
University of Ostrava

Institute for Research and Applications of Fuzzy Modeling

L-fuzzy quantifiers of the type 〈1〉
determined by fuzzy measures
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Abstract

The aim of this paper is, first, to introduce two new types of fuzzy integrals,
namely, ⊗-fuzzy integral and →-fuzzy integral. The first integral is based on
a fuzzy measure of L-fuzzy sets and the second one on a complementary fuzzy
measure of L-fuzzy set, where L is a complete residuated lattice. Some of their
properties and a relation to the fuzzy (Sugeno) integral are investigated. Second,
using these integrals, two classes of monadic L-fuzzy quantifiers of the type 〈1〉
are defined, namely, L-fuzzy quantifiers of the type 〈1〉 determined by fuzzy
measures and L-fuzzy quantifiers of the type 〈1〉 determined by complementary
fuzzy measures. Several semantic properties of these L-fuzzy quantifiers are
studied.

Key words: fuzzy measure, fuzzy integral, fuzzy logic, monadic L-fuzzy
quantifier

1. Introduction

This paper continues the study of semantic properties of monadic L-fuzzy
quantifiers originated by Glöckner [3] and elaborated in [10] by studying one
specific but important class of them, namely, fuzzy quantifiers of the type 〈1〉
determined by fuzzy measures.

Quantifiers of the type 〈1〉 are denotations of important noun phrases of
natural language, e.g. “something” in “Something is broken.”, “everyone” in
“Everyone likes Bob.”, “nobody” in “Nobody knows everything.”, etc. More-
over, classical logical quantifiers “for all” and “there exists” also belong to this
type. It is claimed (e.g. in [24]) that from the point of view of natural language
semantics, quantifiers of the type 〈1, 1〉 (e.g. “every” in ”Every book has leaves.”,
“most” in “Most birds fly.”) are more basic and more important. However, it is
usual and advantageous to start with the type 〈1〉 quantifiers, because they are
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simpler and there are important relationships between them and quantifiers of
the type 〈1, 1〉.

Generalized quantifiers evolved, from pioneering works of Mostowski [19],
Lindström [14], Barwise and Cooper [1], into quite large research field with
deep results. For overview as well as new results see the recent monograph
[24]. Quantifiers of type 〈1〉 (like “everyone”, “something”, etc.) are usually
modeled, given a universe M , as a mapping QM : PM −→ {true, false} (or,
equivalently, as subsets of power set PM ). It is possible to introduce many
properties of (models of) quantifiers, characterizing their behavior from various
points of view, for example, permutation invariance (PI), isomorphism invari-
ance (ISOM), extension (EXT), and others.

When we think about the definition and properties of generalized quantifiers
(like e.g. many, a few and others), we feel that their truth values should not
change abruptly if we gradually change cardinalities of corresponding sets of ob-
jects. Consider for example sentence “Many people read books.” If the number
of people who read books increase by 1, it would be very strange if truth value
of this sentence changes from false to true. Therefore, it was inevitable that
researchers started to consider more than two truth values in this context, and
so-called fuzzy quantifiers emerged, starting from a generalization of the defi-
nition from the previous paragraph, where instead of {true, false} we consider
some other structure of truth values, notably the interval [0, 1] of real numbers.

Research in the field of fuzzy quantifiers started with works of Zadeh [31],
Thiele [28], Ralescu [25] and others, see also [15, 16, 20]. Important contribution
was made by Hájek in [9], where he considers especially quantifier “many” using
relative frequencies. He also points out interconnections between generalized
quantifiers and modalities. A comprehensive study of fuzzy quantifiers was
undertaken by Glöckner [3] (see also [4]). In the recent paper [22], Novák studies
so-called intermediate quantifiers, mainly from syntactic point of view in the
frame of fuzzy type theory [21]. An attempt to model linguistic quantifiers by
fuzzy (Sugeno) integral was presented by Ying in [30].

Aside from the theoretical importance of generalized quantifiers of the type
〈1〉, we were also motivated by the applications of fuzzy logic e.g. in time series
analysis, decision making and other fields where it can be advantageous to be
able to use other than classical quantifiers “for all” and “exists”. For example,
in time series analysis and modeling, we can use quantifiers like “many” for
filtering off of outliers, i.e. values that are numerically distant from (the course
of) the data.

The semantic interpretation of many generalized quantifiers is often con-
nected to measurement of “size” of sets in concern. Consider e.g. the quantifier
“many”. The truth value of proposition “many books have a red cover” clearly
depends on the “size” of the set of red books. Therefore, it is natural to con-
sider measures (and integrals) of (fuzzy) sets as natural tools for the modeling
of important classes of monotonically non-decreasing and monotonically non-
increasing generalized quantifiers.

Fuzzy measures and integrals ([29], see also [5, 12]) are important tools
allowing to compare classical or fuzzy sets with respect to their size. Standardly,
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fuzzy measures are set functions defined on some algebra of sets which are
monotone with respect to inclusion and they assign zero to the empty set. In
this contribution, fuzzy measures are defined on algebras of fuzzy sets (measure
spaces) and, generally, they attain values from a complete residuated lattice
L. Two types of fuzzy integral, namely, ⊗-fuzzy integral and →-fuzzy integral,
are then defined on an arbitrary fuzzy measure space and complementary fuzzy
measure space, respectively. Integrals of ⊗ type will be used as models of
quantifiers like all and some, while integrals of → type as models of no and
not all, etc. However, if the structure of truth values L is a complete MV-
algebra, then it is possible to define the →-fuzzy integral from the ⊗-fuzzy
integral using negation (see Theorem 3.18). Contrary to usual definitions of
fuzzy integrals, these integrals can be used to integrate all (fuzzy) sets, that
means, also (fuzzy) sets which are not standardly measurable with respect to
the used fuzzy measure space. This enables us to introduce fuzzy quantifiers
over spaces of all (fuzzy) sets and not only over spaces of all measurable (fuzzy)
sets (cf. [30]). However, it is surprising that we are able to show that the well-
known Sugeno integral [27] is, under certain conditions, a special case of our
fuzzy integral (see Theorem 3.11, p. 17).

Our structure of truth values is a complete residuated lattice. We prefer
to work in this structure (and not in, e.g., interval [0, 1] of real numbers) for
several reasons. First, it is advantageous to work in more general structure,
if all its important properties we need are fulfilled in this structure. Then
all results are valid also for particular examples, including the interval [0, 1]
mentioned above. Second, our structure of truth values is not in general linearly
ordered. Therefore, our results are valid also for structures of truth values
with incomparable elements, which can be useful in some applications. Third,
working in abstract algebraic system is often more convenient than working in
one particular structure.

The paper is structured as follows. Section 2 contains some basic facts about
the structure of truth values and L-fuzzy sets. In Section 3, we first introduce
notions of fuzzy measurable and fuzzy measure spaces, and also of complemen-
tary fuzzy measure spaces. Then, isomorphism between fuzzy measure spaces is
defined. In the next part of this section, the ⊗-fuzzy integral is defined and its
basic properties are proved. We also show that the definition of this integral can
be simplified if L is a complete MV-algebra. Then, connections to the Sugeno
integral are discussed and a theorem is proved saying that if L is a complete
Heyting algebra, then the Sugeno integral and the ⊗-fuzzy integral coincide.
Finally, →-fuzzy integral on a complementary fuzzy measure space is defined
and it is shown, besides other results, that if L is a complete MV-algebra, the
→-fuzzy integral is definable from the ⊗-fuzzy integral.

Next Section 4 summarizes properties of L-fuzzy quantifiers of the type 〈1〉,
using definition from [10]. In Section 5, we define L-fuzzy quantifiers of the type
〈1〉 determined by fuzzy measures and show that these quantifiers are bounded
by ∃ and ∀. Then we study conditions under which these quantifiers belong to
classes PI, ISOM, EXT, etc. Further, quantifiers determined by complementary
fuzzy measures (hence by →-fuzzy integral) are defined and analogous properties
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are studied. Finally, in Section 6, we point out some conclusions and sketch
directions of the further research.

2. Preliminaries

2.1. Structures of truth values

In this paper, we suppose that the structure of truth values is a complete
residuated lattice (see e.g. [2]), i.e., an algebra L = 〈L,∧,∨,→,⊗,⊥,⊤〉 with
four binary operations and two constants such that 〈L,∧,∨,⊥,⊤〉 is a complete
lattice, where ⊥ is the least element and ⊤ is the greatest element of L, respec-
tively, 〈L,⊗,⊤〉 is a commutative monoid (i.e., ⊗ is associative, commutative
and the identity a⊗⊤ = a holds for any a ∈ L) and the adjointness property is
satisfied, i.e.

a ≤ b → c iff a ⊗ b ≤ c (1)

holds for each a, b, c ∈ L, where ≤ denotes the corresponding lattice order-
ing. The operations ⊗ and → are usually called multiplication and residuum,
respectively. Since the operations ∧ and ⊗ have a lot of common properties,
which may be used for various alternative constructions, we will denote them,
in general, by the symbol ⊙. Thus, if we deal with the operation ⊙ then we
will consider either the operation ∧ or the operation ⊗, whereas none of them
is specified. A residuated lattice is divisible, if a ⊗ (a → b) = a ∧ b holds for
arbitrary a, b ∈ L, and satisfies the law of double negation, if (a → ⊥) → ⊥ = a

holds for any a ∈ L. A divisible residuated lattice satisfying the law of dou-
ble negation is called an MV-algebra. For other information about residuated
lattices we refer to [2, 23].

Example 2.1. It is easy to prove (see e.g. [9]) that the algebra

LT = 〈[0, 1], min, max, T,→T , 0, 1〉,

where T is a left continuous t-norm and a →T b =
∨

{c ∈ [0, 1] | T (a, c) ≤ b}
defines the residuum, is a complete residuated lattice. Moreover, if T is the
 Lukasiewicz t-norm, i.e., T (a, b) = max(a + b − 1, 0) for all a, b ∈ [0, 1], then
LT is a complete MV-algebra called a  Lukasiewicz algebra (on [0, 1]). The
 Lukasiewicz algebra will be denoted by L L.

Example 2.2. Let a, b ∈ [0,∞] be such that a < b. One checks easily that
L[a,b] = 〈[a, b], min, max,→, a, b〉, where

c → d =

{

d, if d < c,
b, otherwise,

(2)

is a complete residuated lattice. Note that L[a,b] is a special example of a more
general residuated lattice called a Heyting algebra.1

1A Heyting algebra is a residuated lattice with ⊗ = ∧.
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Let us recall some basic properties of complete residuated lattices and com-
plete MV-algebras that will be useful in the following text.

Theorem 2.1 ([2, 23]). Let L be a complete residuated lattice, a ∈ L and
{bi | i ∈ I} be a set of elements from L over an index set I. Then we have

(a) a ⊗
∨

i∈I bi =
∨

i∈I(a ⊗ bi),

(b) a →
∧

i∈I bi =
∧

i∈I(a → bi),

(c) (
∨

i∈I bi) → a =
∧

i∈I(bi → a),

(d) a ⊗
∧

i∈I bi ≤
∧

i∈I(a ⊗ bi),

(e)
∨

i∈I(a → bi) ≤ a →
∨

i∈I bi,

(f)
∨

i∈I(bi → a) ≤
∧

i∈I bi → a.

If L is an MV-algebra, then the inequalities (d)-(f) may be replaced by the
equalities and we have

(g) a ∧
∨

i∈I bi =
∨

i∈I(a ∧ bi),

(h) a ∨
∧

i∈I bi =
∧

i∈I(a ∨ bi).

Let us define the following additional operations for all a, b ∈ L and sets {ai |
i ∈ I} of elements from L over a countable (possibly empty) index set I:

a ↔ b = (a → b) ∧ (b → a) (biresiduum)

¬a = a → ⊥ (negation)

⊗

i∈I

ai =

{

⊤, I = ∅,
∧

K∈Fin(I)

⊗

i∈K ai, otherwise,
(countable multiplication)

where Fin(I) denotes the set of all finite subsets of I. If |I| = n is a finite index
set and ai = a for any i ∈ I, then we will write an =

⊗

i∈I ai.

2.2. L-fuzzy sets

Let L = 〈L,∧,∨,→,⊗,⊥,⊤〉 be a complete residuated lattice and M be
a universe of discourse (possibly empty). A mapping A : M → L is called
an L-fuzzy set on M . A value A(m) is called a membership degree of m in
the L-fuzzy set A. The set of all L-fuzzy sets on M is denoted by FL(M).
Obviously, if M = ∅, then the empty mapping ∅ is the unique L-fuzzy set on
∅ and thus F(∅) = {∅}. An L-fuzzy set A on M is called crisp, if there is a
subset X of M such that A = 1X , where 1X denotes the characteristic function
of X . Particularly, 1∅ denotes the empty L-fuzzy set on M , i.e., 1∅(m) = ⊥
for any m ∈ M . This convention will be also kept for M = ∅. The set of all
crisp L-fuzzy sets on M is denoted by PL(M). An L-fuzzy set A is constant,
if there is c ∈ L such that A(m) = c for any m ∈ M . For simplicity, a
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constant L-fuzzy set is denoted by the corresponding element of L, e.g., a, b, c.2

Let us denote Supp(A) = {m | m ∈ M & A(m) > ⊥} and core(A) = {m |
m ∈ M & A(m) = ⊤} the support and core of an L-fuzzy set A, respectively.
Obviously, Supp(1X) = core(1X) = X for any crisp L-fuzzy set. An L-fuzzy set
A is called normal, if core(A) 6= ∅.

Let {Ai | i ∈ I} be a non-empty family of L-fuzzy sets on M . Then the
union of Ai is defined by

(

⋃

i∈I

Ai

)

(m) =
∨

i∈I

Ai(m) (3)

for any m ∈ M and the intersection of Ai is defined by
(

⋂

i∈I

Ai

)

(m) =
∧

i∈I

Ai(m) (4)

for any m ∈ M . Let A be an L-fuzzy set on M . The complement of A is an
L-fuzzy set A on M defined by A(m) = ¬A(m) for any m ∈ M . Finally, an
extension of the operations ⊗ and → on L to the operations on FL(M) is given
by

(A ⊗ B)(m) = A(m) ⊗ B(m) and (A → B)(m) = A(m) → B(m) (5)

for any A, B ∈ FL(M) and m ∈ M , respectively. The following theorem shows
the well-known relation between the operations of the union and intersection of
sets which also holds for L-fuzzy sets, if we restrict ourselves to a special class
of complete residuated lattices.

Theorem 2.2. Let L be a complete residuated lattice satisfying the law of dou-
ble negation and {Ai | i ∈ I} be a non-empty family of L-fuzzy sets on M .
Then

⋃

i∈I

Ai =
⋂

i∈I

Ai and
⋂

i∈I

Ai =
⋃

i∈I

Ai. (6)

Proof. Let {Ai | i ∈ I} be a non-empty family of L-fuzzy sets on M . Since L
satisfies the law of double negation, then (

∧

i∈I ai) → ⊥ =
∨

i∈I(ai → ⊥) and
(
∨

i∈I ai) → ⊥ =
∧

i∈I(ai → ⊥) hold for any index set {ai | i ∈ I} (see e.g. [2]).
Hence, we can write

(

⋂

i∈I

Ai

)

(m) =

(

∧

i∈I

(Ai(m) → ⊥)

)

→ ⊥ =

(

(

∨

i∈I

Ai(m)

)

→ ⊥

)

→ ⊥ =
∨

i∈I

Ai(m) =

(

⋃

i∈I

Ai

)

(m)

2We suppose that the meaning of this symbol will be unmistakable from the context, that
is, it should be clear when an element of L is considered and when a constant L-fuzzy set is
assumed.
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for any m ∈ M . Analogously, we can prove the second equality. 2

We say that an L-fuzzy set A is an L-fuzzy subset of an L-fuzzy set B and
denote by A ⊆ B, if, for any m ∈ M , we have A(m) ≤ B(m). Let f : M → M ′

be a mapping. A mapping f→ : FL(M) → FL(M ′) defines by f→(A)(m) =
∨

m′∈f−1(m) A(m′) is called the fuzzy extension of the mapping f . Obviously,

if f is a bijective mapping, then f→(A)(f(m)) = A(m) for any m ∈ M . Note
that if M = M ′ = ∅, then ∅ : ∅ → ∅ is the unique bijective mapping here. This
empty mapping determines the unique mapping ∅→ : FL(∅) → FL(∅) assigning
1∅ to 1∅.

3. Fuzzy integrals

In this section, we will introduce a notion of fuzzy measure and complemen-
tary fuzzy measure of L-fuzzy sets and two types of fuzzy integrals that will be
used to define L-fuzzy quantifiers. Note that, usually, a fuzzy measure is simply
a monotone set function from some algebra of (classical) sets to non-negative
real numbers or to [0, 1], possibly with continuity conditions [29]. Our fuzzy
measures are monotone functions from algebra of fuzzy sets to a complete resid-
uated lattice. Sometimes, a fuzzy measure is understood as a function from an
algebra of classical of fuzzy sets to some algebra of fuzzy sets. Then classical
or fuzzy set is measured by, e.g., some fuzzy number [7, 8, 26], and we can, for
example, say: The measure of set A is “approximately 0.5”. We will not deal
with this type of fuzzy measures in this paper. For more information about
fuzzy measures and integrals, we refer to [5, 6, 29].

3.1. Fuzzy measures of L-fuzzy sets

In the following, we will consider algebras of L-fuzzy sets as a base for
defining fuzzy measures of L-fuzzy sets.

Definition 3.1 ([29]). Let M be a non-empty universe of discourse. A subset
M of FL(M) is an algebra of L-fuzzy sets on M , if the following conditions are
satisfied

(i) 1∅, 1M ∈ M,

(ii) if A ∈ M, then A ∈ M,

(iii) if A, B ∈ M, then A ∪ B ∈ M.

A pair (M,M) is called a fuzzy measurable space, if M is an algebra of L-fuzzy
sets on M .

Example 3.1. The sets {∅, M}, PL(M), σ-algebras on M , or FL(M) are alge-
bras of L-fuzzy sets on M .
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Example 3.2. Let us say that an L-fuzzy set A on M is a simple L-fuzzy set on
M , if there exists a family of sets {Mi | i = 1, . . . , n} such that

⋃n
i=1 Mi = M ,

Mi 6= Mj for any i 6= j and A(m) = A(m′) holds for each m, m′ ∈ Mi, where
i = 1, . . . , n. Obviously, the set of all simple L-fuzzy sets on M is an algebra of
L-fuzzy sets on M .

Example 3.3. Let M = [0, 1] and L L be the  Lukasiewicz algebra (see Example
2.1). Then the set of all continuous mappings A : M → L is an algebra of
L L-fuzzy sets in M .3

Let us introduce the concept of fuzzy measure and complementary fuzzy
measure as follows. The first definition is a modification of the definition of a
normed measure with respect to truth values (see e.g. [5, 12]).

Definition 3.2. Let (M,M) be a fuzzy measurable space. A mapping µ :
M → L is called a fuzzy measure on (M,M), if

(i) µ(1∅) = ⊥ and µ(1M ) = ⊤,

(ii) if A, B ∈ M such that A ⊆ B, then µ(A) ≤ µ(B).

A triplet (M,M, µ) is called the fuzzy measure space, if (M,M) is a fuzzy
measurable space and µ is a fuzzy measure on (M,M).

Definition 3.3. Let (M,M) be a fuzzy measurable space. A mapping ν :
M → L is called a complementary fuzzy measure on (M,M), if

(i) ν(1∅) = ⊤ and ν(1M ) = ⊥,

(ii) if A, B ∈ M such that A ⊆ B, then ν(A) ≥ ν(B).

A triplet (M,M, ν) is called a complementary fuzzy measure space, if (M,M) is
a fuzzy measurable space and ν is a complementary fuzzy measure on (M,M).

Example 3.4. Let (M,M) be the fuzzy measurable space of all continuous
mappings from Example 3.3. It is easy to see that

µ(A) =

∫ 1

0

A(m) dm,

where
∫ 1

0
A(m) dm denotes the Riemann integral, defines a fuzzy measure on

(M,M).

3Note that the set of all continuous mappings need not be an algebra of L-fuzzy sets for
other residuated lattices determined by left T -norms, because the negation is not a continuous
mapping in general.
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Example 3.5. Let L be a complete residuated lattice with the support [0, 1]
and N be the set of natural numbers with 0. For any non-empty countable
(finite or denumerable) universe M , injective mapping f : M → N, n ∈ N and
A ∈ FL(M), introduce

Af,n(m) =

{

A(m), if f(m) ≤ n;
0, otherwise.

(7)

Further, for any injective mapping f : M → N and n ∈ N, define µf,n :
FL(M) → [0, 1] as follows

µf,n(A) =

∑

m∈Supp(Af,n) Af,n(m)

|Supp(1Mf,n
)|

(8)

and, finally, define µ
f
, µf : FL(M) → [0, 1] as follows

µ
f

= lim inf
n→∞

µf,n(A), (9)

µf = lim sup
n→∞

µf,n(A). (10)

It is easy to see that µf,n, µ
f

and µf are fuzzy measures on (M,FL(M)) deter-

mined by an injective mapping f .4 If, for example, M = N and f = id, then
µ

f
(A) = µf (A) = 0 for any L-fuzzy set on a finite universe. For the set of all

even or odd numbers, both fuzzy measures give 1
2 and, for the set of all prime

number, we obtain 0.
If M is finite, then µ

f
= µ

g
= µf = µg for any injective mappings f, g :

M → N and

µ
f
(A) = µf (A) =

∑

m∈M A(m)

|M |
. (11)

Hence, it is easy to see that µf (A) = µf (h→(A)) holds for any non-empty finite
universe M , A ∈ FL(M), injective mapping f : M → N and bijective mapping
h : M → M . Unfortunately, this equality fails for denumerable universes in
general. In fact, consider M = N, f = id and a bijective mapping h : N → N

such that the image of all even numbers is the set of prime numbers. Then
both measures give 1

2 for the set of all even numbers, however, 0 for the set of
all prime numbers. As a simple consequence of this inequality we obtain the
inequality between µ

f
and µ

g
(and also between µf and µg) which can arise for

some examples of injective mappings f and g, if the denumerable universes are
permitted.

4Note that µ
f

and µf could be understood as a generalization of lower and upper weighted

densities (well known in number theory) which are examples of so-called lower and upper
asymptotic fuzzy measures (see [17]).
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Example 3.6. Let µf be one of the fuzzy measures on (M,FL(M)) determined
by f defined in (9) and (10). If h : [0, 1] → [0, 1] is a non-decreasing mapping
with h(0) = 0 and h(1) = 1, then h ◦ µf is a fuzzy measure on (M,FL(M))
determined by µf and h. If h : [0, 1] → [0, 1] is a non-increasing mapping with
h(0) = 1 and h(1) = 0, then h ◦ µf is a complementary fuzzy measure on
(M,FL(M)) determined by µf and h.

Theorem 3.1. Let (M,M) be a fuzzy measurable space. If µ (ν) is a fuzzy
measure (a complementary fuzzy measure) on (M,M), then ν′(A) = ¬µ(A)
(µ′(A) = ¬ν(A)) defines a complementary fuzzy measure (a fuzzy measure) on
(M,M).

Proof. This is a straightforward consequence of properties of the residuum.2

Definition 3.4. Let (M,M) be a fuzzy measurable space and X ∈ FL(M).
We say that X is M-measurable, if X ∈ M.

Let (M,M) be a fuzzy measurable space and X ∈ FL(M). Denote MX the
set of all M-measurable sets which are contained in X , i.e.,

MX = {A | A ∈ M and A ⊆ X}. (12)

Note that 1∅ ∈ MX for each X ∈ FL(M) and if X is a M-measurable set, then
also X ∈ MX . If X = M , then we will write only M instead of MM .

Theorem 3.2. Let (M,M, µ) be a fuzzy measure space. A mapping µ∗ : FL(M) →
L defined by

µ∗(X) =
∨

A∈MX

µ(A) (13)

is a fuzzy measure on the fuzzy measurable space (M,FL(M)). We say that µ∗

is the inner fuzzy measure on (M,FL(M)) determined by µ.

Proof. Obviously, µ∗(A) = µ(A) for any A ∈ M. Hence, µ∗(1∅) = ⊥ and
µ∗(1M ) = ⊤. Since MX ⊆ MY for any X ⊆ Y , then µ∗(X) ≤ µ∗(Y ) and µ∗ is
a fuzzy measure on (M,FL(M)). 2

Example 3.7. Let (M,PL(M), µ) be an arbitrary fuzzy measurable space (re-
call that PL(M) is the power set of M). Then the inner fuzzy measure on
(M,FL(M)) is defined by

µ∗(A) =

{

µ(A′), if 1core(A) = A′,
⊥, otherwise.

(14)

Thus all L-fuzzy sets that are not normal have the inner fuzzy measure equal
to ⊥.
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Example 3.8. Let L L be the  Lukasiewicz algebra and (M,M, µ) be the fuzzy
measure space of continuous L L-fuzzy sets from Example 3.4. Then, for exam-
ple, we obtain µ∗(1[a,b]) = b − a, however, 1[a,b] 6∈ M in general.

Theorem 3.3. Let (M,M, ν) be a complementary fuzzy measure space. A
mapping ν∗ : FL(M) → L defined by

ν∗(X) =
∧

A∈MX

ν(A) (15)

is a complementary fuzzy measure on the fuzzy measurable space (M,FL(M)).
We say that ν is the inner complementary fuzzy measure on (M,FL(M)) de-
termined by ν.

Proof. This is analogous to the proof of Theorem 3.2. 2

In the following part we will define an isomorphism between fuzzy measure
spaces and then between complementary fuzzy measure spaces.

Definition 3.5. Let (M,M) and (M ′,M′) be fuzzy measurable spaces. We
say that a mapping g : M → M′ is an isomorphism between (M,M) and
(M ′,M′), if

(i) g is a bijective mapping with g(1∅) = 1∅,

(ii) g(A ∪ B) = g(A) ∪ g(B) and g(A) = g(A) hold for any A, B ∈ M,

(iii) there exists a bijective mapping f : M → M ′ with A(m) = g(A)(f(m))
for any A ∈ M and m ∈ M .

Theorem 3.4. Let (M,M), (M ′,M′) be fuzzy measurable spaces and g : M →
M′ be a surjective mapping. Then g is an isomorphism between (M,M) and
(M ′,M′) if and only if there exists a bijective mapping f : M → M ′ such that
g = f→.

Proof. First, let g : M → M′ be an isomorphism of spaces (M,M) and
(M ′,M′). Then there exists a bijective mapping f : M → M ′ (according to (iii))
such that A(m) = g(A)(f(m)) holds for any m ∈ M . Since f→(A)(f(m)) =
A(m) = g(A)(f(m)) for any m ∈ M , then clearly f→(A) = g(A) for any A ∈ M
and thus g = f→.

Conversely, let g : M → M′ be a surjective mapping such that g = f→ for
some bijective mapping f : M → M ′. Let us suppose that g(A) = g(B) for
some A, B ∈ M. Since f is a bijective mapping of M onto M ′, then we have
g(A)(m) = f→(A)(m) = A(f−1(m)) = B(f−1(m)) = f→(B)(m) = g(B)(m)
for any m ∈ M and thus A = B. Hence, g is a bijective mapping. Further,
g(1∅)(m) = f→(1∅)(m) = 1∅(f−1(m)) = ⊥ holds for all m ∈ M ′. Hence,
g(1∅) = 1∅ and (i) is proved. If A, B ∈ M, then g(A∪B)(m) = f→(A∪B)(m) =
(A ∪ B)(f−1(m)) = A(f−1(m)) ∨ B(f−1(m)) = f→(A)(m) ∨ f→(B)(m) =
(g(A) ∪ g(B))(m) holds for all m ∈ M′. Analogously, it could be shown that
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g(A) = g(A) and thus (ii) is proved. Since f is a bijective mapping with
g(A)(f(m)) = f→(A)(f(m)) = A(m), then (iii) is also true and the proof is
finished. 2

Definition 3.6. Let (M,M) and (M ′,M′) be fuzzy measurable spaces. We
say that a mapping g : M → M′ is an isomorphism between (M,M, µ) and
(M ′,M′, µ′) (or between (M,M, ν) and (M ′,M′, ν′)), if

(i) g is an isomorphism between (M,M) and (M ′,M′),

(ii) µ(A) = µ′(g(A)) (or ν(A) = ν′(g(A))) for any A ∈ M.

If g is an isomorphism between fuzzy measure spaces (M,M, µ) and (M ′,M′, µ′)
or between complementary fuzzy measure spaces (M,M, ν) and (M ′,M′, ν′),
then we write g(M,M, µ) = (M ′,M′, µ′) or g(M,M, ν) = (M ′,M′, ν′), respec-
tively.

Let (M,M, µ) be a fuzzy measure space. If f : M → M ′ is a bijective
mapping, then (M ′, f→(M), µf→), where

µf→(f→(A)) = µ(A) (16)

holds for any A ∈ M, is a fuzzy measure space isomorphic with (M,M, µ). A
simple consequence of Theorem 3.4 is the fact that each fuzzy measure space
(M ′,M′, µ′) isomorphic with (M,M, µ) has the form (M ′, f→(M), µf→) for a
suitable bijective mapping f : M → M ′. Analogously, to each isomorphic com-
plementary fuzzy measure space (M ′,M′, ν′) with (M,M, ν) there is a bijective
mapping f : M → M ′ such that (M ′, f→(M), νf→) = (M ′,M′, ν′).

Let [(M,M, µ)] or [(M,M, ν)] denote the class of all fuzzy measure spaces
and all complementary fuzzy measure spaces defined on M that are isomorphic
with (M,M, µ) or with (M,M, ν), respectively. Obviously, we can write

[(M,M, µ)] = {(M, f→(M), µf→) | f : M → M is a bijective mapping},

[(M,M, ν)] = {(M, f→(M), νf→) | f : M → M is a bijective mapping}.

Note that there are fuzzy measure spaces such that they are isomorphic with
themselves for any bijective mapping f : M → M and thus we obtain [(M,M, µ)] =
{(M,M, µ)} or [(M,M, ν)] = {(M,M, ν)}. A simple example of such fuzzy
measure space is a fuzzy measure space (M,M, µf ) on a finite universe M from
Example 3.5.

3.2. ⊗-fuzzy integral

In this part, we will introduce a type of fuzzy integral that can be defined
on an arbitrary fuzzy measure space (M,M, µ). The form of this integral is
motivated by our need to describe a class of models of L-fuzzy quantifiers of the
type 〈1〉. Later we will show that this class of models is bounded by the models
of determiners all and some. Note that the models of all and some are the
same as the interpretations of quantifiers ∀ and ∃ in fuzzy logic, respectively,
see e.g. [4, 10, 24, 30].
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Definition 3.7. Let (M,M, µ) be a fuzzy measure space, A ∈ FL(M) and X

be a M-measurable L-fuzzy set. The ⊗-fuzzy integral of A on X is given by

∫

⊗

X

A dµ =
∨

Y ∈MX\{1∅}

∧

m∈Supp(Y )

(A(m) ⊗ µ(Y )). (17)

If X = 1M , then we write
∫

⊗
A dµ.

To explain our approach to fuzzy integral, let us look at Figure 1, where an L[0,1]-
fuzzy set A with the support [0, x] is displayed (recall that ⊗ = ∧ in L[0,1], see

Example 2.2). The idea how to find
∫

⊗
A dµ is based on some restrictions of its

support [0, x] which are expressed by L-fuzzy sets from a defined algebra M of
L-fuzzy sets. If we take an L-fuzzy set Y from M, then a minimal membership
value of A over the support of Y which is decreased according to the measure of
Y is searched for. In our case, this is the value A(m0) ⊗ µ(Y ). Here, the value
µ(Y ) may be interpreted as a degree of a size of the restricting L[0,1]-fuzzy set
Y , where, naturally, smaller values determined by the measure are expected for
more restricting L[0,1]-fuzzy sets. Obviously, from the point of view of fuzzy logic
the quantifier “for all” is applied to these values (the bold curve in Figure 1).
Now, the ⊗-fuzzy integral of A is obtained as the greatest value over all suitable
restrictions of the original support [0, x] described by L-fuzzy sets from M.
From the point of view of fuzzy logic the quantifier “exists” is applied on these
values. One can see a similarity to the Sugeno integral [27] (see also [6] or[29]),
where the integral is computed as the supremum of the measures of a-cuts of
A decreased using a. In the end of this section, we will show that the Sugeno
integral is a special case of our proposed integral, see Theorem 3.11.

m0

1

1

A(m0) ∧ µ(Y )

x

µ(Y )

0 m

A

Y

Figure 1: Computing the infimum part in the ⊗-fuzzy integral for an L[0,1]-fuzzy set Y .

Remark 3.9. It is easy to see that
∫

⊗

1∅
A dµ =

∨

∅ = ⊥ for any A ∈ FL(M)

and
∫

⊗

X
A dµ ≤

∫

⊗

Y
A dµ, whenever X ⊆ Y . Since

∫

⊗

1M
A dµ 6= ⊤ in general,

µA(X) =
∫

⊗

X A dµ does not define a fuzzy measure on (M,M) in the sense of
Definition 3.2.
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Remark 3.10. One can also define a ∧-fuzzy integral of A on X in such a way
that ⊗ is replaced by ∧ in (17). Since ⊗ and ∧ have many common properties,
both types of fuzzy integral will have similar properties. Nevertheless, we prefer
the ⊗-fuzzy integral in this paper, because it is closely related (due to the
adjointness property) to →-fuzzy integral that will be introduced in the following
subsection.

Theorem 3.5. Let (M,M, µ) be a fuzzy measure space. Then µ′ : FL(M) → L

defined by

µ′(A) =

∫

⊗

A dµ (18)

is a fuzzy measure on (M,FL(M)).

Proof. We can write
∫

⊗

1∅ dµ =
∨

Y ∈M\{1∅}

∧

m∈Supp(Y )

(1∅(m) ⊗ µ(Y )) =
∨

Y ∈M\{1∅}

⊥ = ⊥,

and
∫

⊗

1M dµ =
∨

Y ∈M\{1∅}

∧

m∈Supp(Y )

(1M (m) ⊗ µ(Y )) =
∧

m∈M

1M (m) ⊗ µ(1M ) = ⊤.

If A ⊆ B, i.e., A(m) ≤ B(m) for any m ∈ M , then using the isotonicity of ⊗
we can write

∫

⊗

A dµ =
∨

Y ∈M\{1∅}

∧

m∈Supp(Y )

(A(m) ⊗ µ(Y )) ≤

∨

Y ∈M\{1∅}

∧

m∈Supp(Y )

(B(m) ⊗ µ(Y )) =

∫

⊗

B dµ,

hence µ′ is a fuzzy measure on the fuzzy measurable space (M,FL(M)). 2

Theorem 3.6. Let (M,M, µ) be a fuzzy measure space. Then

(i)
∫

⊗

X (A ∩ B) dµ ≤
∫

⊗

X A dµ ∧
∫

⊗

X B dµ,

(ii)
∫

⊗

X
(A ∪ B) dµ ≥

∫

⊗

X
A dµ ∨

∫

⊗

X
B dµ,

(iii)
∫

⊗

X
(c ⊗ A) dµ ≥ c ⊗

∫

⊗

X
A dµ,

(iv)
∫

⊗

X (c → A) dµ ≤ c →
∫

⊗

X A dµ,

hold for any X ∈ M, A, B ∈ FL(M) and c ∈ L.
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Proof. It is easy to see that the statements are true for X = 1∅. Let us
suppose that X 6= 1∅. Analogously as in the proof of the isotonicity of µ∗ in
Theorem 3.5, one checks easily that

∫

⊗

X
A dµ ≤

∫

⊗

X
B dµ, whenever A ⊆ B.

Simple consequences of this isotonicity are the statements (i) and (ii). Let
A ∈ FL(M) and c ∈ L. Then we have
∫

⊗

X

(c ⊗ A) dµ =
∨

Y ∈MX\{1∅}

∧

m∈Supp(Y )

(c ⊗ A(m) ⊗ µ(Y )) ≥

∨

Y ∈MX\{1∅}

c ⊗
∧

m∈Supp(Y )

(A(m) ⊗ µ(Y )) =

c ⊗
∨

Y ∈MX\{1∅}

∧

m∈Supp(Y )

(A(m) ⊗ µ(Y )) = c ⊗

∫

⊗

X

A dµ,

since (a) and (c) of Theorem 2.1 hold. Finally, we can write
∫

⊗

X

(c → A) dµ =
∨

Y ∈MX\{1∅}

∧

m∈Supp(Y )

((c → A(m)) ⊗ µ(Y )) ≤

∨

Y ∈MX\{1∅}

∧

m∈Supp(Y )

(c → (A(m) ⊗ µ(Y ))) =

∨

Y ∈MX\{1∅}

(

c →
∧

m∈Supp(Y )

(A(m) ⊗ µ(Y ))
)

≤

c →
∨

Y ∈MX\{1∅}

∧

m∈Supp(Y )

(A(m) ⊗ µ(Y )) = c →

∫

⊗

X

A dµ,

where we use that (a → b)⊗ c ≤ a → (b⊗ c) holds in each residuated lattice. 2

Theorem 3.7. Let (M,M, µ) be a fuzzy measure space and c ∈ L. Then we
have

(i)
∫

⊗
(c ⊗ 1X) dµ = c ⊗ µ∗(1X) for any X ⊆ M ,

(ii)
∫

⊗
(c ⊗ 1X) dµ = c ⊗ µ(1X) for any X ⊆ M such that 1X ∈ M,

(iii)
∫

⊗
1X dµ = µ(1X) for any X ⊆ M such that 1X ∈ M,

(iv)
∫

⊗
c dµ = c.

Proof. Let X ⊆ M be an arbitrary set. Then we have
∫

⊗

(c ⊗ 1X) dµ =
∨

Y ∈M\{1∅}

∧

m∈Supp(Y )

((c ⊗ 1X(m)) ⊗ µ(Y )) =

∨

Y ∈MX

(c ⊗ µ(Y )) = c ⊗
∨

Y ∈MX

µ(Y ) = c ⊗ µ∗(1X),

where (a) of Theorem 2.1 is used, and (i) is proved. Since µ∗(A) = µ(A) for any
A ∈ M, then (ii) is true. The statements (iii) and (iv) are simple consequences
of (ii).
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Theorem 3.8. Let (M,M, µ) be a fuzzy measure space. If X ∈ M is such that
1Supp(Y ) ∈ MX for any Y ∈ MX , then, for any A ∈ FL(M), we have

∫

⊗

X

A dµ =
∨

1Y ∈PX\{1∅}

∧

m∈Y

(A(m) ⊗ µ(1Y )), (19)

where PX = {1Supp(Z) | Z ∈ MX}.

Proof. This is a straightforward consequence of the fact that 1Supp(Y ) ∈ MX

for any Y ∈ MX and µ(1Supp(Y )) ≥ µ(Y ). 2

Theorem 3.9. Let L be a complete MV-algebra, (M,M, µ) be a fuzzy measure
space, A ∈ FL(M) and X ∈ M. Then

∫

⊗

X

A dµ =
∨

Y ∈MX\{1∅}

(

µ(Y ) ⊗
∧

m∈Supp(Y )

A(m)
)

. (20)

Moreover, we have

∫

⊗

X

(c ⊗ A) dµ = c ⊗

∫

⊗

X

A dµ (21)

for any c ∈ L.

Proof. Formula (20) follows from the equality in (d) of Theorem 2.1 holding
in each MV-algebra. The equality (21) is trivial for X = 1∅. Let us suppose
that X 6= 1∅. Then we have

∫

⊗

X

(c ⊗ A) dµ =
∨

Y ∈MX\{1∅}

∧

m∈Supp(Y )

(c ⊗ A(m) ⊗ µ(Y )) =

c ⊗
∨

Y ∈MX\{1∅}

∧

m∈Supp(Y )

(A(m) ⊗ µ(Y )) = c ⊗

∫

⊗

X

A dµ,

where (a) and the equality in (d) of Theorem 2.1 are applied. 2

Theorem 3.10. Let g be an isomorphism between fuzzy measure spaces (M,M, µ)
and (M ′,M′, µ′) and X ∈ M. Then we have

∫

⊗

X

A dµ =

∫

⊗

g(X)

g(A) dµ′ (22)

for any A ∈ FL(M).
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Proof. Obviously, if X ∈ M, then g(X) ∈ M′ and g(MX \ {1∅}) = M′
g(X) \

{1∅}. If f : M → M ′ is the bijective mapping such that g = f→, then we have

∫

⊗

X

A dµ =
∨

Y ∈MX\{1∅}

∧

m∈Supp(Y )

(A(m) ⊗ µ(Y )) =

∨

g(Y )∈M′
g(X)

\{1∅}

∧

f(m)∈Supp(g(Y ))

(g(A)(f(m)) ⊗ µ′(g(Y ))) =

∨

Z∈M′
g(X)

\{1∅}

∧

n∈Supp(Z)

(g(A)(n) ⊗ µ′(Z)) =

∫

⊗

g(X)

g(A) dµ′

for any A ∈ FL(M). 2

As we have mentioned above, our approach to fuzzy quantifiers seems to
be similar to the Sugeno approach. Let us show that the Sugeno integral is a
special case of our proposed integral. Since the Sugeno integral is defined under
different presumptions5, we will use a slight modification of its definition with
respect to the fuzzy measurable spaces over complete residuated lattices.

Let L be a complete residuated lattice and (M,M) be a fuzzy measurable
space such that A ∩ B ∈ M for any A, B ∈ M.6 Denote Aa = {m | m ∈
M & A(m) ≥ a}. We say that an L-fuzzy set A is M-Sugeno measurable, if
1Aa

∈ M for any a ∈ L. The Sugeno integral is given, for any fuzzy measure
space (M,M, µ) with A ∩ B ∈ M for any A, B ∈ M, for any M-Sugeno
measurable L-fuzzy set A and for any X ∈ M, by

∫

X

A dµ =
∨

a∈L

(a ∧ µ(1Aa
∩ X)). (23)

As we can see the Sugeno integral uses the operation of infimum. This leads us
to restrict ourselves to complete Heyting algebras, where ⊗ = ∧.

Theorem 3.11. Let L be a complete Heyting algebra, (M,M, µ) be a fuzzy
measure space with A∩B ∈ M for any A, B ∈ M, A be a M-Sugeno measurable
L-fuzzy set and X ∈ M. Then

∫

X A dµ =
∫

⊗

X A dµ.

Proof. Recall that ⊗ = ∧ in Heyting algebras. Obviously, the equality is triv-
ial for X = 1∅. Let us suppose that X 6= 1∅ and A be a M-Sugeno measurable

5Notably, in the standard definitions, the ranges of considered functions are subsets of non-
negative real numbers (see [6, 13, 27]), but, in our case, the ranges of functions are subsets of
the support of a given residuated lattice.

6Note that, according to Theorem 2.2, each complete residuated lattice satisfying the law
of double negation has this property. Nevertheless, there are fuzzy measurable spaces which
keep this property, but L does not satisfy the law of double negation. A simple example is
a fuzzy measurable space (M,M) such that M ⊆ PL(M) and L is an arbitrary complete
residuated lattice (e.g. L[0,∞] from Example 2.2).
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L-fuzzy set. First, let Y ∈ MX \ {1∅} and put a =
∧

m∈Supp(Y ) A(m). Obvi-

ously, Y ⊆ 1Supp(Y ) and if m ∈ Supp(Y ), then A(m) ≥ a and thus m ∈ Aa.
Hence, we easily obtain Y = Y ∩X ⊆ 1Aa

∩X which implies µ(Y ) ≤ µ(1Aa
∩X).

Then we can write

∧

m∈Supp(Y )

(A(m) ∧ µ(Y )) = a ∧ µ(Y ) ≤ a ∧ µ(1Aa
∩ X) ≤

∫

X

A dµ,

and hence
∫

⊗

X

A dµ ≤

∫

X

A dµ.

Conversely, let a ∈ L be any element. If 1Aa
∩ X = 1∅, then a ∧ µ(1Aa

∩
X) = ⊥ ≤

∫

⊗

X A dµ. Let us suppose that 1Aa
∩ X 6= 1∅. One checks easily

that Supp(1Aa
∩ X) ⊆ Supp(1Aa

) which implies a ≤
∧

m∈Supp(1Aa ) A(m) ≤
∧

m∈Supp(1Aa∩X) A(m). Then we can write

a ∧ µ(1Aa
∩ X) ≤

(

∧

m∈Supp(1Aa∩X)

A(m)
)

∧ µ(1Aa
∩ X) =

∧

m∈Supp(1Aa∩X)

(A(m) ∧ µ(1Aa
∩ X)) ≤

∫

⊗

X

A dµ.

Hence, we obtain
∫

X

A dµ ≤

∫

⊗

X

A dµ (24)

and the proof is finished. 2

Remark 3.11. It is easy to see (from the proof of the previous theorem) that
an analogical result may be obtained for the fuzzy integrals defined by (23),
where ∧ is replaced by ⊗, if the following equality

a ⊗
∧

i∈I

bi =
∧

i∈I

(a ⊗ bi) (25)

holds for any a ∈ L and any set {bi | i ∈ I} of elements of L in the given complete
residuated lattice. Note that (25) is satisfied, for example, in the complete MV-
algebras (see [2, 23]) or in the complete residuated lattices determined by the
continuous t-norms (see [11]).

3.3. →-fuzzy integral

In this part, we will introduce another type of fuzzy integral that can be
defined on an arbitrary complementary fuzzy measure space (M,M, ν). The
form of this integral is motivated by our need to describe another class of models
of L-fuzzy quantifiers of the type 〈1〉 which are kind of negations of the previous
ones. Later we will show that this class of models is bounded by the models of
determiners no and not all.
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Definition 3.8. Let (M,M, ν) be a complementary fuzzy measure space, A ∈
FL(M) and X be a M-measurable L-fuzzy set. The →-fuzzy integral of A on
X is given by

∫

→

X

A dν =
∧

Y ∈MX\{1∅}

∨

m∈Supp(Y )

(A(m) → ν(Y )). (26)

If X = 1M , then we write
∫

→
A dν.

Remark 3.12. It is easy to see that
∫

→

1∅
A dν =

∧

∅ = ⊤ for any A ∈ FL(M)

and
∫

→

X
A dν ≤

∫

→

Y
A dν, whenever Y ⊆ X . Since

∫

→

1M
A dν 6= ⊥ in general,

νA(X) =
∫

→

X
A dν does not define a complementary fuzzy measure on (M,M)

in the sense of Definition 3.3.

Theorem 3.12. Let (M,M, ν) be a complementary fuzzy measure space. Then
ν′ : FL(M) → L defined by

ν′(A) =

∫

→

A dν (27)

is a complementary fuzzy measure on (M,FL(M)).

Proof. This is analogous to the proof of Theorem 3.5, where the antitonicity
of → in the first argument is applied.

Theorem 3.13. Let (M,M, ν) be a complementary fuzzy measure space. Then

(i)
∫

→

X
(A ∩ B) dν ≥

∫

→

X
A dν ∨

∫

→

X
B dν,

(ii)
∫

→

X
(A ∪ B) dν ≤

∫

→

X
A dν ∧

∫

→

X
B dν,

(iii)
∫

→

X (c ⊗ A) dν ≤ c →
∫

→

X A dν,

(iv)
∫

→

X
(c → A) dν ≥ c ⊗

∫

→

X
A dν,

hold for any X ∈ M, A, B ∈ FL(M) and c ∈ L.

Proof. Analogously to the proof of the antitonicity of µ∗ in Theorem 3.12, one
checks easily that

∫

→

X A dν ≥
∫

→

X B dν, whenever A ⊆ B. Simple consequences
of this antitonicity are the statements (i) and (ii). Let A ∈ FL(M) and c ∈ L.
Then we have
∫

→

X

(c ⊗ A) dν =
∧

Y ∈MX\{1∅}

∨

m∈Supp(Y )

((c ⊗ A(m)) → ν(Y )) =

∧

Y ∈MX\{1∅}

∨

m∈Supp(Y )

(c → (A(m) → ν(Y ))) ≤

c →
∧

Y ∈MX\{1∅}

∨

m∈Supp(Y )

(A(m) → ν(Y )) = c →

∫

→

X

A dν,
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where (a ⊗ b) → c = a → (b → c) holding in each residuated lattice, (b) and
(e) of Theorem 2.1 are used. Since a ⊗ (b → c) ≤ (a → b) → c holds in each
residuated lattice, then using (a) and (d) of Theorem 2.1 we can write

∫

→

X

(c → A) dν =
∧

Y ∈MX\{1∅}

∨

m∈Supp(Y )

((c → A(m)) → ν(Y )) ≥

∧

Y ∈MX\{1∅}

∨

m∈Supp(Y )

(c ⊗ (A(m) → ν(Y ))) ≥

c ⊗
∧

Y ∈MX\{1∅}

∨

m∈Supp(Y )

(A(m) → ν(Y )) = c ⊗

∫

→

X

A dν

and the proof is finished. 2

Theorem 3.14. Let (M,M, ν) be a complementary fuzzy measure space and
c ∈ L. Then we have

(i)
∫

→
(c ⊗ 1X) dν = c → ν∗(1X) for any X ⊆ M ,

(ii)
∫

→
(c ⊗ 1X) dν = c → ν(1X) for any X ⊆ M such that 1X ∈ M,

(iii)
∫

→
1X dν = ν(1X) for any X ⊆ M such that 1X ∈ M,

(iv)
∫

→
c dν = ¬c.

Proof. Let X ⊆ M be arbitrary. Then using (b) of Theorem 2.1 we have

∫

→

(c ⊗ 1X) dν =
∧

Y ∈M\{1∅}

∨

m∈Supp(Y )

((c ⊗ 1X(m)) → ν(Y )) =

∧

Y ∈MX\{1∅}

(c → ν(Y )) = c →
(

∧

Y ∈MX\{1∅}

ν(Y )
)

= c → ν∗(1X),

since
∨

m∈Supp(Y )((c ⊗ 1X(m)) → ν(Y )) = ⊤ for any Y 6∈ MX \ {1∅}, and (i)

is proved. The statement (ii) follows from (i) and the equality ν∗(A) = ν(A)
holding for any A ∈ M and (iii) and (iv) are simple consequences of (ii). 2

Theorem 3.15. Let (M,M, ν) be a complementary fuzzy measure space. If
X ∈ M is such that 1Supp(A) ∈ MX for any A ∈ MX , then, for any A ∈
FL(M), we have

∫

→

X

A dν =
∨

1Y ∈PX\{1∅}

∧

m∈Y

(A(m) → ν(1Y )), (28)

where PX = {1Supp(A) | A ∈ MX}.

Proof. This is a straightforward consequence of the fact that 1Supp(A) ∈ MX

for any A ∈ MX and ν(1Supp(A)) ≤ ν(A). 2
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Theorem 3.16. Let L be a complete MV-algebra, (M,M, µ) be a complemen-
tary fuzzy measure space, A ∈ FL(M) and X ∈ M. Then

∫

→

X

A dν =
∧

Y ∈MX\{1∅}

(

(
∧

m∈Supp(Y )

A(m)) → ν(Y )
)

. (29)

Moreover, we have
∫

→

X

(c ⊗ A) dν = c →

∫

→

X

A dν (30)

for any c ∈ L.

Proof. The statement (29) is a simple consequence of the equality in (f) of
Theorem 2.1 holding in each MV-algebra. The equality (30) is trivial for X = 1∅.
Let us suppose that X 6= 1∅. Then we have

∫

→

X

(c ⊗ A) dν =
∧

Y ∈MX\{1∅}

∨

m∈Supp(Y )

(c ⊗ A(m)) → ν(Y ) =

∧

Y ∈MX\{1∅}

∨

m∈Supp(Y )

(c → (A(m) → ν(Y ))) =

c →
∧

Y ∈MX\{1∅}

∨

m∈Supp(Y )

(A(m) → ν(Y )) = c →

∫

→

X

A dν,

where (a⊗ b) → c = a → (b → c) holding in each residuated lattice, (b) and the
equality in (e) of Theorem 2.1 are used. 2

Theorem 3.17. Let g be an isomorphism between complementary fuzzy mea-
sure spaces (M,M, ν) and (M ′,M′, ν′) and X ∈ M. Then we have

∫

→

X

A dν =

∫

→

g(X)

g(A) dν′ (31)

for any A ∈ FL(M).

Proof. This is analogous to the proof of Theorem 3.10. 2

The following statement shows that if we consider a complete MV-algebra, then
we can restrict ourselves, for example, to ⊗-fuzzy integrals, since each →-fuzzy
integral is uniquely determined by the negation of a suitable ⊗-fuzzy integral.

Theorem 3.18. Let L be a complete MV-algebra and (M,M) be a fuzzy mea-
surable space. Then

∫

→

X

A dν′ = ¬

∫

⊗

X

A dµ, (32)

∫

⊗

X

A dµ′ = ¬

∫

→

X

A dν (33)

hold for any fuzzy measure µ and complementary fuzzy measure ν, where ν′ =
¬µ and µ′ = ¬ν.
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Proof. We will prove just the equality (32). The equality (33) could be proved
analogously. According to (a ⊗ b) → c = a → (b → c), (c) and the equality in
(f) of Theorem 2.1 holding in each MV-algebra, we can write

¬

∫

⊗

X

A dµ =





∨

Y ∈MX\{1∅}

∧

m∈Supp(Y )

(A(m) ⊗ µ(Y ))



→ ⊥ =

∨

Y ∈MX\{1∅}

∧

m∈Supp(Y )

((A(m) ⊗ µ(Y )) → ⊥) =

∨

Y ∈MX\{1∅}

∧

m∈Supp(Y )

(A(m) → (µ(Y )) → ⊥)) =

∫

→

X

A dν′,

where, according to Theorem 3.1, ν′ = ¬µ is a complementary fuzzy measure
on the fuzzy measurable space (M,M). 2

Let us show a simple example demonstrating that the equalities in the previ-
ous theorem need not be satisfied, if general residuated lattices are considered,
and the usage of the →-fuzzy integral can be advantageous in some situations.

Example 3.13. Let L[0,1] be the complete Heyting algebra (see Example 2.2).
One checks easily that ¬a = 0, if a ∈ (0, 1], and ¬0 = 1. Consider M = (0,∞]
and X = (0, a), where a ∈ [1,∞). Obviously, M = {1∅, 1X , 1X , 1M} is an
algebra of L[0,1]-fuzzy sets. Further, let us define a fuzzy measure on (M,M)
by µ(1∅) = µ(1X) = 0 and µ(1X) = µ(1M ) = 1. The fuzzy measure µ may be
interpreted as a measure of the size of L[0,1]-fuzzy sets from M with respect to
1M and thus 1X and 1M can be viewed as “big” L[0,1]-fuzzy sets contrary to 1∅
and 1X which are “small” L[0,1]-fuzzy sets. Finally, let us define an L[0,1]-fuzzy
set A : M → [0, 1] as follows

A(m) =

{

1
m , m ∈ X,
0, otherwise.

(34)

According to Theorem 3.15, we can write
∫

⊗

A dµ =
∨

1Y ∈{1X ,1X ,1M}

∧

m∈Y

(A(m) ∧ µ(1Y )) =
∧

m∈X

1

m
= 0.

An interpretation of the obtained value is that A is not a “big” L[0,1]-fuzzy
set with respect to 1M . Obviously, if an L[0,1]-fuzzy set is not “big”, then it
does not mean that it is “small”. Hence, to investigate, whether an L[0,1]-fuzzy
set is “small”, it seems to be advantageous to use →-fuzzy integral, where the
complementary fuzzy measure is defined by ν′(∅) = ν′(X) = 1 and ν′(X) =
ν′(M) = 0 (i.e., ν′ = ¬µ). Then we have
∫

→

A dν′ =
∨

1Y ∈{1X ,1X ,1M}

∧

m∈Y

(A(m) → ν′(1Y )) =
∨

m∈X

¬
1

m
=
∨

m∈X

0 = 0
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and, hence, we obtain

¬

∫

⊗

A dµ = ¬0 = 1 6= 0 =

∫

→

A dν′.

The fact that
∫

→
A dν′ = 0 indicates that A is not a “small” L[0,1]-fuzzy set with

respect to 1M . Clearly, both results seem to be right, because A is “smaller”
than 1X , but “bigger” than 1X with respect to the defined measurement.

4. L-fuzzy quantifiers of the type 〈1〉

In [10], we defined the monadic L-fuzzy quantifiers of the type 〈1n, 1〉. Here,
we restrict ourselves to their special subclass, namely, to the monadic L-fuzzy
quantifiers of the type 〈1〉 that can be defined as follows.

Definition 4.1. Let L be a complete residuated lattice, M be a universe (pos-
sibly empty7). A mapping QM : FL(M) → L is called a monadic L-fuzzy
quantifier of the type 〈1〉 limited to M .

Definition 4.2. An unlimited (finite, countable) monadic L-fuzzy quantifier of
the type 〈1〉 is a functional Q assigning to each (finite, countable) universe M a
monadic L-fuzzy quantifier QM of the type 〈1〉 limited to M .

In the following text, we will occasionally omit some of the terms “unlimited”,
“monadic” and “of the type 〈1〉” and we will say only “L-fuzzy quantifier” or
“unlimited L-fuzzy quantifier”, if no confusion can arise. Let us demonstrate
several examples of unlimited L-fuzzy quantifiers that are interpretations of
well-known determiners in natural language (see [10]). We will use expressions
all, some, not all and no as generic expressions which stand for natural language
quantifiers of the type 〈1〉, e.g. “everything”, “someone”, “not everyone” and
“nothing”, respectively.

Example 4.1. Let L be a complete residuated lattice. Then

(all)M (A) =
∧

m∈M

A(m),

(some)M (A) =
∨

m∈M

A(m),

(not all)M (A) =
∨

m∈M

¬A(m),

(no)M (A) =
∧

m∈M

¬A(m),

7To define the behavior of generalized quantifiers for the empty universe is important in
some situations. It happens, for example, when we study type 〈1, 1〉 quantifiers which are
obtained from type 〈1〉 quantifiers by means of relativization. Then it is vital to have values
of e.g. (some)∅(1∅) defined, see discussion in [24], p. 137.
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where M is an arbitrary universe and A ∈ FL(M), define unlimited L-fuzzy
quantifiers of the type 〈1〉. Obviously, the definitions of all and some (interpre-
tations of determiners all and some) are the same as the interpretations of ∀
and ∃ in fuzzy logic, respectively. The others are negations of the previous ones.
Notice that (all)∅(∅) = (no)∅(∅) = ⊤ and (some)∅(∅) = (not all)∅(∅) = ⊥.

Example 4.2. Let L be a residuated lattice. Then

(John)M (A) =

{

A(mJohn), if mJohn ∈ M ,
⊥, otherwise,

(neither Bill nor Jack)M (A) =

{

¬(A(mBill) ∧ A(mJack)), if {mBill, mJack} ⊆ M ,
⊤, otherwise,

where M is an arbitrary universe and A ∈ FL(M), define unlimited L-fuzzy
quantifiers of the type 〈1〉. These quantifiers are examples of noun phrases,
which, according to Montague [18] and others, can be advantageously under-
stood as type 〈1〉 quantifiers.

Now, let us recall some well-known semantic properties that are usually investi-
gated in the case of the L-fuzzy quantifiers of the type 〈1〉. For more information
as well as examples we refer to [3, 10].

Definition 4.3. Let Q, P be L-fuzzy quantifiers. Then we say that Q is less
than or equal to P and denote it by Q ≤ P , if, for any non-empty universe M

and A ∈ FL(M), we have

QM (A) ≤ PM (A). (35)

Further, we say that Q is equal to P and denote it by Q = P , if Q ≤ P and
P ≤ Q.

Definition 4.4. Let Q, P be L-fuzzy quantifiers. We say that Q is identical
to P and denote it by Q ≡ P , if for any (possibly empty) universe M and
A ∈ FL(M), we have

QM (A) = PM (A). (36)

Remark 4.3. Note that the behavior of L-fuzzy quantifiers for the empty uni-
verse is often unpredictable (e.g., (all)M (A) ≤ (some)M (A) for all M 6= ∅, but
(some)∅(1∅) ≤ (all)∅(1∅)), therefore, we require only non-empty universes for
their comparison in the first definition. Moreover, this restriction seems to be
insignificant from the practical point of view. The second definition of identity
of L-fuzzy quantifiers gives useful denotation.

Definition 4.5. An L-fuzzy quantifier Q is permutation-invariant, if for arbi-
trary universe M , bijective mapping f : M → M and A ∈ FL(M) we have

QM (A) = QM (f→(A)). (37)

The set of all permutation-invariant L-fuzzy quantifiers is denoted by PI.
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Definition 4.6. An L-fuzzy quantifier Q is isomorphism-invariant, if for arbi-
trary universe M , bijective mapping f : M → M ′ and A ∈ FL(M) we have

QM (A) = QM ′(f→(A)). (38)

The set of all isomorphism-invariant L-fuzzy quantifiers is denoted by ISOM.

Definition 4.7. An L-fuzzy quantifier Q satisfies extension, if for arbitrary
universes M, M ′ with M ⊆ M ′ and A ∈ FL(M) we have

QM (A) = QM ′(A). (39)

The set of all L-fuzzy quantifiers satisfying extension is denoted by EXT.

Definition 4.8. Let Q be an L-fuzzy quantifier. We say that Q is mono-
tonically non-decreasing, if for arbitrary universe M and A ∈ FL(M) and
A′ ∈ FL(M) with A ⊆ A′ we have

QM (A) ≤ QM (A′) (40)

and Q is monotonically non-increasing, if for arbitrary universe M and A ∈
FL(M) and A′ ∈ FL(M) with A′ ⊆ A we have

QM (A) ≤ QM (A′). (41)

For our purpose we will consider the following stronger definition of L-similarity
of fuzzy sets. Recall that a mapping R : FL(M) × FL(M) → L is called an
L-fuzzy relation on FL(M). Let [A R B] denote the degree in which L-fuzzy
sets A and B belongs to the L-fuzzy relation R, i.e., [A R B] = R(A, B). Let
us define an L-fuzzy relation ≡M : FL(M) × FL(M) → L by [A ≡M B] = ⊤,
if there is a bijective mapping f of M onto M such that f→(A) = B, and
[A ≡M B] = ⊥, otherwise.

Definition 4.9. An L-fuzzy relation ≈M : FL(M) × FL(M) → L is called an
L-permutation equivalence on FL(M), if

[A ≡M B] ≤ [A ≈M B] (42)

[A ≈M B] = [B ≈M A] (43)

[A ≈M B] ≤ [A ≈M B] (44)

[A ≈M B] ⊗ [B ≈M C] ≤ [A ≈M C] (45)

hold for arbitrary A, B, C ∈ FL(M).

Obviously, (43) and (45) are the common axioms of symmetry and transitivity,
respectively. Further, (42) could be understood as a generalization of reflexivity
from the permutation isomorphism point of view. Let A, B ⊆ M are L-fuzzy
sets which are similar. Then one could wish that the complements of A and B

are also similar (at least in the degree in which A and B are L-equivalent). This
idea is expressed in (44).
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Example 4.4 (see [10]). Let L be a complete residuated lattice, M be any
countable universe and Perm(M) denote the set of all bijective mappings of M

onto M . Then

[A ≈
⊗

M B] =
∨

f∈Perm(M)

⊗

m∈M

(A(m) ↔ B(m)) (46)

defines the L-permutation equivalence ≈
⊗

M on FL(M).

Example 4.5 (see [10]). Let L be a complete residuated lattice, M be any
universe and Perm(M) denote the set of all bijective mappings of M onto M .
Then

[A ≈
∧

M B] =
∨

f∈Perm(M)

∧

m∈M

(A(m) ↔ B(m)) (47)

defines the L-permutation equivalence ≈
∧

M on FL(M).

Definition 4.10. Let ≈ be a class of L-permutation equivalences such that for
each (finite, countable) universe M there is a unique ≈M from ≈ defined on
FL(M). A (finite, countable) L-fuzzy quantifier Q of the type 〈1〉 is extensional
with respect to ≈, if it holds that

[A ≈M A′] ≤ QM (A) ↔ QM (A′) (48)

for each (finite, countable) universe M and A, A′ ∈ FL(M). The set of all
extensional L-fuzzy quantifiers with respect to ≈ is denoted by EXTENS(≈).

5. L-fuzzy quantifiers of the type 〈1〉 determined by fuzzy measures

5.1. Quantifiers determined by fuzzy measures of L-fuzzy sets

Let S(M) denote a set of fuzzy measure spaces defined on a universe M .
For better readability, we will denote by

∫

⊗

(M,M)

A dµ (49)

the ⊗-fuzzy integral
∫

⊗
A dµ defined over a fuzzy measure space (M,M, µ).

Now we can define L-fuzzy quantifiers limited to M using fuzzy measure spaces
from a set S(M) as follows.

Definition 5.1. Let S(M) be a (possibly empty) set of fuzzy measure spaces
defined on a non-empty universe M . An L-fuzzy quantifier of the type 〈1〉
limited to M determined by the fuzzy measure spaces from S(M) is a mapping
QS(M) : FL(M) → L defined by

QS(M)(A) =
∨

(M,M,µ)∈S(M)

∫

⊗

(M,M)

A dµ. (50)
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Remark 5.1. It is easy to see that if S(M) = ∅ for some (possibly non-empty
set) M , then we have QS(M)(A) = ⊥ for any A ∈ FL(M).

It is easy to see that S(∅) = ∅ (there is no fuzzy measure space with M = ∅).
Hence, each unlimited L-fuzzy quantifier Q based only on the formula (50) has
Q∅(1∅) = QS(∅)(1∅) = ⊥. However, for example, we have (all)∅(1∅) = ⊤. This
motivates us to exclude the determination of Q∅(1∅) by (50) in the following
definition of unlimited L-fuzzy quantifier.

Definition 5.2. Let S be a functional assigning to each universe M a set S(M)
of fuzzy measure spaces defined on M . An unlimited L-fuzzy quantifier of the
type 〈1〉 determined by fuzzy measures over S is an unlimited L-fuzzy quantifier
of the type 〈1〉 assigning an L-fuzzy quantifier QS(M) determined by the fuzzy
measure spaces from S(M) to each non-empty universe M .

Example 5.2. Let M be a non-empty universe and Si(M) = {(M,FL(M), µi)},
where, for i = 1, 2, we have

µ1(A) =

{

⊥, if A = 1∅,
⊤, otherwise

(51)

and

µ2(A) =

{

⊤, if A = 1M ,

⊥, otherwise.
(52)

If Q is determined by the fuzzy measures from S1(M) for all M 6= ∅, then
Q = some. In fact, if M 6= ∅ and A ∈ FL(M), then

QM (A) = QS(M)1
(A) =

∫

⊗

(M,FL(M))

A dµ1 =
∨

m∈M

µ1({m}) ⊗ A(m) =

∨

m∈M

⊤⊗ A(m) =
∨

m∈M

A(m) = (some)M (A).

According to Definition 4.3, we have Q = some. One checks easily that Q

defined as QS2(M) for all M 6= ∅ is equal to all.

Example 5.3. Let L[0,1] be the Heyting algebra from Example 2.2 and

S(M) = {(M,FL(M), µ)}.

One checks easily, using Theorem 3.8, that

QS(M)(A) =
∨

1Y ∈PL(M)\{1∅}

(

µ(1Y ) ∧
∧

m∈Y

A(m)

)

,

because ⊗ coincides with ∧ in Heyting algebras. Note that, according to Theo-
rem 3.11, the value QS(M)(A) may be equivalently computed using the Sugeno
integral.
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Let M be a non-empty countable universe and µf denote one of the fuzzy
measures on (M,FL(M)) defined by (9) and (10) in Example 3.5. Putting

QS(M)(A) =
∨

1Y ∈PL(M)\{1∅}

(

µf (1Y ) ∧
∧

m∈Y

A(m)

)

for any non-empty countable universe M and Q∅(1∅) = 1, we obtain an unlim-
ited countable L-fuzzy quantifier of the type 〈1〉 which is an interpretation of
the quantifier many things . Define

µ
1/2
f (A) =

{

1, if µf (A) ≥ 1
2 ,

0, otherwise,

for any A ∈ FL(M). Then putting

QS(M)(A) =
∨

1Y ∈PL(M)\{1∅}

(

µ
1/2
f (1Y ) ∧

∧

m∈Y

A(m)

)

for any non-empty countable universe M and Q∅(1∅) = 1, we obtain an unlim-
ited countable L-fuzzy quantifier of the type 〈1〉 which is an interpretation of the
quantifier at least half things . If we restrict ourselves to the class of all finite L-
fuzzy quantifiers, then one checks easily (using the equality µf (A) = µf (h→(A))
from Example 3.5) that both defined quantifiers are PI and ISOM. Moreover,
they are EXTENS(≈∧) and EXTENS(≈⊗) (see Theorem 5.6 and 5.7).

Theorem 5.1. For each unlimited L-fuzzy quantifier Q of the type 〈1〉 deter-
mined by fuzzy measures over S, we have

all ≤ Q ≤ some. (53)

Proof. Let Q be an unlimited L-fuzzy quantifier determined by fuzzy measures
over S. Let M be any non-empty universe. Obviously, for each (M,M, µ) ∈
S(M), we have µ2(A) ≤ µ(A) ≤ µ1(A) for any A ∈ FL(M). According to
Example 5.2, we easy obtain

(all)M (A) ≤ QS(M)(A) ≤ (some)M (A)

for any A ∈ FL(M) and the proof is finished. 2

In the following part, we will investigate the semantic properties of L-fuzzy
quantifiers determined by fuzzy measures. The following theorem states a suf-
ficient condition for L-fuzzy quantifiers to be permutation invariant.

Theorem 5.2. Let Q be an unlimited L-fuzzy quantifier of the type 〈1〉 deter-
mined by fuzzy measures over S such that for each non-empty universe M we
have S(M) = [(M,M, µ)]. Then Q ∈ PI.
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Proof. The condition (37) is trivially satisfied for M = ∅. Let us suppose that
M 6= ∅ and S(M) = [(M,M, µ)]. According to the definition of [(M,M, µ)],
we have f→(M,M′, µ′) ∈ S(M) for any (M,M′, µ′) ∈ S(M) and any bijective
mapping f : M → M . According to Theorem 3.10 and the form of S(M), for
each A ∈ FL(M) and each bijective mapping f : M → M , we can write

QS(M)(A) =
∨

(M,M′,µ′)∈S(M)

∫

⊗

(M,M′)

A dµ′ =

∨

(M,M′,µ′)∈S(M)

∫

⊗

f→(M,M′)

f→(A) dµ′
f→ =

∨

(M,M′,µ′)∈S(M)

∫

⊗

(M,M′)

f→(A) dµ′ = QS(M)(f
→(A)).

and thus Q ∈ PI. 2

Note that the specification of a necessary condition for L-fuzzy quantifiers being
permutation invariant seems to be immensely complicated and it is still an
open problem. In the following theorem, let us denote fuzzy measure spaces
(M,M, µ) and (M ′,M′, µ′) by M and M′, respectively.

Theorem 5.3. Let Q be an unlimited L-fuzzy quantifier of the type 〈1〉 deter-
mined by fuzzy measures over S such that, for any universes M , M ′ with the
same cardinality, we have

(i) if M ∈ S(M) and f : M → M ′ is a bijection, then f→(M) ∈ S(M ′),

(ii) if M ∈ S(M) and M′ ∈ S(M ′), then M and M′ are isomorphic.

Then Q ∈ ISOM.

Proof. Let Q be an unlimited L-fuzzy quantifier of the type 〈1〉 determined by
fuzzy measures over S such that the conditions (i) and (ii) are satisfied for any
equipotent universes. The condition (38) is trivially satisfied for M = ∅. Let M

be a non-empty universe, f : M → M ′ be a bijective mapping and A ∈ FL(M).
We have to show that

QS(M)(M)(A) = QS(M ′)(f
→(A)).

According to the presumptions (i) and (ii) and Theorem 3.10, we can write

QS(M)(A) =
∨

(M,M,µ)∈S(M)

∫

⊗

(M,M)

A dµ =

∨

(M,M,µ)∈S(M)

∫

⊗

f→(M,M)

f→(A) dµf→ =

∨

(M ′,M′,µ′)∈S(M ′)

∫

⊗

(M ′,M′)

f→(A) dµ′ = QS(M ′)(f
→(A)).

Hence, Q ∈ ISOM. 2
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Theorem 5.4. Let Q be an unlimited L-fuzzy quantifier of the type 〈1〉 deter-
mined by fuzzy measures over S. Then Q is a non-decreasing L-fuzzy quantifier.

Proof. This is a straightforward consequence of the fact that ⊗-fuzzy integrals
are non-decreasing mappings and ⊗ is isotonic in both arguments. 2

Remark 5.4. The following theorem shows that some is the only type 〈1〉 quan-
tifier with the extension (EXT) property which can be successfully modeled by
our L-fuzzy quantifiers of the type 〈1〉 determined by fuzzy measures. However,
the quantifier all and quantifiers which are interesting from the point of view of
fuzzy logic, for example “at least half things”, “many things”, “most things” do
not possess the extension property, and we can model them, see Examples 5.2
and 5.3. Nevertheless, quantifiers which refer to absolute cardinalities, e.g. “at
least three things”, possess the extension property, therefore they cannot be
successfully modeled by our quantifiers.

Theorem 5.5. Let Q be an unlimited L-fuzzy quantifier of the type 〈1〉 deter-
mined by fuzzy measures over S. Then Q ∈ EXT if and only if Q ≡ some.

Proof. Let Q be an unlimited L-fuzzy quantifier of the type 〈1〉 determined
by fuzzy measures over S. First, let us suppose that Q ≡ some. Recall that,
according to Example 5.2, the L-fuzzy quantifier some is an unlimited L-fuzzy
quantifier determined by fuzzy measures over S1, i.e., (some)M = QS1(M) for
any non-empty universe M . Let M , M ′ be any universes with M ⊆ M ′. If
M = ∅, then trivially

Q∅(1∅) = ⊥ = QS(M ′)1(1∅)

holds for any universe M ′. If M 6= ∅ and A ∈ FL(M), then

QS(M)1
(A) =

∨

m∈M

A(m) =
∨

m∈M ′

A(m) = QS(M ′)1(A).

Hence, Q ∈ EXT. Conversely, let us suppose that Q ∈ EXT. We have to show
that Q ≡ some. According to Theorem 3.5, we have

∫

⊗

(M,M) 1∅ dµ = ⊥ for any

non-empty universe M and (M,M, µ) ∈ S(M). Hence, QS(M)(1∅) = ⊥ for any
non-empty universe M . Since Q satisfies extension, then also

Q∅(1∅) = QS(M)(1∅) = ⊥ = (some)∅(1∅). (54)

Further, let us suppose that M = {m}. According to the definition of fuzzy
measure of L-fuzzy sets, we have µ({1{m}}) = ⊤ for each fuzzy measure µ on a
fuzzy measurable space ({m},M). Due to (ii) of Theorem 3.7, we can write

QS({m})(1{m}) =

∫

⊗

({m},M)

1{m} dµ = µ(1{m}) ⊗ 1{m}(m) = ⊤⊗⊤ = ⊤.
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Since Q ∈ EXT, then, from (i) of Theorem 3.7, we have

⊤ = QS({m})(1{m}) = QS(M)(1{m}) =

∨

(M,M,µ)∈S(M)

∫

⊗

(M,M)

1{m} dµ =
∨

(M,M,µ)∈S(M)

µ∗(1{m})

for any M such that {m} ⊆ M . Hence, for any A ∈ FL(M) and m ∈ M , we
can write

QS(M)(A) =
∨

(M,M,µ)∈S(M)

∫

⊗

(M,M)

A dµ ≥

∨

(M,M,µ)∈S(M)

∫

⊗

(M,M)

A(m) ⊗ 1{m} dµ =
∨

(M,M,µ)∈S(M)

(A(m) ⊗ µ∗(1{m}) =

A(m) ⊗
∨

(M,M,µ)∈S(M)

µ∗(1{m}) = ⊤⊗ A(m) = A(m),

where the monotonicity of ⊗-fuzzy integrals and (i) of Theorem 3.7 are used.
Hence, we have

QS(M)(A) ≥
∨

m∈M

A(m) = (some)M (A).

for any non-empty universe M and thus Q ≥ some. According to Theorem 5.1,
we have Q ≤ some and thus Q = some. Due to (54) and the previous equality,
we obtain Q ≡ some. 2

Theorem 5.6. Let Q be an unlimited L-fuzzy quantifier of the type 〈1〉 de-
termined by fuzzy measures over S such that S(M) = [(M,M, µ)] for each
non-empty universe M . Then Q ∈ EXTENS(≈∧).

Proof. Let Q be an unlimited L-fuzzy quantifier of the type 〈1〉 determined
by fuzzy measures over S such that S(M) = [(M,M, µ)] for each non-empty
universe M . First, if M = ∅, then trivially [1∅ ≈

∧

M 1∅] = Q∅(1∅) ↔ Q∅(1∅) = ⊤.
Further, let M 6= ∅, A, B ∈ FL(M) and f : M → M be a bijective mapping.
One checks easily that

∫

⊗

(M,M′)

A dµ′ =
∨

X∈M\{1∅}

∧

m∈Supp(X)

(A(f(m)) ⊗ µ(X)) (55)

holds for any isomorphic (M,M, µ) and (M,M′, µ′), where f→(M,M, µ) =
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(M,M′, µ′). Using (55), we can write, for any bijective mapping f : M → M ,

QS(M)(A) ↔ QS(M)(B) =

∨

(M,M,µ)∈S(M)

∫

⊗

(M,M)

A dµ ↔
∨

(M,M′,µ′)∈S(M)

∫

⊗

(M,M′)

B dµ′ =

(

∨

(M,M,µ)∈S(M)

∨

X∈M\{1∅}

∧

m∈Supp(X)

(µ(X) ⊗ A(m))
)

↔

(

∨

(M,M,µ)∈S(M)

∨

X∈M\{1∅}

∧

m∈Supp(X)

(µ(X) ⊗ B(f(m)))
)

≥

∧

(M,M,µ)∈S(M)

∧

X∈M\{1∅}

∧

m∈Supp(X)

(

(µ(X) ⊗ A(m)) ↔ (µ(X) ⊗ B(f(m)))
)

≥

∧

(M,M,µ)∈S(M)

∧

X∈M\{1∅}

∧

m∈Supp(X)

(

(µ(X) ↔ µ(X)) ⊗ (A(m) ↔ B(f(m)))
)

=

∧

m∈M

(A(m) ↔ B(f(m)),

where
∧

i∈I(ai ↔ bi) ≤ (
∨

i∈I ai) ↔ (
∨

i∈I bi),
∧

i∈I(ai ↔ bi) ≤ (
∧

i∈I ai) ↔
(
∧

i∈I bi) and (a ↔ c) ⊗ (b ↔ d) ≤ (a ⊗ b) ↔ (c ⊗ d) holding in each complete
residuated lattice are applied (see e.g. [2, 23]). Hence, we obtain

QS(M)(A) ↔ QS(M)(B) ≥
∨

f∈Perm(M)

∧

m∈M

(A(m) ↔ B(f(m)) = [A ≈
∧

M B]

and thus Q ∈ EXTENS(≈∧). 2

Theorem 5.7. Let Q be an unlimited countable L-fuzzy quantifier of the type
〈1〉 determined by fuzzy measures over S such that S(M) = [(M,M, µ)] for each
non-empty countable universe M . Then Q ∈ EXTENS(≈⊗).

Proof. This is a straightforward consequence of the previous theorem and
[A ≈

∧

M B] ≥ [A ≈
⊗

M B] holding for each M 6= ∅ and A, B ∈ FL(M). 2

5.2. Quantifiers determined by complementary fuzzy measures of L-fuzzy sets

Analogously to the previous subsection, let T (M) denote a set of comple-
mentary fuzzy measure spaces defined on M and

∫

→

(M,M)

A dν (56)

denote the →-fuzzy integral
∫

→
A dν defined over a complementary fuzzy mea-

sure space (M,M, ν). Now we can define L-fuzzy quantifiers limited to M using
complementary fuzzy measure spaces from a set T (M) as follows.
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Definition 5.3. Let T (M) be a (possibly empty) set of fuzzy measure spaces
defined on a non-empty universe M . An L-fuzzy quantifier of the type 〈1〉 limited
to M determined by the complementary fuzzy measure spaces from T (M) is a
mapping QT (M) : FL(M) → L defined by

QT (M)(A) =
∧

(M,M,ν)∈T (M)

∫

→

(M,M)

A dν. (57)

Remark 5.5. If T (M) = ∅, then obviously QT (M)(A) =
∧

∅ = ⊤ holds for any
A ∈ FL(X).

Definition 5.4. Let T be a functional assigning to each universe M a set T (M)
of complementary fuzzy measure spaces defined on M . An unlimited L-fuzzy
quantifier of the type 〈1〉 determined by complementary fuzzy measures over T
is an unlimited L-fuzzy quantifier of the type 〈1〉 assigning an L-fuzzy quantifier
QT (M) determined by the complementary fuzzy measure spaces from T (M) to
each non-empty universe M .

Example 5.6. Let M be a non-empty universe and Ti(M) = {(M,FL(M), νi)},
where, for i = 1, 2, we have

ν1(A) =

{

⊤, if A = 1∅,
⊥, otherwise

(58)

and

ν2(A) =

{

⊥, if A = 1M ,

⊤, otherwise.
(59)

If Q is an unlimited L-fuzzy quantifier determined by complementary fuzzy
measures from T1(M) for all M 6= ∅, then Q = no. In fact, if M 6= ∅ and
A ∈ FL(M), then

QM (A) = QT (M)1
(A) =

∫

→

(M,FL(M))

A dν1 =
∧

m∈M

(A(m) → ν1({m})) =

∧

m∈M

(A(m) → ⊥) =
∧

m∈M

¬A(m) = (no)M (A).

According to Definition 4.3, we have Q = no. One checks easily that Q defined
as QT2(M) for all M 6= ∅ is equal to not all.

Theorem 5.8. For each unlimited L-fuzzy quantifier Q of the type 〈1〉 deter-
mined by complementary fuzzy measures over T , we have

no ≤ Q ≤ not all. (60)
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Proof. Let Q be an unlimited L-fuzzy quantifier determined by complemen-
tary fuzzy measures over T . Let M be any non-empty universe. Obviously, for
each (M,M, ν) ∈ T (M), we have ν1(A) ≤ ν(A) ≤ ν2(A) for any A ∈ FL(M).
According to Example 5.6, we easily obtain

(no)M (A) ≤ QT (M)(A) ≤ (not all)M (A)

for any A ∈ FL(M) and the proof is finished. 2

Again in this part, we will investigate the semantic properties of L-fuzzy quan-
tifiers determined by complementary fuzzy measures. The following theorem
states a sufficient condition for L-fuzzy quantifiers to be permutation invariant.

Theorem 5.9. Let Q be an unlimited L-fuzzy quantifier of the type 〈1〉 deter-
mined by complementary fuzzy measures over T such that, for each non-empty
universe M , we have T (M) = [(M,M, ν)]. Then Q ∈ PI.

Proof. The condition (37) is trivially satisfied for M = ∅. Let us suppose that
M 6= ∅ and T (M) = [(M,M, ν)]. Analogously to the proof of Theorem 5.2 and
using Theorem 3.17, we can write

QT (M)(A) =
∧

(M,M′,ν′)∈T (M)

∫

→

(M,M′)

A dν′ =

∧

(M,M′,µ′)∈T (M)

∫

→

f→(M,M′)

f→(A) dν′
f→ =

∧

(M,M′,ν′)∈T (M)

∫

→

(M,M′)

f→(A) dν′ = QT (M)(f
→(A))

for any M 6= ∅, bijective mapping f : M → M and A ∈ FL(M) and thus
Q ∈ PI. 2

We can see that the proof of the previous theorem has the same form as in
the case L-fuzzy quantifiers determined by fuzzy measures and only supremum
was replaced by infimum and vice-versa. In the following text such proofs will
be omitted.

Theorem 5.10. Let Q be an unlimited L-fuzzy quantifier of the type 〈1〉 de-
termined by complementary fuzzy measures over T such that, for any universes
M , M ′ with the same cardinality, we have

(i) if M ∈ T (M) and f : M → M ′ is a bijection, then f→(M) ∈ T (M ′),

(ii) if M ∈ T (M) and M′ ∈ T (M ′), then M and M′ are isomorphic.

Then Q ∈ ISOM.

Proof. This is analogous to the proof of Theorem 5.3. 2
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Theorem 5.11. Let Q be an unlimited L-fuzzy quantifier of the type 〈1〉 deter-
mined by complementary fuzzy measures over T . Then Q is a non-increasing
L-fuzzy quantifier.

Proof. This is a straightforward consequence of the fact that each complemen-
tary fuzzy measure is a non-increasing mapping and the operation → is isotonic
in the second argument. 2

The next result shows that our fuzzy quantifiers of the type 〈1〉 generated by
complementary fuzzy measures are not suitable for modeling of non-increasing
quantifiers which refer to absolute cardinalities, such as “at most three things”,
see Remark 5.4. However, quantifiers which are interesting from the point
of view of fuzzy logic, like “at most half things” do not possess the extension
property and, therefore, can be modeled by our quantifiers generated by com-
plementary fuzzy measures.

Theorem 5.12. Let Q be an unlimited L-fuzzy quantifier of the type 〈1〉 deter-
mined by complementary fuzzy measures over T . Then Q ∈ EXT if and only if
Q = not all.

Proof. This is analogous to the proof of Theorem 5.5. 2

Theorem 5.13. Let Q be an unlimited L-fuzzy quantifier of the type 〈1〉 deter-
mined by complementary fuzzy measures over T such that T (M) = [(M,M, ν)]
for each non-empty universe M . Then Q ∈ EXTENS(≈∧).

Proof. Let Q be an unlimited L-fuzzy quantifier Q of the type 〈1〉 determined
by complementary fuzzy measures over T such that T (M) = [(M,M, ν)] for
each non-empty universe M . First, if M = ∅, then trivially [1∅ ≈

∧

M 1∅] =
Q∅(1∅) ↔ Q∅(1∅) = ⊤.

Further, let M 6= ∅, A, B ∈ FL(M) and f : M → M be a bijective mapping.
One checks easily that

∫

→

(M,M′)

A dν′ =
∧

X∈M\{1∅}

∨

m∈Supp(X)

(A(f(m)) → ν(X)) (61)

holds for any isomorphic (M,M, ν) and (M,M′, ν′), where f→(M,M, ν) =
(M,M′, ν′). Using (61), we can write

QT (M)(A) ↔ QT (M)(B) =

∧

(M,M,µ)∈T (M)

∫

→

(M,M)

A dν ↔
∧

(M,M′,µ′)∈T (M)

∫

→

(M,M′)

B dν′ =

(

∧

(M,M,ν)∈T (M)

∧

X∈M\{1∅}

∨

m∈Supp(X)

(A(m) → ν(X))
)

↔

∧

(M,M,µ)∈T (M)

∧

X∈M\{1∅}

∧

m∈Supp(X)

(

(A(m) → ν(X)) ↔ (B(f(m)) → ν(X))
)

≥
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∧

(M,M,ν)∈T (M)

∧

X∈M\{1∅}

∧

m∈Supp(X)

(

(A(m) ↔ B(f(m))) ⊗ (ν(X) ↔ ν(X))
)

=

∧

m∈M

(A(m) ↔ B(f(m)),

where
∧

i∈I(ai ↔ bi) ≤ (
∨

i∈I ai) ↔ (
∨

i∈I bi),
∧

i∈I(ai ↔ bi) ≤ (
∧

i∈I ai) ↔
(
∧

i∈I bi) and (a ↔ c) ⊗ (b ↔ d) ≤ (a → b) ↔ (c → d) holding in each complete
residuated lattice are applied. Hence, we obtain

QT (M)(A) ↔ QT (M)(B) ≥
∨

f∈Perm(M)

∧

m∈M

(A(m) ↔ B(f(m)) = [A ≈
∧ B].

and thus Q ∈ EXTENS(≈∧). 2

Theorem 5.14. Let Q be an unlimited countable L-fuzzy quantifier of the type
〈1〉 determined by complementary fuzzy measures over T such that T (M) =
[(M,M, ν)] for each non-empty countable universe M . Then Q ∈ EXTENS(≈⊗).

Proof. This is a straightforward consequence of the previous theorem and
[A ≈

∧

M B] ≥ [A ≈
⊗

M B] holding for each M 6= ∅ and A, B ∈ FL(M). 2

6. Conclusion

Our aim in this paper was to study a special class of L-fuzzy quantifiers of
the type 〈1〉, namely fuzzy quantifiers determined by fuzzy measures and in this
way to continue research started in [10]. To achieve this goal, we introduced
new types of fuzzy integral, namely ⊗-fuzzy integral and →-fuzzy integral and
showed their properties. Among other things, we showed that the ⊗-fuzzy inte-
gral is a generalization of the well-known Sugeno integral. Then, we were able
to introduce L-fuzzy quantifiers of the type 〈1〉 determined by fuzzy measures
(and by complementary fuzzy measures), to provide some examples and to show
properties of these quantifiers.

In the future we will concentrate on studying of L-fuzzy quantifiers of the
type 〈1, 1〉 (and possibly also of the type 〈1n, 1〉) generated by fuzzy measures.
Quantifiers of the type 〈1, 1〉 serve as models of very important class of natural
language determiners (cf. e.g. [24]), for example “a few X are Y”, “almost all X
are Y”, etc. Our definitions of ⊗-fuzzy integral and →-fuzzy integral allow us
to define these quantifiers, and we believe that they provide an important class
of models with interesting properties.
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[4] I. Glöckner. Fuzzy Quantifiers: A Computational Theory. Springer-Verlag,
Berlin, 2006.

[5] M. Grabisch, T. Murofushi, and M. Sugeno, editors. Fuzzy Measures and
Integrals. Theory and Applications. Studies in Fuzziness and Soft Comput-
ing. Physica Verlag, Heidelberg, 2000.

[6] M. Grabisch, H. T. Nguyen, and E. A. Walker. Fundamentals of Uncer-
tainty Calculi with Applications to Fuzzy Inference. Springer-Verlag, 1994.

[7] Zhang Guang-quan. Fuzzy number-valued fuzzy measure and fuzzy
number-valued fuzzy integral on the fuzzy set. Fuzzy Sets and Systems,
49(3):357–376, 1992.

[8] Zhang Guang-quan. The convergence for a sequence of fuzzy integrals of
fuzzy number-valued functions on the fuzzy set. Fuzzy Sets and Systems,
59:43–57, 1993.
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