(i) =
∨

i1,...,im∈N
i1+···+im=i

m⊙

k=1

C({A(xk)/xk})(ik) (10)

for each i ∈ N.

Proof. Let A ∈ Ffin. Due to Proposition 3.2, without loss of generality, we
may suppose that Dom(A) = {x1, . . . , xm}. Using the additivity of C applied
on the singletons, we obtain

C(A)(i) = C({A(x1)/x1} ∪ · · · ∪ {A(xm)/xm})(i) =
(C({A(x1)/x1}) + · · ·+ C({A(xm)/xm}))(i).

Clearly, this formula may be reformulated to obtain (10). 2
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Proposition 3.5 Let C be a c-measure and A ∈ Ffin such that Supp(A) ⊆
{x1, . . . , xm}. Then,

C(A)(i) =
∨

i1,...,im∈{0,1}
i1+···+im=i

m⊙

k=1

C({A(xk)/xk})(ik) (11)

for each 0 ≤ i ≤ m.

Proof. Let A ∈ Ffin. Due to Proposition 3.2, without loss of generality, we
may suppose that Dom(A) = {x1, . . . , xm}. Obviously, (11) is true for i ≤
1. Let 1 < i ≤ m. Define Mi as a multi-subset {i1, . . . , im} of N such that
i1 + · · ·+ im = i and a multi-set IMi

= {ik | ik ∈ Mi and ik 6∈ {0, 1}}. To prove
the proposition, it is sufficient to show that for each Mi there exists M ′

i such
that IM ′

i
= ∅ and

⊙

ik∈Mi

C({A(xk)/xk})(ik) ≤
⊙

ik∈M ′
i

C({A(xk)/xk})(ik). (12)

If IMi = ∅ for some set Mi, then define M ′
i = Mi. Let Mi such that IMi 6= ∅

and ik0 ∈ IMi . Then, there exist at least ik0−1 elements of Mi that are equal to
0. In fact, let us suppose that s < ik0 − 1 is the maximal number of elements of
Mi that are equal to 0. Then, m−s elements of Mi are greater than 0. Therefore,
we obtain i1 + · · ·+ im ≥ ik0 +((m−1)−s) > ik0 +((m−1)−(ik0−1)) = m ≥ i,
which is a contradiction with the presumption i1 + · · · + im = i. Let us define
r = ik0 − 1 and choose r elements ik1 , . . . , ikr from Mi such that ik1 = · · · =
ikr = 0. Due to (C2) and (C3), we obtain

C({A(xk0)/xk0})(ik0) = C({⊥/xk0})(2) = C({A(xl)/xl})(2) ∈ {⊥,>}

for all l ∈ {k1, . . . , kr}. Since C is a mapping to the set of ¯-convex fuzzy sets,
we obtain

C({A(xk0)/xk0})(ik0)¯ C({A(xl)/xl})(0) =

C({A(xl)/xl})(2)¯ C({A(xl)/xl})(0) ≤ C({A(xl)/xl})(1)

for each l ∈ {k1, . . . , kr}, and, using (C5) and C({⊥/xk0})(0) = > (recall that
C(∅)(0) = > from (C3)), we obtain

C({A(xk0)/xk0})(ik0) = C({⊥/xk0})(2)¯> =

C({⊥/xk0})(2)¯ C({⊥/xk0})(0) ≤
C({⊥/xk0})(1) = C({⊥ ¯A(xk0)/xk0})(1) =

C({⊥/xk0})(1)¯ C({A(xk0)/xk0})(1) ≤ C({A(xk0)/xk0})(1).
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Since C({A(xk0)/xk0})(ik0) ∈ {⊥,>} and ⊥ and > are the idempotent elements
of L with respect to ¯, using the previous inequalities, we obtain

C({A(xk0)/xk0})(ik0)¯ C({A(xk1)/xk1})(0)¯ · · · ¯ C({A(xkr
)/xkr

})(0) =

C({A(xk0)/xk0})(ik0)¯ (C({A(xk0)/xk0})(ik0)¯ C({A(xk1)/xk1})(0))¯ · · ·¯
(C({A(xk0)/xk0})(ik0)¯ C({A(xkr

)/xkr
})(0)) ≤

C({A(xk0)/xk0})(1)¯ C({A(xk1)/xk1})(1)¯ · · · ¯ C({A(xkr )/xkr})(1).

By defining M ′
i = {i′1, . . . , i′m} such that i′k0

= i′k1
= · · · = i′kr

= 1 and i′l = il
for all l ∈ Mi \ {k0, k1, . . . , kr}, we obtain i′1 + · · · + i′m = i. Hence, IM ′

i
=

IMi \ {ik0} ⊂ IMi , and
⊙

ik∈Mi

C({A(xk)/xk})(ik) ≤
⊙

i′k∈M ′
i

C({A(xk)/xk})(i′k).

Repeating this procedure, we obtain, using a finite number of steps, the desired
set M ′

i for which IM ′
i

= ∅. 2

3.2. A representation of fuzzy c-measures
In [3], a representation of the cardinalities of finite fuzzy sets was provided

using two monotonic mappings f, g : [0, 1] → [0, 1]. To introduce an analogical
representation for the c-measures, we need to establish a generalization of the
monotonic mappings.

Definition 3.2 Let L1 and L2 be rdr-lattices. A mapping h : L1 → L2 is said
to be a ¯-homomorphism of L1 to L2 if h is a homomorphism of the reduct
(L1,¯1,>1) of L1 to the reduct (L2,¯2,>2) of L2, i.e., h(α¯1β) = h(α)¯2h(β)
and h(>1) = >2. A mapping h : L1 → L2 is said to be a ¯d-homomorphism if h
is a homomorphism from the reduct (L1,¯1,⊥1) of L1 to the reduct (L2,¯2,>2)
of L2, i.e., h(α¯1 β) = h(α)¯ h(β) and h(⊥1) = >2.

Remark 3.4 Obviously, each homomorphism between the rdr-lattices (or the
residuated lattices, which are the reducts of the original rdr-lattices) is a ¯-
homomorphism.

The following lemma gives a characterization of the c-measures using ¯- and
¯d-homomorphisms.

Lemma 3.6 Let f be a ¯-homomorphism and g be a ¯d-homomorphism from
L to L such that f(⊥) ∈ {⊥,>} and g(>) ∈ {⊥,>}. Let Cg,f : Ffin → N be a
mapping defined by the induction

Cg,f ({α/x})(0) = g(α), Cg,f ({α/x})(1) = f(α), and

Cg,f ({α/x})(k) = f(⊥), k > 1
(13)
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hold for any α ∈ L and x ∈ Count,

Cg,f (A) = Cg,f ({⊥/∅}) (14)

holds for any A ∈ Ffin with the empty support, and

Cg,f (A) = Cg,f ({A(x1)/x1}) + · · ·+ Cg,f ({A(xm)/xm}), (15)

where Supp(A) = {x1, . . . , xm}, holds for any A ∈ Ffin with a non-empty sup-
port. Then, Cg,f is a c-measure of finite fuzzy sets with respect to ¯.

Proof. Because the proof is a bit longer, we shall structure it to several claims
for a better orientation.

First, we shall prove the correctness of the definition of Cg,f , which is pre-
cisely stated in the following claim.

Claim 1 Cg,f (A) is a ¯-convex fuzzy set for each A ∈ Ffin.

Let x ∈ Count and {α/x} be a singleton. Since f(⊥) = f(⊥¯α) = f(⊥)¯f(α) ≤
f(α) holds for any α ∈ L, then, by the definition, we have

Cg,f ({α/x})(0)¯ Cg,f ({α/x})(2) = g(α)¯ f(⊥) ≤ Cg,f ({α/x})(k)

for 0 ≤ k ≤ 2 (for k = 1, consider Cg,f ({α/x})(1) = f(α) ≥ f(⊥) ≥ g(α) ¯
f(⊥)). Moreover, the following inequality

Cg,f ({α/x})(i)¯ Cg,f ({α/x})(k) ≤ Cg,f ({α/x})(j)

is trivially fulfilled for all i, j, k ∈ N such that 0 < i ≤ j ≤ k, and Cg,f is a
mapping that assigns to each singleton a ¯-convex fuzzy set. Obviously, the
fuzzy set Cg,f (A) is also ¯-convex for any A ∈ cls(∅) by the ¯-convexity of
{⊥/x}. Recall that a finite sum of ¯-convex fuzzy sets is an ¯-convex fuzzy
set (see Theorem 4.1 in [9]). Hence, if A ∈ Ffin is a fuzzy set and Supp(A) =
{x1, . . . , xm}, then Cg,f (A), defined by (15), has to be ¯-convex and the claim
is proved.

A straightforward consequence of the definition of Cg,f is the following claim.

Claim 2 If A ∈ Ffin and B ∈ cls(A), then Cg,f (A) = Cg,f (B).

Further, we shall prove the following claim.

Claim 3 Cg,f satisfies the additivity axiom.

Let A, B ∈ Ffin be fuzzy sets such that Supp(A)∩Supp(B) = ∅. If A,B ∈ cls(∅),
then, by Claim 2 and the fact that A ∪B ∈ cls(∅), we obtain

Cg,f (A ∪B) = Cg,f (∅) = Cg,f ({⊥/x}) =

Cg,f ({⊥/x}) + Cg,f ({⊥/x}) = Cg,f (A) + Cg,f (B),
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where Cg,f ({⊥/x}) = Cg,f ({⊥/x})+Cg,f ({⊥/x}) can be simply verified. If A 6∈
cls(∅) with Supp(A) = {x1, . . . , xr} and B ∈ cls(∅), then, using the associativity
of +, we obtain

Cg,f (A ∪B) = Cg,f (A) = Cg,f ({A(x1)/x1}) + · · ·+ Cg,f ({A(xr)/xr}) =

Cg,f ({A(x1)/x1}) + · · ·+ (Cg,f ({A(xr)/xr}) + Cg,f ({⊥/x})) =

(Cg,f ({A(x1)/x1}) + · · ·+ Cg,f ({A(xr)/xr})) + Cg,f ({⊥/x}) =

Cg,f (A) + Cg,f (B),

where Cg,f ({A(xr)/xr}) = Cg,f ({A(xr)/xr}) + Cg,f ({⊥/x}) may be verified as
follows:

1) for i = 0, we have

(Cg,f ({A(xr)/xr}) + Cg,f ({⊥/x}))(0) =

Cg,f ({A(xr)/xr})(0)¯ Cg,f ({⊥/x})(0) = Cg,f ({A(xr)/xr})(0)¯ g(⊥) =

Cg,f ({A(xr)/xr})(0)¯> = Cg,f ({A(xr)/xr})(0);

2) for i = 1, we have

γ = (Cg,f ({A(xr)/xr}) + Cg,f ({⊥/x}))(1) =

(Cg,f ({A(xr)/xr})(0)¯ Cg,f ({⊥/x})(1))∨
(Cg,f ({A(xr)/xr})(1)¯ Cg,f ({⊥/x})(0)) =

(g(A(xr))¯ f(⊥)) ∨ (f(A(xr))¯ g(⊥)) =

(g(A(xr))¯ f(⊥)) ∨ (f(A(xr))¯>);

if f(⊥) = ⊥, then γ = f(A(xr)), and if f(⊥) = >, then

> = f(⊥) = f(⊥¯ α) = f(⊥)¯ f(α) = >¯ f(α) = f(α)

for all α ∈ L, whence γ = f(A(xr)) = >; thus,

(Cg,f ({A(xr)/xr}) + Cg,f ({⊥/x}))(1) = f(A(xr)) = Cg,f ({A(xr)/xr})(1);

3) for i ≥ 2, we have

γ = (Cg,f ({A(xr)/xr}) + Cg,f ({⊥/x}))(i) =

(Cg,f ({A(xr)/xr})(0)¯ Cg,f ({⊥/x})(i))∨
(Cg,f ({A(xr)/xr})(1)¯ Cg,f ({⊥/x})(i− 1))∨

...

∨(Cg,f ({A(xr)/xr})(i)¯ Cg,f ({⊥/x})(0)) =

(g(A(xr))¯ f(⊥)) ∨ (f(A(xr))¯ f(⊥)) ∨ · · · ∨ (f(⊥)¯ g(⊥)) =

(g(A(xr))¯ f(⊥)) ∨ (f(A(xr))¯ f(⊥)) ∨ · · · ∨ (f(⊥)¯>),
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i.e., the term f(⊥) is contained inside each bracket of the last formula; if
f(⊥) = ⊥, then γ = f(⊥) = ⊥; if f(⊥) = >, then γ = f(⊥) = >; thus,

(Cg,f ({A(xr)/xr}) + Cg,f ({⊥/x}))(i) = f(⊥) = Cg,f ({A(xr)/xr})(i);

If A,B 6∈ cls(∅) with Supp(A) = {x1, . . . , xr} and Supp(B) = {y1, . . . , ys}, then,
using the associativity of + and the definition of Cg,f , we obtain

Cg,f (A ∪B) =

Cg,f ({A(x1)/x1}) + · · ·+ Cg,f ({A(xr)/xr}) + Cg,f ({B(y1)/y1}) + · · ·
+ Cg,f ({B(ys)/ys}) =

(
Cg,f ({A(x1)/x1}) + · · ·+ Cg,f ({A(xr)/xr})

)
+

(
Cg,f ({B(y1)/y1}) + · · ·+ Cg,f ({B(ys)/ys})

)
= Cg,f (A) + Cg,f (B).

Hence, the mapping Cg,f satisfies the additivity axiom.
To verify the variability of Cg,f , the following claim is sufficient.

Claim 4 If A ∈ Ffin, then Cg,f (A)(i) = f(⊥) for all i > |Supp(A)|.
By the definition, the claim is true for ∅ and for all singletons {α/x}. By Claim 2,
the satisfaction of this claim may be extended to all equivalent fuzzy sets with
∅ and singletons. Let A ∈ Ffin with Supp(A) = {x1, . . . , xm}, where m > 1.
From the additivity of Cg,f applied to the singletons (cf. Proposition 3.4), we
obtain

Cg,f (A)(i) =
∨

i1,...,im∈N
i1+···+im=i

Cg,f ({A(x1)/x1})(i1)¯ · · · ¯ Cg,f ({A(xm)/xm})(im)

for each i ∈ N. If i > m, then, for an arbitrary combination i1, . . . , im ∈ N such
that i1 + · · · + im = i, there exists ik ∈ {i1, . . . , im} such that ik > 1. Since
Cg,f (A(xk)/xk)(ik) = f(⊥), then the term f(⊥) is contained in

Cg,f ({A(x1)/x1})(i1)¯ · · · ¯ Cg,f ({A(xm)/xm})(im)

for any combination i1, . . . , im ∈ N with a sum equal to i. If f(⊥) = ⊥, then
Cg,f (A)(i) = ⊥ = f(⊥). If f(⊥) = >, then f(α) = > (as we have shown above)
and we can consider

Cg,f (A)(i) ≥ Cg,f ({A(x1)/x1})(1)¯ Cg,f ({A(x2)/x2})(1)¯ · · ·¯
Cg,f ({A(xm−1)/xm−1})(1)¯ Cg,f ({A(xm)/xm})(i− (m− 1)) =

f(A(x1))¯ f(A(x2))¯ · · · ¯ f(A(xm−1))¯ f(⊥) =

>¯>¯ · · · ¯ > ¯> = > = f(⊥),

where i > m implies i− (m− 1) ≥ 2 and thus, C({A(xm)/xm})(i− (m− 1)) =
f(⊥). Therefore, we again obtain Cg,f (A)(i) = > = f(⊥), which concludes the
proof of this claim.

To prove the consistency axiom, it is sufficient to verify the following claim.
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Claim 5 If A is crisp, then Cg,f (A)(i) = f(>) for i = |Supp(A)|.
Obviously, Cg,f (∅)(0) = g(⊥) = > = f(>) (by the definition) and the same
equality holds for all fuzzy sets that are equivalent to the empty fuzzy set
(using Claim 2). If A ∈ Ffin is crisp with Supp(A) = {x1, . . . , xm}, by setting
i1 = · · · = im = 1, we obtain i1 + · · ·+ im = m = |Supp(A)|, and

Cg,f (A)(m) ≥ Cg,f ({>/x1})(1)¯ · · · ¯ Cg,f ({>/xm})(1) =

f(>)¯ · · · ¯ f(>) = f(>),

where f(>)¯ f(>) = f(>), which follows from the definition of f .
The remaining axioms are immediate consequences of the definitions of ¯-

and ¯d-homomorphisms, and hence, Cg,f is a c-measure of the finite fuzzy sets.
2

Theorem 3.7 (Representation of c-measures) Let C : Ffin → N be a
mapping that satisfies the additivity axiom and C(A) = C(∅) for any A ∈ cls(∅).
Then, the following statements are equivalent:

(i) C is a c-measure of the finite fuzzy sets with respect to ¯,

(ii) there exist a ¯-homomorphism f : L → L and a ¯d-homomorphism g :
L → L such that f(⊥) ∈ {⊥,>}, g(>) ∈ {⊥,>} and

C({α/x})(0) = g(α), C({α/x})(1) = f(α),
C({α/x})(k) = f(⊥), k > 1

hold for arbitrary α ∈ L and x ∈ Count.

Proof. (i) ⇒ (ii) Let us suppose that C is a c-measure of the finite fuzzy sets
and define two mappings f, g : L → L as follows

f(α) = C({α/x})(1) and g(α) = C({α/x})(0),

where x ∈ Count is an arbitrary set. According to (C5), we obtain

f(α¯ β) = C({α¯ β/x})(1) = C({α/x})(1)¯ C({β/x})(1) = f(α)¯ f(β),
g(α¯β) = C({α¯β/x})(0) = C({α/x})(0)¯ C({β/x})(0) = g(α)¯ g(β),

and moreover, f(>) = C({>/x})(1) = > and g(⊥) = C({⊥/x}(0) = > hold due
to (C3). Hence, f is a ¯-homomorphism and g is a ¯d-homomorphism of the
relevant reducts. Since C({⊥/x}) (or C({>/x})) is a crisp set, then, by (C3),
C({⊥/x})(1) = f(⊥) ∈ {⊥,>} (or C({>/x})(0) = g(>) ∈ {⊥,>}). Due to
Corollary 3.3, we obtain C({α/x})(k) = f(⊥) for any k > 1.

(ii) ⇒ (i) Let Cg,f be the c-measure of the finite fuzzy sets defined by
Lemma 3.6. For any singleton {α/x} ∈ Ffin, we have Cg,f ({α/x}) = C({α/x}).
If A ∈ Ffin with Supp(A) = ∅, then C(A) = C({⊥/x}) = Cg,f ({⊥/x}) =
Cg,f (A). If A ∈ Ffin with Supp(A) 6= ∅, then C(A) = Cg,f (A) follows from the
additivity of C. Hence, C is a c-measure of the finite fuzzy sets. 2
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In the sequel we shall use Cg,f to denote a c-measure that is determined by
a ¯-homomorphism f : L → L and a ¯d-homomorphism g : L → L for which
f(⊥) ∈ {⊥,>} and g(>) ∈ {⊥,>}. Moreover, we shall use Cf or Cg if g or f
are the trivial ¯d-homomorphism or the ¯-homomorphism (i.e., g(α) = > or
f(α) = > for any a ∈ L), respectively.

3.3. Characterization of the c-measures
In our further investigation of c-measures, some additional conditions on ¯-

homomorphisms and ¯d-homomorphisms have to be imposed. More precisely,
we shall consider the preservation of the partial ordering of L as it is defined
below.

Definition 3.3 Let L1 and L2 be rdr-lattices. We shall say that h : L1 → L2 is
a ¯-po-homomorphism of L1 to L2 if h is a ¯-homomorphism, and h(α) ≤ h(β)
for any α, β ∈ L1 where α ≤ β. We shall say that h : L1 → L2 is a ¯d-po-
homomorphism if h is a ¯d-homomorphism, and h(α) ≥ h(b) for any α, β ∈ L1

where α ≤ β.

Example 3.5 It is easy to see that each ∧-homomorphism is also a ∧-po-
homomorphism, and each ∨d-homomorphism is also a ∨d-po-homomorphism.
In fact, if α ≤ β in L1 and h is, for example, a ∨d-homomorphism, then
h(β) = h(α ∨ β) = h(α) ∧ h(β), whence h(β) ≤ h(α).

Example 3.6 Let L be an rdr-lattice. Obviously, the trivial ¯-homomorphism
(¯d-homomorphism) is a ¯-po-homomorphism (¯d-po-homomorphism). Con-
sider hn : L → L defined by hn(α) = αn for some n ∈ N where n > 1.11 Then,
hn(>) = >n = > and, by the associativity of ⊗, we obtain that hn(α ⊗ β) =
(α ⊗ β)n = αn ⊗ βn = hn(α) ⊗ hn(β). Moreover, if α ≤ β, then hn(α) =
αn ≤ βn = hn(β) follows from the monotonicity of ⊗, whence hn is a ⊗-po-
homomorphism. Now, let ν : L → L be a one-to-one mapping of L onto L that
reverses the partial ordering, i.e., α ≤ β implies ν(β) ≤ ν(α), and suppose that
ν(α⊕β) = ν(α)⊗ν(β).12 Consider hν,n : L → L defined by hν,n(α) = ν(nα) for
any α ∈ L and some n ∈ N were n ≥ 1.13 Then, hν,n(⊥) = ν(n⊥) = ν(⊥) = >,
where the last equality follows from the presumptions on ν.14 Furthermore,
hν,n(α⊕ β) = ν(n(α⊕ β)) = ν(nα⊕ nβ) = ν(nα)⊗ ν(nβ) = hν,n(α)⊗ hν,n(β).
Finally, hν,n(α) ≥ hν,n(β) for any α ≤ β, which follows immediately from the
definition of ν, whence hν,n is a ¯d-po-homomorphism.

Remark 3.7 Obviously, if h is a ¯-po-homomorphism, then
∨

i∈I h(αi) ≤
h(

∨
i∈I αi), whenever the supremum on both sides of the inequality exits, and

11Recall that α0 = > and αn = α⊗ αn−1 for any n ≥ 1.
12An example of rdr-lattice can be found in Remark 7.8 of the first part [9].
13Recall that 0α = ⊥ and αn = α⊕ αn−1 for any n ≥ 1.
14It is easy to see that if ν is a one-to-one mapping of L onto L and reveres the partial

ordering, then ν(⊥) = >.
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if h is a ¯d-po-homomorphism, then
∨

i∈I h(αi) ≤ h(
∧

i∈I αi), whenever the
infimum and the supremum exist. If the rdr-lattice is linearly ordered and I is
a finite non-empty index set, then the previous inequalities may be changed to
equalities.

Definition 3.4 We shall say that a c-measure C preserves ⊆ if C(A) ⊆ C(B)
whenever A ⊆ B, and the c-measure C reverses ⊆ if C(B) ⊆ C(A) whenever
A ⊆ B.

Theorem 3.8 Let Cf,g be a c-measure such that f is a ¯-po-homomorphism
and g is a ¯d-po-homomorphism. Then,

(i) Cg,f preserves ⊆ if and only if g is trivial, and

(ii) Cg,f reverses ⊆ if and only if f is trivial.

Proof. Here, we shall prove only (i), and (ii) may be proved using an analogous
argument.

(⇒) If Cg,f preserves ⊆ and g is a non-trivial ¯d-po-homomorphism, then
g(α) < > for some α ∈ L with ⊥ < α, whence {⊥/x} ⊆ {α/x} for an arbitrary
x ∈ Count, and simultaneously, (by Theorem 3.7)

Cg,f ({⊥/x})(0) = g(⊥) > g(α) = Cg,f ({α/x})(0),

which contradicts the presumption on the preservation of ⊆. Therefore, g has
to be the trivial ¯d-po-homomorphism.

(⇐) Without lost of generality, let us suppose that A,B ∈ Ffin such that
Dom(A) = Dom(B). If g is the trivial ¯d-po-homomorphism and A ⊆ B, then

Cg,f ({A(x)/x})(0) = g(A(x)) = > = g(B(x)) = Cg,f ({B(x)/x})(0)

and
Cg,f ({A(x)/x})(1) = f(A(x)) ≤ f(B(x)) = Cg,f ({B(x)/x})(1)

hold for any x ∈ Dom(A). The inequality Cg,f (A) ⊆ Cg,f (B) is a simple con-
sequence of the monotonicity (in both arguments) of ¯ and Proposition 3.5.
Hence, Cg,f preserves ⊆. 2

In the first part of our contribution, we have introduced the fuzzy classes
p¯A and p¯A (for a summary of their properties, see Preliminaries) that deter-
mine a generalized cardinal with respect to an appropriate set y. The following
statements show the relation between the c-measures and generalized cardinals
p¯A(−, y) and p¯A(−, y).

Theorem 3.9 Let Cg,f be a c-measure such that f is a ¯-po-homomorphism, g
is a ¯d-po-homomorphism, A ∈ Ffin and y ∈ Fin with Supp(A) ⊆ y ⊆ Dom(A).
Then,

Cg,f (A)(i) ≤ g(p¯A(m ¯ i, y))¯ f(p¯A(i, y)), (16)

where m = |y| and m ¯ i = max(0,m− i), holds for any i ∈ N.
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Proof. Let A ∈ Ffin, y ∈ Fin with Supp(A) ⊆ y ⊆ Dom(A) and m = |y|.
According to Proposition 3.5, we have

C(A)(i) =
∨

i1,...,im∈{0,1}
i1+···+im=i

m⊙

k=1

C({A(xk)/xk})(ik) (17)

for any 0 ≤ i ≤ m. Let 0 ≤ i ≤ m and T be the set of all mappings t :
{1, . . . , m} → {0, 1} for which

∑m
k=1 t(k) = i.15 Define

gA
t =

⊙

k∈t−1(0)

g(A(xk)) and fA
t =

⊙

l∈t−1(1)

f(A(xl)) (18)

for any t ∈ T , where t−1(α) = {k | k ∈ {1, . . . , m} & t(k) = α} and α ∈ {0, 1}.
Due to Theorem 3.7, we have

Cg,f ({A(xk)/xk})(0) = g(A(xk)) and Cg,f ({A(xl)/xl})(1) = f(A(xl)),

whence (17) may be rewritten as

Cg,f (A)(i) =
∨

t∈T

(gA
t ¯ fA

t ). (19)

Since g is a ¯d-po-homomorphism and f is a ¯-po-homomorphism (see Re-
mark 3.7), then

Cg,f (A)(i) =
∨

t∈T

(gA
t ¯ fA

t ) =
∨

t∈T

( ⊙

k∈t−1(0)

g(A(xk))¯
⊙

l∈t−1(1)

f(A(xl))
)

=

∨

t∈T

(
g
( ⊙

k∈t−1(0)

A(xk)
)¯ f

( ⊙

l∈t−1(1)

A(xl)
)) ≤

( ∨

t∈T

g
( ⊙

k∈t−1(0)

A(xk)
))¯

( ∨

t∈T

f
( ⊙

l∈t−1(1)

A(xl)
)) ≤

g

( ∧

t∈T

⊙

k∈t−1(0)

A(xk)
)
¯ f

( ∨

t∈T

⊙

l∈t−1(1)

A(xl)
)

=

g

( ∧

z⊆y
|z|=m−i

⊙
xk∈z

A(xk)
)
¯ f

( ∨

z′⊆y
|z′|=i

⊙

xl∈z′
A(xl)

)
=

g(p¯A(m− i, y))¯ f(p¯A(i, y)) = g(p¯A(m ¯ i, y))¯ f(p¯A(i, y)).

Let i > m. Then, m ¯ i = 0, whence p¯A(0, y) = ⊥ using (iii) of Proposition 2.8,
and p¯A(i, y) = ⊥ using (ii) of Proposition 2.4. Therefore, and using Claim 4 in
the proof of Lemma 3.6, we simply obtain

Cg,f (A)(i) = f(⊥) = >¯ f(⊥) = g(⊥)¯ f(⊥) = g(p¯A(m ¯ i, y))¯ f(p¯A(i, y)),

15Note that T is a finite set.

24



where g(⊥) = > follows from the definition of the ¯d-po-homomorphism. 2

Before we demonstrate the characterization of the c-measures using gener-
alized cardinals in linearly ordered lattices, we introduce one concept to modify
a fuzzy set using a homomorphism of the reducts of rdr-lattices.

Definition 3.5 Let L be an rdr-lattice, h : L → L be a mapping and A ∈ Ffin.
We shall say that a fuzzy set B is made up of A through f if B = f ◦ A, and
we shall write B = f(A).

It should be noted that one has to be very careful in dealing with fuzzy sets
made up of other fuzzy sets through the mapping f : L → L, because we can
obtain an infinite (denumerable) fuzzy set, which may cause an inconsistency
in our cardinal theory for finite fuzzy sets. In fact, if one assumes a mapping
h : L → L that assigns > to ⊥ and assumes A is a finite fuzzy set with an
infinite universe, then f(A) is not a finite fuzzy set!

Theorem 3.10 Let L be linearly ordered, Cg,f be a c-measure such that f is
a ¯-po-homomorphism, g a ¯d-po-homomorphism, A ∈ Ffin and y ∈ Fin with
Supp(A) ⊆ y ⊆ Dom(A). Then,

Cg,f (A)(i) = g(p¯A(m ¯ i, y))¯ f(p¯A(i, y)), (20)

Cg,f (A)(i) = p¯g(A)(m ¯ i, y)¯ (p¯f(A)(i, y) ∨ f(⊥)), (21)

where m = |y| and m ¯ i = max(0,m− i), holds for any i ∈ N.

Proof. Let L be linearly ordered, A ∈ Ffin, y ∈ Fin such that Supp(A) ⊆
y ⊆ Dom(A) and m = |y|. As we have shown in the proof of Theorem 3.9,
Cg,f (A)(i) = g(p¯A(m ¯ i, y)) ¯ f(p¯A(i, y)) for any i > m. Let 0 ≤ i ≤ m. To
prove the first statement, it is sufficient to show that

Cg,f (A)(i) ≥ g(p¯A(m ¯ i, y))¯ f(p¯A(i, y)), (22)

which may be rewritten as

∨

t∈T

( ⊙

k∈t−1(0)

g(A(xk))¯
⊙

l∈t−1(1)

f(A(xl))
)
≥

( ∨

t∈T

⊙

k∈t−1(0)

g(A(xk))
)
¯

( ∨

t∈T

⊙

l∈t−1(1)

f(A(xl))
)

,

(23)

where we use the notation from the proof of Theorem 3.9. Set

α =
∨

t∈T

⊙

k∈t−1(0)

g(A(xk)) and β =
∨

t∈T

⊙

l∈t−1(1)

f(A(xl).
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Since L is linearly ordered and T is a finite set, then there exist t1, t2 ∈ T such
that

gA
t1 = α and fA

t2 = β, (24)

where gA
t1 and fA

t2 are defined by (18). Thus, the inequality (23) is satisfied if
the previous equalities in (24) hold for some t1, t2 ∈ T such that t1 = t2. Let P
be the set of all pairs (t1, t2) ∈ T × T for which (24) is true. Using the previous
consideration, the set P is not-empty. Define a mapping n : P → N by

n(t1, t2) = |t−1
1 (0) ∩ t−1

2 (1)|. (25)

Obviously, if k ∈ t−1
1 (0) ∩ t−1

2 (1), then there exists l ∈ t−1
1 (1) ∩ t−1

2 (0). In fact,
if t−1

1 (1) ∩ t−1
2 (0) = ∅, then t−1

1 (1) = t−1
2 (1), which implies t1 = t2, but this is

a contradiction with t−1
1 (0) ∩ t−1

2 (1) 6= ∅.16 We shall prove (by contradiction)
that there exists a pair (t1, t2) ∈ P such that n(t1, t2) = 0, i.e., t1 = t2, which
concludes the proof of the first statement.

Let us suppose that n(t1, t2) > 0 for any (t1, t2) ∈ P and denote

n0 = min{n(t1, t2) | (t1, t2) ∈ P}.

Let (s1, s2) ∈ P be such that n(s1, s2) = n0. Let k ∈ s−1
1 (0) ∩ s−1

2 (1) and
l ∈ s−1

1 (1)∩s−1
2 (0). Since L is linearly ordered, A(xl) ≥ A(xk) or A(xk) > A(xl).

If A(xl) ≥ A(xk), then define r : {1, . . . , m} → {0, 1} by

r(j) =





0, if j = k;
1, if j = l;
s2(j), otherwise.

Obviously, r ∈ T , since we only replace k in s−1
2 (1) by l from s−1

2 (0) to form
r−1(1). Hence, we obtain r(k) = s1(k) = 0 and r(l) = s1(l) = 1, which implies
s−1
1 (0) ∩ r−1(1) = (s−1

1 (0) ∩ s−1
2 (1)) \ {k}, i.e., n(s1, r) < n0. Furthermore,

fA
r =

⊙

j∈r−1(1)

f(A(xj)) ≥
⊙

j∈s−1
2 (1)

f(A(xj)) = β,

since f(A(xl)) ≥ f(A(xk)), which follows from the presumption A(xl) ≥ A(xk)
and the preservation of the partial ordering by f . Therefore, we obtain fA

r = β,
and thus, (s1, r) ∈ P , which is a contradiction with the presumption on n0.

If A(xl) < A(xk), then define r : {1, . . . , m} → {0, 1} by

r(j) =





1, if j = k;
0, if j = l;
s1(j), otherwise.

16By a simple computation, one can prove that n(t1, t2) = |t−1
1 (1) ∩ t−1

2 (0)|.

26



Analogously, one may verify that (r, s2) ∈ P and n(r, s2) < n0, which is again a
contradiction with the presumption on n0. Therefore, we see that there exists
(t1, t2) ∈ P such that n(t1, t2) = 0, i.e., t1 = t2, and the first statement is
proved.

To verify the second statement it is sufficient to prove that

g(p¯A(m ¯ i, y)) = p¯g(A)(m ¯ i, y) and f(p¯A(i, y)) = p¯f(A)(i, y) ∨ f(⊥). (26)

Let g be an arbitrary ¯d-po-homomorphism. If i ≥ m, then m ¯ i = 0 and we
trivially obtain (due to (iii) of Propositions 2.4 and 2.8)

g(p¯A(m ¯ i, y)) = g(p¯A(0, y)) = g(⊥) = > = p¯g(A)(0, y).

If 0 ≤ i < m, then, from the properties of g, we obtain

g(p¯A(m− i, y)) = g

( ∧

z⊆y
|z|=m−i

⊙
x∈z

A(x)
)

=

∨

z⊆y
|z|=m−i

⊙
x∈z

g(A)(x) = p¯g(A)(m− i, y).

Note that the infimum and the supremum are computed over a non-empty finite
set, and g(

∧n
i=1 αi) =

∨n
i=1 g(αi) holds in each linearly ordered rdr-lattice (see

Remark 3.7). The equality g(
⊙n

i=1 αi) =
⊙n

i=1 g(αi) holds in each rdr-lattice,
which follows from the presumption of g.

Let f be an arbitrary ¯-po-homomorphism. If f is trivial, then f(α) = >
for any α ∈ L, and

f(p¯A(i, y)) = > = p¯f(A)(i, y) ∨ > = p¯f(A)(i, y) ∨ f(⊥).

If f is non-trivial, then f(⊥) = ⊥, and we have to prove that f(p¯A(i, y)) =
p¯f(A)(i, y). For i > m, we obtain (due to (iii) of Proposition 2.4)

f(p¯A(i, y)) = f(⊥) = ⊥ = pf(A)(i, y).

For i = 0, we obtain (due to (ii) of Proposition 2.4)

f(p¯A(0, y)) = f(>) = > = pf(A)(0, y).

If 0 < i ≤ m, then, from the properties of f , we obtain

f(p¯A(i, y)) = f

( ∨

z⊆y
|z|=i

⊙
x∈z

A(x)
)

=
∨

z⊆y
|z|=i

⊙
x∈z

f(A)(x) = p¯f(A)(i, y),

where again f(
∨n

i=1 αi) =
∨n

i=1 f(αi) holds in each linearly ordered rdr-lattice
(see Remark 3.7), and the equality f(

⊙n
i=1 αi) =

⊙n
i=1 f(αi) holds in each rdr-

lattice, which follows from the presumption of f . Hence, (26) is verified, and
the proof is finished. 2
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One may be surprised that y in the definition of Cg,f can move between
the support and the universe of discourse of a fuzzy set. Recall that the value
of p¯A(i, y) (and p¯A(i, y)) is computed as the supremum (infimum) over all the
subsets of y where |y| = i. By a simple computation, or by using Proposition 7.3
in [9], one can prove that p¯A(i, y) = p¯A(i, y′) for any y, y′ ∈ Fin such that
Supp(A) ⊆ y, y′ ⊆ Dom(A). For ¯, the same equality is not true, but p¯A(m ¯
i, y) = p¯A(m′ ¯ i, y′), where m = |y| and m′ = |y′|, as the following example
demonstrates.

Example 3.8 Let us suppose that L is the ÃLukasiewicz rdr-lattice and consider
A = {0.5/a, 0.8/b, 0.1/c, 0.4/d, 0/e}. Set y = Dom(A), y′ = Supp(A) and m =
|y| = 5, m′ = |y′| = 4. Then, we obtain the following:

for i = 0,

p¯A(5, y) =
⊕
x∈y

A(x) = 1 =
⊕

x∈y′
A(x) = p¯A(4, y′);

for i = 1,

p¯A(4, y) =
⊕

x∈{a,c,d,e}
A(x) = 1 =

⊕

x∈{a,c,d}
A(x) = p¯A(3, y′);

for i = 2,

p¯A(3, y) =
⊕

x∈{c,d,e}
A(x) = 0.4 =

⊕

x∈{c,d}
A(x) = p¯A(2, y′).

Analogously, we obtain the equalities for the remaining values of i. One could
notice that the subset of y used for the computation of p⊕A(−, y) always contains
the element e ∈ y for which A(e) = 0 (i.e., e 6∈ y′), and thus, this element has
no effect on the values of p⊕A(−, y).

Recall that Cg (Cf ) represents a c-measure, where f (g) is a trivial homo-
morphism of the reducts (i.e., f(α) = g(α) = > for all α ∈ L).

Corollary 3.11 Let L be linearly ordered, Cg,f be a c-measure such that f is
a ¯-po-homomorphism and g is a ¯d-po-homomorphism. Then,

Cg,f (A)(i) = Cg(A)(i)¯ Cf (A)(i) (27)

holds for any A ∈ Ffin and i ∈ N.

Proof. Due to Theorem 3.10, we have (we put y = Supp(A) and m = |y|)

Cg(A)(i) = g(p¯A(m ¯ i, y)) and Cf (A)(i) = f(p¯A(i, y))

whenever f or g are trivial. Substituting Cg(A)(i) and Cf (A)(i) into (20), we
obtain (27). 2
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Corollary 3.12 Let L be linearly ordered, Cg,f be a c-measure with respect to
∧ such that f is a ∧-homomorphism, g is a ∨d-homomorphism, A ∈ Ffin and
y ∈ Fin with Supp(A) ⊆ y ⊆ Dom(A). Then,

Cg,f (A)(i) = g(p∧A(i + 1, y)) ∧ f(p∧A(i, y)) (28)

holds for any i ∈ N.

Proof. Let L be linearly ordered, A ∈ Ffin and y ∈ Fin with Supp(A) ⊆ y ⊆
Dom(A) and |y| = m. By Theorem 3.10, it is sufficient to prove that

p∧A(i + 1, y) = p∨A(m ¯ i, y). (29)

If i ≥ m, the equality immediately follows from (ii) of Proposition 2.4 and (iii)
of Proposition 2.8. Let 0 ≤ i < m. Since L is linearly ordered, we may consider
the sequence x1, . . . , xm of the elements from y such that A(xj) ≥ A(xj+1) holds
for any j = 1 . . . ,m − 1. Using the definition of p∧A(i, y) and p∨A(i, y), one may
simply check that

p∧A(i + 1, y) = A(xi+1) = A(xm−i) = p∨A(m− i, y) = p∨A(m ¯ i, y),

and the proof is finished. 2

Corollary 3.13 Let L be linearly ordered, Cg,f be a c-measure with respect to
∧ such that f is a ∧-homomorphism and g is a ∨-homomorphism. Then,

Cg,f (A)(i) = g(Cid(A)(i + 1)) ∧ f(Cid(A)(i)), (30)

where id denotes the identity homomorphism, holds for any A ∈ Ffin and i ∈ N.

Proof. It immediately follows from the fact that Cid(A)(i) = p∧A(i, Supp(A)).
2

Remark 3.9 It is easy to see that Cid = C1, where C1 is defined in Ex. 3.1.

In the following example, we shall introduce three c-measures based on The-
orem 3.10.

Example 3.10 Let us suppose that the product (Goguen) algebra is given (i.e.,
⊗ = ·). Define the strict negation ν : [0, 1] → [0, 1] by ν(α) = 1 − α2 and the
addition ⊕ : [0, 1]2 → [0, 1] by

α⊕ β = ν−1(ν(α)⊗ ν(β)) =
√

α2 + β2 − α2β2.

It is well-known that ⊕ is a continuous t-conorm (see [17]), and thus, we can
define (see Ex. 2.1 in [9]) an rdr-lattice L and interpret the membership degrees
of the fuzzy sets in L. Note that ν−1(α) =

√
1− α and whence ν(α ⊕ β) =

ν(α)⊗ ν(β).
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Let us define f, g : [0, 1] → [0, 1] by f(α) = α2 and g(α) = ν(α) = 1 − α2

for any α ∈ [0, 1]. As we have shown in Ex. 3.6, f and g are ⊗-po- and ⊕d-
po-homomorphisms, respectively. In fact, it is sufficient to define f = h2 and
g = hν,1, where h2 and hν,1 are from Ex. 3.6. Using Theorem 3.10, the c-measure
determined by g and f has the following form by (20):

Cg,f (A)(i) = g(p⊕A(m ¯ i, y))⊗ f(p⊗A(i, y)) = (1− p⊕A(m ¯ i, y)2) · p⊗A(i, y)2,

where we put y = Supp(A) and m = |y|. Let

A = {0.5/x1,0.2/x2, 0.9/x3, 1/x4, 0.8/x5, 0.9/x6, 1/x7, 0.6/x8}
be a finite fuzzy set. After a simple computation,17 we obtain (rounded to three
digits)

p⊗A(−, y) = {1/0, 1/1, 1/2, 0.9/3, 0.81/4,

0.648/5, 0.389/6, 0.194/7, 0.039/8, 0/9, . . . } and

p⊕A(−, y) = {0/0, 0.2/1, 0.529/2, 0.737/3, 0.913/4,

0.984/5, 0.997/6, 1/7, 1/8, 1/9, . . . }.
Then, using

Cg,f (A) = (1− p⊕A(8 ¯ i, y)2) · p⊗A(i, y)2,

we obtain

Cg,f (A) = {0/0, 0.2/1, 0.006/2, 0.026/3, 0.109/4,

0.193/5, 0.109/6, 0.036/7, 0.002/8, 0/9, . . . }.
The same result can be derived by (21) where first the fuzzy set A is modified
by g and f , and then, the c-measure of A is computed. Note that Cg,f is not
an example of a generalized FECount, provided by Wygralak in [22] and [23],
for f 6= id; this holds for f = id.

Remark 3.11 Assuming a linearly ordered rdr-lattice, a c-measure Cf deter-
mined by a ¯-po-homomorphism f may be expressed in the following form
(using Proposition 2.5 for ¯ = ⊗)

Cf (A)(i) = f(p¯A(i, y)) = f(p∧A(0, y))¯ · · · ¯ f(p∧A(i, y)), (31)

where y = Supp(A). For¯ = ∧, we obtain a simple form Cf (A)(i) = f(p∧A(i, y)).
Therefore, one can recognize that Cf results in a generalization of FGCounts,
which is provided by Wygralak in [22, 23]. Note that an analogous exten-
sion of the original FGCount, where f is called a pattern, has been com-
mented on in subsection 4.1.4 of [23]; nevertheless, a further development of

17One can use the fact that p⊗A(i, y) =
⊗i

k=0 p∧A(k, y) and p⊕A(i, y) =
⊕i

k=0 p∨A(k, y) (for
details, see Proposition 7.2 and 7.11 in [9]).
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this stream has not yet been achieved. For a c-measure Cg determined by a
¯d-po-homomorphism g, one can simply derive

Cg(A)(i) = g(p¯A(m ¯ i, y)) = g(p∧A(i + 1, y))¯ · · · ¯ g(p∧A(m, y)), (32)

where y = Supp(A), m = |y| and p∧A(i + 1, y) = p∨A(m ¯ i, y) is applied. For
¯ = ∧, we obtain Cg(A)(i) = g(p∧A(i + 1, y)), and one can recognize a gener-
alized FLCount whenever g defines a negation on [0, 1] (see Subsection 1.2 in
[23] or Subsection 11.1 in [12]). For a c-measure Cg,f determined by a ¯d-po-
homomorphism g and ¯-po-homomorphism f , we obtain

Cg,f (A)(i) =g(p¯A(m ¯ i, y))¯ f(p¯A(i, y)) =

f(p∧A(0, y))¯ · · · ¯ f(p∧A(i, y))¯ g(p∧A(i + 1, y))¯ · · · ¯ g(p∧A(m, y)),
(33)

where y = Supp(A) and m = |y|, and one may see a further generalization of
FECounts introduced by Wygralak in [22] whenever g is a negation on [0, 1]. Let
us stress that Cg,f need not be defined on [0, 1] and its form is derived from the
axiomatic system, which is a difference from Wygralak’s approach to defining
fuzzy cardinalities of the forms (31)-(33).

3.4. Valuation property for c-measures
One well-known property of the cardinality of sets is the valuation property,

which states that

|x ∩ y|+ |x ∪ y| = |x|+ |y| (34)

holds for arbitrary sets x and y. In [23], Wygralak proved that the valuation
property is satisfied by generalized cardinals if and only if we restrict ourselves
to the infimum and supremum (see Theorem 4.18 on page 88 in [23]). Here,
moreover, we have to add the presumption on the linearity of the rdr-lattices as
the following example demonstrates.

Example 3.12 Let L = (L,∧,∨,→,ª,⊥,>) be the rdr-lattice with the sup-
port L = {⊥, α, β,>}, α ∧ β = ⊥ and α ∨ β = >. The operations → and ª are
defined by the adjunction and the dual adjunction, respectively.18 One may see
that α and β are incomparable elements with respect to ∧ naturally defined on
L. Let us define f, g : L → L as follows

f(x) = x, for each x ∈ L, and

g(x) =





x, if x ∈ {α, β};
⊥, if x = >;
>, if x = ⊥.

One may simply verify that f is a ∧-homomorphism and g a ∨d-homomorphism
(e.g., g(α∨ β) = g(>) = ⊥ = g(α)∧ g(β)). Let Cf,g be a c-measure determined

18For example, we obtain αª β = β ª α = >.
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by f and g and A = {α/x} and B = {β/x} be singletons, where x ∈ Count.
Since α ∧ β = ⊥ and α ∨ β = >, then we obtain

((Cg,f (A ∩B) + Cg,f (A ∪B))(1) = (Cg,f ({α ∧ β/x}) + Cg,f ({α ∨ β/x}))(1) =
(Cg,f ({⊥/x})(0) ∧ Cg,f ({>/x})(1)) ∨ (Cg,f ({⊥/x})(1) ∧ Cg,f ({>/x})(0)) =

(g(⊥) ∧ f(>)) ∨ (g(>) ∧ f(⊥)) = (> ∧>) ∨ (⊥ ∧⊥) = >.

Conversely, we obtain

(Cg,f (A) + Cg,f (B))(1) = (Cg,f ({α/x}) + Cg,f ({β/x}))(1) =
(Cg,f ({α/x})(0) ∧ Cg,f ({β/x})(1)) ∨ (Cg,f ({α/x})(1) ∧ Cg,f ({β/x})(0)) =

(g(α) ∧ f(β)) ∨ (f(α) ∧ g(β)) = (α ∧ β) ∨ (α ∧ β) = ⊥ ∨⊥ = ⊥.

Therefore, the valuation property is not satisfied.

Before we state an analogous statement to Theorem 4.18 that is presented
in [23], let us derive useful inequalities provided in the following lemma.

Lemma 3.14 Let Cg,f be a c-measure with respect to ∧ and A,B ∈ Ffin. Then,

h(α ∧ β) ∧ h′(α ∨ β) ≥ h(α) ∧ h′(β) (35)

holds for any α, β ∈ L and (h, h′) ∈ {(g, g), (f, f), (g, f)}.

Proof. Since Cg,f is a c-measure with respect to ∧, then, using Ex. 3.5, f
preserves and g reverses the partial ordering of the rdr-lattice. If (h, h′) = (g, g),
then g(α ∧ β) ≥ g(α ∨ β), which implies

g(α ∧ β) ∧ g(α ∨ β) = g(α ∨ β) = g(α) ∧ g(β),

since g is a ∨d-homomorphism. Analogously, one can prove (35) for (h, h′) =
(f, f). Let (h, h′) = (g, f). Then, we obtain

g(α ∧ β) ∧ f(α ∨ β) ≥ (g(α) ∨ g(β)) ∧ (f(α) ∨ f(β)) ≥ g(α) ∧ f(β),

and the proof is finished. 2

Now, we may provide a weaker version of the valuation property that holds
for rdr-lattices, where the distributivity of ∧ over ∨ is supposed. Because we
deal with finite index sets, the distributivity is ensured by the presumption that
the rdr-lattice satisfies the prelinearity axiom (see Theorem 2.37 in [1]).

Theorem 3.15 Let L satisfy the prelinearity axiom and C be a c-measure with
respect to ∧. Then,

C(A ∩B) + C(A ∪B) ≥ C(A) + C(B) (36)

holds for arbitrary A,B ∈ Ffin.
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Proof. Let C = Cg,f be a c-measure determined by a ∧-homomorphism f
and a ∨d-homomorphism g and A, B ∈ Ffin. Without loss of generality, let us
suppose that Dom(A) = Dom(B) = {x1, . . . , xm}.

First, let us note that we trivially have

g(α ∨ β) ∧ f(α ∧ β) ≤ g(α ∧ β) ∧ f(α ∨ β), (37)

since g reverses and f preserves the ordering, and as a simple consequence of
(35), we obtain

g(α ∧ β) ∧ f(α ∨ β) ≥ (g(α) ∧ f(β)) ∨ (g(β) ∧ f(α)). (38)

Let i, k, l ∈ {0, . . . , m} and k + l = i. Denote Tk and Tl the sets of all map-
pings t, s : {1, . . . , m} → {0, 1} for which

∑m
u=1 t(u) = k and

∑m
v=1 s(v) = l,

respectively. Similarly to (18), we define

gC
t =

∧

u∈t−1(0)

g(C(xu)) and fC
t =

∧

v∈t−1(1)

f(C(xv)) (39)

for any t ∈ Tk, where t−1(α) = {k | k ∈ {1, . . . , m} & t(k) = α} and α ∈ {0, 1},
and, by analogy, we define gC

s and fC
s for any s ∈ Tl. Using the same arguments

as for (19), we obtain

Cg,f (C)(k) =
∨

t∈Tk

(gC
t ∧ fC

t ) and Cg,f (C)(l) =
∨

s∈Tl

(gC
s ∧ fC

s ).

Now, if t ∈ Tk and s ∈ Tl, then we define ξ(t, s) = min(t, s) and η(t, s) =
max(t, s), i.e., ξ(t, s)(u) = min(t(u), s(u)) and η(t, s)(u) = max(t(u), s(u)) for
any u = 1, . . . , m. For the sake of simplicity, we shall use t∗ = ξ(t, s) and
s∗ = η(t, s) in the following part. Further, denote k∗ =

∑m
u=1 t∗(u) and l∗ =∑m

v=1 s∗(v). It is easy to see that k∗ 6= k and l∗ 6= l in general, but

k∗ + l∗ = k + l = i,

and thus t∗ ∈ Tk∗ and s∗ ∈ Tl∗ . As a simple consequence of the definition of t∗
and s∗, we obtain

t−1
∗ (0) ∩ s−1

∗ (0) = t−1(0) ∩ s−1(0);

t−1
∗ (0) ∩ s−1

∗ (1) = (t−1(0) ∩ s−1(1)) ∪ (t−1(1) ∩ s−1(0));

t−1
∗ (1) ∩ s−1

∗ (0) = ∅;
t−1
∗ (1) ∩ s−1

∗ (1) = t−1(1) ∩ s−1(1),

(40)

where the third equality follows from t∗(u) ≤ s∗(u) that holds for any u =
1, . . . , m. Using these equalities and (37), one can simply derive19

gA∩B
t ∧ fA∩B

t ∧ gA∪B
s ∧ fA∪B

s ≤ gA∩B
t∗ ∧ fA∩B

t∗ ∧ gA∪B
s∗ ∧ fA∪B

s∗ .

19Use the equality
∧

u∈t−1(0) g(A(xu) ∧ B(xu)) ∧ · · · ∧ ∧
u∈s−1(1) f(A(xu) ∨ B(xu)) =∧

u∈t−1(0)∩s−1(0) g(A(xu) ∧ B(xu)) ∧ g(A(xu) ∨ B(xu)) ∧ · · · ∧∧
u∈t−1(1)∩s−1(1) f(A(xu) ∧

B(xu)) ∧ f(A(xu) ∨B(xu)), and the analogous equality for t∗ and s∗.
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Then, we have

(C(A ∩B) + C(A ∪B))(i) =
∨

k,l∈N
k+l=i

(C(A ∩B)(k) ∧ C(A ∪B)(l)) =

∨

k,l∈N
k+l=i

( ∨

t∈Tk

(
gA∩B

t ∧ fA∩B
t

)) ∧
( ∨

s∈Tl

(
gA∪B

s ∧ fA∪B
s

))
=

∨

k,l∈N
k+l=i

∨

t∈Tk

∨

s∈Tl

(
gA∩B

t ∧ fA∩B
t ∧ gA∪B

s ∧ fA∪B
s

)
=

∨

k,l∈N
k+l=i

∨

t∈Tk

∨

s∈Tl

(
gA∩B

t∗ ∧ fA∩B
t∗ ∧ gA∪B

s∗ ∧ fA∪B
s∗

)
=

∨

k,l∈N
k+l=i

∨

t∈Tk

∨

s∈Tl

∧

u∈t−1
∗ (0)∩s−1

∗ (0)

(g(A(xu) ∧B(xu)) ∧ g(A(xu) ∨B(xu)))∧

∧

u∈t−1
∗ (0)∩s−1

∗ (1)

(g(A(xu) ∧B(xu)) ∧ f(A(xu) ∨B(xu)))∧

∧

u∈t−1
∗ (1)∩s−1

∗ (1)

(f(A(xu) ∧B(xu)) ∧ f(A(xu) ∨B(xu))) = α,

where the third equality is a consequence of the prelinearity and the fourth
equality follows from the fact that k∗ + l∗ = i. Obviously,

∧
i∈I(αi ∨ βi) ≥∧

i∈I1
αi ∧

∧
i∈I2

βi holds for I = I1 ∪ I2.20 Using this inequality and the fact
that t−1

∗ (0) ∩ s−1
∗ (1) = (t−1(0) ∩ s−1(1)) ∪ (t−1(1) ∩ s−1(0)), we obtain

∧

u∈t−1
∗ (0)∩s−1

∗ (1)

((g(A(xu)) ∧ f(B(xu))) ∨ (f(A(xu)) ∧ g(B(xu)))) ≥

∧

u∈t−1(0)∩s−1(1)

(g(A(xu)) ∧ f(B(xu))) ∧
∧

u∈t−1(1)∩s−1(0)

(f(A(xu)) ∧ g(B(xu))).

Applying Lemma 3.14, (38) and the previous inequality, we obtain

α ≥
∨

k,l∈N
k+l=i

∨

t∈Tk

∨

s∈Tl

∧

u∈t−1
∗ (0)∩s−1

∗ (0)

(g(A(xu)) ∧ g(B(xu)))∧

∧

u∈t−1
∗ (0)∩s−1

∗ (1)

(
(g(A(xu)) ∧ f(B(xu))) ∨ (f(A(xu)) ∧ g(B(xu)))

)∧

∧

u∈t−1
∗ (1)∩s−1

∗ (1)

f(A(xu)) ∧ f(B(xu)) ≥

20In fact,
∧

i∈I1
(αi ∨βi) ≥

∧
i∈I1

αi and
∧

i∈I2
(αi ∨βi) ≥

∧
i∈I2

βi. Then
∧

i∈I(αi ∨βi) =∧
i∈I1

(αi ∨ βi) ∧
∧

i∈I2
(αi ∨ βi) ≥

∧
i∈I1

αi ∧
∧

i∈I2
βi.
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∨

k,l∈N
k+l=i

∨

t∈Tk

∨

s∈Tl

∧

u∈t−1(0)∩s−1(0)

(g(A(xu)) ∧ g(B(xu)))∧

∧

u∈t−1(0)∩s−1(1)

(g(A(xu)) ∧ f(B(xu))) ∧
∧

u∈t−1(1)∩s−1(0)

(f(A(xu)) ∧ g(B(xu)))∧
∧

u∈t−1(1)∩s−1(1)

(f(A(xu)) ∧ f(B(xu))) =
∨

k,l∈N
k+l=i

∨

t∈Tk

∨

s∈Tl

(gA
t ∧ fA

t ∧ gB
s ∧ fB

s ) =

∨

k,l∈N
k+l=i

( ∨

t∈Tk

(gA
t ∧ fA

t )
) ∧ ( ∨

s∈Tl

(gB
s ∧ fB

s )
)

=

∨

k,l∈N
k+l=i

(Cg,f (A)(k) ∧ Cg,f (B)(l)) = (Cg,f (A) + Cg,f (B))(i),

where the last but one equality follows from the prelinearity. 2

The following statement shows that the valuation property is satisfied under
the presumption of the linearity (cf., Theorem 3.7 in [3]).

Theorem 3.16 Let L be linearly ordered and C be a c-measure with respect to
∧. Then, C satisfies the valuation property.

Proof. Let A, B ∈ Ffin, and, without loss of generality, suppose that y =
Dom(A) = Dom(B) = Supp(A ∪B). Define xA = {x ∈ y | A(x) < B(x)}
and xB = y \ xA. It is easy to see that A(x) ≥ B(x) for any x ∈ xB . Hence,
we obtain A(x) = A(x) ∧ B(x) and B(x) = A(x) ∨ B(x) for any x ∈ xA, and
A(x) = A(x)∨B(x) and B(x) = A(x)∧B(x) for any x ∈ xB . According to the
additivity axiom, we obtain

C(A) + C(B) =
∑

x∈xA

C({A(x)/x}) +
∑

x∈xB

C({A(x)/x})+
∑

x∈xA

C({B(x)/x}) +
∑

x∈xB

C({B(x)/x}) =
∑

x∈xA

C({A(x)/x})+
∑

x∈xB

C({B(x)/x}) +
∑

x∈xA

C({B(x)/x}) +
∑

x∈xB

C({A(x)/x}) =

∑
x∈y

C({A(x) ∧B(x)/x}) +
∑
x∈y

C({A(x) ∨B(x)/x}) = C(A ∩B) + C(A ∪B),

and the proof is finished. 2

Remark 3.13 In contrast to Theorem 4.18 in [23] stating that the valuation
property is satisfied only for the fuzzy set operations defined by the infimum and
the supremum, here, there is a problem in proving that the satisfaction of the
valuation property implies the choice of the infimum and the supremum. One

35



may see that the culprits of this failure are considered ¯d-homomorphisms and
¯-homomorphisms. In fact, we obtain, for a generalized valuation property,21

(Cg,f ({α¯ α/x}) + Cg,f ({α¯α/x}))(0) =
g(α¯ α)¯ g(α¯α) = g(α¯ α)¯ g(α)¯ g(α) =
g(α)¯ g(α) = (Cg,f ({α/x}) + Cg,f ({α/x}))(0);

however, how can we prove that

g(α¯ α)¯ g(α)¯ g(α) = g(α)¯ g(α) (41)

implies ¯ = ∧? For example, (41) is true for ¯ = ∧ and for g(α ¯ α) = > as
well. A much more complicated problem arises for i = 1. Therefore, we leave
the full characterization of the generalized valuation property for c-measures as
an open problem.

4. A relationship between graded equipollence and fuzzy c-measures

Recall that a fuzzy set B is made up of A through f : L → L if B = f ◦A and
we write B = f(A). It is easy to see that A and f(A) have the same domain, but
the fact that h ∈ Bij(A,B) does not, in general, imply that h ∈ Bij(f(A), f(B)).

Let us start our investigation with the theorem that demonstrates a rela-
tionship between the degrees in which there exist one-to-one correspondences
between the fuzzy sets made up of the other ones through f and g and the simi-
larity of the generalized cardinals obtained by a c-measure Cg,f . Practically, this
theorem defines a lower bound derived by one-to-one correspondences between
fuzzy sets to estimate the degree of similarity of the generalized cardinals that
express the number of elements contained in these fuzzy sets.

Theorem 4.1 Let Cg,f be a c-measure. Then,

[g(A) ∼¯h g(B)]¯ [f(A) ∼¯h f(B)] ≤ [Cg,f (A) ≈ Cg,f (B)] (42)

holds for any A,B ∈ Ffin such that |Dom(A)| = |Dom(B)| = m and h ∈
Perm(A, B).

Proof. Let A,B ∈ Ffin such that |Dom(A)| = |Dom(B)| = m and h ∈
Perm(A, B). If m = 0, then A = B = ∅, whence Cg,f (A) = Cg,f (B), and
(42) is trivially satisfied.

Let m > 0. Set z = Dom(A) = {x1, . . . , xm} and h(z) = Dom(B) =
{y1, . . . , ym}, where we suppose that yk = h(xk). Let 0 ≤ i ≤ m be arbitrary

21Consider (A¯B)(x) = A(x)¯B(x) and (A¯B)(x) = A(x)¯B(x) as a generalization of
∩ and ∪ and put A = B = {α/x}.
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and T be the set of all mappings t : {1, . . . , m} → {0, 1} for which
∑m

k=1 t(k) = i.
Furthermore, define

gA
t =

⊙

k∈t−1(0)

g(A(xk)) and fA
t =

⊙

l∈t−1(1)

f(A(xl)), (43)

where t−1(α) = {k | k ∈ {1, . . . , m} & t(k) = α} and α ∈ {0, 1}. Using the
same arguments as for (19) (the proof of Theorem 3.9), we obtain

Cg,f (A)(i) =
∨

t∈T

(gA
t ¯ fA

t ). (44)

Analogous to (43), let us define gB
t and fB

t . Recall that h(xk) = yk for any
k ∈ t−1(0) ∪ t−1(1) = {1, . . . , m}. Then,

Cg,f (A)(i) ↔ Cg,f (B)(i) =
( ∨

t∈T

(gA
t ¯ fA

t )
)
↔

( ∨

t∈T

(gB
t ¯ fB

t )
)
≥

∧

t∈T

(
(gA

t ¯ fA
t ) ↔ (gB

t ¯ fB
t )

) ≥
∧

t∈T

(
(gA

t ↔ gB
t )¯ (fA

t ↔ fB
t )

) ≥

∧

t∈T

(( ⊙

k∈t−1(0)

g(A(xk))
)
↔

( ⊙

k∈t−1(0)

g(B(yk))
))

¯
(( ⊙

l∈t−1(1)

f(A(xl))
)
↔

( ⊙

l∈t−1(1)

f(B(yl))
))

≥

∧

t∈T

( ⊙

k∈t−1(0)

(
g(A(xk)) ↔ g(B(yk))¯

)
¯

( ⊙

l∈t−1(1)

(
f(A(xl)) ↔ f(B(yl))

)) ≥

( m⊙

k=1

(
g(A(xk)) ↔ g(B(yk))

)
¯

( m⊙

k=1

(
f(A(xk)) ↔ f(B(yk))

))
=

( ⊙
x∈z

(
g(A)(x) ↔ g(B)(h(x))

)
¯

( ⊙
x∈z

(
f(A)(x) ↔ f(B)(h(x))

))
=

[g(A) ∼¯h g(B)]¯ [f(A) ∼¯h f(B)].

If i > m, then Cg,f (A)(i) ↔ Cg,f (B) = f(⊥) ↔ f(⊥) = >. Hence, and from
the previous inequality for 1 ≤ i ≤ m, we obtain the desired statement. 2

A straightforward consequence of Proposition 3.2 is the following assertion
that defines the lower bound for the similarity of fuzzy sets with different car-
dinalities of their universes.

Corollary 4.2 Let Cg,f be a c-measure and A,B ∈ Ffin. Then,

[g(C) ∼¯h g(D)]¯ [f(C) ∼¯h f(D)] ≤ [Cg,f (A) ≈ Cg,f (B)] (45)
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holds for any C ∈ cls(A) and D ∈ cls(B) such that |Dom(C)| = |Dom(D)| = m
and h ∈ Perm(C, D).

Remark 4.1 Using the same arguments presented in the proof of Theorem 4.1,
one can verify that the presumption on the same cardinality of domains of used
fuzzy sets may be omitted in the previous statements if the fuzzy sets made up
through f are defined in a more restrictive way by f∗(A)(x) = f(A(x)) for any
x ∈ Supp(A) and f∗(A)(x) = ⊥ for any x ∈ Dom(A) \ Supp(A). In this case, it
holds

[g∗(A) ∼¯h g∗(B)]¯ [f∗(A) ∼¯h f∗(B)] ≤ [Cg,f (A) ≈ Cg,f (B)]

for any A,B ∈ Ffin and h ∈ Bij(A,B). Although, this statement seems to be
more satisfactory than the statement presented in Theorem 4.1, the restrictive
definition of the fuzzy sets made up through f has some disadvantages upon
further investigation.

A consequence of the previous theorem is the following corollary, where
c-measures that are only determined by non-trivial homomorphisms are consid-
ered. Recall that Cf (Cg) demonstrates that g (f) is the trivial homomorphism
of the reducts, i.e., g(α) = > (f(α) = >) and, hence, gA

t = > (fA
t = >) in (19).

Corollary 4.3 Let Cg,f be a c-measure. Then,

(i) [f(A) ∼¯ f(B)] ≤ [Cf (A) ≈ Cf (B)] and

(ii) [g(A) ∼¯ g(B)] ≤ [Cg(A) ≈ Cg(B)]

hold for any A,B ∈ Ffin such that |Dom(A)| = |Dom(B)| = m.

Proof. We shall prove (i), the statement (ii) may be verified by the same
arguments.

Let g be the trivial ¯d-homomorphism, i.e., g(α) = > for any α ∈ L, then
[g(A) ∼¯h g(B)] = > for any h ∈ Perm(A,B) and, using Theorem 4.1, the
following inequality

[f(A) ∼¯h f(B)] ≤ [Cg,f (A) ≈ Cg,f (B)] (46)

is true for any h ∈ Perm(A,B). By (4) in Theorem 2.1, we obtain

[f(A) ∼¯ f(B)] =
∨

h∈Perm(A,B)

[f(A) ∼¯h f(B)] ≤ [Cg,f (A) ≈ Cg,f (B)],

and the proof is finished. 2

Remark 4.2 One may omit the presumption on the cardinality of domains in
the previous corollary by replacing f(A) (g(A)) with f∗ (g∗(A)).
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Definition 4.1 Let L be an rdr-lattice and h : L → L be a mapping. We shall
say that h is (k,¯)-compatible with ↔ if

(α ↔ β)¯ · · · ¯ (α ↔ β)︸ ︷︷ ︸
k-times

≤ h(α) ↔ h(β) (47)

for any α, β ∈ L.

Obviously, h is (k,∧)-compatible with ↔, if (α ↔ β) ≤ h(α) ↔ h(β). For
example, h(α) = (¬α)k is (k,⊗)-compatible with ↔.

Theorem 4.4 Let Cg,f be a c-measure such that f is a ¯-homomorphism being
(k,¯)-compatible with ↔ and g is a ¯d-homomorphisms being (l,¯)-compatible
with ↔, A,B ∈ Ffin such that |Dom(A)| = |Dom(B)| = m and h ∈ Perm(A,B).
Then,

[A ∼¯h B]k+l ≤ [Cg,f (A) ≈ Cg,f (B)], (48)

where αk+l = α for ¯ = ∧. Specifically, if Cg,f is a c-measure with respect to
∧, then

[A ∼∧ B] ≤ [Cg,f (A) ≈ Cg,f (B)]. (49)

Proof. Let A,B ∈ Ffin and h ∈ Perm(A,B). By Theorem 4.1, we obtain

[g(A) ∼¯h g(B)]¯ [f(A) ∼¯h f(B)] ≤ [Cg,f (A) ≈ Cg,f (B)]. (50)

Since g is (l,¯)-compatible with ↔ and Dom(A) = Dom(g(A)) = Dom(h), then

[g(A) ∼¯h g(B)] =
⊙

x∈Dom(g(A))

(g(A)(x) ↔ g(B)(h(x))) ≥

⊙

x∈Dom(A)

(A(x) ↔ B(h(x)))l =
( ⊙

x∈Dom(A)

(A(x) ↔ B(h(x)))
)l

= [A ∼¯h B]l.

Analogously, one may prove that [A ∼¯h B]k ≤ [f(A) ∼¯h f(B)]. Therefore, we
obtain

[A ∼¯h B]k+l = [A ∼¯h B]l ¯ [A ∼¯h B]k ≤
[g(A) ∼¯h g(B)]¯ [f(A) ∼¯h f(B)] ≤ [Cg,f (A) ≈ Cg,f (B)].

The second inequality is a straightforward consequence of the idempotence of
∧. 2

In [9], we showed that a class of all equipollent fuzzy sets, where two fuzzy
sets are equipollent if their fuzzy substantial segments with respect to ¯ (or ¯)
are equipollent in the degree >, can be represented by a non-increasing (non-
decreasing) generalized cardinal. The following three theorems provide a rep-
resentation using generalized cardinals for a given c-measure. Of course, there
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is a problem in proving such a representation in full generality; nevertheless,
the restrictions still give a wide variety of c-measures for which a corresponding
equipollence can be introduced (cf., Theorems 4.3, 4.51 and 4.78 in [23]). Re-
call that a homomorphism h is said to be a monomorphism if h is a one-to-one
mapping.

Theorem 4.5 Let L be linearly ordered and, for ¯ = ⊗, satisfy the condi-
tional cancellation law for ⊗. Let Cf be a c-measure such that f is a ¯-po-
monomorphism and A,B ∈ Ffin. If s and t are substantial segments of A
and B with respect to ¯, respectively, then [As ∼¯ Bt] = > if and only if
Cf (A) = Cf (B).

Proof. Set y = Supp(A) and y′ = Supp(B).
(⇒) Let us suppose that [As ∼¯ Bt] = >. Using Theorem 2.6, we obtain

p¯A(−, y) = p¯B(−, y′). By Theorem 3.10, we have Cf (A)(i) = f(p¯A(i, y)) =
f(p¯B(−, y′)) = Cf (B)(i) for any i ∈ N. Hence, we obtain Cf (A) = Cf (B).

(⇐) Let us suppose that Cf (A) = Cf (B), i.e., f(p¯A(i, y)) = f(p¯B(i, y′)) for
any i ∈ N. Since f is a one-to-one mapping, then p¯A(i, y) = p¯B(−, y′), and, by
Theorem 2.6, we obtain [As ∼¯ Bt] = >. 2

Theorem 4.6 Let L be linearly ordered and, for ¯ = ⊕, satisfy the condi-
tional cancellation law for ⊕. Let Cg be a c-measure such that g is a ¯d-po-
monomorphism and A,B ∈ Ffin. If s and t are substantial segments of A and B
with respect to ¯, respectively, then [As ∼¯ Bt] = > and |Supp(A)| = |Supp(B)|
if and only if Cg(A) = Cg(B).

Proof. Set y = Supp(A) and y′ = Supp(B).
(⇒) If [As ∼¯ Bt] = > and |y| = |y′| = m, where s and t are substantial

segments of A and B with respect to ¯, respectively, then, by Theorem 2.10,
we obtain p¯A(−, y) = p¯B(−, y′), and, from Theorem 3.10, we obtain Cg(A)(i) =
g(p¯A(m ¯ i, y)) = g(p¯B(m ¯ i, y′)) = Cg(B)(i) for any i ∈ N.

(⇐) If Cg(A) = Cg(B), then from Theorem 3.10 and the presumption on
g, we obtain p¯A(m ¯ i, y) = p¯B(m′ ¯ i, y′), where m = |y| = |Supp(A)| and
m′ = |y′| = |Supp(B)|. Let us show that m = m′. If m > m′, then p¯A(m ¯
m′, y) = p¯B(0, y′) = ⊥, which implies that p¯A(1, y) =

∧
x∈y A(x) = ⊥ according

to (iv) and (vi) of Proposition 2.8. However, this is a contradiction with the
assumption about y = Supp(A). Analogously, we obtain a contradiction for
m < m′, and thus, m = m′. Hence, from (ii) of Proposition 2.8, we obtain
p¯A(−, y) = p¯B(−, y′), and [As ∼¯ Bt] = > is a consequence of Theorem 2.10.2

To state an analogous equivalence to the equivalencies provided in the pre-
vious two theorems for a c-measure determined by a non-trivial homomorphism
between the reducts of the rdr-lattices, we have to assume that the rdr-lattices
also have no zero divisor. Recall that an rdr-lattice L has no zero divisor if
α⊗β = ⊥ implies α = ⊥ or β = ⊥. Note that the same condition was assumed
in Wygralak’s work (see Theorem 4.78 in [23]), because the strict t-norms used
in the work has no zero divisor.

40



Theorem 4.7 Let L be linearly ordered and, for ¯ = ⊗, have no zero divisor
and satisfy the conditional cancellation law for ⊗. Let Cg,f be a c-measure such
that g is a ¯d-po-monomorphism, f is a ¯-po-monomorphism and A,B ∈ Ffin.
Then, [A ∼¯ B] = > if and only if Cg,f (A) = Cg,f (B).

Proof. (⇒) This immediately follows from Corollary 4.2 and the fact that g
and f are monomorphisms of the reducts (the existence h for which [C ∼¯h
D] = >, where C ∈ cls(A) and D ∈ cls(B) are appropriate fuzzy sets, is self-
evident); for an alternative verification, one can also use Theorem 4.8, which
will be stated later.

(⇐) The proof of this portion is motivated by the proof of Theorem 4.78 in
[23]. Let the presumptions of the theorem be satisfied. Let Cg,f (A) = Cg,f (B)
and set y = Supp(A) and y′ = Supp(B). Before we start with the proof of this
implication, we will establish several useful claims.

Claim 1 If α⊕ β = > then α = > or β = >.

We know that L has no zero divisor and g is a monomorphism of reducts. Let us
suppose that α⊕ β = > and α 6= > and β 6= >. Since g(α) 6= ⊥ and g(β) 6= ⊥
(g is a monomorphism), then ⊥ = g(>) = g(α ⊕ β) = g(α) ⊗ g(β) > ⊥, which
is a contradiction.

Claim 2 L satisfies the conditional cancellation law for ⊕.

Since g is a monomorphism, then α⊕β = α⊕γ < >, which implies g(α)⊗g(β) =
g(α)⊗ g(γ) > ⊥. Since L satisfies the conditional cancellation for ⊗, we obtain
g(β) = g(γ), and hence, β = γ.

Claim 3 |y| = |y′|.
Set m = |y| and m′ = |y′|. Let us suppose that m < m′. Then, we obtain (from
Theorem 3.10 and |y| < m′)

Cg,f (A)(m′) = ⊥ = g(p¯B(0, y′))¯ f(p¯B(m′, y′)) =
f(p¯B(m′, y′)) = Cg,f (B)(m′).

If ¯ = ∧, then p∧B(m′, y′) =
∧

x∈y′ B(x) > ⊥. Since L has no zero divisor, then
p⊗B(m′, y′) =

⊗
x∈y′ B(x) > ⊥ as well. Therefore, we obtain Cg,f (B)(m′) =

f(p¯B(m′, y′)) > ⊥, which is a contradiction. Analogously, we obtain a contra-
diction for m > m′, and thus, m = m′.

Now let us suppose that Cg,f is a c-measure with respect to ⊗. We shall
prove that p∧A(−, y) = p∧B(−, y′). Hence, by Theorem 2.7, we simply obtain
[A ∼∧ B] = >, which trivially implies [A ∼⊗ B] = >. By Claim 3, we can set
m = |y| = |y′|. According to the definition of p⊗A, the desired equality is trivially
true for m = 0 and m = 1. Let m ≥ 2 and set

I = {i | i ∈ N & p∧A(i, y) 6= p∧B(i, y′)}. (51)
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If I = ∅, then clearly the desired equality is satisfied. Let us suppose that I 6= ∅.
If I = {i}, then, from Remark 3.11, we obtain

Cg,f (A)(i) = f(p∧A(0, y))⊗ · · · ⊗ f(p∧A(i, y))⊗
g(p∧A(i + 1, y))⊗ · · · ⊗ g(p∧A(m, y)) = f(p∧B(0, y′))⊗ · · · ⊗ f(p∧B(i, y′))⊗

g(p∧B(i + 1, y′))⊗ · · · ⊗ g(p∧B(m, y′)) = Cg,f (B)(i).

Since y = Supp(A) and f and g are monomorphisms, we obtain

f(p∧A(k, y)) ∧ g(p∧A(l, y)) > ⊥
for any k = 0, . . . , i and l = i + 1, . . . , m, and hence, Cg,f (A)(i) > ⊥ (L has
no zero divisor). Since p∧A(k, y) = p∧B(k, y′) for all k 6= i, then, by the condi-
tional cancellation law for ⊗, we obtain f(p∧A(i, y)) = f(p∧B(i, y′)), which implies
p∧A(i, y) = p∧B(i, y′) and is a contradiction.

Let us suppose that I = {i1, . . . , ik}, where k ≥ 2 and i1 < · · · < ik.
Consider the following two equalities:

Cg,f (A)(ik−1) = Cg,f (B)(ik−1) and
Cg,f (A)(ik) = Cg,f (B)(ik).

By the same arguments used above, one may check that Cg,f (A)(ik−1) > ⊥ and
Cg,f (A)(ik) > ⊥. Using Remark 3.11 and applying the conditional cancellation
law for ⊗, we can derive the following equalities from the previous ones:

α⊗ g(p∧A(ik, y)) = β ⊗ g(p∧B(ik, y′)) and (52)
α⊗ f(p∧A(ik, y)) = β ⊗ f(p∧B(ik, y′)), (53)

where α = f(p∧A(i1, y)) ⊗ · · · ⊗ f(p∧A(ik−1, y)) and β = f(p∧B(i1, y′)) ⊗ · · · ⊗
f(p∧B(ik−1, y

′)). Then, we can analyze four cases to provide a contradiction
with the presumption that I 6= ∅:
Case 1: if α ≤ β and p∧A(ik, y) > p∧B(ik, y′), then g(p∧A(ik, y)) < g(p∧B(ik, y′))

and α⊗ g(p∧A(ik, y)) < β ⊗ g(p∧B(ik, y′)), which is a contradiction with
(52);22

Case 2: if α ≤ β and p∧A(ik, y) < p∧B(ik, y′), then f(p∧A(ik, y)) < f(p∧B(ik, y′))
and α⊗ f(p∧A(ik, y)) < β ⊗ f(p∧B(ik, y′)), which is a contradiction with
(53);

Case 3: if α > β and p∧A(ik, y) < p∧B(ik, y′), then g(p∧A(ik, y)) > g(p∧B(ik, y′))
and α⊗ g(p∧A(ik, y)) > β ⊗ g(p∧B(ik, y′)), which is a contradiction with
(52);

22Note that if α, β, γ, δ ∈ L \ {⊥} such that α < β and γ < δ and L has no zero divisor
and satisfies the conditional cancellation for ⊗, then α ⊗ γ < β ⊗ δ. In fact, it holds that
α⊗ γ < β ⊗ γ and β ⊗ γ < β ⊗ δ; otherwise, it is sufficient to use the conditional cancellation
for ⊗ for a contradiction. Therefore, we obtain the desired inequality.
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Case 4: if α > β and p∧A(ik, y) > p∧B(ik, y′), then f(p∧A(ik, y)) > f(p∧B(ik, y′))
and α⊗ f(p∧A(ik, y)) > β ⊗ f(p∧B(ik, y′)), which is a contradiction with
(53).

Thus, p∧A(ik, y) = p∧B(ik, y′), which implies that I has to be empty, and the
proof of case ⊗ is finished.

Now let us suppose that Cg,f is a c-measure with respect to ∧. Again, it is
sufficient to show that p∧A(−, y) = p∧B(−, y′) for m ≥ 2. Using Corollary 3.12
(see also Remark 3.11), we obtain

Cg,f (A)(0) = g(p∧A(1, y)),
Cg,f (A)(m) = f(p∧A(m, y)),

and thus, p∧A(1, y) = p∧B(1, y′) and p∧A(m, y) = p∧B(m, y′). Moreover, we trivially
have p∧A(0, y) = p∧B(0, y′). Let I be the set of indexes defined by (51). If I = ∅,
then the desired equality is satisfied. Let us suppose that I 6= ∅. If I = {i},
then 1 < i < m, and we can write the two following equalities:

f(p∧A(i− 1, y)) ∧ g(p∧A(i, y)) = f(p∧B(i− 1, y′)) ∧ g(p∧B(i, y′)) and
f(p∧A(i, y)) ∧ g(p∧A(i + 1, y)) = f(p∧B(i, y′)) ∧ g(p∧B(i + 1, y′)),

where p∧A(i, y) 6= p∧B(i, y′), p∧A(i− 1, y) = p∧B(i− 1, y′) and p∧A(i + 1, y) = p∧B(i +
1, y′). Hence, we simply obtain

f(p∧A(i− 1, y)) = f(p∧B(i− 1, y′)) ≤ g(p∧A(i, y)) ∧ g(p∧B(i, y′)) and
g(pA(i + 1, y)) = g(pB(i + 1, y′)) ≤ f(p∧A(i, y)) ∧ f(p∧B(i, y′)).

If p∧A(i, y) < p∧B(i, y′), then g(p∧A(i, y)) ≤ g(p∧A(i + 1, y)), and one can simply
derive

f(p∧B(i− 1, y′)) < g(p∧A(i, y)) ≤ g(p∧A(i + 1, y)) < f(pB(i, y′)).

However, this is a contradiction with f(pB(i, y′)) ≤ f(p∧B(i − 1, y′)). Analo-
gously, we obtain a contradiction for p∧A(i, y) > p∧B(i, y′) and I 6= {i}.

Let us assume that I = {i1, . . . , ik}, where k ≥ 2 and 1 < i1 < · · · < ik < m.
Consider the following two equalities:

Cg,f (A)(i1 − 1) = Cg,f (B)(i1 − 1) and
Cg,f (A)(ik) = Cg,f (B)(ik).

Both equalities can be rewritten as

f(p∧A(i1 − 1, y)) ∧ g(p∧A(i1, y)) = f(p∧B(i1 − 1, y′)) ∧ g(p∧B(i1, y′)) and
f(p∧A(ik, y)) ∧ g(p∧A(ik + 1, y)) = f(p∧B(ik, y′)) ∧ g(p∧B(ik + 1, y′)).

Since i1 is the least and ik is the largest element of I, we obtain p∧A(i1− 1, y) =
p∧B(i1 − 1, y′) and p∧A(ik + 1, y) = p∧B(ik + 1, y′). Then,

f(p∧A(i1 − 1, y)) = f(p∧B(i1 − 1, y′)) ≤ g(p∧A(i1, y)) ∧ g(p∧B(i1, y′)) and
g(pA(ik + 1, y)) = g(pB(ik + 1, y′)) ≤ f(p∧A(ik, y)) ∧ f(p∧B(ik, y′)).
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If p∧A(i1, y) < p∧B(i1, y′), then g(p∧B(i1, y′)) < g(p∧A(i1, y)). Moreover, p∧A(i1, y) ≥
p∧A(ik + 1, y) by definition, and this implies g(p∧A(i1, y)) ≤ g(p∧A(ik + 1, y)).
Therefore, one can simply derive

f(p∧B(i1 − 1, y′)) < g(p∧A(i1, y)) ≤ g(p∧A(ik + 1, y)) ≤ f(pB(ik, y′)),

which is a contradiction with f(pB(ik, y′)) ≤ f(p∧B(i1−1, y′)). Analogously, one
can construct a contradiction for p∧A(i1, y) > p∧B(i1, y′). Hence, the presumption
I 6= ∅ is false, and the proof of case ∧ is finished. 2

Remark 4.3 The previous theorems show a way to introduce, under some pre-
sumptions concerning the rdr-lattices and homomorphisms g and f of reducts,
a non-graded equipollence on the class of all finite fuzzy sets to a given type of
a c-measure, which guarantees the relationship between a functional approach
to the cardinality of finite fuzzy sets (using fuzzy substantial segments) and the
approach based on generalized cardinals obtained by a c-measure. For example,
let us consider a c-measure Cf with respect to ¯. One can state that finite fuzzy
sets A and B are equipollent (denoted by A ∼ B) if [As ∼¯ Bt] = >, where
As, Bt are fuzzy substantial segments with respect to ¯. In this case, it holds
that A ∼ B if and only if Cf (A) = Cf (B). An interesting question is if the
provided equipollence is save for the constructions with fuzzy sets proposed in
[9], e.g.,

if A ∼ B and C ∼ D, then A× C ∼ B ×D.

To verify this implication one has to check that [As ∼¯ Bt] = [Cu ∼¯ Dv] = >
does imply [(A × C)x ∼∧ (B × D)y] = >. Because the constructions of the
equipollences seem to be equivalent to those proposed by Wygralak in [22, 23],
we believe that the answer to the question is positive. Nevertheless, the proper
verification is left for future research.

Until now all relationships between the graded equipollence and the similar-
ity of finite fuzzy set c-measures have been in the form of an inequality. The
following theorem shows that an equality can arise only in very special cases.

Theorem 4.8 Let L be linearly ordered, Cg,f be a c-measure such that f is a
¯-po-homomorphism and g is a ¯d-po-homomorphism. Then,

[g(A) ∼¯ g(B)]¯ [f(A) ∼¯ f(B)] ≤ [Cg,f (A) ≈ Cg,f (B)] (54)

for any A,B ∈ Ffin such that |Dom(A)| = |Dom(B)| = m. Specifically, if Cg

and Cf are c-measures with respect to ¯ = ∧, then

(i) [g(A) ∼∧ g(B)] = [Cg(A) ≈ Cg(B)] and

(ii) [f(A) ∼∧ f(B)] = [Cf (A) ≈ Cf (B)]

hold for any A,B ∈ Ffin such that |Dom(A)| = |Dom(B)| = m.
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Proof. From Corollary 3.11, we obtain Cg,f (A)(i) = Cg(A)(i)¯ Cf (A)(i) and
similarly for Cg,f (B)(i). Using Corollary 4.3, we obtain

[Cg,f (A) ≈ Cg,f (B)] ≥
∧

i∈N
(Cg,f (A)(i) ↔ Cg,f (B)(i)) =

∧

i∈N
((Cg(A)(i)¯ Cf (A)(i)) ↔ (Cg(B)(i)¯ Cf (B)(i))) ≥

∧

i∈N

(
(Cg(A)(i) ↔ Cg(B)(i))¯ (Cf (A)(i) ↔ Cf (B)(i))

) ≥
( ∧

i∈N
(Cg(A)(i) ↔ Cg(B)(i)

)
¯

( ∧

i∈N
Cf (A)(i) ↔ Cf (B)(i))

)
=

[Cg(A) ≈ Cg(B)]¯ [Cf (A) ≈ Cf (B)] ≥ [g(A) ∼¯ g(B)]¯ [f(A) ∼¯ f(B)],

and the first statement is proved.
Furthermore, we shall only prove (i). The second statement may be verified

by analogy. Let ¯ = ∧ and f be trivial. Set y = Dom(A) and y′ = Dom(B).
From (21), we have

Cg(A)(i) = p∧g(A)(i, y) and

Cg(B)(i) = p∧g(B)(i, y
′).

Hence, we obtain

[Cg(A) ≈ Cg(B)] =
∧

i∈N
(Cg(A)(i) ↔ Cg(B)(i)) =

∧

i∈N
(p∧g(A)(i, y) ↔ p∧g(B)(i, y

′)) = [p∧g(A)(−, y) ≈ pg(B)(−, y′)].

Since Dom(g(A)) = y and Dom(g(B)) = y′ with |y| = |y′|, then, as a result of
Theorem 2.7, we obtain

[Cg(A) ≈ Cg(B)] = [p∧g(A)(−, y) ≈ pg(B)(−, y′)] = [g(A) ∼∧ g(B)],

and the statement is proved. 2

5. Conclusion

This paper is the second part of our contribution to the work on the graded
approach to cardinality of finite fuzzy sets. Here, we proposed an axiomatic
system for fuzzy cardinality (c-)measures by assigning to each finite fuzzy set
a generalized cardinal expressing how many elements this fuzzy set has. We
proved that each fuzzy c-measure may be represented by appropriate homomor-
phisms of reducts of an rdr-lattice. Under the presumptions on the linearity of
the rdr-lattices and the “preservation” of ordering by the homomorphisms, we
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proved that each fuzzy c-measures can be expressed as the product of a non-
decreasing and a non-increasing fuzzy c-measure and this is analogous to the
case of generalized FECounts proposed by Wygralak in [22, 23]. Because a non-
increasing fuzzy c-measure may be interpreted as a generalized FGCount while
a non-decreasing fuzzy c-measure may be interpreted as a generalized FLCount,
we obtain

FECount = FGCount¯ FLCount.

Furthermore, we discussed the valuation property that holds assuming the lin-
earity of the rdr-lattice.

In the second part of this paper, we were interested in the question of whether
there is a relation between fuzzy c-measures and the graded equipollence defined
in [9]. Although, both approaches to cardinality of finite fuzzy sets use different
tools, we proved several interesting interrelations between them. We proved that
fuzzy c-measures usually give “less sensitive” results when comparing the power
of the fuzzy sets with using the graded equipollence. This result means that
equipolent fuzzy sets in a low degree can have very similar cardinality provided
by a fuzzy c-measure. A full graded correspondence between both approaches
was proved only for the case ¯ = ∧ (see Corollary 4.8). Conversely, we proved
that, for fuzzy c-measures describing a generalized FGCount, FLCount and
FECount, we can establish a corresponding non-graded equipollence. This crisp
relation is defined by the graded equipollence, which is, in some cases, applied
to the fuzzy substantial segments of fuzzy sets.

In our opinion, it is obviously naive to expect a rich fuzzy cardinality theory
with a full correspondence between a functional approach based on a graded
equipollence and an approach that uses generalized cardinals. Nevertheless,
this imperfection should not stop the research and development in this field, be-
cause many questions about fuzzy cardinalities, which have been pointed out by
Wygralak in his seminal papers and that have appeared in this contribution, are
not still answered. In particular, one may recognize the absence of a definition
stating when one fuzzy set has less cardinality than another fuzzy set. Addi-
tionally, the absence of a verification whether the generalized cardinals derived
by fuzzy c-measures respect the constructions with fuzzy sets, which enable the
introduction of adequate generalized cardinal arithmetic (see Remark 4.3) or
the absence of fully working applications that use the results of the proposed
theories. Among other questions, one can see a task that would fully explain
why finite fuzzy sets are defined as fuzzy sets with finite supports, introduce
the cardinal theory for countable fuzzy sets (i.e., fuzzy sets with a countable
supports) by analogous tools as for finite fuzzy sets, or investigate some of the
concepts, e.g., finiteness, singularity or transitivity of fuzzy sets,23 in a graded
conception. Finally, it should be noted that Novák in [14] and Běhounek and

23Singular fuzzy sets have been introduced by Dyczkowski and Wygralak in [8]. To the best
of our knowledge, we have not seen a definition of a transitive or a well-order fuzzy set as a
fuzzy counterpart to the very important concepts in set theory, which is a transitive and a
well-ordered set.
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Cintula in [2] recently suggested two general frameworks for fuzzy sets, which
are, namely, fuzzy type theory and fuzzy class theory, respectively. Both the-
ories provide appropriate tools for a possible construction of a fuzzy cardinal
theory, which could be an interesting subject of further research.
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