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Type 〈1, 1〉 fuzzy quantifiers determined by fuzzy
measures defined on residuated lattices.

Part II: Permutation and isomorphism invariances

Abstract

This paper is a continuation of the first part of our study on type 〈1, 1〉 fuzzy
quantifiers determined by fuzzy measures, in which the basic notions and exam-
ples were introduced. Here, we study the properties of permutation invariance
and isomorphism invariance of fuzzy quantifiers determined by pairs of func-
tionals (S, ϕ) and their special cases, e.g., fuzzy quantifiers defined by fuzzy
measures and cardinal fuzzy measure spaces. Both properties belong among
the basic semantic properties of generalized quantifiers.

Keywords: fuzzy quantifier, fuzzy logic, permutation invariance, fuzzy
measure

1. Introduction

This paper is a continuation of our work on generalized quantifiers of type
〈1, 1〉 determined by fuzzy measures [2]. The first part contained basic defini-
tions and examples. We provided introductory facts about generalized quanti-
fiers and fuzzy quantifiers, and we summarized basic notions of fuzzy measures
and integrals from [5]. Then we introduced a notion of residuated lattice oper-
ations (rl-operations) which serve as a general means of combining arguments
of our fuzzy quantifiers and show several properties of these operations. The
last part of that article contained several models of well-known natural language
quantifiers of type 〈1, 1〉, e.g., “many”, “almost all”, “few”, etc. using the theory
we developed.

Now we can study various semantic properties of generalized quantifiers.
These properties are essential from the point of view of adequacy of our models
with respect to natural language semantics. If our model of natural language
quantifier (e.g., “many”) would not possess semantic properties of permutation
and isomorphism invariance, conservativity, extension, etc., it would hardly be
possible to consider this model to be adequate.

Semantic properties of fuzzy quantifiers were studied by Glöckner [6] and
elaborated by Holčapek in [8]. In this part of our paper, we concentrate on
the following two (closely related) properties: permutation invariance (PI), and
isomorphism invariance (ISOM). These properties hold if quantizes are invari-
ant with respect to permutations (bijective mappings) on the universe of dis-
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course (PI) and with respect to bijections among different universes of discourse
(ISOM).

Practically all topic neutral natural language quantifiers possess these prop-
erties, which are considered to be necessary conditions for their logicality [14].
These quantifiers are sensitive only to cardinalities of subsets of the universe of
discourse, and not to the individual nature of elements of these subsets. Ex-
amples of PI and ISOM quantifiers of type 〈1, 1〉 are “some”, “all”, “almost
all”. “many”, ”most”, “few”, etc. Example of quantifiers which are not PI or
ISOM are “John’s” (in sentence “John’s apples are green”), “most of Mary’s” (in
“Most of Mary’s computers are Apples”), etc. We can see that these quantifiers
refer to particular individuals.

There is one important difference between properties of PI and ISOM. PI
is a local property — it is defined with respect to a universe of discourse. On
the other hand, ISOM is a global property - it should hold for bijections among
arbitrary universes. ISOM is a stronger property: if a quantifier is ISOM, it
is PI as well. Opposite implication is not valid in general. Quantifiers, which
are PI but not ISOM are in some sense “unnatural” — they act differently for
various universes. For example, quantifier defined as “if 23 is in the universe of
discourse, many, otherwise some” returns the same value as quantifier “many”
for universes which contain the number 23, and the same value as quantifier
“some” for other universes. This is PI (because any universe either contains
23 or not), but it is certainly not ISOM - this property fails for bijections
between universes containing 23 and those which do not contain them. This is
the reason why ISOM is considered more important from the point of view of
natural language semantics - it excludes these unnatural examples of quantifiers.
However, it is simpler to start our investigation with the PI property, and then
use notions and methods used for PI for the investigation of ISOM.

We will built our theory of PI and ISOM fuzzy quantifiers determined by
fuzzy measure spaces as follows: First we will study the most general case of
fuzzy quantifiers determined by a pair of functionals (S, ϕ) (see [2], Section 4).
Then we will proceed to so-called fuzzy quantifiers definable by fuzzy measures
(the functional S which assigns a fuzzy measure space to a universe M and
quantifier arguments A, B is independent of the second argument B). The
majority of important natural language quantifiers belong to this class. Finally
we will also study so-called cardinal fuzzy quantifiers determined by functional
independent of both A and B. We will show the relationship between properties
PI and ISOM of our fuzzy quantifiers and properties of functional S (so-called
pi-closedness and iso-closedness of S). In simplified terms, we will be able to
show that if S is pi-(iso-)closed, then the corresponding fuzzy quantifier is PI
(ISOM). The opposite implication is not valid in general, but it can be shown
that if a fuzzy quantifier Q is PI (ISOM), then there exists a fuzzy quantifier
Q′ which is based on pi-(iso-)closed functional S ′ and which coincides with the
original fuzzy quantifier Q.

This paper is structured as follows. In Section 2 we provide necessary pre-
liminaries on fuzzy measures and integrals. We concentrate on isomorphisms of
fuzzy measure spaces and on cardinal fuzzy measure spaces, which are essential
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for the investigation of PI and ISOM properties. Examples show that there exist
interesting relationships to number theoretical notions of asymptotical densities.
In Section 3 we investigate the PI property first. Let us notice that we work with
global quantifiers. It means that they should be defined on an arbitrary universe
of discourse. In our case, we need to define a functional which assigns a fuzzy
measure space to any universe. We show how the PI property is related to the
corresponding properties (called weak pi-closedness and pi-closedness) of these
functionals. Then we advance to the study of ISOM property and show that in
this case, we need to take into account another functional which assigns the rl-
operation to any universe. For ISOM it is necessary that this functional should
assign the same (in some sense) operation to an arbitrary universe. Finally,
Section 4 contains conclusions.

2. Preliminaries

In this paper, we suppose that the structure of truth values is a complete
residuated lattice. For the definition, we refer to the first part of our study on
fuzzy quantifiers of type 〈1, 1〉 [2] (Section 2.1) or to [1, 13, 16]. A fuzzy set is a
mapping A : M → L, where M is a (possibly empty) universe of discourse and
L is the support of a complete residuated lattice L. For definitions, notation
and properties of fuzzy sets, see Section 2.2 of [2].

2.1. Fuzzy measure spaces and their isomorphisms
In this subsection, we recall basic notions of fuzzy measure theory that have

been proposed and investigated in [5] and that are used in this paper. We are
primarily interested in isomorphisms between fuzzy measure spaces that are
extremely important in the investigation of the permutation and isomorphism
invariance of fuzzy quantifiers, which will be studied later.

Definition 2.1. Let A be a non-empty fuzzy set on M . A subset F of F(A) is
an algebra of fuzzy sets on A if the following conditions are satisfied

(i) 1∅, A ∈ F ,

(ii) if X ∈ F , then A \X ∈ F ,

(iii) if X, Y ∈ F , then X ∪ Y ∈ F .

A pair (A,F) is called a fuzzy measurable space (on A) if F is an algebra of
fuzzy sets on A.

Definition 2.2. Let (A,F) be a fuzzy measurable space. A mapping µ : F → L
is called a fuzzy measure on (A,F) if

(i) µ(1∅) = ⊥ and µ(A) = >,

(ii) if B, C ∈M such that B ⊆ C, then µ(B) ≤ µ(C).
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A triplet (A,F , µ) is called a fuzzy measure space if (A,F) is a fuzzy measurable
space and µ is a fuzzy measure on (A,F). We denote by Fms(M) the class of
all fuzzy measure spaces defined on a non-empty universe M .

In our investigation of semantic properties of fuzzy quantifiers defined by fuzzy
measures and integrals, we need to construct isomorphisms between fuzzy mea-
surable and fuzzy measure spaces.

Definition 2.3. Let (A,F) and (B,G) be fuzzy measurable spaces. We say
that a mapping g : F → G is an isomorphism between (A,F) and (B,G) if

(i) g is a bijective mapping with g(1∅) = 1∅,

(ii) g(X ∪Y ) = g(X)∪ g(Y ) and g(A \X) = B \ g(X) hold for any X, Y ∈ F ,

(iii) there exists a bijective mapping f : Dom(A) → Dom(B) with X(m) =
g(X)(f(m)) for any X ∈ F and m ∈ Dom(A).

Let f : X → Y be a mapping and Z ⊆ X. We denote by f » Z the
restriction of f to Z. The following theorem shows that each isomorphism of
fuzzy measurable spaces is derived from a bijective mapping by the Zadeh’s
extension and its restriction to the algebra of fuzzy sets.

Theorem 2.1. Let (A,F), (B,G) be fuzzy measurable spaces and g : F → G
be a surjective mapping. Then, g is an isomorphism between (A,F) and (B,G)
if and only if there exists a bijective mapping f : Dom(A) → Dom(B) such that
g = f→ » F .

Proof. See [5].

Definition 2.4. Let (A,F , µ) and (B,G, µ′) be fuzzy measure spaces. We say
that a mapping g : F → G is an isomorphism between (A,F , µ) and (B,G, µ′) if

(i) g is an isomorphism between (A,F) and (B,G),

(ii) µ(X) = µ′(g(X)) for any X ∈ F .

If g is an isomorphism between fuzzy measure spaces A = (A,F , µ) and
B = (B,G, µ′), then we will write g(A,F , µ) = (B,G, µ′) or shortly g(A) = B.
If an isomorphism g between A and B is determined by a bijective mapping
f : Dom(A) → Dom(B) (see Theorem 2.1), then we will write f→(A) = B.1

Definition 2.5. Let A = (A,F , µ) be a fuzzy measure space and f be a bijec-
tion from M = Dom(A) to a set M ′. Then, a fuzzy measure space generated by
A and f is the measure space Af = (f→(A),Ff , µf ), where Dom(f→(A)) = M ′,
Ff = {f→(X) | X ∈ F} and µf (X) = µ((f−1)→(X)) for all X ∈ Ff .

1Note that f→(A) = B is not a precise expression with respect to the previous expression
by g, since f→ : F(M) → G(M). Nevertheless, the precise expression (f→ » F)(A) = B can
lead, in our opinion, to unclear formulations.
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It is easy to see that Af is a fuzzy measure space, and it holds that f→(A) =
Af . We will often refer to Af by f→(A). We say that a system A of fuzzy
measure spaces from Fms(M) is closed under isomorphisms in Fms(M) if the
following holds: if A ∈ A and B ∈ Fms(M) are isomorphic, then B ∈ A.
In the following text, we will, for the sake of simplicity, omit the term “under
isomorphisms” in “closed under isomorphisms” and say only “closed system of
fuzzy measure spaces in Fms(M)”. Note that there are closed systems of fuzzy
measure spaces containing non-isomorphic fuzzy measure spaces. If a system
A of mutually isomorphic fuzzy measure spaces in Fms(M) is closed, then we
say that A is a closed system of mutually isomorphic fuzzy measure spaces in
Fms(M). Obviously, each closed system is a union of closed systems of mutually
isomorphic fuzzy measure spaces.

In the following, let Perm(M) denote the set of all permutation on a set M .

Lemma 2.2. A system A of fuzzy measure spaces in Fms(M) is closed if and
only if f→(A) ∈ A for any A ∈ A and any permutation f on M .

Proof. See [5].

In [5], we defined the concept of a cardinal fuzzy measure space. The deno-
tation “cardinal” means that fuzzy measures from these fuzzy measure spaces
are invariant under the same cardinality of fuzzy sets. Let A be a non-empty
fuzzy set. Then, we can say that two fuzzy sets X,Y ∈ F(A) have the same
cardinality if there exists a permutation f on Dom(A) such that f→(X) = Y .
A cardinal fuzzy measure space is defined as follows.

Definition 2.6. We say that (A,F , µ) is a cardinal fuzzy measure space if

(i) if X ∈ F , then f→(X) ∈ F ,

(ii) µ(X) = µ(f→(X))

hold for any X ∈ F and for any permutation f on Dom(A).

The following three examples present (finite as well as infinite) cardinal
and non-cardinal fuzzy measure spaces. Notice that an isomorphism of fuzzy
measurable spaces do not guarantee an isomorphism of fuzzy measure spaces.
The invariance of a fuzzy measure under the isomorphism has to be verified, too
(see Definition 2.4). All examples are constructed over a complete residuated
lattice with the support [0, 1].

Example 2.1. Let M be a finite set and A ∈ F(M) be a non-empty fuzzy set.
Consider Ar = (A,F(A), µr

A), where µr
A : F(A) → [0, 1] is defined by

µr
A(X) =

∑
m∈M X(m)∑
m∈M A(m)

(1)

(cf. Example 2.3 in [2]). One can simply check that Ar is a cardinal fuzzy
measure space if A is a constant fuzzy set, i.e. A(m) = c for any m ∈ M (cf.
Lemma 3.8. in [5]).
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Example 2.2. Let M be an infinite universe, F ⊆ F(M) be an algebra of fuzzy
sets on M and

µ(X) =
{

1, if there exists an infinite subset Y of M such that 1Y ⊆ X;
0, otherwise.

One can simply check that (1M ,F , µ) is a cardinal fuzzy measure space.

Example 2.3. Let N be the set of natural numbers and define µ in a much
more interesting way than in Example 2.1 (cf. Example 3.5 in [3]). Let F :
(F(N)×N)×N → F(N) be given by

F (X, n)(m) =
{

X(m), if m ≤ n;
0, otherwise. (2)

Let A be a non-empty fuzzy set on N and FA ⊆ F(A) be an algebra of fuzzy sets
on A. Put nA = min(Supp(A)) and define a fuzzy measure µA,n : FA → [0, 1]
with respect to n for any n ≥ nA by

µA,n(X) =

∑
m∈Supp(X) F (X, n)(m)∑
m∈Supp(A) F (A, n)(m)

. (3)

For n < nA, define µA,n(X) = 0 for any X 6= A and µA,n(A) = 1. It is easy to
see that (A,FA, µA,n) is a fuzzy measure space for any n ∈ N .

Let A = 1N and F1N = F(1N ). Then, (1N ,F1N , µ1N ,n) is not cardinal for
any n ∈ N . In fact, let n ∈ N and consider a permutation f on N such that
f(m) = m for any m < n and f(n) > n. If n = 0, then f(0) > 0 and

µ1N ,0({1
/
0}) = 1 > 0 = µ1N ,0({1

/
f(0)}).

If n > 0, put

X = {1/
0, . . . , 1

/
n}.

Clearly, f→(X) = {1/
0, . . . , 1

/
n− 1, 1

/
f(n)} and

µ1N ,n(X) = 1 > 1− 1
n

= µ1N ,n(f→(X)),

whence (1N ,F1N
, µ1N ,n) is not cardinal. Let us define

µA(X) = lim inf
n→∞

µA,n(X),

µA(X) = lim sup
n→∞

µA,n(X).
(4)

Obviously, if A is a non-empty fuzzy set with a finite support, then µA,n(X) =
µA,m(X) for any m ≥ n, where n = max(Supp(A)). Hence, µA and µA are
defined for any non-empty fuzzy set A.2 Note that µA and µA (for A = 1N

2One can see that µA = µA for A with a finite support and both fuzzy measures generalize
the fuzzy measure µr

A from Example 2.1 with finite M , M ⊆ N .
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and F1N = F(1N )) are examples of lower and upper weighted asymptotic den-
sities, respectively, well known in the number theory (see [11] and the references
therein). Again, neither (1N ,F , µ1N

) nor (1N ,F , µ1N
) are cardinal fuzzy mea-

sure spaces. In fact, it is well known that the set of even numbers has the
measure (µ1N

or µ1N
) equal to 1

2 and the set of prime numbers equal to 0. Now,
it is sufficient to consider a permutation on M such that the set of even numbers
is transformed to the set of prime numbers.

Example 2.4. Here, we will propose an extension of the fuzzy measures µA,n,
µA and µA provided for fuzzy sets on N to fuzzy sets on an arbitrary countable
universe M . Let M be an arbitrary countable set (finite or denumerable) and
h : F(M) → F(N) be a mapping such that h(A) ⊆ h(B), whenever A ⊆ B,
h(1∅) = 1∅. Then, for any non-empty fuzzy set A ∈ F(M) such that h(A) 6= 1∅
and any algebra FA ⊆ F(A), we can define an h-fuzzy measure µh

A,n : FA →
[0, 1] with respect to n ∈ N by

µh
A,n(X) = µh(A),n(h(X)), (5)

where µh(A),n is the fuzzy measure defined in the previous example. The exten-
sion of the h-fuzzy measure for n going to the infinity may be done by

µh
A(X) = lim inf

n→∞
µh

A,n(X) = µh(A)(h(X)), (6)

µh
A(X) = lim sup

n→∞
µh

A,n(X) = µh(A)(h(X)). (7)

If M = N , then, putting h = idN , we obtain the definitions of µA,n, µA and µA

from the previous example. One way how to define h is to consider an injective
mapping f : M → N and to put h = f→. Another way is, for example, to
define h by

h?(X)(n) =
∨

Y⊆M
|Y |=n

∧

m∈Y

X(m), (8)

for any n ∈ N .
It should be noted that h?(A) is a generalized cardinal number in the sense

of Wygralak’s cardinal theory for vaguely defined objects (see [17, 18]). One can
simply check that (A,FA, µh∗

A ), for µh∗
A ∈ {µh∗

A,n, µh∗
A , µh∗

A }, is a fuzzy measure
space for any non-empty fuzzy set A ∈ F(M) and

µh∗
A (X) = µh∗

f→(A)(f
→(X)) (9)

for any X ∈ FA (this fact immediately follows from the equality h∗(A) =
h∗(f→(A))). Moreover, (1N ,F1N

, µh?

1N
) is a cardinal fuzzy measure space in

contrast to (1N ,F1N
, µ1N

) discussed in the previous example.3

3For example, if P and E denote the sets of prime and even numbers, respectively, then
h?(1P ) = h?(1E) = 1N and µh?

1N
(1P ) = µh?

1N
(1N ) = µh?

1N
(1E) = 1, but µ1N (1P ) = 0 <

µ1N (1E) = 0.5 < µ1N (1N ) = 1.
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A relation between closed systems of fuzzy measure spaces and cardinal fuzzy
measure spaces is stated in the following lemma.

Lemma 2.3. A set {A} forms a closed system of fuzzy measure spaces in
Fms(M) if and only if A is a cardinal fuzzy measure space.

Proof. See [5].

One can see that the set of all permutations on a set endowed by the op-
eration of composition forms a maximal permutation group. Then a natural
generalization of the concept of cardinal fuzzy measure space can be done by
considering an arbitrary permutation group instead of the maximal one.

Definition 2.7. Let A = (A,F , µ) be a fuzzy measure space and G be a group
of permutations on Dom(A). We say that A is closed under isomorphisms with
respect to G if g→(A) = A for any g ∈ G.

The following examples show fuzzy measure spaces being closed under iso-
morphisms with respect to a permutation group.

Example 2.5. Let us consider the fuzzy measure space Ar = (A,F(A), µr
A)

defined in Example 2.1 and G = {g | g ∈ Perm(M) & g→(A) = A}, where
M = Dom(A). Then, G is a permutation group, g→(F(A)) = F(A) for any
g ∈ G and

µr
A(g→(X)) =

∑
m∈M g→(X)(m)∑

m∈M A(m)
=

∑
m∈M X(g−1(m))∑

m∈M A(m)
= µr

A(X)

holds for any X ∈ F(A) and g ∈ G. Hence, Ar is closed under isomorphisms
with respect to G.

Example 2.6. Recall that (1N ,F(1N ), µ1N
) defined in Example 2.3 is not

closed under isomorphisms with respect to the group of all permutations on
N (i.e., it is not a cardinal fuzzy measure space). Now, let X be a crisp sub-
set of N such that µ1N (1X) = 0 (e.g., X is a finite subset of N or an infinite
subset as the set of prime numbers) and G be a group of all permutations g on
N with g(n) = n for any n ∈ N \ X. It is easy to see that G is a permuta-
tion group and, trivially, g→(F(1N )) = F(1N ) for any g ∈ G. To show that
(1N ,F(1N ), µ1N ) is closed under isomorphisms with respect to G we have to
check that µ1N (Y ) = µ1N (g→(Y )) holds for any Y ∈ F(1N ). But this imme-
diately follows from the fact that µ1N (1X) = 0 and µ1N is null-additive, i.e.,
µ1N

(A ∪ B) = µ1N
(A) holds for any A,B ∈ F(1N ) with µ1N

(B) = 0.4 In fact,

4From the definition of µ1N , we have µ1N (A∪B) ≤ lim supn→∞(µ1N
,n(A)+µ1N

,n(B)) ≤
lim supn→∞ µ1N

,n(A) + lim supn→∞ µ1N
,n(B) = µ1N (A) + µ1N (B) = µ1N (A), where

supi(ai + bi) ≤ supi ai + supi bi is applied. Since µ1N (A) ≤ µ1N (A ∪ B) follows from the
monotony of µ1N , we obtain the desired equality.
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let Y ∈ F(1N ) and put Y1 = Y » Xand Y2 = Y » (N \X). Since µ1N (1X) = 0
then, from the monotony of µ1N

and Y1 ⊆ 1X , we also have µ1N
(Y1) = 0.

Moreover, for any g ∈ G, we have g→(Y ) = g→(Y1 ∪ Y2) = g→(Y1) ∪ Y2 and
g→(Y1) ⊆ 1X which implies µ1N

(g→(Y1)) = 0. From the null-additivity of µ1N
,

we obtain µ1N
(Y ) = µ1N

(Y1 ∪ Y2) = µ1N
(Y2) and similarly µ1N

(g→(Y )) =
µ1N (g→(Y1) ∪ Y2) = µ1N (Y2). Hence, we have µ1N (Y ) = µ1N (g→(Y )). Note
that the same result cannot be obtained for an arbitrary fuzzy set X with
µ1N

(X) = 0 and also for the lower asymptotic weighted density µ1N
, which is

not null-additive.

Example 2.7. One can verify that each fuzzy measure space (A,F(A), µh?

A )
for h? defined by (8) in Example 2.4 is closed under isomorphisms with respect
to G = {f | f ∈ Perm(M) & f→(A) = A}, where M = Dom(A).

The following theorem is a generalization of Lemma 3.9 in [5] and shows the
construction of fuzzy measure spaces closed under isomorphisms with respect
to a permutation group. Note that this construction will be later used for
the characterization of fuzzy quantifiers that are, in some sense, invariant with
respect to permutations from a permutation group.

Theorem 2.4. Let (A,F , µ) be a fuzzy measure space and G be a group of
permutations on Dom(A). Then (B,G, ν) defined as follows: B =

⋃
g∈G g→(A),

G is the least algebra of fuzzy sets on B containing the set

T =
⋃

g∈G

g→(F) (10)

and

ν(X) =
∨

g∈G

∨

Y ∈Fg,X

µg(Y ),

where Fg,X = {Y | Y ∈ g→(F) & Y ⊆ X}, is a fuzzy measure space closed
under isomorphisms with respect to G.

Proof. Let A = (A,F , µ) be a fuzzy measure space, G be a group of permu-
tation on Dom(A) and denote g→(A) = Ag = (Ag,Fg, µg) for any g ∈ G. One
can simply show that B = (B,G, ν) defined by the presumptions of theorem is
a fuzzy measure space. We will prove that B is also closed under isomorphisms
with respect to G.

Let f ∈ G. Obviously, we have

f→(B)(m) = f→
( ⋃

g∈G

g→(A)
)

(m) =
( ⋃

g∈G

g→(A)
)

(f−1(m)) =

⋃

g∈G

g→(A)(f−1(m)) =
⋃

g∈G

f→ ◦ g→(A)(m) =
⋃

g∈G

(f ◦ g)→(A)(m) = B(m)
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for any m ∈ Dom(A), where obviously G = {f ◦g | g ∈ G} holds for any f ∈ G.5

To prove f→(G) = G, it is sufficient to show f→(T ) = T . In fact, if X ∈ G
is derived by ∪ and \ from X1, . . . , Xn ∈ T , then f→(X) is derived by the
same application of the mentioned operations as X from f→(X1), . . . , f→(Xn).
Hence, if f→(X1), . . . , f→(Xn) ∈ T , then necessary f→(X) ∈ G. If X ∈ T ,
then, according to the definition of T and the fact that f ∈ G implies f−1 ∈ G,
we have (f−1)→(X) ∈ T . Hence, X = f→((f−1)→(X)) ∈ f→(T ), and thus
T ⊆ f→(T ). If X ∈ f→(T ), then there exists Y ∈ T such that f→(Y ) = X.
Since f ∈ G, then X = f→(Y ) ∈ T , and thus f→(T ) ⊆ T . Hence, we obtain
T = f→(T ), which implies f→(G) = G.

Obviously, f→(Fg) = {f→(Y ) | Y ∈ Fg} = {(f ◦ g)→(X) | X ∈ F} = Ff◦g.
If f ∈ G and X ∈ G, then f→ is a bijective mapping of Fg,X onto Ff◦g,f→(X)

and µg(Y ) = µf◦g(f→(Y )) for any g ∈ G and Y ∈ Fg,X . In fact, if Y ∈ Fg,X ,
then Y ⊆ X implies f→(Y ) ⊆ f→(X) and f→(Y ) ∈ Ff◦g,f→(X). Since f is a
permutation, then f→ is necessary an injective mapping. If Z ∈ Ff◦g,f→(X),
then Y = (f−1)→(Z) ∈ Fg,X and f→(Y ) = Z. Hence, f→ is surjective. Further,
if Y ∈ Fg,X , then (g−1)→(Y ) ∈ F and

µg(Y ) = µ((g−1)→(Y )) = µf◦g(f→ ◦ g→ ◦ (g−1)→(Y )) = µf◦g(f→(Y )).

Hence, we have

ν(X) =
∨

g∈G

∨

Y ∈Fg,X

µg(Y ) =
∨

g∈G

∨

Z∈Ff◦g,f→(X)

µf◦g(Z) =

∨

h∈G

∨

Z∈Fh,f→(X)

µh(Z) = ν(f→(X))

and B is closed under isomorphisms with respect to G.

Example 2.8. Let us consider (1N ,F(1N ), µ1N ) defined in Example 2.3 and
discussed in Example 2.6. As it has been shown, this fuzzy measure space is
not closed under isomorphisms with respect to any permutation group over N
(different from the trivial group ({idN}, ◦)). Let X ⊆ N and G = {g | g ∈
Perm(N) & g→(1X) = 1X}. According to the previous theorem, we can con-
struct a fuzzy measure space (B,G, ν) closed under isomorphisms with respect
to G as follows:

(i) put B =
⋃

g∈G g→(1N ) = 1N ;

(ii) put G the least algebra of fuzzy sets that contains the set

T =
⋃

g∈G

g→(F(1N )),

since g→(F(1N )) = F(1N ) for any g ∈ G, then G = F(1N );

5Recall that f→(A)(m) = A(f−1(m)) for any m ∈ Dom(f→(A)) and (f ◦g)→ = f→ ◦g→.
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(iii) define

ν(A) =
∨

g∈G

∨

Y ∈Fg,A

µg,1N
(Y ) =

∨

g∈G

∨

Y ∈FA

µ1N
(g→(Y )).

One can simply check that if X = N , then ν(A) = 1, whenever there exists an
infinite crisp set Y such that 1Y ⊆ A. For example, the fuzzy measure of the
set P of prime numbers is under ν equal to 1 (in contrast to 0 for µ1N ). In fact,
it is sufficient to consider a permutation g on N such that g→(1P ) = 1N\P and,
from the null-additivity of µ1N

, we obtain µ1N
(1N\P ) = 1. On the other hand,

the fuzzy sets with finite supports have the measure under ν equal to 0.

2.2. ¯-fuzzy integral
In this subsection, we present several facts about the ¯-fuzzy integrals that

will be used in the proofs of semantic properties of fuzzy quantifiers. Details
and discussion can be found in [4, 5]. First, let us recall the definition of the
¯-fuzzy integral.

Definition 2.8. Let (A,F , µ) be a fuzzy measure space, Z : Dom(A) → L and
X be an F-measurable fuzzy set. The ¯-fuzzy integral of Z on X is given by

∫ ¯

X

Z dµ =
∨

Y ∈F−X

∧

m∈Supp(Y )

(Z(m)¯ µ(Y )), (11)

where F−X = {Y | Y ∈ F \ {1∅} & Y ⊆ X}. If X = A, then we write
∫ ¯

X
Z dµ.

In our investigation of permutation and isomorphism invariance of fuzzy
quantifiers, the following isomorphism theorem for ¯-fuzzy integrals plays a
major role.

Theorem 2.5. Let g→ be an isomorphism between (A,F , µ) and (B,G, ν), Z :
Dom(A) → L be a mapping and X be a F-measurable fuzzy set. Then,

∫ ¯

X

Z dµ =
∫ ¯

g→(X)

Z ◦ g−1 dν. (12)

Proof. See [5].

The following theorem characterizes fuzzy integrals that are invariant with
respect to a permutation group, i.e., the values of fuzzy integrals remain un-
changed, when the integrated functions are transformed by the permutations
from a group of permutations. This characterization is substantial for the proofs
of theorems on the permutation invariance of fuzzy quantifiers investigated in
Section 3.2. Note that the proof of this theorem needs to suppose the distribu-
tivity of ¯ over arbitrary meets and joins in the complete residuated lattice.
For instance, this presumption for ¯ = ∧ is ensured in the divisible residuated
lattice and for ¯ = ⊗ in the MV-algebras.
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Theorem 2.6. Let L be a complete residuated lattice such that ¯ is distributive
over

∧
and

∨
, (A,F , µ) be a fuzzy measure space and Z : Dom(A) → L. If G

is a group of permutations on Dom(A) such that
∫ ¯

Z dµ =
∫ ¯

Z ◦ g dµ, (13)

holds for any g ∈ G, then there exists a fuzzy measure space (B,G, ν) closed
under isomorphisms with respect to G for which

∫ ¯

Z dµ =
∫ ¯

Z dν. (14)

Proof. Let L be a complete residuated lattice such that ¯ is distributive over∧
and

∨
. Let A = (A,F , µ) be a fuzzy measure space, Z : Dom(A) → L and G

be a group of permutations on Dom(A) such that (13) is satisfied for any g ∈ G.
We will prove that (14) is satisfied for the fuzzy measure space (B,G, ν) defined
in Theorem 2.4 that is closed under isomorphisms with respect to G.

Put g→(A) = (Ag,Fg, µg) for any g ∈ G. Using Theorem 2.5, the presump-
tion (13) can be rewritten as

∫ ¯

Z dµ =
∫ ¯

A

Z dµ =
∫ ¯

A

Z ◦ g dµ =
∫ ¯

Ag

(Z ◦ g) ◦ g−1 dµg =
∫ ¯

Ag

Z dµg =
∫ ¯

Z dµg.

for any g ∈ G. Recall that we write
∫ ¯

Z dµ =
∫ ¯

A
Z dµ, whenever A is the

support of the fuzzy measure space (A,F , µ). From the distributivity of ¯ in
L, we have

∫ ¯

Z dν =
∫ ¯

B

Z dν =
∨

X∈G−

∧

m∈Supp(X)

(Z(m)¯ ν(X)) =

∨

X∈G−

(
(

∧

m∈Supp(X)

Z(m))¯ (
∨

g∈G

∨

Y ∈Fg,X

µg(Y ))
)

=

∨

X∈G−

∨

g∈G

∨

Y ∈Fg,X

∧

m∈Supp(X)

(Z(m)¯ µg(Y )) ≤
∨

X∈G−

∨

g∈G

∨

Y ∈Fg,X\{1∅}

∧

m∈Supp(Y )

(Z(m)¯ µg(Y )) ≤
∨

X∈G−

∨

g∈G

∨

Y ∈F−g

∧

m∈Supp(Y )

(Z(m)¯ µg(Y )) =

∨

g∈G

∨

Y ∈F−g

∧

m∈Supp(Y )

(Z(m)¯ µg(Y )) =
∨

g∈G

∫ ¯

Ag

Z dµg =

∨

g∈G

∫ ¯

A

Z dµ =
∫ ¯

A

Z dµ =
∫ ¯

Z dµ.
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One could note that a straightforward consequence of the definition of ν is the
fact that µ(Z) ≤ ν(Z) for any Z ∈ F−. Hence and from the fact that F ⊆ G,
we have

∫ ¯

Z dµ =
∫ ¯

A

Z dµ =
∨

Y ∈F−

∧

m∈Supp(Y )

(Z(m)¯ µ(Y )) ≤

∨

Y ′∈G−

∧

m∈Supp(Y ′)

(Z(m)¯ ν(Y ′)) =
∫ ¯

B

Z dν =
∫ ¯

Z dν,

which concludes the proof.

As we have mentioned above, the cardinal fuzzy measure spaces form a
subfamily of the family of all fuzzy measure spaces closed under isomorphisms
with respect to the permutation groups.

Corollary 2.7. Let L be a complete residuated lattice such that ¯ is distributive
over

∧
and

∨
, (A,F , µ) be a fuzzy measure space and Z : Dom(A) → L. If

(13) holds for any permutation g on Dom(A), then there exists a cardinal fuzzy
measure space (B,G, ν) for which (14) is true.

Proof. This is a straightforward consequence of the fact that (B,G, ν) defined
in Theorem 2.4 is a cardinal fuzzy measure space.

2.3. Operations on fuzzy sets determined by rl-operations
Let us recall the basic notions and results on the so-called residuated lattice

operations from the Part I. ([2]) that will be used in this paper.

Definition 2.9. Let L be a set of constants. The set P(L) of binary (residuated
lattice) polynomials with constants from L is the smallest set satisfying the
following conditions

(i) c ∈ P(L) for any c ∈ L,

(ii) x, y ∈ P(L),

(iii) if ψ1, ψ2 ∈ P(L), then ψ1 2ψ2 ∈ P(L) for any 2 ∈ {∧,∨,⊗,→}.

Definition 2.10. Let L be a residuated lattice with the support L. A bi-
nary residuated lattice polynomial ψ ∈ P(L) defines a binary residuated lattice
operation (shortly rl-operation) on L by the following rules (a, b ∈ L)

(i) if ψ = c, then ψ(a, b) = c,

(ii) if ψ = x or ψ = y, then ψ(a, b) = a or ψ(a, b) = b, respectively,

(iii) if ψ = ψ1 2ψ2, then ψ(a, b) = ψ1(a, b)2 ψ2(a, b) for any operation 2 ∈
{∧,∨,⊗,→}.
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The set of all rl-operations in a residuated lattice L determined by polynomials
of P(L) will be denoted by Rlo(L) or shortly Rlo if the residuated lattice L
is unmistakably determined by the context. Note that we use the same symbol
for a polynomial and a binary operation defined by this polynomial.

Definition 2.11. Let ψ1, ψ2 ∈ Rlo(L). We say that ψ1 is equal to ψ2and
denote it by ψ1 = ψ2 if ψ1(a, b) = ψ2(a, b) holds for any a, b ∈ L.

Definition 2.12. Let M be a non-empty universe and ψ ∈ Rlo(L). We say
that an operation ϕM : F(M)×F(M) → F(M) is determined by ψ if

ϕM (A, B)(m) = ψ(A(m), B(m)) (15)

holds for any A,B ∈ F(M) and m ∈ M .

The following proposition will serve in our analysis of permutation invariance
of fuzzy quantifiers.

Proposition 2.8. For any operation ϕM and any permutation f on M , we
have

ϕM (A, B) = ϕM (f→(A), f→(B)) ◦ f (16)

for all A,B ∈ F(M).

Proof. See [5].

Definition 2.13. Let ϕM and ϕM ′ be determined by ψ and ψ′ from Rlo(L),
respectively. We say that ϕM and ϕM ′ are equivalent if ψ = ψ′ in L.

The following proposition is important for the analysis of isomorphism invari-
ance of fuzzy quantifiers.

Proposition 2.9. For any equivalent operations ϕM , ϕM ′ and a bijective map-
ping f : M → M ′, we have

ϕM (A,B) = ϕM ′(f→(A), f→(B)) ◦ f (17)

for all A,B ∈ F(M).

Proof. See [5].

3. Permutation and isomorphism invariance of fuzzy quantifiers

There are two properties, which characterize quantifiers that ignore the iden-
tity of individuals: permutation invariance and isomorphism invariance. Typical
examples of permutation invariant as well as isomorphism invariant quantifiers
are every, some, no, not all, many, few, at least, at most, exactly, more than,
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less than. There are also non-permutation invariant and non-isomorphism in-
variant quantifiers as John, neither Bill nor Jack, etc. (see also Section 1).
These properties were in fact included directly in the definition of generalized
quantifiers in famous papers by Mostowski [12] and Lindström [10]. The explicit
definitions of the concepts of permutation invariance and isomorphism invari-
ance were introduced by van Benthem in [15] (he called the property of isomor-
phism invariance quantity and he denoted the corresponding class of quantifiers
by QUANT). For further information, we refer to [9, 14]. For fuzzy quantifiers
these properties were introduced by Glöckner in [6] (see also [7, 8]).

3.1. Definition of fuzzy quantifiers of type 〈1, 1〉 determined by fuzzy measures
In the first part of this paper [2] on fuzzy quantifiers of type 〈1, 1〉, we

proposed fuzzy quantifiers defined using ¯-fuzzy integrals. For the general def-
inition of fuzzy quantifiers of type 〈1, 1〉, see [8]. To exclude a confusion, let us
denote by

∫ ¯

(A,F,µ)

Z dµ or simply
∫ ¯

A

Z dµ

the ¯-fuzzy integral from Section 2.2 defined on a fuzzy measure space A =
(A,F , µ).

Definition 3.1. Let M be a non-empty universe, S(M) : F(M) × F(M) →
Fms(M) be a mapping assigning to any A,B ∈ F(M) a fuzzy measure space
S(M)(A,B) and ϕM be an operation on F(M). A fuzzy quantifier of type 〈1, 1〉
limited to M determined by (S(M), ϕM ) is a mapping

QM : F(M)×F(M) → L

defined by

QM (A, B) =
∫ ¯

S(M)(A,B)

ϕM (A,B) dµ (18)

for any A,B ∈ F(M).

Definition 3.2. An unlimited fuzzy quantifier of type 〈1, 1〉 determined by a
pair of functionals (S, ϕ) is an unlimited fuzzy quantifier Q of type 〈1, 1〉 as-
signing a fuzzy quantifier QM determined by (S(M), ϕM ) to each non-empty
universe M .

In the following part, for simplicity, we will write only “Q is determined by
(S, ϕ)” instead of “Q is a fuzzy quantifier of type 〈1, 1〉 determined by a pair of
functionals (S, ϕ)”.

As we have discussed in [2], it is reasonable to introduce a class of fuzzy quan-
tifiers definable by fuzzy measures. This type of fuzzy quantifiers ensures the
same behavior (measurement) of fuzzy quantifiers if the first argument (scope)
is fixed. The precise definition is as follows.
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Definition 3.3. We say that an unlimited fuzzy quantifier Q is definable by
fuzzy measures if there exists a pair of functionals (S, ϕ) such that Q is de-
termined by (S, ϕ) and S(M)(A,−) is a constant mapping for any non-empty
universe M and A ∈ F(M).

Although two fuzzy quantifiers QM and Q′M can be determined by different
mappings S(M) and S ′(M) (or ϕM and ϕ′M ), these fuzzy quantifiers may give
the same values for the same fuzzy sets, i.e., their behavior is coincident. The
precise definition of the coincidence of fuzzy quantifiers is as follows.

Definition 3.4. We say that a fuzzy quantifier Q coincides with Q′ and denote
it by Q ≡ Q′ if, for any M and A, B ∈ F(M), it holds that QM (A,B) =
Q′

M (A,B).

Note that the empty set as the universe is also included in the previous
definition.

Notation: In proofs of following theorems, we will often use x, y, . . . to de-
note pairs of fuzzy sets (A,B), (C, D), . . . This abbreviation will significantly
simplify the expressions of formulas and make the following text more read-
able. For example, if (A, B), (C, D) ∈ F(M)2 and f is a permutation on M ,
then f→(A,B) = (f→(A), f→(B)) = (C, D) will be written as f→(x) = y for
x = (A,B) and y = (C,D).

3.2. Permutation invariance
Definition 3.5. A fuzzy quantifier Q is permutation invariant if, for any uni-
verse M , bijective mapping f : M → M and A,B ∈ F(M), we have

QM (A,B) = QM (f→(A), f→(B)). (19)

The class of all permutation invariant fuzzy quantifiers is denoted by PI.

Obviously, the behavior of fuzzy quantifiers determined by (S, ϕ) is closely
related to the form (behavior) of functionals S and ϕ. Here, we need the notion
saying something about the property of “being permutation invariant” for the
functional S. Let us recall that Perm(M) is the set of all permutations on M .

Definition 3.6. A functional S is weakly pi-closed if, for any non-empty uni-
verse M and A, B,C, D ∈ F(M) such that (g→(A), g→(B)) = (C, D) for a
permutation g on M , there exists f ∈ Perm(M) for which (f→(A), f→(B)) =
(C, D) and

f→(S(M)(A,B)) = S(M)(C,D). (20)

An equivalent definition is as follows.

Proposition 3.1. A functional S is weakly pi-closed if and only if, for any
non-empty universe M and A, B ∈ F(M), the equality

S(M)(f→(A), f→(B)) = f→(S(M)(A,B)) (21)

holds for at least one permutation f on M .
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Proof. Obvious.

Theorem 3.2. Let Q be determined by (S, ϕ). If S is weakly pi-closed, then Q
is permutation invariant.

Proof. The condition of being permutation invariant is trivially satisfied for
M = ∅. Let us suppose that M 6= ∅ and x, y ∈ F(M)2 such that g→(x) = y for a
permutation g on M . Since S is weakly pi-closed, then there exists f ∈ Perm(M)
for which f→(x) = g→(x) = y and f→(S(M)(x)) = S(M)(f→(x)) = S(M)(y).
Hence and from Theorem 2.5 and Proposition 2.8, we have

QM (x) =
∫ ¯

S(M)(x)

ϕM (x) dµ =
∫ ¯

f→(S(M)(x))

ϕM (x) ◦ f−1 dµ′ =

∫ ¯

S(M)(f→(x))

ϕM (f→(x)) dµ′ = QM (f→(x)) = QM (g→(x)),

where µ′ denotes the fuzzy measure of the fuzzy measure space f→(S(M)(x))
and ϕM (x) ◦ f−1 = ϕM (f→(x)) is applied. Hence, Q is permutation invariant.

In the following two examples, we restrict ourselves to fuzzy quantifiers that
are defined for finite universes only. Note that fuzzy quantifiers defined in such
a way are called finite fuzzy quantifiers (see Definition 6 in [8] and Section 4
of [2]).

Example 3.1. Let Ar = (A,F(A), µr
A), A 6= 1∅, denote a fuzzy measure space

from Example 2.1. For any finite universe M , let us define Sr(M)(A,B) = Ar

for any A 6= 1∅, and Sr(M)(1∅, B) = (1M , {1∅, 1M}, µ). Then, it is easy to see
that Sr(M) is weakly pi-closed. We have to check that, for any A,B ∈ F(M),
the equality (21) holds for at least one f ∈ Perm(M). It is not difficult to
see that a sufficient condition for (21) to be valid for any f ∈ Perm(M) is the
following. For any Y ∈ F(f→(A)), it should hold that

µr
f→(A)(Y ) = (µr

A)f (Y )

(for the definition of (µr
A)f see Definition 2.5). Indeed,

µr
f→(A)(Y ) =

∑
m∈M Y (m)∑

m∈M f→(A)(m)
=

∑
m∈M Y (m)∑

f(m)∈M f→(A)(f(m))
=

∑
m∈M Y (m)∑
m∈M A(m)

=

∑
f−1(m)∈M (f−1)→(Y )(f−1(m))∑

m∈M A(m)
=

∑
m∈M (f−1)→(Y )(m)∑

m∈M A(m)
= (µr

A)((f−1)→(Y )) = (µr
A)f (Y ),

where the equalities A(m) = f→(A)(f(m)) as well as (f−1)→(Y )(f−1(m)) =
Y (m) are used. Hence, Sr(M) is weakly pi-closed, and the quantifier manyM (A, B)
determined by Sr(M) and ϕM (A,B) = A → B from Example 5.3 in [2] is per-
mutation invariant according to Theorem 3.2.
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Example 3.2. Let L be a complete residuated lattice with L 6= {⊥,>} and P
be a functional assigning to any non-empty finite M a fuzzy set PM ∈ F(M)
such that 1∅ 6= PM 6= 1M . Let Sr(M)(A,B) be as in Example 3.1 and define
a functional Sr,P (M)(A,B) = Sr(M)(A ∩ P (M), B) if A ∩ P (M) 6= 1∅, and
Sr,P (M)(A,B) = (M, {1∅, 1M}, µ) otherwise.6 Then, it is easy to show that
Sr,P (M) is not weakly pi-closed. Let for some M 6= ∅ consider A = PM and
C = g→(A) = g→(P ) 6= P (it is possible because P 6= 1M ). Then, for any
f ∈ Perm(M) such that f→(A) = C and B,D ∈ F(M) such that f→(B) = D,
the equation

Sr,P (M)(C,D) = f→(Sr,P (M)(A,B))

cannot hold, because

Sr,P (M)(C,D) = (C ∩ P,F(C ∩ P ), µr
C∩P ) 6= (C, (F(P ))f , (µr

P )f ) =

(f→(P ), (F(P ))f , (µr
P )f ) = f→(Sr,P (M)(P, B)) = f→(Sr,P (M)(A, B)).

It is sufficient to realize that, given the presuppositions we stated, C ∩PM ⊂ C.
Hence, Sr,P (M) is not weakly pi-closed.

The functional Sr,P (M) is intended for modeling of the natural language
quantifier “many P’s” (as in a sentence “Many Peter’s apples are green”). A
model of this quantifier can be defined as a fuzzy quantifier determined by
(Sr,P (M), ϕP

M ), where ϕP
M (A,B) = (A ∩ P ) → B. It is easy to show (using

Definition 3.5 directly) that this fuzzy quantifier is not permutation invariant.

Unfortunately, the opposite implication to Theorem 3.2 is not valid in gen-
eral. This can be caused by a choice of a residuated lattice, but primarily by
a choice of fuzzy measure spaces (obtained by S) as well as by a form of the
operation ϕ as the following simple example demonstrates.

Example 3.3. Let L be a complete residuated lattice, c ∈ L be a constant,
ψ(a, b) = c∨ (a∧ b) be an rl-operation on L and ϕM be determined by ψ for any
non-empty universe M . Further, consider M = (M,F , µ), where M = [0, 1],
F = {∅, 1[0,0.5[, 1[0.5,1], 1M} and

µ(1[0,0.5[) = µ(1[0.5,1]) = c.

Finally, define S(M)(A,B) = M for any A,B ∈ F(M). Since

ϕM (A,B)(m) ∧ µ(1[0,0.5[) = (c ∨ (A(m) ∧B(m))) ∧ c = c

for any m ∈ [0, 0.5[ and analogously ϕM (A,B)(m) ∧ µ(1[0.5,1]) = c for any
m ∈ [0.5, 1], then, for any permutation f on M and A,B ∈ F(M), we have

6In this case, µ is the unique fuzzy measure on the trivial fuzzy measurable space
(M, {1∅, 1M}).
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(putting ¯ = ∧)

QM (A,B) =
∫ ∧

S(M)(A,B)

ϕM (A,B) dµ = c ∨
∧

m∈M

ψ(A(m), B(m)) =

c ∨
∧

m∈M

ψ(f→(A)(f(m)), f→(B)(f(m))) =

c ∨
∧

m∈M

ψ(f→(A)(m), f→(B)(m)) =

∫ ∧

S(M)(f→(A),f→(B))

ϕM (f→(A), f→(B)) dµ = QM (f→(A), f→(B)).

Hence, Q is permutation invariant. Nevertheless, S is not weakly pi-closed. In
fact, let us consider a, b ∈ [0, 1] with |a− b| > 0.5 and g ∈ Perm(M) defined by
g(x) = x for x ∈ [0, 1] \ {a, b}, g(a) = b and g(b) = a. Further, put

A(m) =





1, if m = a,
0.5, if m = b,
0, otherwise.

(22)

Clearly, for any f ∈ Perm(M) with (f→(1M ), f→(A)) = (g→(1M ), g→(A)), we
obtain M = S(M)(f→(1M ), f→(A)) 6= f→(S(M)(1M , A)) = f→(M) (because
f→(1[0,0.5[) 6∈ F , whence F 6= Ff ) and, hence, S is not weakly pi-closed. For
¯ = ⊗, the same result can be obtained by putting c = ⊥.

Perhaps it would be possible to find several classes of special conditions (on
residuated lattices, fuzzy measure spaces and rl-operations) under which permu-
tation invariant fuzzy quantifiers are determined by weakly pi-closed functionals.
Nevertheless, in our opinion, this way from case to case seems to be not so con-
ceptual here. Therefore, in the following part, we will show that the class of all
permutation invariant fuzzy quantifiers determined by (S, ϕ) can be described
by fuzzy quantifiers based on weakly pi-closed functionals. More precisely, to
each permutation invariant fuzzy quantifier determined by (S, ϕ) we can con-
struct a fuzzy quantifier determined by a weakly pi-closed functional and ϕ that
coincides with the original one. Let us suppose the existence of choice function.7

Theorem 3.3. Let Q be determined by (S, ϕ). If Q is permutation invariant,
then there exists a fuzzy quantifier Q′ determined by (S ′, ϕ) such that S ′ is
weakly pi-closed and Q coincides with Q′.

Proof. Let x, y ∈ F(M)2. We will write x ∼ y if there exists f ∈ Perm(M)
for which f→(x) = y. Obviously, ∼ is an equivalence on F(M)2. Now, the idea
of the proof is to introduce equivalence classes on F(M)2 by ∼ and to represent
each class by one of its element (a representative). These representatives and

7We do not consider the presumption of the axiom of choice and the existence of choice
function as a limitation in our study of fuzzy quantifiers.

19



some chosen permutations on M are used for a construction of a weakly pi-
closed functional over which the new fuzzy quantifier coincides with the original
one.

In order to ensure QM = Q′M for M = ∅, we put Q′
∅(∅, ∅) = Q∅(∅, ∅). Let

M 6= ∅, denote Q the quotient set of F(M)2 by ∼, h : Q → F(M)2 be a choice
function (i.e., h([x]) ∈ [x]),

R = {(x, y) | x, y ∈ F(M)2 and x ∼ y}

and r : R→ Perm(M) be a mapping that satisfies

r(x, y) =
{

f, if x 6= y and y = f→(x),
idM , otherwise.

Clearly, there exists a mapping r. Let us define S ′(M) : F(M)2 → Fms(M) by

S ′(M)(x) = (r(x, h([x]))−1)→(S(M)(h([x])). (23)

Putting z = h([x]) and r(x, z) = fx, we may rewrite the previous formula as

S ′(M)(x) = (f−1
x )→(S(M)(z)). (24)

One can see that S ′ is derived from the fuzzy measure spaces of the repre-
sentatives and the chosen permutations are used for their isomorphic images.
We will show that S ′ is weakly pi-closed, i.e., for any (x, y) ∈ R, there exists
f ∈ Perm(M) such that

1. f→(x) = y,

2. f→(S ′(M)(x)) = S ′(M)(f→(x)).

Let (x, y) ∈ R (note that [x] = [y]). Put z = h([x]), fx = r(x, z) and fy =
r(y, z). According to the definition of S ′(M), we have

S ′(M)(x) = (f−1
x )→(S(M)(z))

S ′(M)(y) = (f−1
y )→(S(M)(z)).

(25)

Plugging S(M)(z) = f→x (S ′(M)(x)) to the second equality in (25), we obtain

S ′(M)(y) = (f−1
y )→ ◦ f→x (S ′(M)(x)). (26)

According to the choice of the permutations fx and fy, we have f→x (x) = z =
f→y (y). Then, however, we obtain

y = (f−1
y )→ ◦ f→x (x) (27)

Putting f = f−1
y ◦ fx, we obtain

f→ = (f−1
y ◦ fx)→ = (f−1

y )→ ◦ f→x .
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Plugging f→ to (26) and (27) and combining these expressions, we obtain

f→(S ′(M)(x)) = S ′(M)(f→(x)),

and thus S ′ is a weakly pi-closed functional.
According to Theorem 3.2, the fuzzy quantifier Q′ determined by (S ′, ϕ) is

permutation invariant. Let us show that QM = Q′M . Let x ∈ F(M)2 and put
h([x]) = z. From the permutation invariance of Q and Q′, we have

QM (x) = QM (z) = Q′M (z) = Q′M (x),

where QM (z) = Q′
M (z) follows from the fact that r(z, z) = 1M , and thus

S ′(M)(z) = S(M)(z). Hence and from the equality Q∅(∅, ∅) = Q′∅(∅, ∅), we
obtain the coincidence of Q and Q′.

A straightforward consequence of Theorems 3.2 and 3.3 is the following corol-
lary characterizing the permutation invariant fuzzy quantifiers determined by a
pair of functionals (S, ϕ).

Corollary 3.4. A fuzzy quantifier Q determined by (S, ϕ) is permutation in-
variant if and only if there exists a weakly pi-closed functional S ′ such that the
fuzzy quantifier Q′ determined by (S ′, ϕ) coincides with Q.

The previous corollary shows a nice relation between permutation invariance
and weakly pi-closed functionals S and practically says that all permutation
invariant fuzzy quantifiers determined by (S, ϕ) may be defined in such a way
that S is a weakly pi-closed functional.

Our analysis of permutation invariance will continue for fuzzy quantifiers
definable by fuzzy measures. Recall that a fuzzy quantifier determined by (S, ϕ)
is definable by fuzzy measures if S(M)(A,−) is a constant mapping for any non-
empty universe M and A ∈ F(M). Let us start with an analogous statement
to that in Theorem 3.2.

Theorem 3.5. Let Q determined by (S, ϕ) be definable by fuzzy measures. If
S is weakly pi-closed, then Q is permutation invariant.

Proof. Since the fuzzy quantifiers definable by fuzzy measures form a subfam-
ily of fuzzy quantifiers determined by (S, ϕ), this statement follows immediately
from Theorem 3.2.

One would expect, that the opposite implication is also a simple conse-
quence of Theorem 3.3 and the fact that an arbitrary fuzzy quantifier definable
by fuzzy measures is a special case of fuzzy quantifiers determined by (S, ϕ).
Unfortunately, the situation is not so straightforward as the following example
demonstrates.

Example 3.4. Let us consider the fuzzy quantifier Q, the fuzzy set A and
the permutation g on M defined in Example 3.3. Put B = g→(A). As it
could be seen, there is no permutation f on M that satisfies f→(A) = B and
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f→(M) = M. Put x = (1M , A) and y = (1M , B), i.e., x ∼ y according to
the notation used in the proof of Theorem 3.3. Without loss of generality,
let us suppose that the mapping h in the construction of the weakly pi-closed
functional S ′ (see the proof of Theorem 3.3) is such that h([x]) = x and denote
r(x, h([x])) = r(x, x) = 1M and r(y, h([y])) = r(y, x) = fy (note that f→y (M) 6=
M according to the presumption on the permutations making the interrelation
between A and B). By the construction of S ′, we have

S ′(M)(x) = (1−1
M )→(S(M)(x)) = 1→M (M) = M,

S ′(M)(y) = (f−1
y )→(S(M)(x)) = (f−1

y )→(M).

Hence, we obtain

S ′(M)((f−1
y )→(x)) = (f−1

y )→(S ′(M)(x)),

but S ′(M)(y) 6= M, and thus Q′ determined by (S ′, ϕ) is not definable by fuzzy
measures (because the second argument should not play a role).

It is easy to see that the problem which arose in the previous example is
closely related to the construction of a weakly pi-closed functional S ′ that does
not guarantee the definability of fuzzy quantifiers by fuzzy measures. One can
see that S ′(M)(y) = M can be ensured if the interrelations provided by permu-
tations between fuzzy sets in the second argument (i.e., between A and B in the
previous example) do not have an influence on the values of the functional S ′.
It has motivated us to modify the concept of being weakly pi-closed functional
with respect to the independence on the interrelations between fuzzy sets in the
second argument.

Definition 3.7. A functional S is weakly pi-closed in the first component if, for
any non-empty universe M and A,B, C, D ∈ F(M) such that g→(A) = C for a
permutation g on M , there exists a permutation f on M with f→(A) = C and

S(M)(C, D) = f→(S(M)(A, B)). (28)

An equivalent definition is as follows.

Proposition 3.6. A functional S is weakly pi-closed in the first component if
and only if, for any non-empty universe M and A,B, D ∈ F(M), the equality

S(M)(f→(A), D) = f→(S(M)(A,B))

holds for at least one permutation f on M .

Proof. Obvious.

Before we give an analogous statement to that in Theorem 3.3, we will prove
two lemmas.
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Lemma 3.7. Let Q be a permutation invariant fuzzy quantifier definable by
fuzzy measures. Then, for any non-empty universe M , permutations f and g
on M and A,B ∈ F(M) such that f→ ◦ g→(A) = g→(A), we have

∫ ¯

Ag

ϕM (g→(A), g→(B)) dµg =
∫ ¯

Ag

ϕM (g→(A), f→ ◦ g→(B)) dµg, (29)

where Ag = g→(S(M)(A,B)).

Proof. First, let us suppose that g = 1M . We have to show that
∫ ¯

A1M

ϕM (A,B) dµ1M =
∫ ¯

A1M

ϕM (A, f→(B)) dµ1M
(30)

for any permutation f on M such that f→(A) = A. Since Q is permuta-
tion invariant fuzzy quantifier definable by fuzzy measures, then S(M)(A,B) =
S(M)(A, f→(B)) = A1M

and
∫ ¯

A1M

ϕM (A,B) dµ1M
= QM (A,B) =

QM (A, f→(B)) =
∫ ¯

A1M

ϕM (A, f→(B)) dµ1M .

Now, let us suppose an arbitrary permutation g on M . Due to Theorem 2.5,
Proposition 2.8 and the previous equality for g = 1M , we have

∫ ¯

A1M

ϕM (A, B) dµ1M
=

∫ ¯

Ag

ϕM (g→(A), g→(B)) dµg =

∫ ¯

A1M

ϕM (A, h→(B)) dµ1M =
∫ ¯

Ag

ϕM (g→(A), g→ ◦ h→(B)) dµg

(31)

for any permutation h on M with h→(A) = A. Let f be a permutation on M
with f→ ◦ g→(A) = g→(A) and put h = g−1 ◦ f ◦ g. Then,

h→(A) = (g−1 ◦ f ◦ g)→(A) = (g−1)→ ◦ f→ ◦ g→(A) = (g−1)→ ◦ g→(A) = A.

Moreover, we have

g→ ◦ h→(B) = g→ ◦ ((g−1)→ ◦ f→ ◦ g→)(B) = f→ ◦ g→(B)

and thus (g→(A), g→ ◦h→(B)) = (g→(A), f→ ◦ g→(B)). Using the equalities of
fuzzy integrals in (31) that hold for h→(A) = A, we obtain

∫ ¯

Ag

ϕM (g→(A), f→ ◦ g→(B)) dµg =
∫ ¯

Ag

ϕM (g→(A), g→ ◦ h→(B)) dµg =

∫ ¯

Ag

ϕM (g→(A), g→(B)) dµg,

which concludes the proof.
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Lemma 3.8. Let Q be a permutation invariant fuzzy quantifier definable by
fuzzy measures. Then, for any non-empty universe M , permutations f and g
on M and A,B ∈ F(M) such that f→(A) = g→(A), we have

∫ ¯

Ag

ϕM (f→(A), f→(B)) dµg =
∫ ¯

Ag

ϕM (g→(A), g→(B)) dµg, (32)

where Ag = g→(S(M)(A,B)).

Proof. Put h = f ◦ g−1. Clearly, h is a permutation on M and h→(g→(A)) =
f→◦(g−1)→(g→(A)) = f→(A) = g→(A). Analogously, we obtain h→(g→(B)) =
f→(B) (note that f→(B) 6= g→(B) in general). According to Lemma 3.7, we
have

∫ ¯

Ag

ϕM (g→(A), g→(B)) dµg =
∫ ¯

Ag

ϕM (g→(A), h→(g→(B))) dµg =

∫ ¯

Ag

ϕM (f→(A), f→(B)) dµg,

where we put g→(A) = f→(A) and h→(g→(B)) = f→(B).

Now, we can prove the main theorem for the permutation invariant fuzzy
quantifiers definable by fuzzy measures.

Theorem 3.9. Let Q be a fuzzy quantifier determined by (S, ϕ) and be definable
by fuzzy measures. If Q is permutation invariant, then there exists a weakly pi-
closed in the first component functional S ′ such that Q′ determined by (S ′, ϕ)
is definable by fuzzy measures and Q′ coincides with Q.

Proof. In order to ensure QM = Q′M for M = ∅, we put Q′∅(∅, ∅) = Q∅(∅, ∅).
Let M 6= ∅ and A,B ∈ F(M). We will write A

∗∼ B if there exists a permutation
f on M such that f→(A) = B. Clearly, ∗∼ is an equivalence on F(M) (cf. ∼
from the proof of Theorem 3.3). Let Q denote the quotient set of F(M) by ∗∼,
h : Q → F(M) be a choice function (i.e., h→([A]) ∈ [A]),

R = {(A,B) | (A,B) ∈ F(M)2 and A
∗∼ B}.

Let r : R→ Perm(M) be a mapping that satisfies

r(A,B) =
{

f, if A 6= B and B = f→(A),
1M , otherwise.

One can see that there exists a mapping r. Further, let us define a functional
S ′(M) : F(M)2 → Fms(M) by

S ′(M)(A, B) = (r(A, h([A]))−1)→(S(M)(h([A]), 1∅)). (33)

One could note that our choice of the empty fuzzy set in the definition does not
have any influence on the definition of the functional S ′(M), in other words,
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replacing 1∅ by any fuzzy set on M , we obtain the same definition, because Q is
definable by fuzzy measures. For simplicity, put h([A]) = Z and r(A,Z) = fA.
Then, the formula in (33) can be rewritten as

S ′(M)(A,B) = (f−1
A )→(S(M)(A, 1∅)). (34)

Now, let Q′ be a fuzzy quantifier determined by (S ′, ϕ). A simple conse-
quence of the definition of S ′ is the fact that Q′ is definable by fuzzy measures
(i.e., S ′(M)(A,B) = S ′(M)(A,C) for any M 6= ∅ and A,B, C ∈ F(M)). Let
A,B, C, D ∈ F(M) and g ∈ Perm(M) be such that g→(A) = C (i.e., A

∗∼ C).
Put Z = h([A]) = h([C]) and fA = r(A,Z) and fC = r(C, Z). Then,

S ′(M)(A, B) = (f−1
A )→(S(M)(Z, 1∅)),

S ′(M)(C, D) = (f−1
C )→(S(M)(Z, 1∅)).

Hence, we obtain

S ′(M)(C, D) = (f−1
C ◦ fA)→(S(M)(A,B)).

Putting f = f−1
C ◦ fA, we obtain

f→(A) = (f−1
C ◦ fA)−1(A) = (f−1

C )→ ◦ f→(A) = (f−1
C )→(Z) = C

and S ′(M)(C, D) = f→(S ′(M)(A,B)). Hence, S ′ is weakly pi-closed in the first
component.

Now, we will show that Q′ is permutation invariant. Let A,B ∈ F(M) and
put h([A]) = Z, fA = r(A,Z) and, for simplicity, A = S(M)(Z, ∅) (we will
use also the denotation Af = f→(A)). Let f ∈ Perm(M). We have to prove
that Q′M (A, B) = Q′M (f→(A), f→(B)). Since S ′ is weakly pi-closed in the first
component, there exists g ∈ Perm(M) such that f→(A) = g→(A) and

S ′(M)(f→(A), f→(B)) = S ′(M)(g→(A), g→(B)) =

g→(S ′(M)(A, B)) = g→((f−1
A )→(A)) = Ag◦f−1

A
,

where the first equality follows from the fact that S ′(M)(A,−) is a constant
mapping for any A ∈ F(M). Obviously, we can also write

g→(A) = g→ ◦ (f−1
A )→(Z) = f→ ◦ (f−1

A )→(Z) = f→(A).

Since Q is definable by fuzzy measures and it is permutation invariant, then we
have (due to Lemma 3.8)

∫ ¯

A
g◦f

−1
A

ϕM (f→ ◦ (f−1
A )→(Z), f→ ◦ (f−1

A )→(f→A (B))) dµg◦f−1
A

=

∫ ¯

A
g◦f

−1
A

ϕM (g→ ◦ (f−1
A )→(Z), g→ ◦ (f−1

A )→(f→A (B))) dµg◦f−1
A

,
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where we consider S ′(M)(Z, f→A (B)) = S(M)(Z, f→A (B)) = A. This equality
may be rewritten as follows

∫ ¯

g→(S′(M)(A,B))

ϕM (f→(A), f→(B)) dµg =

∫ ¯

g→(S′(M)(A,B))

ϕM (g→(A), g→(B)) dµg,

where, by the definition of S ′, we have

Ag◦f−1
A

= g→ ◦ (f−1
A )→(A) = g→ ◦ (f−1

A )→(S(M)(Z, 1∅)) = g→(S ′(M)(A, B)).

Using this equality and S ′(M)(f→(A), f→(B)) = g→(S ′(M)(A,B)), we obtain

Q′
M (A,B) =

∫ ¯

S′(M)(A,B)

ϕM (A,B) dµ =

∫ ¯

g→(S′(M)(A,B))

ϕM (g→(A), g→(B)) dµg =

∫ ¯

g→(S′(M)(A,B))

ϕM (f→(A), f→(B)) dµg =

∫ ¯

S′(M)(f→(A),f→(B))

ϕM (f→(A), f→(B)) dµg = Q′M (f→(A), f→(B)),

where the first equality is a consequence of Theorem 2.5 and Proposition 2.8.
Hence, Q′ is permutation invariant.

Finally, we will prove that QM (A,B) = Q′M (A, B) for any A,B ∈ F(M).
Let A,B ∈ F(M) be arbitrary fuzzy sets. Put h([A]) = Z and fA = r(A,Z).
Since Q is permutation invariant, then

Q′
M (A,B) = Q′M (f→A (A), f→A (B)) = Q′

M (Z, f→A (B)) = QM (Z, f→A (B)) =

QM ((f−1
A )→(Z), (f−1

A )→(f→A (B))) = QM (A, B),

where the equality Q′M (Z, f→A (B)) = QM (Z, f→A (B)) follows from the fact that
S ′(M)(Z, f→A (B)) = S(M)(Z, f→A (B)). Hence and from the equality Q∅(∅, ∅) =
Q′
∅(∅, ∅), both fuzzy quantifiers coincide and the proof is finished.

It should be noted that the weak pi-closeness in the first component of the
functional S does not imply the permutation invariance of fuzzy quantifiers
definable by fuzzy measures, in general. This is also the reason why the proof
of the previous theorem is more complicated than the proof of Theorem 3.2.
An example of a fuzzy quantifier determined by a functional weakly pi-closed in
the first component, that is not permutation invariant, is given in the following
example.

Example 3.5. Let L be a complete residuated lattice with the support [0, 1]
and N be the set of natural numbers with zero. Let us define S for N as follows

S(N)(A,B) =

{
(1N ,F(1N ), µ1N

), if A = 1N ,
(1N , {1∅, 1N}, µ), otherwise,

26



where µ1N is defined in Example 2.3 and µ is the trivial fuzzy measure.
One may simply check that S(N)(A,−) is a constant mapping and, for any

A,B, C ∈ F(N), the equality S(N)(f→(A), C) = f→(S(N)(A,B)) holds for at
least one permutation f on N .8

Let Q be a fuzzy quantifier determined by (S, ϕ) with S(N)(−,−) defined
above and ϕ = ∩. Since S(N)(A,−) is a constant mapping and the condition
to be weakly pi-closed in the first component is satisfied by S for N , we may
suppose that the same holds for other universes, and thus Q is definable by
fuzzy measures and, moreover, S is weakly pi-closed in the first component. Let
E and P denote the sets of even and prime numbers, respectively. Clearly, there
exists f on N such that f→(1E) = 1P . Then,

QM (1N , 1E) =
∫ ¯

S(M)(1N ,1E)

ϕ(1N , 1E) dµ1N
=

∫ ¯

S(M)(1N ,1E)

1E dµ1N
=

µ1N
(1E) = 0.5 6= 0 = µ1N

(1P ) =
∫ ¯

S(M)(1N ,1E)

1P dµ1N
=

∫ ¯

S(M)(1N ,1E)

ϕ(1N , 1P ) dµ1N
= QM (1N , 1P ),

where we use
∫ ¯

S(M)(1N ,1X)

1X dµ1N
=

∨

Y ∈F−1N

∧

m∈Supp(Y )

(1X(m)¯ µ1N
(1X)) = µ1N

(1X),

which holds for any X ⊆ N and µ1N
(1E) = 0.5 and µ1N

(1P ) = 0 (see Ex-
ample 2.3). Thus, although Q is definable by fuzzy measures and S is weakly
pi-closed in the first component, Q is not permutation invariant.

Though we have proved two interesting statements for fuzzy quantifiers de-
finable by fuzzy measures stating sufficient conditions for being permutation
invariant and being determined by a weakly pi-closed in the first component
functional S, we cannot provide an analogous equivalence to that in Corol-
lary 3.4, in general.

In the rest part of this subsection, we restrict ourselves to complete residu-
ated lattices in which ¯ is distributive over

∧
and

∨
. Under this presumption,

we will show that a type of such equivalence for fuzzy quantifiers definable by
fuzzy measures may be proved.

The main idea is based on the possibility to construct a “bigger” fuzzy
measure spaces that contain the original ones and, moreover, their isomorphic
images with respect to a permutation group (see Theorem 2.4). Roughly speak-
ing, this trick allows us to replace a fuzzy measure space A = (A,F , µ) for
which there exists a permutation f from a suitable permutation group G, where

8Note that if A 6= 1N , then S(N)(f→(A), C) = f→(S(N)(A, B)) holds even for any
permutation f on N , because f→(1N , {1∅, 1N}, µ) = (1N , {1∅, 1N}, µ) (see Definition 2.5).
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ϕM (x) ◦ g−1 = ϕM (x) holds for some x and any g ∈ G, such that f→(A) 6= A,
by a “bigger” fuzzy measure space B that is closed under isomorphisms with
respect to G. Furthermore, due to the equality ϕM (x) ◦ g−1 = ϕM (x) that is
satisfied for any g ∈ G we obtain by Theorem 2.6

∫ ¯

A

ϕM (x) dµ =
∫ ¯

B

ϕM (x) dν.

Since the new fuzzy measure space B is closed under isomorphisms with respect
to a permutation group G, we can require a stronger property of the functional
S to characterize the permutation invariance. This property, in essence, imitates
the permutation invariance for fuzzy quantifiers.

Definition 3.8. We say that a functional S is pi-closed if, for any non-empty
universe M , any fuzzy sets A,B ∈ F(M) and any permutation f ∈ Perm(M),
we have

f→(S(M)(A,B)) = S(M)(f→(A), f→(B)). (35)

An equivalent definition is as follows.

Proposition 3.10. A functional S is pi-closed if and only if, for any non-empty
universe M and A,B ∈ F(M), the equality

S(M)(f→(A), f→(B)) = f→(S(M)(A,B))

holds for any permutation f on M .

Proof. Obvious.

A simple but very useful example of a pi-closed functional is a functional S
defined by S(M)(−,−) = (M,F , µ) for any non-empty universe M , provided
that

µ(Y ) = µ(f→(Y ))

holds for any f ∈ Perm(M) and Y ∈ F .

Example 3.6. We have seen that, for the functional Sr(M) from Example 3.1,
the equation (35) holds for any finite universe M and any permutation f ∈
Perm(M). Hence, Sr is pi-closed.

Proposition 3.11. If S is pi-closed, then the set

AM = {S(M)(A, B) | A,B ∈ F(M)} (36)

forms a closed under isomorphisms system of fuzzy measure spaces for any non-
empty universe M .
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Proof. If A = (A,F , µ) and A ∈ AM , then there exists x ∈ F(M)2 such that
S(M)(x) = A. Since S is pi-closed, then

f→(A) = f→(S(M)(x)) = S(M)(f→(x)) = A′

for any permutation f on M . From the definition of AM , we obtain that
f→(A) ∈ AM for any permutation f on M and A ∈ AM . According to
Lemma 2.2, the set AM is a closed system of fuzzy measure spaces.

Remark 3.7. One could note that the opposite implication in not true and the
pi-closed functionals define only a special class of closed under isomorphisms
systems of fuzzy measure spaces.

Clearly, each pi-closed functional is also weakly pi-closed. Hence, the follow-
ing theorem is a straightforward consequence of Theorem 3.2.

Theorem 3.12. Let Q be determined by (S, ϕ). If S is pi-closed, then Q is
permutation invariant.

Note that we cannot provide an analogous statement to that in Theorem 3.3,
because the functional S ′ constructed in the proof of that theorem is not pi-
closed in general (it is only weakly pi-closed). Nevertheless, the proposition
can be proved under the declared presumption on the distributivity of ¯ over
arbitrary meets and joins as follows.

Theorem 3.13. Let L be a complete residuated lattice such that ¯ is distributive
over

∧
and

∨
. If Q determined by (S, ϕ) is permutation invariant, then there

exists a fuzzy quantifier Q′ determined by (S ′, ϕ) such that S ′ is pi-closed and
Q coincides with Q′.

Proof. The aim of the proof is to construct a pi-closed functional S ′ based
on fuzzy measure spaces that are closed under isomorphisms over groups Gx of
permutations having the property f→(x) = x, and then to show that the fuzzy
quantifier Q′ determined by the functionals S ′ and ϕ coincides with Q.

To ensure QM = Q′M for M = ∅, it is sufficient to put Q′∅(∅, ∅) = Q∅(∅, ∅).
Now, let us suppose that M 6= ∅. Let x, y ∈ F(M)2. We will write x ∼ y if
there exists a permutation f on M such that f→(x) = y. Further, denote by
Hxy the set of all permutations f on M such that f→(x) = y. One can see
that Hxy forms a permutation group on M if x = y.9 Denote this permutation
group by Gx, i.e., Gx = Hxx. Due to Proposition 2.8, we have ϕM (x) ◦ f =
ϕM ((f−1)→(x)) = ϕM (x) for any permutation f from Gx. Then,

∫ ¯

S(M)(x)

ϕM (x) dµ =
∫ ¯

S(M)(x)

ϕM (x) ◦ f dµ, (37)

9Obviously, this is not true for arbitrary x, y ∈ F(M)2.
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holds for any f ∈ Gx, where we put S(M)(x) = (A,F , µ). According to The-
orem 2.6, there exists a fuzzy measure space Bx = (Bx,Gx, νx) closed under
isomorphisms with respect to Gx, i.e., f→(Bx) = Bx = Bf→(x) for any f ∈ Gx,
such that

∫ ¯

S(M)(x)

ϕM (x) dµ =
∫ ¯

Bx

ϕM (x) dνx. (38)

Let x, z ∈ F(M)2 such that x ∼ z and f, g, t ∈ Hxz. Then, g→ ◦ (t−1)→(Bz) =
f→ ◦ (t−1)→(Bz). In fact, we have

g→ ◦ (t−1)→(Bz) = Bz = f→ ◦ (t−1)→(Bz), (39)

since g ◦ t−1, f ◦ t−1 ∈ Gz.
Now, let us denote Q = F(M)2\ ∼, consider a choice function h : Q →

F(M)2, i.e., h([x]) ∈ [x] for any [x] ∈ Q, and define

R = {(x, y) | x, y ∈ F(M)2 and x ∼ y}.

Further, let us consider a mapping r : R→ Perm(M) that satisfies

r(x, y) =
{

f, if x 6= y and f→(x) = y,
1M , otherwise.

Note that r(x, y) ∈ Hxy. Denote r(x, h([x])) = fx and define

S ′(M)(x) = (f−1
x )→(Bh([x])). (40)

Clearly, S ′(M)(h([x])) = Bh([x]). Let us show that S ′ defined by (40) is a
pi-closed functional.

Let x, y ∈ F(M)2 such that x ∼ y and put h([x]) = h([y]) = z. According
to the definition of S ′, we have

S ′(M)(x) = (f−1
x )→(Bz),

S ′(M)(y) = (f−1
y )→(Bz),

(41)

where fx = r(x, z) and fy = r(y, z). Let f be an arbitrary permutation for
which f→(x) = y, i.e., f ∈ Hxy. Clearly, we have fy ◦ f ∈ Hxz. Since also
fx ∈ Hxz, then, by (39), we obtain

Bz = f→x ◦ (f−1
x )→(Bz) = (fy ◦ f)→ ◦ (f−1

x )→(Bz) = f→y ◦ f→ ◦ (f−1
x )→(Bz).

Hence, we have

(f−1
y )→(Bz) = f→ ◦ (f−1

x )→(Bz),

which can be rewritten as

S ′(M)(f→(x)) = (f−1
y )→(Bz) = f→ ◦ (f−1

x )→(Bz) = f→(S ′(M)(x)).
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Thus, S ′ is a pi-closed functional.
Let us denote by Q′ the fuzzy quantifier determined by (S ′, ϕ). Due to

Theorem 3.12, we have Q′ ∈ PI. To show that QM = Q′
M , let x ∈ F(M)2 and,

firstly, let us suppose that h([x]) = x. Then, S ′(M)(x) = Bx and, according to
(38), we have

QM (x) =
∫ ¯

S(M)(x)

ϕM (x) dµ =

∫ ¯

Bx

ϕM (x) dνx =
∫ ¯

S′(M)(x)

ϕM (x) dνx = Q′M (x).

Now, let x ∈ F(M)2 be arbitrary. Since Q,Q′ ∈ PI and f→x (x) = h([x]), then,
by the previous equality, we have

QM (x) = QM (f→x (x)) = QM (h([x])) = Q′M (h([x])) = Q′M (f→x (x)) = Q′
M (x).

From this and from the equality Q∅ = Q′∅, we obtain the coincidence of Q and
Q′.

Corollary 3.14. Let L be a complete residuated lattice such that ¯ is distribu-
tive over

∧
and

∨
. A fuzzy quantifier Q determined by (S, ϕ) is permutation

invariant if and only if there exists a pi-closed functional S ′ such that the fuzzy
quantifier Q′ determined by (S ′, ϕ) coincides with Q.

Now, we will show that an analogous proposition presented above in the
corollary holds also for fuzzy quantifiers definable by fuzzy measures. The fol-
lowing theorem is a straightforward consequence of Theorem 3.12.

Theorem 3.15. Let Q determined by (S, ϕ) be definable by fuzzy measures. If
S is pi-closed, then Q is permutation invariant.

A weaker opposite implication is as follows (cf. Theorem 3.9).

Theorem 3.16. Let L be a complete residuated lattice such that ¯ is distributive
over

∧
and

∨
and Q be determined by (S, ϕ). If Q is definable by fuzzy measures

and permutation invariant, then there exists a fuzzy quantifier Q′ determined
by (S ′, ϕ) such that Q′ is definable by fuzzy measures, S ′ is pi-closed and Q′

coincides with Q.

Proof. The proof is more or less analogous to that of Theorem 3.13, only
not one, but two equivalences will be constructed here. The first equivalence
ensures the definability of the fuzzy quantifier by fuzzy measures, i.e., QM (A,−)
is a constant mapping for any M and A ∈ F(M), and the second one makes
the fuzzy quantifier invariant with respect to permutations. Again, to ensure
QM = Q′M for M = ∅, it is sufficient to put Q′∅(∅, ∅) = Q∅(∅, ∅).

Let M 6= ∅ and x, y ∈ F(M)2. We will write x
∗= y if the first components

of x and y are equal, i.e., if x = (A,B) and y = (C, D), then A = C. One could
note that ∗= is an equivalence on F(M), and if x = y, then x

∗= y.
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Let H∗
xy denote the set of all permutations f on M for which f→(x) ∗= y

and G∗x the group of all permutations f on M satisfying f→(x) ∗= x. One could
simply prove that G∗x = H∗

xx.10

Let Q determined by (S, ϕ) be definable by fuzzy measures, i.e., S(M)(A,−)
is a constant mapping for any A ∈ F(M). This condition can be equivalently
expressed as S(M)(x) = S(M)(y), whenever x

∗= y.
Let x ∈ F(M), f ∈ G∗x and put S(M)(x) = (A,F , µ). Then,

∫ ¯

S(M)(x)

ϕM (x) dµ =
∫ ¯

S(M)(x)

ϕM (x) ◦ f dµ. (42)

In fact, using Theorem 2.5 and the facts that S(M)((f−1)→(x)) = S(M)(x),
QM (x) = QM ((f−1)→(x)) and ϕM ((f−1)→(x)) = ϕM (x) ◦ f , we have

∫ ¯

S(M)(x)

ϕM (x) dµ = QM (x) = QM ((f−1)→(x)) =

∫ ¯

S(M)((f−1)→(x))

ϕM ((f−1)→(x)) dµ =
∫ ¯

S(M)(x)

ϕM (x) ◦ f dµ.

Since ¯ is distributive over
∧

and
∨

, then, supposing (42) in Theorem 2.6 to
each x ∈ F(M)2, there exists a fuzzy measure space Bx = (Bx,Gx, νx) closed
under isomorphisms with respect to G∗x for which

∫ ¯

S(M)(x)

ϕM (x) dµ =
∫ ¯

Bx

ϕM (x) dνx. (43)

Let P = F(M)\ ∗=, i.e., y ∈ [x] if x
∗= y. We will write [x] ∗∼ [y] if there exists a

permutation f on M such that f→(x) ∗= y. It is easy to see that the relation ∗∼
is an equivalence on P and let Q = P\ ∗∼, i.e., [y] ∈ [[x]] if [x] ∗∼ [y].

Further, let us consider two choice functions

q : Q → P,

p : P → F(M)2,

i.e., q([[x]]) ∈ [[x]] for any [[x]] ∈ Q and p([x]) ∈ [x] for any [x] ∈ P, and put
h = p ◦ q. Define

R∗ = {([x], [y]) | x, y ∈ F(M) and [x] ∗∼ [y]},
R = {(x, y) | x, y ∈ F(M) and [x] ∗∼ [y]},

r∗ : R∗ → Perm(M) in such a way that

r∗([x], [y]) =
{

f, if [x] 6= [y] and f→(x) ∗= y,
1M , otherwise,

10In comparison with the constructions of Hxy and Gx in the proof of Theorem 3.13, the
second components of x and y are ignored here.

32



and r : R → Perm(M) by r(x, y) = r∗([x], [y]). One could simply verify that
the definition of r∗ does not depend on the choice of x and y (note that the
first components of x and z with z ∈ [x] are the same) and clearly r∗ (and
hence r) can be defined in different ways. Moreover, r(x, y) ∈ H∗

xy, because
r(x, y)→(x) ∗= y. Denote r(x, h([[x]])) = fx and define

S ′(M)(x) = (f−1
x )→(Bh([[x]])), (44)

where f−1
x is the inverse mapping to fx. Clearly, S ′(M)(h([[x]])) = Bh([[x]]),

because r(h([[x]]), h([[x]])) = 1M .
Firstly, we will show that S ′ defined by (44) is a pi-closed functional, and

thus the fuzzy quantifier determined by (S ′, ϕ) is permutation invariant. Let
x ∈ F(M)2 and f ∈ Perm(M). Clearly, [[x]] = [[f→(x)]]. Put f→(x) = y and
h([[x]]) = h([[y]]) = z. According to the definition of S ′, we have

S ′(M)(x) = (f−1
x )→(Bz),

S ′(M)(y) = (f−1
y )→(Bz),

(45)

where fx = r(x, z) and fy = r(y, z). Since fy ◦ f ∈ H∗
xz and fx ∈ H∗

xz, then,
using (39) in the proof of Theorem 3.13 that also holds for H∗

xz,
11 we obtain

Bz = f→x ◦ (f−1
x )→(Bz) = (fy ◦ f)→ ◦ (f−1

x )→(Bz) = f→y ◦ f→ ◦ (f−1
x )→(Bz).

Hence, we have

(f−1
y )→(Bz) = f→ ◦ (f−1

x )→(Bz),

which implies

S ′(M)(f→(x)) = (f−1
y )→(Bz) = f→ ◦ (f−1

x )→(Bz) = f→(S ′(M)(x)),

and S ′ is a pi-closed functional. Further, we will show that S ′(M)(x) =
S ′(M)(y), whenever x

∗= y, and thus the fuzzy quantifier determined by (S ′, ϕ)
is definable by fuzzy measures. If x, y ∈ F(M)2 and x

∗= y, then [x] = [y] and
also [[x]] = [[y]]. Hence, we obtain fx = r(x, z) = r∗([x], [z]) = r∗([y], [z]) =
r(y, z) = fy, which implies

S ′(M)(x) = (f−1
x )→(Bz) = (f−1

y )→(Bz) = S ′(M)(y).

Finally, let Q′ be a fuzzy quantifier determined (S ′, ϕ) that is, as we have
proved, permutation invariant and definable by fuzzy measures. We will show
that Q′M = QM . Let x ∈ F(M)2 and, firstly, let us suppose that h([[x]]) = x.

11It is sufficient to consider fx ◦ f−1
x , fy ◦ f ◦ f−1

x ∈ G∗z and to apply g→(Bz) = Bz which
holds for any g ∈ G∗z .
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Since S ′(M)(x) = Bx, then, according to (43), we have

QM (x) =
∫ ¯

S(M)(x)

ϕM (x) dµ =

∫ ¯

Bx

ϕM (x) dνx =
∫ ¯

S′(M)(x)

ϕM (x) dνx = Q′M (x).

Now, let x ∈ F(M)2 be arbitrary. Since Q,Q′ ∈ PI and f→x (x) = h([[x]]), then

QM (x) = QM (f→x (x)) = QM (h([[x]])) = Q′M (h([[x]])) = Q′M (f→x (x)) = Q′M (x).

Hence and from the equality Q∅ = Q′
∅, we obtain the coincidence of Q and

Q′.

Now, we can present the main goal of this part stating a relation between
permutation invariance and pi-closed functionals for fuzzy quantifiers definable
by fuzzy measures.

Corollary 3.17. Let L be a complete residuated lattice such that ¯ is dis-
tributive over

∧
and

∨
. A fuzzy quantifier Q definable by fuzzy measures is

permutation invariant if and only if there exists a pi-closed functional S such
that the fuzzy quantifier Q′ determined by (S, ϕ) is definable by fuzzy measures
and coincides with Q.

In practice, it seems to be profitable to use fuzzy quantifiers determined by
(S, ϕ) with S(M) as a constant mapping, i.e., S(M)(A,B) = M for any non-
empty universe M and A,B ∈ F(M). If such a fuzzy quantifier is permutation
invariant, then there is a question, whether M is a cardinal fuzzy measure space.

Definition 3.9. We say that a fuzzy quantifier Q determined by (S, ϕ) is locally
cardinal if S(M)(−,−) = M is a constant mapping for any non-empty universe
M , and S is pi-closed.

A straightforward consequence of the definition of locally cardinal fuzzy
quantifier is the following statement showing a close relation between locally
cardinal fuzzy quantifiers and cardinal fuzzy measure spaces.

Lemma 3.18. A fuzzy quantifier Q determined by (S, ϕ) is locally cardinal if
and only if S(M)(−,−) is a cardinal fuzzy measure space for any non-empty
universe M .

Note that the term “locally” in the previous definition of a cardinal fuzzy
quantifier is motivated by the fact that “to be pi-closed” is only a local prop-
erty, which is limited to a universe. It means that we can have a fuzzy quantifier
defined by cardinal fuzzy measure spaces, but the same cardinality of universes
does not imply the isomorphism of the fuzzy measure spaces over these uni-
verses.12

12Consider |M | = |M ′|, but f→(S(M)(−,−)) 6= S(M ′)(−,−) for a bijection f : M → M ′.
Later, we will see that the locally cardinal quantifiers are not isomorphism invariant in general.
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Since the locally cardinal fuzzy quantifiers are determined by pi-closed func-
tionals S, they are permutation invariant. The opposite implication is also true
under the presumption of the distributivity of ¯ over arbitrary meets and joins.
Note that the fuzzy quantifier (limited to M = [0, 1]) from Example 3.3 is per-
mutation invariant and is definable by fuzzy measures (i.e., S(M)(−,−) is a
constant mapping), but S(M)(−,−) is not a cardinal fuzzy measure space.

Theorem 3.19. Let L be a complete residuated lattice such that ¯ is dis-
tributive over

∧
and

∨
and Q be a fuzzy quantifier determined by (S, ϕ) with

S(M)(−,−) = M for any non-empty universe M . If Q is permutation invari-
ant, then there exists a locally cardinal fuzzy quantifier coinciding with Q.

Proof. Put Q′
∅ = Q∅. Further, according to the presumption on S, the fact

that Q is permutation invariant and Proposition 2.8, we have

QM (x) =
∫ ¯

S(M)(x)

ϕM (x) dµ =
∫ ¯

M

ϕM (x) dµ =

∫ ¯

M

ϕM (f→(x)) dµ =
∫ ¯

M

ϕM (x) ◦ f−1 dµ = QM (f→(x))

for any permutation f on M . Due to Corollary 2.7, there is a cardinal fuzzy
measure space M′ for each M 6= ∅ such that

∫ ¯

M

ϕM (x) dµ =
∫ ¯

M′
ϕM (x) dν. (46)

Now, it is sufficient to define S ′(M)(−,−) = M′ and to consider Q′ determined
by (S ′, ϕ). The coincidence of Q and Q′ immediately follows from Q∅ = Q′∅ and
the equality of integrals in (46).

Corollary 3.20. Let L be a complete residuated lattice such that ¯ is distribu-
tive over

∧
and

∨
. A fuzzy quantifier Q determined by (S, ϕ) with S(M)(−,−) =

M for any non-empty universe M is permutation invariant if and only if there
exists a locally cardinal fuzzy quantifier Q′ coinciding with Q.

Example 3.8. We already showed that the quantifier manyM (A,B) from Ex-
ample 5.3 in [2] is permutation invariant (see Example 3.1). Analogously, this
can be shown also for other quantifiers from [2], namely, every, some, at least half
and few.

3.3. Isomorphism invariance
Let us investigate the property that extends the permutation invariance from

one universe (a local property) to the class of all bijective universes (a global
property). In our investigation, we will deal with the concept of classes and
mappings and relations on classes. Because many questions and problems are
similar to the case of the permutation invariance, we will not go into details
unless there is a substantial difference with respect to the case of permutation
invariance.
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Definition 3.10. We say that a fuzzy quantifier Q is isomorphism invariant
if, for any universe M , bijective mapping f : M → M ′ and A, B ∈ F(M), we
have

QM (A,B) = QM ′(f→(A), f→(B)). (47)

The class of all isomorphism invariant fuzzy quantifiers is denoted by ISOM.

It is well-known that the isomorphism invariance is a natural extension of
permutation invariance, which is fixed to one universe, to the class of universes
having the same cardinality. To study the relations between ISOM and the
fuzzy quantifiers determined by fuzzy measures, we need to extend the concept
of the weakly pi-closed functional used in the case of PI.

Let us denote by Bij(M, M ′) the set of all bijections from M to M ′. The fol-
lowing concept naturally extends the property of being weakly pi-closed (cf. Def-
inition 3.6).

Definition 3.11. We say that a functional S is weakly iso-closed if, for any
non-empty universes M, M ′, fuzzy sets A, B ∈ F(M) and C,D ∈ F(M ′) such
that (g→(A), g→(B)) = (C, D) for a bijection g of M onto M ′, there exists
f ∈ Bij(M, M ′) for which (f→(A), f→(B)) = (C, D) and

f→(S(M)(A,B)) = S(M ′)(C, D). (48)

An equivalent definition is as follows.

Proposition 3.21. A functional S is weakly iso-closed if and only if, for any
non-empty bijective universes M,M ′, A,B ∈ F(M), the equality

S(M ′)(f→(A), f→(B)) = f→(S(M)(A,B)) (49)

holds for at least one bijection f of M onto M ′.

Proof. Obvious.

Recall that ϕM and ϕM ′ are the equivalent operations if they are determined
by one rl-operation ψ (see Definition 2.13).

Definition 3.12. We say that a functional ϕ is weakly global, if, for any non-
empty isomorphic universes M and M ′, the operations ϕM and ϕM ′ are the
equivalent operations. If the operations ϕM and ϕM ′ are equivalent for any M
and M ′, we say that ϕ is global.

Note that the denotation “global” expresses the fact that there exists a one rl-
operation ψ on L such that each ϕM is determined by ψ, and thus the definitions
of operations ϕM are independent from their universes M . The weakness of the
global property is more or less technical and may be used in many cases, when
we need not suppose the existence of one rl-operation for all universes. The
following theorem is a global version of Theorem 3.2.
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Theorem 3.22. Let Q be determined by (S, ϕ). If S is weakly iso-closed and
ϕ is weakly global, then Q is isomorphism invariant.

Proof. The condition of being isomorphism invariant is trivially satisfied for
M = ∅. Let M 6= ∅ 6= M ′, x ∈ F(M)2, y ∈ F(M ′)2 and g→(x) = y for some
g ∈ Bij(M, M ′). Since S is weakly iso-closed, then there exists f ∈ Bij(M, M ′)
with f→(x) = y and

f→(S(M)(x)) = S(M ′)(f→(x)).

Since ϕ is weakly global, then, according to Theorem 2.5 and Proposition 2.9,
we have

QM (x) =
∫ ¯

S(M)(x)

ϕM (x) dµ =
∫ ¯

f→(S(M)(x))

ϕM (x) ◦ f−1 dµ′ =

∫ ¯

S(M ′)(f→(x))

ϕM ′(f→(x)) dµ′ = QM ′(f→(x)),

where ϕM (x) ◦ f−1 = ϕM ′(f→(x)) is applied. Since f→(x) = g→(x), then
QM (x) = QM ′(f→(x)) = QM ′(g→(x)). Hence, Q is isomorphism invariant.

Example 3.9. Let us define a functional S? for any finite universe M and
A,B ∈ F(M) as follows:

S?(M)(A, B) =
{

(1M , {1∅, 1M}, µ), if 15 ∈ M ;
(1M ,F(1M ), µr

1M
), otherwise,

where (1M ,F(1M ), µr
1M

) is defined in Example 2.1. Now, let us consider a finite
fuzzy quantifier Q? determined by (S?, ϕ), where ϕ is an arbitrary functional
(e.g., ϕ = ∩). It is obvious that S? is (weakly) pi-closed and that the fuzzy
quantifier Q? determined by (S?, ϕ) is PI (and locally cardinal). However, S?

is not weakly iso-closed. In fact, it is sufficient to consider universes M =
{14, 15, 16} and M ′ = {c, d, e} for which evidently the condition (49) cannot be
satisfied. Moreover, using these universes one may simply demonstrate that Q?

is not ISOM.

Theorem 3.23. Let Q be determined by (S, ϕ). If Q is isomorphism invariant,
then there exists a fuzzy quantifier Q′ determined by (S ′, ϕ′) such that S ′ is
weakly iso-closed, ϕ′ is weakly global, and Q′ coincides with Q.

Proof. Put Q′
∅ = Q∅. Further, let Card denote the class of all cardinal

numbers different from 0 expressed by the least ordinal numbers that have the
same cardinality. It means that a cardinal number α is a well ordered transitive
set. The cardinal numbers (as sets) will serve as representatives in the classes
of all universes having the same cardinality used in our construction.

Let S ′(α) be the mapping defined in the same way as in the proof of The-
orem 3.3 for any α ∈ Card. More precisely, we consider S ′ to be defined only
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for the universes that belong to Card, S ′ for further universes will be defined
later. Recall that, for any x ∈ F(α)2, and a permutation g on α, there exists a
permutation f on α such that f→(x) = g→(x) and

f→(S ′(α)(x)) = S ′(α)(f→(x)). (50)

Moreover, if Q′α (limited to α) is defined by S ′(α)(−,−) and ϕα, we have Qα =
Q′

α (see the proof of Theorem 3.3).13

Let V =
⋃

M 6=∅ F(M) and R ⊆ V × Card be a (class) relation naturally
defined by (M, α) ∈ R if M and α have the same cardinality (i.e., there exists
a bijective mapping of M onto α) and consider a mapping F : R → Bij, where
Bij denotes the class of all bijective mappings such that

F(M,α) =
{

f, if M 6= α and f is a bijection of M onto α,
1M , otherwise. (51)

Define

S ′(M)(x) = (F(M,α)−1)→(S ′(α)(F(M, α)→(x)). (52)

Putting fM = F(M,α), we may rewrite (52) by

S ′(M)(x) = (f−1
M )→(S ′(α)(f→M (x))). (53)

Let us show that S ′ defined by (53) for any non-empty universe is a weakly
iso-closed functional. Let f ∈ Bij(M,M ′) and α = |M |. Put fM = F(M, α)
and fM ′ = F(M ′, α). If x ∈ F(M)2, y ∈ F(M ′)2 and f→(x) = y for some
f ∈ Bij(M, M ′), then there exists a permutation g on α such that g→(f→M (x)) =
f→M ′(y) (note that f→M (x), f→M ′(x) ∈ F(α)). In fact, denote αx = f→M (x) and
αy = f→M ′(y) and let f ∈ Bij(M, M ′). Then,

(fM ′)→ ◦ f→ ◦ (f−1
M )→(αx) = αy.

Hence, it is sufficient to put g = fM ′ ◦ f ◦ f−1
M . From the construction of S ′(α),

there exists h ∈ Perm(α) such that g→(f→M (x)) = h→(f→M (x)) = f→M ′(y) and

h→(S ′(α)(f→M (x))) = S ′(α)(h→(f→M (x))) = S ′(α)(f→M ′(y)). (54)

According to the definition of S ′, we have

S ′(α)(f→M (x)) = f→M (S ′(M)(x)),
S ′(α)(f→M ′(y)) = f→M ′(S ′(M ′)(y).

(55)

Plugging (54) into the second formula in (55), we obtain

h→(S ′(α)(f→M (x))) = f→M ′(S ′(M ′)(y)).

13Note that in this part, we cannot define Q′ for an arbitrary universe M , nevertheless, if
we restrict ourselves to the sets from Card and define Q′ only over Card, then Q′ coincides
with Q restricted to Card.
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After a simple manipulation with the previous formula one can derive

(f−1
M )→(S ′(α)(f→M (x))) = (f−1

M )→ ◦ (h−1)→ ◦ f→M ′(S ′(M ′)(y)),

and, using (53), we obtain

S ′(M)(x) = (f−1
M ◦ h−1 ◦ fM ′)→(S ′(M ′)(y)).

Putting t = f−1
M ′ ◦ h ◦ fM (one can simply check that t→(x) = y), the previous

formula can be rewritten as

t→(S ′(M)(x)) = S ′(M ′)(t→(x)). (56)

Hence, the functional S ′ is weakly iso-closed.
If we define ϕ′ in such way that ϕ′M for any non-empty universe M is equiv-

alent with ϕα, whenever |M | = α, and thus the functional ϕ′ is weakly global,
we obtain, by Theorem 3.22, that Q′ determined by (S ′, ϕ′) is isomorphism
invariant.

Finally, we will prove that Q′ coincides with Q, i.e., QM = Q′
M for any

M 6= ∅. Let x ∈ F(M)2. Put fM = F(M,α). Since Q is isomorphism invariant
and Qα = Q′α for any α ∈ Card, we have

QM (x) = Qα(f→(x)) = Q′α(f→(x)) = Q′M (x),

and the proof is finished.

Corollary 3.24. A fuzzy quantifier Q determined by (S, ϕ) is isomorphism in-
variant if and only if there exist a weakly iso-closed functional S ′ and a weakly
global functional ϕ′ such that the fuzzy quantifier Q′ determined by (S ′, ϕ′) co-
incides with Q.

Obviously, the statement in Theorem 3.22 (that states: if S is weakly iso-
closed and ϕ is weakly global, then Q determined by them is ISOM) is also
true for fuzzy quantifiers definable by fuzzy measures. To show an opposite
implication analogous to that in Theorem 3.9, we should introduce a concept
of functional weakly iso-closed in the first component. Since the statement as
well as its proof can be done analogously to that in Theorem 3.23 and again a
relation between isomorphism invariant fuzzy quantifiers and weakly iso-closed
in the first component functionals S and weakly global functionals ϕ cannot be
proved, we will omit it here.

In the rest of this section, we will suppose the distributivity of ¯ over
∧

and
∨

. The following concept naturally extends the property of being pi-closed
(cf. Definition 3.8) and, in essence, imitates the isomorphism invariance for fuzzy
quantifiers.

Definition 3.13. We say that a functional S is iso-closed if, for any non-empty
universes M, M ′, fuzzy sets A, B ∈ F(M) and bijection f ∈ Bij(M, M ′), there
is

f→(S(M)(A, B)) = S(M ′)(f→(A), f→(B)). (57)
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An equivalent definition is as follows.

Proposition 3.25. A functional S is iso-closed if and only if, for any non-
empty bijective universes M, M ′, A, B ∈ F(M), the equality

S(M ′)(f→(A), f→(B)) = f→(S(M)(A,B))

holds for any bijection f ∈ Bij(M, M ′).

Proof. Obvious.

Proposition 3.26. Let S be iso-closed and f : M → M ′ be a bijective mapping.
Then,

(i) AM = {S(M)(A,B) | A,B ∈ F(M)} forms a closed system of fuzzy
measure spaces for any non-empty universe M ,

(ii) there exists a bijective mapping g : AM → AM ′ such that g ◦h→ = h′→ ◦g,
where h′ = f ◦ h ◦ f−1, holds for any permutation h on M .

Proof. The statement (i) can be proved analogously as in Lemma 3.11. Let
h be a permutation on M . Since f and f−1 are bijective mappings, h′ is a
permutation on M ′. Put g(A) = f→(A) for any A ∈ AM . Then,

g ◦ h→(A) = f→ ◦ h→(A) = (f ◦ h)→(A) =
(h′ ◦ f)→(A) = h′→ ◦ f→(A) = h′→ ◦ g(A)

for any A ∈ AM . Hence, g ◦ h→ = h′→ ◦ g and (ii) is proved.

Because each iso-closed functional S is also weakly iso-closed, the following
theorem is a straightforward consequence of Theorem 3.22.

Theorem 3.27. Let Q be determined by (S, ϕ). If S is iso-closed and ϕ is
weakly global, then Q is isomorphism invariant.

A weaker opposite implication under the presumption on the distributivity
of ¯ is as follows.

Theorem 3.28. Let L be a complete residuated lattice such that ¯ is distributive
over

∧
and

∨
. If Q determined by (S, ϕ) is permutation invariant, then there

exists a fuzzy quantifier Q′ determined by (S ′, ϕ′) such that S ′ is iso-closed, ϕ′

is weakly global, and Q′ coincides with Q.

Proof. Because the proof can be done analogously to that of Theorem 3.23,
we will prove it briefly. Let S ′(α) be defined for any α ∈ Card by the pi-
closed functional S′ introduced in (40) of the proof of Theorem 3.13. For any
x ∈ F(α)2 and f ∈ Perm(α), the equality f→(S ′(α)(x)) = S ′(α)(f→(x)) holds.
Let us define S ′(M)(x) by the formula (53).
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Let M 6= ∅, x ∈ F(M) and f ∈ Bij(M, M ′). Put fM = F(M,α), fM ′ =
F(M ′, α) and h = fM ′ ◦ f ◦ f−1

M . Clearly, h→(f→M (x)) = f→M ′(f→(x)). Since

h→(S ′(α)(f→M (x)) = S ′(α)(f→M ′(f→(x))), (58)

then, according to (55), this equality may be rewritten as

h→ ◦ f→M (S ′(M)(x)) = f→M ′(S ′(M ′)(f→(x))),

which implies

S ′(M ′)(f→(x)) = (f−1
M ′ )→ ◦ h→ ◦ f→M (S ′(M)(x)) = f→(S ′(M)(x)).

Hence, S ′ is an iso-closed functional. The rest of the proof precisely follows the
verification of the coincidence of Q′ determined by (S ′, ϕ′) and Q given in the
proof of Theorem 3.23.

A straightforward consequence of Theorems 3.27 and 3.28 is the following
statement stating that the isomorphism invariant fuzzy quantifiers (determined
by a pair of functionals) are closely related to the iso-closed and a weakly global
functionals S and ϕ, respectively.

Corollary 3.29. Let L be a complete residuated lattice such that ¯ is distribu-
tive over

∧
and

∨
. A fuzzy quantifier Q determined by (S, ϕ) is isomorphism

invariant if and only if there exist an iso-closed functional S ′ and a weakly global
functional ϕ′ such that the fuzzy quantifier Q′ determined by (S ′, ϕ′) coincides
with Q.

In the last part of this section, we will study the isomorphism invariance
for the fuzzy quantifiers definable by fuzzy measures and for globally cardinal
fuzzy quantifiers (the locally cardinal fuzzy quantifiers have been introduced
in Definition 3.9). The following theorem is a straightforward consequence of
Theorem 3.27.

Theorem 3.30. Let Q determined by (S, ϕ) be definable by fuzzy measures. If
S is iso-closed and ϕ is weakly global, then Q is isomorphism invariant.

A weaker opposite statement is as follows. Again, this statement needs the
presumption on the distributivity of ¯.

Theorem 3.31. Let L be a complete residuated lattice such that ¯ is distributive
over

∧
and

∨
and Q be determined by (S, ϕ). If Q is definable by fuzzy measures

and isomorphism invariant, then there exists a fuzzy quantifier Q′ determined
by (S ′, ϕ′) such that Q′ is definable by fuzzy measures, S ′ is iso-closed, ϕ′ is
weakly global, and Q′ coincides with Q.

Proof. Let us define S ′(α) for any α ∈ Card using (44) in the proof of The-
orem 3.16, define S ′(M)(x) by (53) and ϕ′ is derived from ϕ (using ϕα for
α ∈ Card) to be weakly global. It is easy to see that to complete the proof it is
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sufficient to show that Q′ determined by (S ′, ϕ′) is definable by fuzzy measures,
i.e., S ′(M)(A,−) is a constant function for any A ∈ F(M). From the definition
of S ′(α), we know that S ′(α)(A,−) is a constant function for any A ∈ F(α).
Let M 6= ∅, A,B, C ∈ F(M) be arbitrary fuzzy sets and put fM = F(M,α).
Then,

S ′(M)(A,B) = (f−1
M )→(S ′(α)(f→(A), f→(B))) =

(f−1
M )→(S ′(α)(f→(A), f→(C))) = S ′(M)(A,C),

and, hence, S ′(M)(A,−) is a constant mapping.

A straightforward consequence of Theorems 3.30 and 3.31 is the following
statement stating that, under the presumption on the distributivity of ¯, the
isomorphism invariant fuzzy quantifiers definable by fuzzy measures are closely
related to the iso-closed and weakly global functionals S and ϕ, respectively.

Corollary 3.32. Let L be a complete residuated lattice such that ¯ is dis-
tributive over

∧
and

∨
. A fuzzy quantifier Q definable by fuzzy measures is

isomorphism invariant if and only if there exists an iso-closed functional S and
weakly global ϕ such that the fuzzy quantifier Q′ determined by (S, ϕ) is definable
by fuzzy measures and coincides with Q.

One could note that a locally cardinal fuzzy quantifier need not be isomor-
phism invariant (cf. Example 3.9). Therefore, we establish a global variant of
cardinal fuzzy quantifiers as follows.

Definition 3.14. We say that a fuzzy quantifier Q determined by (S, ϕ) is
globally cardinal if S(M)(−,−) = M is a constant mapping, S is iso-closed, and
ϕ is weakly global.

Clearly, globally cardinal fuzzy quantifiers are defined by cardinal fuzzy mea-
sure spaces. Moreover, they are isomorphism invariant. The opposite statement
is also true supposing the distributivity of ¯ over arbitrary meets and joins.
(cf. Theorem 3.19).

Theorem 3.33. Let L be a complete residuated lattice such that ¯ is dis-
tributive over

∧
and

∨
and Q be a fuzzy quantifier determined by (S, ϕ) with

S(M)(−,−) = M for any non-empty universe M . If Q is isomorphism in-
variant, then there exists a globally cardinal fuzzy quantifier that coincides with
Q.

Proof. Let S(M)(−,−) be a constant mapping for any non-empty universe M .
Define S ′ in the same way as in the proof of Theorem 3.31. Since S ′(α)(−,−)
is a constant mapping, then S ′(M)(−,−) = (f−1

M )→(S ′(α)(−,−)) is again a
constant mapping, and Q′ determined by (S ′, ϕ′) is a globally cardinal fuzzy
quantifier.
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Corollary 3.34. Let L be a complete residuated lattice such that ¯ is distribu-
tive over

∧
and

∨
. A fuzzy quantifier Q determined by (S, ϕ) with S(M)(−,−) =

M for any non-empty universe M is isomorphism invariant if and only if there
exists a globally cardinal fuzzy quantifier coinciding with Q.

Example 3.10. It is not difficult to see that the functional Sr(M) from Ex-
ample 3.1 is iso-closed. Hence, the quantifier manyM (A, B) from Example 5.3
in [2] is isomorphism invariant. Analogously, we can show also the isomorphism
invariance of other quantifiers from [2], namely, every, some, at least half, and
few.

Example 3.11. For finite M , let Sr(M) be the same as in Example 3.1. Let the
finite fuzzy quantifier Q′ be determined by (Sr, ϕ′), where ϕ′M (A,B) = A → B
if a ∈ M , and ϕ′M (A,B) = (A ⊗ A) → B otherwise. Then, Q is PI and Sr

is iso-closed. Whether ϕ′M is weakly global (and, consequently, whether Q′ is
ISOM) depends on the underlying residuated lattice. For example, ϕ′M is not
weakly global for the ÃLukasiewicz algebra, but it is weakly global for the Gödel
algebra, because the operation ⊗ is idempotent for the Gödel algebra.

4. Conclusion

In this part of our contribution on fuzzy quantifiers determined by fuzzy
measures, we investigated two closely related fundamental semantic properties:
permutation invariance (PI) and isomorphism invariance (ISOM). We showed
how these properties are related to properties of functionals S and ϕ from the
definition of fuzzy quantifiers based on ¯-fuzzy integrals (see Definition 3.1).
It turned out that results on PI and ISOM require some non-trivial methods
to solve them. We are convinced that they can be interesting from the math-
ematical point of view, too. In the following part, we will investigate another
two important semantic properties [14]: extension (EXT) and conservativity
(CONS).
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