
University of Ostrava

Institute for Research and Applications of Fuzzy Modeling

Error Optimization of Fuzzy
Transform Using Evolution

Algorithms

Frantǐsek Huňka and Viktor Pavliska

Research report No. 135

2008

Submitted/to appear:

Information Sciences

Supported by:

Project MSM6198898701 of MŠMT ČR.

University of Ostrava
Institute for Research and Applications of Fuzzy Modeling

30. dubna 22, 701 03 Ostrava 1, Czech Republic

tel.: +420-59-7091401 fax: +420-59-6120478
e-mail: frantisek.hunka@osu.cz

Error Optimization of Fuzzy Transform Using Evolution

Algorithms

Frantisek HUNKA∗

Department of Informatics and Computers, University of Ostrava, 30. dubna 22,
Ostrava 1

Viktor PAVLISKA

Institute of Research and Application of Fuzzy Modeling, University of Ostrava,
30. dubna 22, Ostrava 1

Abstract

Fuzzy transform is a transform that considerably simplifies solution of differ-
ential or integral-differential equations, by transforming them into a n-dimen-
sional vectors that are easier to solve. The inverse fuzzy transform transforms
the achieved results back into the original domain creating thus an approx-
imated function of the original one. As the other approximations it also
works with some level of error. With the F-transform the level of error is
mainly caused by the distribution of the nodes in the searching area. Be-
fore the fuzzy transform starts, the universe has to be partitioned by the
nodes. The main aim of the article is to propose and verify optimization of
node distribution with respect to objective functions such that the difference
between original and approximated function would be minimal. The article
further discusses other possibilities of the distribution of the nodes as well
as different heuristics, which may be used in finding the best distribution of
the nodes so as the approximation error would be minimal. By this way the
approximated function would be more closer to the original one.

Key words: fuzzy transform, fuzzy approximation, evolution algorithm,
error optimization, differential evolution.

∗Corresponding author
Email addresses: frantisek.hunka@osu.cz (Frantisek HUNKA),

viktor.pavliska@osu.cz (Viktor PAVLISKA)

Preprint submitted to Information Sciences December 10, 2008

2008 MSC: 92D15, 78M50

1. Introduction

The main areas of the successful usage of fuzzy transform (F-transform for
short) are filtering – removing noise, smooth logical deduction, time series
prediction and image compression. Our research has been concerned only
with one-dimensional F-transform. The main benefit of using fuzzy transform
is that it converts an integrable function on [a; b] into a n-dimensional vector.
This approach enables to use methods of linear algebra to solve the problem
instead of e.g. computation of definite integral or solution of differential
equations. That is why there is a endeavor to make F-transform more precise
more accurate.

The structure of the paper is following. In Section 2, the essence of fuzzy
transform is given. In Section 3, basic properties of evolution algorithms are
described with the focus on differential evolution and contest of heuristics.
In Section 4, the process of optimization itself is explained and described.
In Section 5, the optimization framework, which was used for F-transform
optimization is described. Achieved results are described and explained in
Section 6. In Section 7, all advancements and given results are discussed.
Section 8, contains conclusion and further recommendation.

2. Fuzzy Transform

F-transform as mentioned earlier is a very effective tool that can be used
as a bridge between fuzzy and classical mathematics because it converts
classical mathematics domain into the fuzzy mathematics domain and visa
versa. It is composed, as the other transform, of direct transform and in-
verse transform. Direct F-transform converts integrable function on [a; b]
into n-dimension vector. The inverse F-transform converts an n-dimension
vector into a specially represented continuous function, which approximates
the original one. The advantage of the F-transform is that the inverse F-
transform produces a simple and unique approximate representation of the
original function. Moreover this advancement considerably simplifies the so-
lution of the original problem as the computation of a definite integral or so-
lution of differential equations and transfers it to the solution of n-dimension
vector space, which can be solved using methods of linear algebra.

2

2.1. Fuzzy Partition of the Universe – Establishing Nodes

The interval [a; b] is taken as a universe. This interval represents a com-
mon domain for all (real-valued) functions we are working with. The fuzzy
partition of the universe is given by fuzzy subsets of the universe [a; b] with
given properties. By partitioning the common domain a series of so called
nodes is given. These nodes are denoted as x1 < · · · < xn within [a; b], such
that x1 = a, xn = b and n ≥ 2. For each node xi there is a corresponding
fuzzy set denoted Ai with corresponding membership function Ai(x). Detail
definition that fuzzy sets and corresponding nodes have to fulfill are given at
[3, 4]. The most important of these conditions is fulfilling so called Ruspini
condition of orthogonality:

(∀x ∈ [a; b]) :
n∑

k=1

Ak(x) = 1.

The membership functions A1(x), . . . , An(x) are called basic functions. Basic
functions are specified by a sequence of nodes x1, . . . , xn and further proper-
ties.

The F-transform is also influenced by a actual number of the nodes. This
problem is discussed among others in [4]. The conclusion of the experiments is
the more nodes the better adjustment of the original function to the function
given by the inverse F-transform. By the simple experiment there may be
seen that the small change of the node position call a change of the inverse
transform and by this way in the approximated function.

2.2. Discrete F-Transform

There are both continuous and discrete F-transform. But due to experi-
ments, which are made using discrete direct and inverse form of F-transform
the article is focused on the discrete form. The other reason for using dis-
crete F-transform is that with the practical experiments mostly discrete F-
transform is used. In practice, the continuous case is frequently replaced by
the discrete one in the following way. The original function f(x) is replaced
by points p1, . . . , pl ∈ [a; b] and their corresponding functional values. The
number of the points used to be much greater than the number of later estab-
lished nodes by the partition of the universe. This type of F-transform has
wider practical use than continuous F-transform as many functional depen-
dencies can be simply given by the pair composed of a point and correspond-
ing functional value. However n-tuple of real numbers, so called components,

3

denoted as [F1, . . . , Fn] is calculated according a slightly different formula as
follows:

Fk =

∑l
j=1 f(pj)Ak(pj)∑l

j=1 Ak(pj)
for k = 1, . . . , n

The discrete F-transform is in any case simpler than the integral one.
Moreover a certain sequence of the inverse discrete F-transform converges to
an original function at all given points. Therefore, all computational algo-
rithms may be based on the discrete type of F-transform. All experimental
results given in this paper were calculated using discrete type of F-transform.

The discrete F-transform has its inverse form too. However there is no
difference in mathematical expression (formalism) of this inverse form both
for the continuous and the discrete form. The inverse F-transform fulfils the
best approximation criterion, which can be called the piecewise integral least
square criterion. The following function

fF,n(x) =
n∑

k=1

FkAk(x)

is called the inverse F-transform. For each x point x ∈ [a; b] we can calculate
value of inverse F-transform, which will be compared with the original value.
The result of the inverse function is as a sum through all nodes that multiply
component of the F-transform with basic function (membership function).

3. Error Optimization

The main aim of our aspiration is to minimize the differences between the
original function and its approximated form obtained by the F-transform.
In order to formalize the optimization problem different types of objective
functions can be used. By using objective functions we can exactly measure
the differences between two sets of points representing the original and ap-
proximated function and also use tools (methods) optimizing the difference
between the original and approximated functions.

Definition1 (Approximation error). Let f is a given function and fA its
approximation on the interval [a; b]. The error of approximation is defined

4

such as maximal difference between the original function and its approxima-
tion:

ε =
∨

x∈[a;b]

|f(x)− fA(x)|

Optimization problems are ubiquitous in science and engineering. How-
ever it is not so easy to solve a difficult optimization problem. Therefore
there is a demand for global optimization methods that should be simple
to implement, easy to use, reliable and fast. Relatively for a long time
the optimization problems were exclusively solved by classical mathematical
methods. This approach enables to find global extremes for the simpler opti-
mization problems and mostly local extremes for more difficult optimization
problems. With this traditional approaches the computing complexity and
in some way even awkwardness, increase not only with the growing complex-
ity of the problem but also with the scope of the arguments of the objective
functions. The range of these arguments can cover both different numerical
types (integer, double, enumerated, logic) but also intervals, in which the
given arguments can vary.

For this more difficult optimizing problems a set of evolution algorithms
emerged and was led to perfection. Among their benefits belong also that the
user of the optimizing problem “can not” know classical optimizing methods
but he is only required to have a good knowledge of the problem domain
and the ability to define the objective function correctly. Among the further
advantages of this approach can also be added the fact that evolution algo-
rithms aim to find global extremes rather than local ones and they usually
provide the user with more than one solutions.

The drawbacks involve the fact that evolution algorithms partly work with
random, which causes the results will not be precisely estimated beforehand.
Therefore the experience with the implementation of evolution algorithms
plays an important role. On the other hand achieved results proved their
applicability.

3.1. Optimization of Approximation Obtained by Inverse F-transform

Optimization process of approximation is based on the changing of the
positions of the inner nodes. The number of nodes remains fixed for every
optimization study. Actually there are no explicit conditions or limits on
the nodes distribution except for being out of given interval representing the
universe and being two or more nodes in the same position.

5

For these reasons the most perspective optimizing algorithms must be
some of the family of the evolutionary optimizing algorithms. They are
very effective for this class of the optimizing problems but some of them are
too sophisticated mainly in setting their control parameters. Our aim was
to use simple, reliable and effective optimizing algorithm. That is why we
decided for differential evolution. The detail procedure of the algorithm will
be described in the following section.

3.2. Differential Evolution

The differential evolution (DE) described in the book [5] has become one
of the most popular algorithms for continuous global optimizing problems in
the last decade. But in many cases the efficiency of the search for the global
minimum is very sensitive to the setting of its control parameters. One of the
means that eliminates this problem is self-adaptive DE. We used tested proce-
dure called differential evolution with competitive control-parameter setting
described in the papers [6, 7]. The essence of this approach is that the setting
of the control parameters can be made adaptive through the implementation
of a competition in differential evolution. Each setting has a given probabil-
ity that is changing during the process of optimization. On the base of these
probabilities the parameter settings is chosen for each evolutional step.

The competition provides an self-adaptive mechanism of setting control
parameter appropriate to the problem actually solved. In the application of
this algorithm there is necessary to have a different settings of values F > 0
(influencing mutation) and C ∈ [0; 1] (affecting crossover) among them at
random a choice is made with probability qi, i = 1, 2, ..., h. The probabilities
can be changed according to the success of the setting in preceding steps of
the search process. The i-th setting is successful if it generates trial point
y belonging to member x for which f(y) < f(x). The probability qi can be
evaluated as the relative frequency

qi =
ni + n0∑h

j=1(nj + n0)
,

where n0 > 0 is a constant.
By [6] is supposed that such a competition of a different settings will prefer

a successful setting. The competition will serve as an adaptive mechanism of
setting control parameters suitable for the problem that is actually solved.

6

4. Application of the Differential Evolution Algorithm

There are three issues to be solved when applying evolution algorithms.

1. Representation and coding of the population member

2. Definition of objective function

3. Heuristics for initial population generation

Population member represents possible solution of the optimization prob-
lem. In our case the solution is given by the distribution of nodes defining
the partition of the universe. The nodes themselves are coded into a vector,
which dimension equals to the number of inner nodes. Objective function
is in our case determined by an error of approximation, see def. 1. By our
heuristics, initial population is composed of 16 members divided into three
groups. The first group is made up only by 1 member representing equidis-
tant distribution of nodes (uniform partition). The second group is formed by
5 random members, which means that their inner nodes are distributed com-
pletely at random. The third group contains 10 members that proceeds from
slightly modified equidistant distribution. This modification can be explic-
itly expressed by rules of nodes movement. The nodes can move horizontally
on the x-axes in the left (negative sign) and in the right (positive sign) of the
axe. In order to mark node’s movement relative to the physical position we
use a percent expression. The distance between two neighboring nodes will
be in the initial step 100%. So in this way −100% means a move of the node
to the position of the left neighboring node and vise versa +100% means a
move of the node to the position of the right neighboring node. In addition
we introduced some restriction about the move of the nodes as we want to
avoid some chaotic movement in this initial phase of the optimization.

1. The nodes will move but they will not ”over-jump” each other. The
sequence of the nodes remain unchangeable they can move only in their
neighborhood.

2. The bordering (terminal) nodes are unmovable.

3. To support evolution progress of optimization we heuristically deter-
mined that the maximal move in one step will be only 50% either to the
left or to the right side.

That are all restrictions we determined for initial population.
In DE algorithm the inner nodes can move within the whole interval on

the x axe. After generating initial population the further populations are

7

evolved following the rules of the DE modified by competition of heuristics.
The aim of the optimization is to find such a position of the nodes (they will
not be equidistant) that the objective function will be minimum.

The number of generated members in each population as well as the num-
ber of nodes, which remains the same for the whole process of optimization,
is given as input parameters for evolution algorithm.

Search space is n-dimensional where n is equal to the number of declared
nodes. For each single node there is one dimension of the search box. Each
node is associated with a single dimension (intervals are identical so far).

5. Optimization Framework

As we intend to study and examine the optimizing problems thoroughly
we designed and implemented optimization framework. The aim of the frame-
work is to cover broader set of optimizing algorithms based on populations
of possible solutions in the form of population members. These population
members influence each other their quality in iterations (derived from evo-
lutionary principles), which are usually called in the context of evolution
algorithms as generations. The aim of the whole process is to find the best
solution in the scope of the defined objective function.

To achieve flexibility and adaptability of the framework we decided to
proceed gradually from the abstract levels to the more specific level of the
framework. Layered design proved to be effective and perspective method of
solution [1, 2]. The framework itself was designed in two layers, the abstract
layer and the implementation layer. There is also the third layer used by the
user, in our design called the application layer. This layer utilizes the two
bottom layers for using a genetic based algorithms for different purposes.

5.1. Abstract Layer

Analyzing the problem domain and the demands of optimization we iden-
tified five basic abstract classes characterizing the framework. This layer
comprises three principle classes and two auxiliary classes for search space
description in the form of box constraints.

The two basic abstract classes are the Algorithm and the Problem classes.
The task of the first one is to describe optimizing algorithms the other one
represents the problem that should be optimized. There is association be-
tween these two classes and class Problem is accessible from the Algorithm
class, which corresponds to the procedure of the optimization computing.

8

Figure 1: Optimization Framework – UML Class Diagram

Abstract class Algorithm declares two methods. The optimize() methods,
which manages the whole optimization process and the computeNewPopula-
tion() method, which is responsible for the computing of new population
representing next generation. Both methods are abstract so they will be
overridden or further extended in their more specific subclasses. The fami-
ly of genetic algorithms also needs explicitly declared stop condition, which
terminates computing iteration. In the current version of the framework the
stopCondition() was designed as an attribute of the Algorithm class. This
solution can not be the definite one as the stop condition could express more
complex logic expressions for terminating computing process, given by com-
bining different types. In this cases stop condition should be designed as a
self independent class with an association to the Algorithm class.

The main aim of the Problem abstract class is to declare newMember()
and initialPopulation() methods. The newMember() represents the factory
method creating adequate instance depending on solving optimizing task.
The initialPopulation() method is responsible for creating an initial pop-
ulation. Both methods are abstract and will be further extended in their
subclasses.

Main function of the PopulationMember class is to declare objective func-

9

tion in the form of objectiveFunction() method, which is necessary for eval-
uating individuals in the population. This method utilizes abstract method
criterion(), which is further specialized in the application layer by the user.
In this way the user can influence evaluation of fitness of each population
member.

The area in which the global extremes are looking for is declared by the
DomainBox class, which precisely describes searching space. The Problem
class aggregates the DomainBox class. Aggregation is relationship that ex-
presses the fact that the DomainBox class can be replaced by a different
more specific class regarding the solving problem. Class DomainBox usually
represents an n-dimensional searching space. The single dimension of the
searching space is described by the Interval class, which bounds one dimen-
sion of the space. The relationship between the DomainBox class and the
Interval class is composition.

The structure of the whole framework using the UML class diagram can
be seen in the figure 1.

5.2. Implementation Layer

This layer is created by two sorts of more specific classes. The first
one is the Population class that actually works as a container of population
members. Its methods are used for finding the best or the worst population
member regarding to the value of their objective function and selection the
population member at random. The randomSelect() method is utilized in
the core of evolution operation of mutation.

The second sort forms a family of subclasses of the Algorithm class. They
specify in a detail way the particular optimization algorithm on the basis of
optimizing approach. Classes differ in the implementation of the compute-
NewPopulation() method declared in the superclass Algorithm as abstract. It
is supposed that with the enlargement of the optimizing framework the num-
ber of subclasses will increase in order to implement additional optimizing
approaches.

The ControlRandomSearch class implements rather simple computeNew-
Population() method based on the fact that the worst population member,
evaluated by the given objective function, is replaced by the new better one.
This method is also known as the worst-member-substitution method.

The DEAlgorithm class implements algorithms of differential evolution
mostly used in practical testing of this approach, which were described in
section 3.2.

10

5.3. Application Layer

Application layer represents classes that the user utilizing the optimiz-
ing framework has to implement by himself. In this way the user defines
his specific requirements for the optimizing task. Therefore this layer does
not actually belong to the optimizing framework. In our case the layer is
composed of the FTransformTuning class, which is a subclass of the Problem
class and the FTApproxMember class, which is a subclass of the Population-
Member class. As can be seen from the figure 1, the FTApproxMember class
is an inner class of the FTransformTuning class. The construction of the
inner (sometimes also called nested) class is in this case more natural and
effective than the other ones.

The FTApproxMember implements the criterion() method, which is used
together with the objectiveFunction() method to evaluate members of pop-
ulation. The criterion() method actually implements the specific function,
by which the objectiveFunction() completes its evaluation. By this way the
criterion() method can be easily replaced by other specific function.

The FTransformTuning class further specializes (extends) the newMem-
ber() and initialPopulation() methods, originally declared in the superclass.
Both extensions are done with the aim to complete required optimizing de-
mands.

6. Achieved Results

First of all we would like to illustrate in the form of figures results
achieved applying F-transform with uniform partition (without optimiza-
tion) see Fig. 2 and result achieved after optimization see Fig. 3. The whole
number of the inner nodes was reduced to seven to make the distribution of
nodes more visible. Comparing both figures it can be seen how the move of
the inner nodes can influence the whole transformation.

The results obtained by experiments are shown in the two following tables.
Table 1 gives results with respect to the required precision while Table 2 gives
results with respect to the constant number of generations. The number of
population members in all generations remains the same for all experiments
and equals to 16. This number can be seen in the Table 1 in the column Avg
No of Objective Function Evaluation, in cases where the average number of
generations is equal to 1, which represents only initial population. It happens
when the number of the inner nodes is inadequately big with respect to
required precision, which leads to fulfilling stop condition even for equidistant

11

0 2π

Figure 2: F-transform with uniform partition

0 2π

Figure 3: F-Transform with optimized partition

partition that is included in initial population. This was mentioned in the
description of its construction in the section 4. The number of points also
remains the same for all experiments and it equals to 62. However the number
of nodes varies from 20 nodes to 50 nodes.

The results given in the Table 1 determine the success rate regarding the
given precision. Each optimization study is in the separate line marked as
study n and relates to one task optimized by one algorithm. Optimization
experiment represents one run of the optimization task. Optimizing study
represents statistical evaluation of the optimization experiments – in our
case 100 experiments. That is why the average values (Avg) are used in
the heading of the Table 1. From the experiments it can be judged that for
each number of nodes there is a restricted precision, which can be achieved.
We can see that with the growing number of nodes the higher precision of
optimization can be received.

The results given in the Table 2 show how the number of inner nodes
influences achieved precision. The precision is given both in the form of
the average achieved precision (last but one column of the table) and in the
form of the best achieved precision (last column of the table). During the

12

experiments the number of generations remains constant, equals to 10 000.
The number of objective function evaluation is also the same for all performed
studies of experiments.

Table 1: Experimental results with respect to required precision

Avg no of

Optimization No of Avg no of objective Success Required

study no inner generations function rate precision

nodes evaluation

Study 1 20 – – 0% 0.01

Study 2 20 – – 0% 0.02

Study 3 20 1373 21986 84% 0.03

Study 4 20 520 8344 97% 0.04

Study 5 30 – – 0% 0.01

Study 6 30 1784 28575 94% 0.02

Study 7 30 396 6355 95% 0.03

Study 8 30 59 974 100% 0.04

Study 9 40 4887 78208 3% 0.01

Study 10 40 469 7532 100% 0.02

Study 11 40 66 1078 100% 0.03

Study 12 40 1 16 100% 0.04

Study 13 50 1396 22366 85% 0.01

Study 14 50 132 2139 100% 0.02

Study 15 50 1 16 100% 0.03

Study 16 50 1 16 100% 0.04

7. Discussion

In the presented experiments it was proved that the distribution of nodes
plays a crucial role in the F-transform. Uniform distribution of nodes is taken
somehow as a standard distribution and in our view as a starting point for
further improvements of the F-transform. Using evolution algorithms in the
scope of the optimization framework proved its ability to solve such problems.
As was mentioned in the chapter dealing with evolution algorithms, the most

13

Table 2: Experimental results with respect to constant number of generations

No of

Optimization No of No of objective Avg Best

study no inner generations function achieved achieved

nodes evaluation precision precision

Study 1 20 10 000 160 032 0.0258 0.0226

Study 2 30 10 000 160 032 0.0162 0.0103

Study 3 40 10 000 160 032 0.0130 0.00798

Study 4 50 10 000 160 032 0.0089 0.00639

important is to have a good knowledge of the problem domain and the ability
to define the objective function correctly.

Concerning the first point we set as members of initial population differ-
ent node distributions (coded into vectors of nodes partition distribution).
We used our own heuristics by setting one node distribution with the uniform
distribution. The second group of the node distributions was created com-
pletely at random and finally the third group was generated using equidistant
distribution of nodes, which can be moved at random up to ±50% towards
their neighboring nodes. In terms of evolution algorithms this phase is called
initial population.

The initial distribution of nodes expressed through initial population ful-
fills all requirements of the evolution algorithms but does not fully takes into
account the behavior of the original real function itself. We intuitively think
that the function behavior should be taken into account too in the phase of
initial population and that it could influenced the results of the optimization
process. For this reason it could be advisable somehow formalize the function
behavior and use it for initial population heuristics.

From the simple view it is clear that places, where the function is lin-
ear or even constant there is no need to place nodes densely. In short the
more non-linear function behavior is the more nodes are necessary. From the
mathematical point of view in places, where the function behavior notice-
ably differ from the linear behavior, the values of the second derivations are
distinctively different from zero. We can say that the measure of the nodes
density should reply the absolute value of the second derivation.

The second point that is necessary for proper using of evolution algo-

14

rithms concerns the correct objective function definition. For our purpose
we defined maximal deviation among discrete points expressing the original
function, which is a consequence of the definition 1.

The results of the error optimization of the F-transform should be used in
more complex tasks connecting with utilizing the whole F-transform such as
filtering-removing noise, smooth logical deduction and image compressing.
To use the results properly there is a need to safely store optimized node
distribution. For each of the nodes there are two values to be stored. The
first one is the x-axis position (could be e.g. expressed relatively regarding
to the left neighboring node and the right bordering node) and value of the
component in the node. This can be solved by using simple list or map of
these values, which may be stored either in a compressed sequential file or
in a persistent object in the object oriented environment or in an array of
values in case of relation database environment.

8. Conclusions

The article proves that the better results of the F-transform can be
achieved by its optimization. The task of the optimization is to find the
better inner nodes distribution so that the objective function (error of ap-
proximation) is minimal. In the section Discussion further possible improve-
ments are indicated. Except for these improvements we also plan to extend
optimization to approximation of n-dimensional functions too.

Acknowledgements:
This research has been supported by the project MSM6198898701 of the
MŠMT ČR.

References

[1] F. Hunka, Object-oriented Modeling in Cluster Analysis, In Proceedings
of 28th ASU Conference The Simulation Languages, Brno 2002, pp. 71–
78.

[2] F. Hunka, V. Pavliska, Object Oriented Approach in Optimization of
Fuzzy Transform, In Proceedings of 12th WSEAS International Confer-
ence on Computers, Heraklion, Greece 2008, pp. 1066–1071.

15

[3] I. Perfiljeva, Approximating models based on fuzzy transforms, In Joint
EUSFLAT-LFA Conference, 2005, Barcelona, Spain, Universitat Po-
litecnica de Catalunya & EUSFLAT, 2005, pp. 645–650.

[4] I. Perfiljeva, Fuzzy Transform – a Powerful Tool in Modelling, In East
West Fuzzy Colloquium, Univ. of Applied Sciemces, Zittau, 2006, pp. 2–
3.

[5] K.–V. Price, R.–M. Storm and J.–A. Lampinen, Differential Evolution,
Springer Verlag, Berlin–Heidelberg, 2005

[6] J. Tvrdik, Adaptive Differential Evolution: Application to Nonlinear
Regression, In Proceedings of the International Multiconference on Com-
puter Science and Information Technology, Vol. 1, No. 2, 2007, pp. 193–
202.

[7] J. Tvrdik and I. Krivy, Competitive Self-Adaptation in Evolutionary
Algorithms, In 5th Conference of European Society for Fuzzy Logic and
Technology, 2007, Ostrava, University of Ostrava, 2007, pp. 251–258.

16

