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Abstract

On the base of some categorical properties of the power functor for the category of
sets, three types of “powerset-like functors” F : Cat - Cat are defined, namely,
pre-powerset, powerset and C-powerset functor. A powerset functor for the category
Set(Ω) of Ω-sets (X,A) over a complete BL-algebra Ω, where A : X - L is
a mapping of X to the support of Ω, is introduced. Further, a C-powerset functor
for the category Ω−FSet of Ω-fuzzy sets (X, δ) over a complete BL-algebra, where
δ : X × X - L is a special similarity relation, is defined. These functors play
an important role in the investigation of categorical properties for more compli-
cated functors, which could represent some generalization of the Zadeh’s extension
principle.

Key words: Category of fuzzy sets, power functors, BL-algebras

1 Introduction

In [10], Zadeh proposed a principle which gives a method how to extend
the “crisp” mapping f : X - Y between sets to a “fuzzy” mapping
f̂ : F(X) - F(Y ) between sets of all fuzzy sets over X and Y with the mem-
bership degrees from the interval [0, 1]. An analogical extension principle can
be also applied in the cases, where we consider the fuzzy sets (more precisely
the Ω-fuzzy sets) which membership degrees are interpreted in a truth value
structure Ω as e.g. a complete residuated lattice, BL-algebra, MV -algebra,
Heyting algebra, or cil-monoid. It is easy to see that if we consider the Boolean

⋆ The paper has been partially supported by the Institutional Research Plan MŠMT
6198898701.
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algebra Ω = ({0, 1},∨,∧), then the mapping f̂ obtained by the Zadeh’s ex-
tension principle coincides with P(f), where P : Set - Set is the common
(covariant) power functor from the category Set. Since the morphism P(f)
preserves all unions for any mapping f , i.e., P(f)(

⋃
i∈I Ai) =

⋃
i∈I P(f)(Ai),

then P is also a functor of Set to CSLat (the category of complete (join)
semi-lattices). In [7] (see also [8,9]), Rodabaugh presents several categorical
criteria for the functor P : Set - CSLat. Their modified versions are as
follows: If G : CSLat - Set is the forgetful functor, then

(1) there exists a natural transformation η : ISet
- G ◦ P (defined by

ηX(x) = {x} for any set X);
(2) ηX : X → G ◦ P(X) is a universal arrow for any set X;
(3) for any mapping f : X - Y there exists the unique g : P(Y ) - P(X)

such that P(f)(A) ≤ B if and only if A ≤ g(B) for any A ∈ P(X) and
B ∈ P(Y ), where ≤ is the common ordering of sets.

Unfortunately, the Zadeh’s extension principle defined as a functor F of Set

to CSLat, which assigns to each set X the set of all Ω-fuzzy sets F(X), does
not satisfy the proposed criteria in general. The reason is simple. There is no
natural transformation η : ISet

- F ◦ P such that ηX is a universal arrow
for any set X, if we consider more general truth value structures 1 . Therefore,
Rodabaugh proposed to investigate the Zadeh’s extension principle, in essence,
as a functor F : Set - CSLat such that, for any mapping f in Set, the
morphism F(f) lifts P(f) uniquely and, moreover, there exists the unique lift
h of the mapping g that is the right adjoint to F(f), i.e.,

F(f)(A) ≤ B if and only if A ≤ h(B)

is satisfied for any A ∈ F(X) and B ∈ F(Y ), where ≤ is the common or-
dering of Ω-fuzzy sets. Note that the existence and uniqueness of h is closely
associated with the α-cut representation of Ω-fuzzy sets (the decomposition
theorems) as Rodabaugh presented in [7–9]. Summarizing the previous in-
vestigation of Zadeh’s extension principle the study of correctness of Zadeh’s
principle extension can be, in general, divided into two parts. First, this is
a correctness of functors (powerset-like functors), which are similar to the
power functor P for Set, and then a correctness of functors which are “lifts”
of powerset-like functors.

Now an interesting question arises, if the Zadeh’s extension principle as a
functor can be defined in other categories of fuzzy sets in such a way to satisfy
the given or modified criteria of correctness. In [5], Močkoř introduced several
covariant functors F : Ω−FSet - Ω−FSet, which could represent some
generalization of Zadeh’s extension principle, in the category Ω−FSet of Ω-

1 In general, not all Ω-fuzzy sets over X can be expressed by a join of Ω-fuzzy sets
ηX(x), x ∈ X.
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fuzzy sets (X, δ) over MV -algebras, where δ : X × X - L is a special
similarity relation (see e.g [1,2,4,6]). Their definitions seem to be very natural,
but the investigation of their correctness cannot be done by the proposed
approach. For example, if we want to follow the proposed idea, then we have
to define the category of complete (join) semi-lattices CSLatΩ−FSet over the
category Ω−FSet, i.e., the category, where the objects are complete (join)
semi-lattice objects of Ω−FSet and the morphisms are such morphisms of
Ω−FSet which preserves all joins. Moreover, there are some problems, when
we want to verify the correctness (after a slight modification) of powerset-
like functors in the first part of our investigation and also the correctness of
functors which are lifts of powerset-like functors in the second part.

The aim of this paper is to investigate of correctness of powerset-like functors.
We propose three types of functors: pre-powerset, powerset and C-powerset
functor, where a pre-powerset functor and C-powerset functor (C denotes a
class of subalgebras in which the original category is representable) could be
understood as powerset-like functors in the sense of the criteria (1)-(3). These
functors then form a base for introducing more general functors representing
the Zadeh’s extension principle.

The following section is devoted to BL-algebras, which are generated by just
one element. In the third section, representations of the categories Ω−FSet

and Set(Ω) are presented. Complete (join) semi-lattice objects in the cate-
gories Ω−FSet and Set(Ω) are illustrated in the fourth section. Final section
is devoted to powerset-like functors. We introduce a C-powerset functor for
the category Ω−FSet and a powerset functor for the category Set(Ω).

2 BL-algebras generated by one element

In this paper, the truth value structure will be a complete BL-algebra, i.e.,
an algebra Ω = 〈L,∧,∨,⊗,→, 0Ω, 1Ω〉, where 〈L,∧,∨, 0Ω, 1Ω〉 is a complete
lattice, where 0Ω and 1Ω denote the least element and the greatest element,
respectively, 〈L,⊗, 1Ω〉 is a commutative monoid and the following conditions
are satisfied for any α, β, γ ∈ L:

(i) α ⊗ β ≤ γ if and only if α ≤ β → γ,
(ii) (α → β) ∨ (β → α) = 1Ω,
(iii) α ⊗ (α → β) = α ∧ β,

where ≤ denotes the corresponding lattice ordering. We say that Ω is a linearly
ordered or completely distributive BL-algebra, if 〈L,∧,∨, 0Ω, 1Ω〉 is a linearly
ordered or completely distributive lattice.
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Let N denote the set of all natural numbers (with 0) and N∗ = N ∪ {∞},
where ∞ denotes the symbol of infinity. Let ≤ denote the ordering in N∗ and
be the natural extension of the ordering in N (i.e., n < ∞ for any n ∈ N). If
Ω is a complete BL-algebra and α ∈ L, then the power of an element α of L

is defined by α0 = 1Ω, αn = α⊗ αn−1 for any n ∈ N \ {0} and α∞ =
∧

n∈N αn.

Lemma 1 Let Ω be a complete BL-algebra and α ∈ L. Then we have

(i)
∧

i∈I αni = α
∨

i∈I
ni,

(ii)
∨

i∈I αni = α
∧

i∈I
ni,

(iii)
∨

i∈I

∧
j∈J αnij =

∧
γ∈JI

∨
i∈I αniγ(i) ,

(iv)
∧

i∈I

∨
j∈J αnij =

∨
γ∈JI

∧
i∈I αniγ(i) ,

for any index sets I, J .

PROOF. Here, we will prove (i) and (iii). Let I = ∅. Then
∧

i∈I αni = 1Ω.
On the other hand, we have

∨
i∈I ni = 0 and α0 = 1Ω. Hence, the equality

in (i) is satisfied. Let I 6= ∅. Since αni ≤ αnj , whenever nj ≤ ni, we have

α
∨

i∈I
ni ≤ αnj for any j ∈ I. Hence, we obtain α

∨
i∈I

ni ≤
∧

i∈I αni. Obviously,
we have

∨
i∈I ni = n0 < ∞ or

∨
i∈I ni = ∞. In the first case, there exists j ∈ I

such that nj = n0 and thus αnj = α
∨

i∈I
ni ≥

∧
i∈I αni. In the second case, we

have
∧

i∈I αni =
∧

n∈N αn = α∞ = α
∨

i∈I
ni, since for any n ∈ N there exists

i ∈ I such that n < ni. Hence, the first statement is proved.

In order to prove the third statement it is sufficient to show the following
equality

∧

i∈I

∨

j∈J

nij =
∨

γ∈JI

∧

i∈I

niγ(i). (1)

The rest of the proof is a straightforward consequent of (i) and (ii). Let γ ∈
JI be an arbitrary mapping. Then

∨
j∈J nij ≥ niγ(i) holds for all i ∈ I and

thus
∧

i∈I

∨
j∈J nij ≥

∧
i∈I niγ(i). With regard to an arbitrary choice of γ we

obtain
∧

i∈I

∨
j∈J nij ≥

∨
γ∈JI

∧
i∈I niγ(i). Conversely. First, let us suppose that∨

j∈J nij = ∞ holds for all i ∈ I. We can consider two different cases. In the
first one, for each i ∈ I, there exists j ∈ J such that nij = ∞. Here we can
obviously define a mapping γ ∈ JI with γ(i) = j if and only if niγ(i) = ∞.
Hence, we obtain the equality

∧
i∈I

∨
j∈J nij =

∨
γ∈JI

∧
i∈I niγ(i) = ∞. In the

second case, we can assume that there exists i0 ∈ I, where
∨

j∈J ni0j = ∞, but
ni0j < ∞ for all j ∈ J . In this case, the following conditions are satisfied

(a) ∀γ ∈ JI :
∧

i∈I niγ(i) < ∞,
(b) ∀γ ∈ JI∃γ′ ∈ JI :

∧
i∈I niγ(i) <

∧
i∈I niγ′(i).
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Indeed, ni0γ(i0) < ∞ holds for each γ ∈ JI and (a) is satisfied. Let us suppose
that there exists γ∗ ∈ JI such that

∧
i∈I niγ(i) ≤

∧
i∈I niγ∗(i) holds for all map-

pings γ ∈ JI . Since
∨

j∈J nij = ∞ for each i ∈ I, we can put γ′(i) = γ∗(i), if
γ∗(i) = ∞, and γ′(i) = j, where niγ∗(i) < nij . Evidently, we obtain the map-
ping γ′ ∈ JI such that

∧
i∈I niγ∗(i) <

∧
i∈I niγ′(i) holds. Hence, a contradiction

and (b) is proved. According to (b), we have
∨

γ∈JI

∧
i∈I ni,γ(i) =

∨
γ∈JI nγ = ∞,

where
∧

i∈I niγ(i) = nγ. Further, we suppose that
∨

j∈J nij < ∞, for some i ∈ I.
Let K be a subset of I such that

∨
j∈J nkj < ∞ holds for any k ∈ K and∨

j∈J nlj = ∞ holds for any l ∈ I \ K. Let us define nkjk
=
∨

j∈J nkj for all
k ∈ K, nljl

≥
∧

k∈K nkjk
for all l ∈ I \ K and γ∗(i) = ji. Then we obtain

∧

i∈I

∨

j∈J

nij ≤
∧

k∈K

nkjk
∧

∧

l∈I\K

nljl
≤
∧

i∈I

niγ∗(i) ≤
∨

γ∈JI

∧

i∈I

niγ(i).

Hence, the equality (1) is satisfied and the proof is finished. 2

Let Lα denote the set of all powers of α, i.e., Lα = {αn | n ∈ N∗}. Further,
put

n ⊕ m =






n + m, n, m ∈ N,

∞, otherwise,
n ⊖ m =






max(n − m, 0), n, m ∈ N,

0, m = ∞,

∞, otherwise.

for any n, m ∈ N∗.

Theorem 2 Let Ω = 〈L,∧,∨,⊗,→, 0Ω, 1Ω〉 be a complete BL-algebra and
α ∈ L. Then Ωα = 〈Lα,∧α,∨α,⊗α,→α, α∞, 1Ω〉, where

αm ∧α αn = αm ∧ αn (2)

αm ∨α αn = αm ∨ αn (3)

αm ⊗α αn = αm⊕n (4)

αm →α αn = αm⊖n (5)

are defined for any αm, αn ∈ Lα, is a complete and completely distributive
linearly ordered subalgebra of Ω.

PROOF. One checks easily that α0 is the greatest element, α∞ is the least
element and the operation ⊗α is the restriction of ⊗ on Lα. Since (α1⊗α2) →
α3 = α1 → (α2 → α3), then we have αm → αn = (αm⊖n ⊗ αn) → αn =
αm⊖n → (αn → αn) = αm⊖n = αm →α αn for any m, n ∈ N∗. Hence, the
operation →α is the restriction of → on Lα and thus Ωα is a BL-subalgebra
of Ω. The rest of the proof is a straightforward consequence of Lemma 1 and
the fact that (N∗,≤) is a complete lattice. 2
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A complete BL-algebra Ωα defined above is called the BL-algebra generated
by the element α. It is known that the equality β ⊗

∧
i∈I βi =

∧
i∈I(β ⊗ βi) for

any non-empty I is false in complete BL-algebras in general. Note that this
equality is satisfied, for example, in MV -algebras, i.e. BL-algebras, where the
law of double negation (i.e., (α → 0Ω) → 0Ω = α for any α ∈ L) is satisfied.
BL-algebras generated by one element are further examples of BL-algebras
satisfying this equality as the following theorem states.

Theorem 3 Let Ω be a complete BL-algebra and α ∈ L. Then

β ⊗α

∧

i∈I

βi =
∧

i∈I

(β ⊗α βi) (6)

holds for any β ∈ Lα and a non-empty index set {βi ∈ Lα | i ∈ I}.

PROOF. One checks easily by a direct computation that n ⊕
∨

i∈I mi =∨
i∈I(n ⊕ mi) holds for any non-empty set I and n, mi ∈ N∗, where i ∈ I.

Hence, we can write (according to Lemma 1 and Theorem 2)

αn ⊗α

∧

i∈I

αmi = αn ⊗α α
∨

i∈I
mi = αn⊕

∨
i∈I

mi =

α
∨

i∈I
(n⊕mi) =

∧

i∈I

αn⊕mi =
∧

i∈I

(αn ⊗α αmi)

for any non-empty set I and n, mi ∈ N∗, where i ∈ I, and thus (6) is
proved. 2

3 Categories of fuzzy sets over BL-algebras

This section is devoted to two well-known categories of fuzzy sets, namely,
the category Ω−FSet, which objects are pairs (X, δ), where δ : X × X → L

is a similarity relation, and Set(Ω), which objects are pairs (X, A), where
A : X → L is a mapping from X to the support of Ω. We introduce some
types of their subobjects and prove that both categories can be represented
in the product of their special subcategories in the sense of the following
definition.

Definition 4 Let Cat be a category with all products and C = {Cati | i ∈ I}
be an index family of subcategories of Cat. We say that Cat is representable
in C, if there exists a subcategory Rep of the product category

∏
i∈I Cati which

is equivalent to Cat.

It is easy to see that each category Cat can be representable in C = {Cat}.
This representation of Cat is called trivial. Otherwise, it is called nontrivial.
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3.1 Category Ω−FSet

Definition 5 Let Ω be a complete BL-algebra. An Ω-valued fuzzy set (shortly
Ω-fuzzy set) is a pair (X, δ), where X is a set and δ : X×X → Ω is a mapping
such that

δ(x, y) ≤ δ(x, x) ∧ δ(y, y) (strictness)

δ(x, y) = δ(y, x) (symmetry)

δ(x, y) ⊗ (δ(y, y) → δ(y, z)) ≤ δ(x, z) (transitivity)

hold for all x, y, z ∈ X. The mapping δ is called similarity relation.

Definition 6 The category Ω−FSet of Ω-fuzzy sets consists of the following
data

(i) Ω-fuzzy sets as objects,
(ii) structure preserving mappings as morphisms, i.e., f : (X, δ) - (Y, γ)

is a morphism, if f : X - Y is a mapping of sets satisfying the fol-
lowing axioms

γ(f(x), f(x)) ≤ δ(x, x) (Strictness)

δ(x, y) ≤ γ(f(x), f(y)) (Preservation of Equality)

for all x, y ∈ X.

If f : (X, δ) - (Y, γ) and g : (Y, γ) - (Z, ρ) are two morphisms, then
their composition is mapping g ◦ f : X - Z.

It easy to verify that the composition of morphisms f and g is again a mor-
phism in Ω−FSet.

Theorem 7 The category Ω−FSet is complete.

PROOF. It is obvious that (L,∧) is the terminal object To and (∅, ∅) is the
initial object In. One checks easily that if {(Xi, δi) | i ∈ I} is an index set of
Ω-fuzzy sets, then

X = {x ∈
∏

i∈I

Xi | (∀i, j ∈ I)(δi(xi, xi) = δj(xj, xj))},

δ(x,y) =
∧

i∈I

δi(xi, yi)

7



and the common set-projections pi :
∏

i∈I Xi
- Xi define the product of

{(Xi, δi) | i ∈ I} in Ω−FSet. Finally, if

(X, δ)
f-
g
- (Y, γ),

then B = {x ∈ X | f(x) = g(x)}, δ′ = δ|B×B (the restriction of δ on B) and
the inclusion mapping e : B- - X define the equalizer of the morphisms f

and g in Ω−FSet. Hence, the category Ω−FSet has limits. 2

Definition 8 Let Ω = (L,∧,∨,⊗,→, 0Ω, 1Ω) be a complete BL-algebra and
α ∈ Ω. An Ωα-valued fuzzy set (shortly Ωα-fuzzy set) is an ordered pair (X, δ),
where X is a set and δ : X × X → Lα is a mapping that

δ(x, x) = α (α-level property)

δ(x, y) ≤ α (strictness)

δ(x, y) = δ(y, x) (symmetry)

δ(x, y) ⊗ (α → δ(y, z)) ≤ δ(x, z) (α-transitivity)

hold for all x, y, z ∈ X. The mapping δ is called α-similarity relation.

Definition 9 The category Ωα−FSet consists of the following data

(i) Ωα-fuzzy sets as objects,
(ii) f : (X, δ) - (Y, γ) is a morphism, if f is a mapping of X to Y

satisfying the preservation of equality.

If f : (X, δ) - (Y, γ) and g : (Y, γ) - (Z, ρ) are two morphisms, then
their composition is the mapping g ◦ f : X - Z.

Theorem 10 Let Ω be a BL-algebra and α ∈ L. Then Ωα−FSet is a com-
plete category that is a full subcategory of Ω−FSet.

PROOF. One checks easily that To = ({α},∧) and In = (∅, ∅). The con-
structions of the products and equalizers are analogous to the constructions
presented in the proof of Theorem 7. If H : Ωα−FSet- - Ω−FSet is the
inclusion functor and g : H(X, δ) - H(Y, γ) is a morphism in Ω−FSet, then
evidently H(g) = g and thus H is full. Hence, Ωα−FSet is a full subcategory
of Ω−FSet. 2

In the following part, we will prove that the category Ω−FSet is representable
in the family of all subcategories Ωα−FSet in the sense of Definition 4. First,
let us define a suitable objects of Ωα−FSet using them the representation will
be constructed.
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Let X be a set and R ⊆ X × X be a symmetric relation which satisfies the
following additional condition

(x, y) ∈ R ⇒ (x, x) ∈ R (7)

for any x, y ∈ X. A relation satisfying the condition (7) is called conditionally
reflexive. A finite sequence s = {si}

n
i=1 such that si = (xi, xi+1) ∈ R holds for

any i = 1, . . . , n, is called a chain in R of the length n. The length of a chain
s is denoted by |s|. Let s = {si}

n
i=1 be a chain in R. Then s1 is called the

beginning and sn is called the end of the chain s. The set of all chains s in R

with (x, y) or (y, x) as the beginning of s and (p, q) or (q, p) as the end of s is
denoted by Ch((x, y), (p, q)). It is easy to see that for each (x, y), (p, q) ∈ R we
have s = {(x, y)} ∈ Ch((x, y), (x, y)), where |s| = 1, and Ch((x, y), (p, q)) =
Ch((x, y), (q, p)) = Ch((y, x), (p, q)) = Ch((y, x), (q, p)). Further, there exists
a bijective mapping g : Ch((x, y), (p, q))- - Ch((p, q), (x, y)) such that |s| =
|g(s)| for any s ∈ Ch((x, y), (p, q)). In fact, if s = {(x, y), (y, y1), . . . , (p, q)}
then we put g(s) = {(q, p), . . . , (y1, y), (y, x)} ∈ Ch((p, q), (x, y)). Evidently, g

is a bijection with the considered condition.

Lemma 11 Let (x, y), (p, q), (e, f) ∈ R and r ∈ Ch((x, y), (p, q)) and s ∈
Ch((p, q), (e, f)). Then there exists t ∈ Ch((x, y), (e, f)) such that |r|+|s| > |t|.

PROOF. Let r ∈ Ch((x, y), (p, q)), s ∈ Ch((p, q), (e, f)) and |r| = n, |s| = m.
Let us denote r1n = s11 = (p, q) and r2n = s21 = (q, p) (the possible ends of
r and beginnings of s). It is easy to prove that for arbitrary rin, sj1, where
i, j = 1, 2, there exists t ∈ Ch((x, y), (e, f)) such that |r| + |s| > |t|. 2

Lemma 12 Let (x, y), (p, q), (e, f) ∈ R and r ∈ Ch((x, y), (p, q)) and s ∈
Ch((e, f), (p, q)). Then there exists t ∈ Ch((x, y), (e, f)) such that |r|+|s| > |t|.

PROOF. Let s ∈ Ch((e, f), (c, d)). Then there exists s′ ∈ Ch((c, d), (e, f))
such that |s| = |s′|. According to lemma 11, there exists t ∈ Ch((a, b), (e, f))
such that |r| + |s′| > |t| and, hence, |r| + |s| > |t|. 2

Definition 13 The category Rep consists of the following data

(i) families R = {(Rα, δα) | α ∈ L & Rα ⊆ X × X} as objects, where X is
a set, δα : Rα × Rα

- Lα is defined by

∀(x, y), (p, q) ∈ Rα : δα((x, y), (p, q)) =
∨

s∈Ch((x,y),(p,q))

α|s|, (8)

and, moreover, the following axioms are satisfied for any α, β ∈ L and
x, y, z ∈ X

9



(R1) R0 = X × X,
(R2) if (x, y) ∈ Rα, then (x, x) ∈ Rα and (y, x) ∈ Rα (i.e., Rα is condition-

ally reflexive and symmetric relation),
(R3) if α ≤ β, then Rβ ⊆ Rα,
(R4) if

α =
∨
{ω ∈ L | (x, y) ∈ Rω}, (9)

then (x, y) ∈ Rα.
(R5) if (x, y) ∈ Rα and (y, z) ∈ Rβ, then there exists ε ∈ L such that

(x, z) ∈ Rε and

α ⊗ ((
∨

ω∈L
(y,y)∈Rω

ω) → β) ≤ ε. (10)

(ii) a morphism between R and S is a family f = {fα : Rα
- Sα | α ∈ L}

of mappings such that there exists a mapping f : X - Y satisfying
the following axioms for any α ∈ L

(R6) fα(x, y) = (f(x), f(y)) holds for any (x, y) ∈ Rα,
(R7) δα((x, y), (p, q)) ≤ γα(fα(x, y), fα(p, q)) holds for any (x, y), (p, q) ∈

Rα,
(R8) the following equality is satisfied

∨
{α ∈ L | (x, x) ∈ Rα} =

∨
{β ∈ L | fβ(x, x) ∈ Sβ} (11)

for any x ∈ X.

If f : R - S and g : S - T are two morphisms, then their composition
is a family g ◦ f = {gα ◦ fα : Rα

- Tα | α ∈ L} of mappings.

One checks easily that 1R = {1Rα | α ∈ L} define the identity morphism in
Rep and f ◦ (g ◦ h) = (f ◦ g) ◦ h is satisfied for any morphisms h : R - S,
g : S - T and f : T - U.

Remark 14 If Rα = ∅, then evidently δα = ∅. Obviously, the object (∅, ∅) is
the initial object in Ωα−FSet (cf. Theorem 7).

Theorem 15 Rep is a subcategory of the product category
∏

α∈L Ωα−FSet.

PROOF. First, let us prove that (Rα, δα) is an object of Ωα−FSet. Let
(x, y), (p, q), (e, f) ∈ Rα. Since (x, y) ∈ Ch((x, y), (x, y)), then we have

δα((x, y), (x, y)) =
∨

s∈Ch((x,y),(x,y))

α|s| = α1 = α.

Hence, δα satisfies α-level property and is strict. If Ch((x, y), (p, q)) = ∅, then
obviously Ch((p, q), (x, y)) = ∅. Hence, δα((x, y), (p, q)) = δα((p, q), (x, y)) =

10



α∞. If Ch((x, y), (p, q)) 6= ∅, then there exists a bijective mapping

g : Ch((x, y), (p, q))- - Ch((x, y), (p, q))

with |s| = |g(s)| and thus δα is symmetric. Finally, if Ch((x, y), (p, q)) = ∅ or
Ch((p, q), (e, f)) = ∅, then one checks that

δα((x, y), (p, q))⊗ (α → δα((p, q), (e, f))) = α∞ ≤ δα((x, y), (e, f))

and δα is α-transitive. If Ch((x, y), (p, q)) 6= ∅ 6= Ch((p, q), (e, f)), then we
have

δα((x, y), (p, q))⊗ (α → δα((p, q), (e, f))) =
∨

r∈Ch((x,y),(p,q))

α|r| ⊗ (α →
∨

s∈Ch((p,q),(e,f))

α|s|) =

∨

r∈Ch((x,y),(p,q))

∨

s∈Ch((p,q),(e,f))

α|r| ⊗ (α →α|s|) =

∨

r∈Ch((x,y),(p,q))

∨

s∈Ch((p,q),(e,f))

α|r|+|s|−1 ≤
∨

t∈Ch((x,y),(e,f))

α|t| = δα((x, y), (e, f))

where the inequality follows from Lemmas 11 and 12. Hence, δα is α-transitive
and (Rα, δα) is an object of Ωα−FSet. Further, let us prove that fα is a mor-
phism of Ωα−FSet. This is, however, a straightforward consequence of (R7)
and the fact that δα((x, y), (x, y)) = α = γα((p, q), (p, q)) for any (x, y) ∈ Rα

and (p, q) ∈ Sα. Moreover, it is easy to see that 1Rα defines the identity mor-
phism 1(Rα,δα) and if fα : (Rα, δα) - (Sα, γα) and gα : (Sα, γα) - (Tα, ϑα)
are two morphisms, then the composition gα ◦ fα : (Rα, δα) - (Tα, ϑα) is
again a morphism in Ωα−FSet. Hence, Rep is a subcategory of the product
category

∏
α∈L Ωα−FSet. 2

Lemma 16 Let (X, δ) be any object of Ω−FSet. Then R = {(Rα, δα) | α ∈
Ω}, where Rα = {(x, y) ∈ X × X | δ(x, y) ≥ α} and δα : Rα × Rα

- Lα is
defined by (8), is an object of the category Rep.

PROOF. Obviously, R0 = X × X, Rα ⊆ X × X and if (x, y) ∈ Rα, then
δ(x, x) ≥ δ(y, x) = δ(x, y) ≥ α. Hence, R is well defined and (R1) and (R2)
are satisfied. If α ≥ β and (x, y) ∈ Rα, then δ(x, y) ≥ α ≥ β and thus
(x, y) ∈ Rβ . Hence, (R3) is satisfied. Let x, y ∈ X be arbitrary elements. If
(x, y) ∈ Rω, then δ(x, y) = α ≥ ω. Hence, we obtain δ(x, y) ≥

∨
{ω ∈ L |

(x, y) ∈ Rω}. Since (x, y) ∈ Rα, then δ(x, y) ≤
∨
{ω ∈ L | (x, y) ∈ Rω} and

thus δ(x, y) =
∨
{ω ∈ L | (x, y) ∈ Rω}. A straightforward consequence of this

equality is the validity of (R4). Let α, β ∈ L, (x, y) ∈ Rα and (y, z) ∈ Rβ. Put
ε = α ⊗ (δ(y, y) → β). It is easy to see that

δ(x, z) ≥ δ(x, y) ⊗ (δ(y, y) → δ(y, z)) ≥ α ⊗ ((
∨

ω∈L
(y,y)∈Rω

ω) → β) = ε,

11



where δ(y, y) =
∨
{ω ∈ L | (y, y) ∈ Rω} was proved above. Then (x, z) ∈ Rε

and ε fulfills (10). Hence, (R5) is satisfied and R is an object of Rep. 2

Lemma 17 Let f : R - S be a morphism in Rep. Then there exists the
unique mapping f : X - Y , where X and Y are the corresponding sets to
R and S, respectively.

PROOF. Let f be determined by two mappings f, g : X - Y . Then
(f(x), f(x)) = f0(x, x) = g0(x, x) = (g(x), g(x)) holds for any x ∈ X and thus
f = g. Hence, there exists the unique mapping f determining f . 2

Theorem 18 The categories Ω−FSet and Rep are equivalent.

PROOF. First, let us define a covariant functor F : Ω−FSet - Rep as
follows

(i) F(X, δ) = {(Rα, δα) | α ∈ L}, where Rα = {(x, y) ∈ X × X) | δ(x, y) ≥
α} and δα is defined by (8),

(ii) F(f) = {fα | α ∈ L}, where fα : Rα
- Sα defined by fα(x, y) =

(f(x), f(y)).

According to Lemma 16, the family F(X, δ) is an object of Rep. Let f :
(X, δ) - (Y, γ) be a morphism in Ω−FSet. If Rα = ∅, then fα = ∅. If
(x, y) ∈ Rα, then γ(f(x), f(y)) ≥ δ(x, y) ≥ α which implies fα(x, y) ∈ Sα.
Hence, fα is correctly defined. Moreover, (R6) is trivially satisfied. If s =
{(x1, x2), . . . , (xn−1, xn)} is a chain in Rα, then

fα(s) = {fα(x1, x2), . . . , fα(xn−1, xn)}

is a chain in Sα. Hence, we obtain

δα((x, y), (p, q)) =
∨

s∈Ch((x,y),(p,q))

α|s|

≤
∨

f(s)∈Ch(fα(x,y)),fα(p,q))

α|f(s)| ≤ γα(fα(x, y), fα(p, q))

and (R7) is satisfied. Since δ(x, x) = γ(f(x), f(x)), then

∨
{α ∈ L | (x, x) ∈ Rα} =

∨
{β ∈ L | fβ(x, x) ∈ Sβ}.

Hence, (R8) is satisfied and F(f) is a morphism in Rep. Let us consider two
morphisms f : (X, δ) - (Y, γ) and g : (Y, γ) - (Z, ϑ) of Ω−FSet. Ob-
viously, we have (g ◦ f)α(x, y) = ((g ◦ f)(x), (g ◦ f)(y)) = gα(f(x), f(y)) =
(gα ◦ fα)(x, y) for any (x, y) ∈ Rα and, hence, F(g ◦ f) = F(g) ◦ F(f). More-
over, if 1(X,δ) is the identity morphism, then we can write (1(X,δ))α(x, y) =
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(1(X,δ)(x), 1(X,δ)(y)) = (x, y) for any α ∈ L and (x, y) ∈ Rα. Hence, F(1(X,δ)) =
1F(X,δ) and F is a covariant functor.

Further, let us define a covariant functor G : Rep - Ω−FSet as follows

(i) G(R) = (X, δ), where R0 = X × X and δ : X × X → L is defined by
δ(x, y) =

∨
{α ∈ L | (x, y) ∈ Rα},

(ii) G(f) = f , where f(x) = f0Ω
(x, x).

Since (x, y) ∈ Rα implies (x, x) ∈ Rα and (y, x) ∈ Rα, then we have

δ(x, y) =
∨
{α ∈ L | (x, y) ∈ Rα} ≤

∨
{α ∈ L | (x, x) ∈ Rα} = δ(x, x)

and similarly

δ(x, y) =
∨
{α ∈ L | (x, y) ∈ Rα} =

∨
{α ∈ L | (y, x) ∈ Rα} = δ(y, x).

Hence, the relation δ is strict and symmetric. Let x, y, z ∈ X, then

δ(x, y) ⊗ (δ(y, y) → δ(y, z)) =
( ∨

α∈L
(x,y)∈Rα

α
)
⊗ (

∨

ω∈L
(y,y)∈Rω

ω →
∨

β∈L
(y,z)∈Rβ

β
)

=

∨

α∈L
(x,y)∈Rα

∨

β∈L
(y,z)∈Rβ

(α ⊗ ((
∨

ω∈L
(y,y)∈Rω

ω) → β)) ≤
∨

ε∈L
(x,z)∈Rε

ε = δ(x, z),

where the inequality follows from (R5). Hence, (X, δ) is an object of Ω−FSet.
According to Lemma 17, F(f) is the unique mapping which corresponds to f .
Let x, y ∈ X, then we have

δ(x, x) =
∨

α∈L
(x,x)∈Rα

α =
∨

β∈L
fβ(x,x)∈Sβ

β = γ(f(x), f(x)) = γ(G(f)(x),G(f)(x))

according to (R8) and

δ(x, y) =
∨

α∈L
(x,y)∈Rα

δα((x, y), (x, y)) ≤
∨

α∈Ω
(x,y)∈Rα

γα(fα(x, y), fα(x, y)) ≤

∨

β∈L
fβ (x,y)∈Sα

γβ(fβ(x, y), fβ(x, y)) = γ(f(x), f(y)) = γ(G(f)(x),G(f)(y)).

Hence, G(f) is a morphism in Ω−FSet. Moreover, obviously G(g◦f) = g◦f =
G(g) ◦ G(f) and G(1R) = 1X = 1G(R). Thus G is a covariant functor.

Finally, we will prove that G ◦ F = 1Ω−FSet and F ◦ G = 1Rep. Let (X, δ)
be an arbitrary object of Ω−FSet. Obviously, G ◦ F(X, δ) = (X, δ′). Let
x, y ∈ X. We have shown that δ(x, y) =

∨
{ω ∈ L | (x, y) ∈ Rω}, where Rω =

{(x, y) | δ(x, y) ≥ α} (see the proof of Theorem 16). If f : (X, δ) → (Y, γ) is a
morphism in Ω−FSet, then trivially G ◦F(f) = f and thus G ◦F = 1Ω−FSet.
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Let R = {(Rα, δα) | α ∈ L} be an object in Rep and let F◦G(R) = {(R′
α, δ′α) |

α ∈ L}. If (x, y) ∈ Rα, then δ(x, y) =
∨
{ω ∈ L | (x, y) ∈ Rω} ≥ α and thus

(x, y) ∈ R′
α, i.e. Rα ⊆ R′

α. If (x, y) ∈ R′
α and δ(x, y) = β, then (x, y) ∈ Rβ ,

according to (R4), and thus (x, y) ∈ Rα, according to (R3), i.e. R′
α ⊆ Rα.

Hence, we obtain Rα = R′
α and also δα = δ′α, according to the definition. If

f : R - S is a morphism in Rep, then trivially F ◦ G(f) = f and thus
F ◦ G = 1Rep. Thus the categories Ω−FSet and Rep are equivalent and the
proof is finished. 2

Theorem 19 Ω−FSet is representable in C = {Ωα−FSet | α ∈ L}.

PROOF. This is a straightforward consequence of Theorem 18. 2

3.2 Category Set(Ω)

Definition 20 Let Ω = (L,∧,∨,⊗,→, 0Ω, 1Ω) be a complete residuated lat-
tice. An Ω-valued set (shortly Ω-set) is an ordered pair (X, A), where X is a
set and A : X → L is a mapping.

Definition 21 The category Set(Ω) consists of the following data

(i) Ω-sets as objects,
(ii) f : (X, A) → (Y, B) is a morphism, if f : X → Y is a mapping such

that A(x) ≤ B(f(x)) holds for any x ∈ X.

If f : (X, A) - (Y, B) and g : (Y, B) - (Z, C) are two morphisms, then
their composition is usual composition of mappings g ◦ f : X - Z.

Theorem 22 The category Set(Ω) is complete.

PROOF. It is obvious that a pair ({0}, χ{0}) is the terminal object and the
pair (∅, ∅) is the initial object of Set(Ω). One checks easily that is {(Xi, Ai) |
i ∈ I} is a family of Ω-sets, then (

∏
i∈I Xi, A), A(x) =

∧
i∈I Ai(xi) and the

common set-projections define the product of {(Xi, Ai) | i ∈ I}. Finally, if

(X, A)
f-
g
- (Y, B),

then Z = {x ∈ X | f(x) = g(x)}, C = A|Z (the restriction of A on Z) and
the inclusion mapping e : Z- - X define the equalizer of the morphisms f

and g in Set(Ω). Hence, the category Set(Ω) has limits. 2
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Definition 23 Let Ω = (L,∧,∨,⊗,→, 0Ω, 1Ω) be a complete residuated lattice
and α ∈ L. An Ωα-set is a ordered pair (X, A), where X is a set and A :
X - Lα.

Definition 24 The category Set(Ωα) consists of the following data

(i) Ωα-sets as objects,
(ii) f : (X, A) - (Y, B) is a morphism, if f : X - Y is a mapping

with A(x) ≤ B(f(x)).

If f : (X, A) - (Y, B) and g : (Y, B) - (Z, C) are two morphisms, then
their composition is usual composition of mappings g ◦ f : X - Z.

Theorem 25 Let Ω be a BL-algebra and α ∈ L. Then Set(Ωα) is a complete
category that is a full subcategory of the category Set(Ω).

PROOF. It is obvious. 2

Let us introduce a special subcategory Rep of the category
∏

α∈L Set(Ωα)
that will represent the category Set(Ω).

Definition 26 The category Rep consists of the following data

(i) families X = {(Xα, Aα) | α ∈ L} as objects, where Xα is a set, Aα :
Xα

- {α} and the following axioms are satisfied for any α, β ∈ L

and x ∈ X

(S1) Xα ⊆ Xβ, whenever α ≥ β,
(S2) if

α =
∨
{ω ∈ L | x ∈ Xω}, (12)

then x ∈ Xα,
(ii) a family f = {fα : Xα

- Yα | α ∈ L} of mappings is a morphism, if
there exists a mapping f : X0Ω

- Y0Ω
such that fα = f |Xα for any

α ∈ L.

The composition of morphisms is defined as the composition of the correspond-
ing mappings.

Theorem 27 Rep is a subcategory of the product category
∏

α∈L Set(Ωα).

PROOF. It is obvious. 2

Theorem 28 The categories Set(Ω) and Rep are equivalent.
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PROOF. First, let us introduce a covariant functor F : Set(Ω) - Rep as
follows

(i) F (X, A) = {(X, Aα) | α ∈ L}, where Xα = {x ∈ X | A(x) ≥ α} and
Sα(x) = α for any x ∈ Xα,

(ii) F (f) = {fα | α ∈ L}, where fα = f |Xα.

Obviously, F (X, A) is an object of Set(Ω). Let f : (X, A) - (Y, B) be a
morphism in Set(Ω) and α ∈ L. Since fα(x) = f(x) for any x ∈ Xα and
A(x) ≤ B(f(x)), then obviously Aα(x) ≤ Bα(f(x)). One checks that F is a
covariant functor.

Further, let us define a covariant functor G : Rep - Set(Ω) as follows

(i) G(X) = (X, A), where X = X0 and A : X - L is defined by

A(x) =
∨

α∈L
x∈Xα

Aα(x), (13)

(ii) G(f) = f0.

Obviously, G(X) is a object of Set(Ω). Let f : X - Y be an arbitrary
morphism and x ∈ X. Then we have

A(x) =
∨

α∈L
x∈Xα

Aα(x) ≤
∨

α∈L
f(x)∈Yα

Bα(fα(x)) = B(G(f)(x)),

since Aα(x) ≤ Bα(fα(x)) holds for any x ∈ Xα. Hence, G(f) is a morphism in
Set(Ω). One checks easily that G is a covariant functor.

Finally, we will prove that G ◦ F = 1Set(Ω) and F ◦ G = 1Rep. Let (X, A)
be an arbitrary object of Set(Ω) and put G ◦ F(X, A) = (X ′, A′). Obviously,
X ′ = X0 = X. Since A(x) ≥ Aα(x) for any α ∈ L such that x ∈ Xα, then

A(x) ≥
∨

α∈L
x∈Xα

Aα(x)

holds for any x ∈ X. The inverse inequality is a direct consequence of x ∈
XA(x). Hence, we obtain

A(x) =
∨

α∈L
x∈Xα

Aα(x) = A′(x)

for any x ∈ X and thus G ◦ F(X, A) = (X, A). According to the definitions
of the functors F and G, we have G ◦ F(f) = f and thus G ◦ F = 1Set(Ω). Let
X = {(Xα, Aα) | α ∈ L} be an object of Rep and put F ◦G(X) = {(X ′

α, A′
α) |

α ∈ L}. It is easy to see that Xα ⊆ X ′
α for any α ∈ L. Let x ∈ X ′

α. Then
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A(x) ≥ α implies x ∈ Xα, where (S2) is used in the case that A(x) = α. Hence,
Xα = X ′

α. Since Aα(x) = A′
α(x) = α for any Xα, we have F ◦ G(X) = X.

Obviously, we have F ◦ G(f) = F (f0) = f and thus F ◦ G = 1Rep. Hence, the
categories Set(Ω) and Rep are equivalent and the proof is finished. 2

Theorem 29 Set(Ω) is representable in C = {Set(Ωα) | α ∈ L}.

PROOF. This is a straightforward consequence of Theorem 28. 2

4 Complete semi-lattice objects in categories of fuzzy sets

4.1 Basic definitions

In the following part, we will present an internal definition of complete semi-
lattice objects in a category Cat. Let us suppose that a complete category
Cat is given.

Definition 30 Let X be an object of Cat. A pair (X,∨), where ∨ : X ×
X - X is a morphism of Cat, is a semi-lattice object of the category Cat,
if the following diagrams (axioms) are satisfied

(X × X) × X
∨ × 1X- X × X

∨ - X

X × (X × X)

∼=
? 1X ×∨- X × X

∨ - X

1X

?
(associativity)

X × X
∨ - X

X × X

r
? ∨ - X

1X

?
(commutativity)

X
∆- X × X

X

1X

? 1X - X

∨
?

(idempotence)

where r is the twist morphism, i.e., π1 ◦ r = π2 and π2 ◦ r = π1 hold, and ∆
is the diagonal morphism, i.e., π1 ◦ ∆ = π2 ◦ ∆ = 1X holds.

Definition 31 Let (X,∨) be a semi-lattice object in Cat and To be the ter-
minal object. We say that (X,∨) has the least element or greatest element, if
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there exist the unique morphisms ⊥ : To - X or ⊤ : To - X such that,
for any morphism x : To - X, the diagrams

To × To
⊥× x- X × X To × To

⊤× x- X × X

or

X × X

⊥× x
? p2 - X

∨
?

X × X

⊤× x
? p1 - X,

∨
?

(14)

where p2 or p1 are the corresponding projections, commute, respectively. A
semi-lattice object with the least or greatest element is denoted by (X,∨,⊥) or
(X,∨,⊤), respectively.

Note that if we consider a semi-lattice object (X,∨) in the category of sets
such that there exists ⊥ : {x} - X holding ⊥(x)∨y = y for any y ∈ X, then
⊥(x) is the least element in X. Moreover, the morphism ∨ represents a join
operation. Hence, a semi-lattice object (X,∨,⊥) could be also interpreted as
a join semi-lattice object with the least element. Let us define complete (join)
semi-lattice objects in Cat. Let I be a non-empty set and XI denote a product
of I copies of X, i.e., XI =

∏
I X. Note that XI is usually called a power of

X (see [3]). For any i ∈ I, we define a morphism (an i-diagonal morphism)
ξi : XI → X × XI such that the following diagrams commute:

X × XI �ξi
XI ξi- X × XI

X

p1
?

� qi
XI

1XI

?
1XI - XI

p2
?

(15)

where p1, p2 and qi are the projections of the corresponding products. If X is
a set and {aj}j∈I ∈ XI , then obviously ξi((aj)j∈I) = (ai, (aj)j∈I).

Definition 32 A semi-lattice object (X,∨,⊥) in Cat is complete, if, for the
empty set I,

∨
I = ⊥ and, for any non-empty set I, there exists a morphism∨

I : XI - X such that

(i) the diagram

XI ξi- X × XI 1X ×
∨

I- X × X

X

∨
I

?
- 1X - X,

∨
?

(16)

commutes for any i ∈ I,
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(ii) if f : XI - X is a morphism satisfying (i), then the diagram

XI ∆- XI × XI

∨
I ×f- X × X

X

∨
I

? 1X - X.

∨
?

(17)

commutes.

Remark 33 If (X,∨,⊥) is a (join) semi-lattice object in the category of sets,
then (i) states that for any non-empty set I there exists an upper bound

∨
i∈I xi

(i.e., xi ≤X

∨
i∈I xi for any i ∈ I) and (ii) states that this upper bound is the

least upper bound (i.e., if there is x ∈ X such that ai ≤X x for any i ∈ I, then∨
i∈I xi ≤X x).

Definition 34 A category CSLatCat ( complete semi-lattice category over
Cat) consists of the following data

(i) complete (join) semi-lattice objects (X,∨,⊥) of the category Cat as ob-
jects,

(ii) f : (X,∨X ,⊥X) - (Y,∨Y ,⊥Y ) is a morphism, if f : X - Y is a
morphism of Cat such that the diagrams (the first one for any non-empty
set I)

XI

∨
X,I - X To

⊥X - X

and
Q

Q
Q

Q
Q⊥Y s

Y I

∏
I f

? ∨
Y,I - Y

f
?

Y.

f
?

(18)

commute.

4.2 Complete join semi-lattice objects in Ω−FSet

Let (X, δ) be an object of Ω−FSet. An Ω-subset of (X, δ) is an Ω-fuzzy set A =
(A, δA), where A ⊆ X and δA = δ|A is the restriction of δ on A. The set of all Ω-
subsets of (X, δ) is denoted by Sub(X, δ). In the following text, for simplicity,
we omit the index A in δA and write only δ. Let δ̂ : Sub(X, δ)2 - L be a
relation defined by

δ̂(A, B) =
∨

a∈A

δ(a, a) ⊗
∧

x∈X

(
∨

a∈A

δ(a, x) →
∨

b∈B

δ(b, x))∧

∨

b∈B

δ(b, b) ⊗
∧

y∈X

(
∨

b∈B

δ(b, y) →
∨

a∈A

δ(a, y)).
(19)

for any A, B ∈ Sub(X, δ).
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Lemma 35 Let (X, δ) be an object of Ω−FSet. Then the pair (Sub(X, δ), δ̂),
where δ̂ is defined by (19), is an object of the category Ω−FSet.

PROOF. One check easily that δ̂(A, A) =
∨

a∈A δ(a, a). Hence, we have

δ̂(A, A) ∧ δ̂(B, B) =
∨

a∈A

δ(a, a) ∧
∨

b∈A

δ(b, b) ≥ δ̂(A, B)

for any A, B ∈ Sub(X, δ) and thus δ̂ is strict. Since the definition of δ̂ is
symmetric, δ̂ is symmetric. Since a⊗ (a → b) = a∧ b and (a → b)⊗ (b → c) ≤
a → c hold for any a, b, c ∈ L, then we have

δ̂(A, B) ⊗ (δ̂(B, B) → δ̂(B, C)) ≤
(
(
∨

a∈A

δ(a, a) ⊗
∧

x∈X

(
∨

a∈A

δ(a, x) →
∨

b∈B

δ(b, x))) ∧
∨

b∈B

δ(b, b)
)
⊗

( ∨

b∈B

δ(b, b) → (
∨

b∈B

δ(b, b) ⊗
∧

y∈X

(
∨

b∈B

δ(b, y) →
∨

c∈C

δ(c, y)))
)
≤

∨

b∈B

δ(b, b) ⊗
( ∨

b∈B

δ(b, b) → (
∨

a∈A

δ(a, a) ⊗
∧

x∈X

(
∨

a∈A

δ(a, x) →
∨

b∈B

δ(b, x))
)
⊗

( ∨

b∈B

δ(b, b) → (
∨

b∈B

δ(b, b) ⊗
∧

y∈X

(
∨

b∈B

δ(b, y) →
∨

c∈C

δ(c, y)))
)

=

( ∨

b∈B

δ(b, b) → (
∨

a∈A

δ(a, a) ⊗
∧

x∈X

(
∨

a∈A

δ(a, x) →
∨

b∈B

δ(b, x)))
)
⊗

∨

b∈B

δ(b, b) ⊗
∧

y∈X

(
∨

b∈B

δ(b, y) →
∨

c∈C

δ(c, y)) ≤

∨

a∈A

δ(a, a) ⊗
( ∧

x∈X

(
∨

a∈A

δ(a, x) →
∨

b∈B

δ(b, x)) ⊗
∧

y∈Y

(
∨

b∈B

δ(b, y) →
∨

c∈C

δ(c, y))
)
≤

∨

a∈A

δ(a, a) ⊗
∧

x∈X

(
(
∨

a∈A

δ(a, x) →
∨

b∈B

δ(b, x)) ⊗ (
∨

b∈B

δ(b, y) →
∨

c∈C

δ(c, y))
)
≤

∨

a∈A

δ(a, a) ⊗
∧

x∈X

(
∨

a∈A

δ(a, x) →
∨

c∈C

δ(c, x)).

Analogously, we obtain

δ̂(A, B) ⊗ (δ̂(B, B) → δ̂(B, C)) ≤
∨

c∈C

δ(c, c) ⊗
∧

x∈X

(
∨

c∈C

δ(c, x) →
∨

a∈A

δ(a, x)).

Hence, δ̂ is transitive and (Sub(X, δ), δ̂) is an object of Ω−FSet. 2

Let (Y, γ) = (Sub(X, δ), δ̂) × (Sub(X, δ), δ̂) denote the product. Let us define
a mapping ∪ : Y - Sub(X, δ) for any (A, B) ∈ Y (recall that δ̂(A, A) =
δ̂(B, B) holds in this case) as follows

A ∪ B = (A, δ) ∪ (B, δ) = (A ∪ B, δ). (20)
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Lemma 36 The mapping ∪ defined by (20) is a morphism in Ω−FSet.

PROOF. Let us put (Y, γ) = (Sub(X, δ), δ̂) × (Sub(X, δ), δ̂). It is easy to
verify that ∪ : Y - Sub(X, δ) is a morphism in Ω−FSet if and only if the
following conditions

δ̂(A1, B1) ∧ δ̂(A2, B2) = γ((A1, A2), (B1, B2)) ≤ δ̂(A1 ∪ A2, B1 ∪ B2), (21)

δ̂(A1, A1) ∧ δ̂(A2, A2) = γ((A1, A2), (A1, A2)) ≥ δ̂(A1 ∪ A2, A1 ∪ A2) (22)

hold for any (A1, A2), (B1, B2) ∈ Y . Let (A1, A2), (B1, B2) ∈ Y be arbitrary
elements. According to the definition of δ̂, we have

∨

a∈A1

δ(a, a) =
∨

b∈A2

δ(b, b) and
∨

a∈B1

δ(a, a) =
∨

b∈B2

δ(b, b). (23)

Hence, we can write

δ̂(A1, B1) ∧ δ̂(A2, B2) =
2∧

i=1

( ∨

a∈Ai

δ(a, a) ⊗
∧

x∈X

(
∨

a∈Ai

δ(a, x) →
∨

b∈Bi

δ(b, x))∧

∨

b∈Bi

δ(b, b) ⊗
∧

y∈X

(
∨

b∈Bi

δ(b, y) →
∨

a∈Ai

δ(a, y))
)
≤

( 2∨

i=1

∨

a∈Ai

δ(a, a) ⊗
∧

x∈X

2∧

i=1

(
∨

a∈Ai

δ(a, x) →
2∨

i=1

∨

b∈Bi

δ(b, x))
)
∧

( 2∨

i=1

∨

b∈Bi

δ(b, b) ⊗
∧

y∈X

2∧

i=1

(
∨

b∈Bi

δ(b, y) →
2∨

i=1

∨

a∈Ai

δ(a, y))
)

=

( 2∨

i=1

∨

a∈Ai

δ(a, a) ⊗
∧

x∈X

(
2∨

i=1

∨

a∈Ai

δ(a, x) →
2∨

i=1

∨

b∈Bi

δ(b, x))
)
∧

( 2∨

i=1

∨

b∈Bi

δ(b, b) ⊗
∧

y∈X

(
2∨

i=1

∨

b∈Bi

δ(b, y) →
2∨

i=1

∨

a∈Ai

δ(a, y))
)

=

∨

a∈A1∪A2

δ(a, a) ⊗
∧

x∈X

(
∨

a∈A1∪A2

δ(a, x) →
∨

b∈B1∪B2

δ(b, x))∧

∨

b∈B1∪B2

δ(b, b) ⊗
∧

y∈X

(
∨

b∈B1∪B2

δ(b, y) →
∨

a∈A1∪A2

δ(a, y)) = δ̂(A1 ∪ A2, B1 ∪ B2),

where the equalities α⊗ (α1 ∧α2) = (α⊗α1)∧ (α⊗α2) and (α1 → α)∧ (α2 →
α) = (α1 ∨ α2) → α holding in each BL-algebra are applied. Hence, (21) is
satisfied. According to (23), we have

δ̂(A1, A1) ∧ δ̂(A2, A2) =
∨

a∈A1

δ(a, a) ∧
∨

b∈A2

δ(b, b) =

∨

a∈A1

δ(a, a) ∨
∨

b∈A2

δ(b, b) =
∨

c∈A1∪A2

δ(c, c) = δ̂(A1 ∪ A2, A1 ∪ A2).

Hence, (22) is satisfied and ∪ is a morphism in Ω−FSet. 2
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Theorem 37 A pair ((Sub(X, δ), δ̂),∪) is a semi-lattice object in Ω−FSet.

PROOF. This is a straightforward consequence of Lemmas 35 and 36 and
the fact that ∪ is the associative, commutative and idempotent operation. 2

Unfortunately, we cannot prove that the pair ((Sub(X, δ), δ̂),∪) is, in general,
a complete (join) semi-lattice object of Ω−FSet. One obstacle is that the
equality α ⊗

∧
i∈I αi =

∧
i∈I(α ⊗ αi) is not true in all BL-algebras. Hence,

we cannot prove that, for each non-empty set I, there exists a morphism⋃
I : (Sub(X, δ), δ̂)I - (Sub(X, δ), δ̂) in Ω−FSet satisfying the considered

conditions of Definition 32. A further obstacle is with the construction of the
morphism ⊥ : To - (Sub(X, δ), δ̂) (recall that To = (L,∧)). Nevertheless, if
we restrict ourselves on the categories Ωα−FSet, then the previous construc-
tion with a slight modification leads to complete semi-lattice objects. Recall
that To = ({α},∧) is the terminal object in Ωα−FSet (see Theorem 10).

Theorem 38 Let (X, δ) be an object of Ωα−FSet. Then the triplet

((Sub(X, δ), δ̂α),∪,⊥),

where, for any A, B ∈ Sub(X, δ), we have

δ̂α(A, B) = α ⊗
( ∧

x∈X

(
∨

a∈A

δ(a, x) →
∨

b∈B

δ(b, x))∧

∧

y∈X

(
∨

b∈B

δ(b, y) →
∨

a∈A

δ(a, y))
) (24)

∪ is defined by (20) and ⊥ : ({α},∧) - (Sub(X, δ), δ̂α) is defined by ⊥(α) =
(∅, ∅), is a complete (join) semi-lattice object of the category Ωα−FSet.

PROOF. Since δ(a, x), δ(b, x) ∈ Lα for any x ∈ X, then δ̂α(A, B) ∈ Lα and
thus

δ̂α : Sub(X, δ) × Sub(X, δ) - Lα.

One checks easily that δ̂α(A, B) ≤ δ̂α(A, A) = α for any A, B ∈ Sub(X, δ).
Hence, δ̂α satisfies the α-level property and strictness. Since the definition of
δ̂α is symmetric, then δ̂α is symmetric. Moreover, if we replace

∨
a∈A δ(a, a) and∨

b∈B δ(b, b) by α for any A, B ⊆ X (also for A = ∅ and B = ∅) in the proof of

Lemmas 35 and 36, then we obtain the proof of the transitivity of δ̂α and the
fact that ∪ is a morphism in Ωα−FSet. Hence, the pair ((Sub(X, δ), δ̂α),∪) is
a semi-lattice object of Ωα−FSet.

Let us prove that the triplet ((Sub(X, δ), δ̂α),∪,⊥) is a complete (join) semi-
lattice object of Ωα−FSet. Let us put (Y, γ) = Sub(X, δ)I for a non-empty
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set I and define a mapping
⋃

I : Y - Sub(X, δ) for each (Ai)i∈I ∈ Y as
follows

⋃
I(Ai)i∈I = (

⋃

i∈I

Ai, δ). (25)

In the following text, we will write
⋃

i∈I Ai instead of
⋃

I(Ai)i∈I . It easy to verify
that

⋃
I : Y - Sub(X, δ) is a morphism in Ωα−FSet for any non-empty I

if and only if

∧

i∈I

δ̂α(Ai, Bi) ≤ δ̂α(
⋃

i∈I

Ai,
⋃

i∈I

Bi) (26)

holds for any non-empty index sets (Ai)i∈I , (Bi)i∈I ∈ Y . According to Theo-
rem 3, we can write

∧

i∈I

δ̂α(Ai, Bi) =
∧

i∈I

(
(α ⊗

∧

x∈X

(
∨

a∈Ai

δ(a, x) →
∨

b∈Bi

δ(b, x)))∧

(α ⊗
∧

x∈X

(
∨

b∈Bi

δ(b, x) →
∨

a∈Ai

δ(a, x)))
)
≤

(
α ⊗

∧

x∈X

(
∨

i∈I

∨

a∈Ai

δ(a, x) →
∨

i∈I

∨

b∈Bi

δ(b, x))
)
∧

(
α ⊗

∧

x∈X

(
∨

i∈I

∨

b∈Bi

δ(b, x) →
∨

i∈I

∨

a∈Ai

δ(a, x))
)

=

α ⊗
∧

x∈X

(
∨

a∈
⋃

i∈I
Ai

δ(a, x) →
∨

b∈
⋃

i∈I
Bi

δ(b, x))∧

α ⊗
∧

x∈X

(
∨

b∈
⋃

i∈I

δ(b, x) →
∨

a∈
⋃

i∈I

δ(a, x)) = δ̂α(
⋃

i∈I

Ai,
⋃

i∈I

Bi)

for any (Ai)i∈I , (Bi)i∈I ∈ Y . Hence,
⋃

I : Y - Sub(X, δ) is a morphism in
Ωα−FSet for any non-empty set I. Moreover, for any (Ai)i∈I ∈ Y and j ∈ I,
we have

Aj ∪
⋃

i∈I

Ai = (Aj ∪
⋃

i∈I

Ai, δ) = (
⋃

i∈I

Ai, δ) =
⋃

i∈I

Ai,

which makes the diagram (16) commutative. If f : Y - Sub(X, δ) be a
morphism making the diagram (16) commutative, then Ai ⊆ f((Ai)i∈I) for
any i ∈ I and thus

⋃
i∈I Ai ⊆ f((Ai)i∈I), i.e.,

⋃
i∈I Ai ∪ f((Ai)i∈I)) =

⋃
i∈I Ai.

Hence, the diagram (17) commutes. Since ∧(α, α) = α = δα((∅, ∅), (∅, ∅)) =
δα(⊥(α),⊥(α)), then ⊥ is a morphism in Ωα−FSet. If x(α) = (A, δ) for a
morphism x : To - (Sub(X, δ), δ̂α), then ⊥(α) ∪ x(α) = (∅, ∅) ∪ (A, δ) =
(∅∪A, δ) = (A, δ) = x(α). Hence, the left diagram in (14) commutes and thus
((Sub(X, δ), δ̂α),∪,⊥) is a complete object of Ωα−FSet. 2
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4.3 Complete join semi-lattice objects in Set(Ω)

Let (X, A) be an object of the category Set(Ω). An Ω-subset of (X, A) is an
Ω-set Y = (Y, AY ), where AY = A|Y is the restriction of A on Y . Obviously,
if Y = ∅, then AY = ∅ is the mapping. The set of all Ω-subsets of (X, A) is
denoted by Sub(X, A). In the following text, for simplicity, we will omit the
index Y in AY and write only A. Let us define a mapping Â : Sub(X, A) → L

as follows

Â(Y, A) =
∧

x∈Y

A(x). (27)

Lemma 39 Let (X, A) be an object of Set(Ω). Then the pair (Sub(X, A), Â)
is an object of the category Set(Ω).

PROOF. It is obvious. 2

Let us put (Z, B) = (Sub(X, A), Â)I for a non-empty set I and define a
mapping

⋃
I : Z - Sub(X, A) for any (Yi)i∈I ∈ Z as follows

⋃
I(Yi)i∈I = (

⋃

i∈I

Yi, A). (28)

In the following text, we will write
⋃

i∈I Yi instead of
⋃

I(Yi)i∈I .

Lemma 40 The mapping
⋃

I defined by (28) is a morphism in Set(Ω) for
any non-empty set I.

PROOF. Let I be a non-empty set. One checks easily that
⋃

I is a morphism
in Set(Ω) for any non-empty set I if and only if

∧

i∈I

Â(Yi) ≤ Â(
⋃

i∈I

Yi) (29)

holds for any (Yi)i∈I ∈ Z. Let (Yi)i∈I ∈ Z be a non-empty index set. Then

∧

i∈I

Â(Yi) =
∧

i∈I

∧

y∈Yi

A(y) =
∧

y∈
⋃

i∈I
Yi

A(y) = Â(
⋃

i∈I

Yi).

Hence,
⋃

I is a morphism in Set(Ω) for any non-empty set I. 2

Let us put (Z, B) = (Sub(X, A), Â) × (Sub(X, A), Â) and define a mapping
∪ : Z - Sub(X, A) by ∪ =

⋃
I , where I = {1, 2}.
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Theorem 41 Let (X, A) be an object of Set(Ω). Then the triplet

((Sub(X, A), Â),∪,⊥),

where Â and ∪ are defined above and ⊥ : ({0}, χ{0}) - (Sub(X, A), Â) is
defined by ⊥(0) = (∅, ∅), is an complete (join) semi-lattice object of Set(Ω).

PROOF. According to Lemmas 39 and 40, (Sub(X, A), Â) is an object and
∪ is a morphism in Set(Ω), respectively. Moreover, ∪ is obviously associative,
commutative and idempotent and thus ((Sub(X, A), Â),∪) is a semi-lattice
object in Set(Ω).

Further, let us show that ((Sub(X, A), Â),∪,⊥) is a complete (join) semi-
lattice object in Set(Ω). According to Lemma 40, there exists a morphism

⋃
I

in Set(Ω) for any non-empty set I. Moreover, this morphism makes evidently
the diagrams (16) and (17) commutative. Further, we have χ{0}(0) = 1Ω =
∧

x∈∅ A(x) = Â(∅, ∅) = Â(⊥(0)) and thus ⊥ : ({0}, χ{0}) - (Sub(X, A), Â)
is a morphism in Set(Ω). Obviously, if x(0) = (Y, A) defines a mapping
x : ({0}, χ{0}) - (Sub(X, A), Â), then ⊥(0) ∪ x(0) = (∅, ∅) ∪ (Y, A) =
(∅ ∪ Y, A) = (Y, A) = x(0). Hence, the left diagram in (14) commutes and
the triplet ((Sub(X, A), Â),∪,⊥) is a complete (join) semi-lattice object in
Set(Ω). 2

5 Powerset-like functors

5.1 Basic definitions

In the following part, we will consider a discrete category Cat, i.e., the cate-
gory with forgetful functor Z : Cat → Set. Recall that a set P equipped with
a reflexive, antisymmetric and transitive binary relation ≤ is called partially
order set. The category of all partially order sets (P,≤) as objects and order
preserving mappings as morphisms will be denoted by Poset. It is well known
that a partially order set (P,≤) can be understood as a category, in which the
elements of P are objects and there is just one morphism between p and p′, if
p ≤ p′. If

(P,≤P )
f-�
g

(Q,≤Q) (30)

are two order preserving mappings, then they are also covariant functors. It is
easy to show that f (regarded as a functor) is a left adjoint to g (or equivalently
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g is a right adjoint to f) if and only if

f(p) ≤ q if and only if p ≤ g(p). (31)

holds for any p ∈ P and q ∈ Q. If f is a left adjoint to g, then we write f ⊢ g.
For more information about adjoints of functors, we refer to [3].

Definition 42 A covariant functor F : Cat - Cat is called a pre-powerset
functor, if there exist a covariant functor G : Cat - Poset such that the
following diagram is commutative

Cat
F - Cat

Poset

G
? Z′

- Set,

Z
?

(32)

where Z and Z ′ are the forgetful functors, and a contravariant functor Gop :
Cat - Poset satisfying the following conditions

(i) G(a) = Gop(a) holds for any object a of Cat,
(ii) Gop(f) (regarded as a functor) is the unique right adjoint to G(f), i.e.,

G(f) ⊢ Gop(f), for any morphism f of Cat .

Definition 43 A covariant functor F : Cat - Cat is called a powerset
functor, if F is a pre-powerset functor and there exists a functor P such that
the following diagram is commutative

Cat
F - Cat

CSLatCat

P
? Z - Cat,

ICat

?
(33)

where Z is the forgetful functor, ICat is the identity functor, and P is a left
adjoint to Z.

Definition 44 Let Cat be representable in C. Then a covariant functor F :
Cat - Cat is called a C-powerset functor, if F is a pre-powerset functor
and Fi : Cati

- Cati is a powerset functor for any Cati ∈ C, where Fi is
determined from the following commutative diagram

Cati

Fi - Cati

Cat
?

?

F - Cat.
?

?

(34)
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Remark 45 It is easy to see that if F is a C-powerset functor and Cat is
trivially representable in C then F is a powerset functor.

5.2 C-powerset functor for Ω−FSet

The aim of this paragraph is to show that F : Ω−FSet - Ω−FSet defined
by

(i) F(X, δ) = (Sub(X, δ), δ̂),
(ii) if f : (X, δ) - (Y, γ) is a morphism, then

F(f) : (Sub(X, δ), δ̂) - (Sub(Y, γ), γ̂)

is given by F(f)(A, δ) = (f(A), γ),

is a C-powerset functor. Since the proof of this statement is too long, we divide
it to several lemmas and propositions.

Lemma 46 Let f : (X, δ) → (Y, γ) be a morphism in Ω−FSet and (A, δ) ∈
Sub(X, δ). Then

∨

a′∈f(A)

γ(a′, y) =
∨

x∈X

(
(
∨

a∈A

δ(a, x)) ⊗ (γ(f(x), f(x)) → γ(f(x), y))
)

(35)

holds for any y ∈ Y .

PROOF. Since γ(f(x), f(y)) ≥ δ(x, y) and γ(f(x), f(x)) = δ(x, x) for any
x, y ∈ X, then we have

∨

a′∈f(A)

γ(a′, y) =
∨

a∈A

γ(f(a), y)

≥
∨

x∈X

∨

a∈A

(
γ(f(a), f(x)) ⊗ (γ(f(x), f(x)) → γ(f(x), y))

)
≥

∨

x∈X

(
(
∨

a∈A

δ(a, x)) ⊗ (γ(f(x), f(x)) → γ(f(x), y))
)
≥

∨

x∈A

(
(
∨

a∈A

δ(a, x)) ⊗ (γ(f(x), f(x)) → γ(f(x), y))
)
≥

∨

x∈A

(δ(x, x) ⊗ (δ(x, x) → γ(f(x), y))) =

∨

x∈A

(δ(x, x) ∧ γ(f(x), y)) =
∨

a′∈f(A)

γ(a′, y),

where the inequality γ(x, y) ≥ γ(x, z)⊗ (γ(z, z) → γ(z, y)) and
∨

i∈I(α⊗ai) =
α ⊗ (

∨
i∈I ai) are used. Hence, the equality (35) is proved. 2
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Proposition 47 F is a covariant functor.

PROOF. Let (X, δ) be an object of Ω−FSet. According to Lemma 35,
F(X, δ) is an object of Ω−FSet . Let f : (X, δ) - (Y, γ) be a morphism
and (A, δ), (B, δ) ∈ Sub(X, δ). According to Lemma 46, we can write

∨

a′∈f(A)

γ(a′, a′)⊗
∧

y∈Y

(
∨

a′∈f(A)

γ(a′, y) →
∨

b′∈f(B)

γ(b′, y)

)

=

∨

a∈A

δ(a, a)⊗
∧

y∈Y

(( ∨

x∈X

(
∨

a∈A

δ(a, x)) ⊗ (γ(f(x), f(x)) → γ(f(x), y))
)
→

( ∨

z∈X

(
∨

b∈B

δ(b, z)) ⊗ (γ(f(z), f(z)) → γ(f(z), y))
))

≥

∨

a∈A

δ(a, a)⊗
∧

y∈Y

∧

x∈X

∨

z∈X

((
(
∨

a∈A

δ(a, x)) ⊗ (γ(f(x), f(x)) → γ(f(x), y))
)
→

(
(
∨

b∈B

δ(b, z)) ⊗ (γ(f(z), f(z)) → γ(f(z), y))
))

≥

∨

a∈A

δ(a, a)⊗
∧

y∈Y

∧

x∈X

((
(
∨

a∈A

δ(a, x)) ⊗ (γ(f(x), f(x)) → γ(f(x), y))
)
→

(
(
∨

b∈B

δ(b, x)) ⊗ (γ(f(x), f(x)) → γ(f(x), y))
))

≥

∨

a∈A

δ(a, a)⊗
∧

y∈Y

∧

x∈X

( ∨

a∈A

δ(a, x) →
∨

b∈B

δ(b, x))
)

=

∨

a∈A

δ(a, a) ⊗
∧

x∈X

( ∨

a∈A

δ(a, x) →
∨

b∈B

δ(b, x)
)
,

where
∧

i∈I(αi → α) = (
∨

i∈I αi) → α,
∨

i∈I(α → αi) ≤ α → (
∨

i∈I αi) and
(α → β) ≤ (α ⊗ γ) → (β ⊗ γ) are applied. Analogously, we have

∨

b′∈f(B)

γ(b′, b′)⊗
∧

y∈Y

(
∨

b′∈f(B)

γ(b′, y) →
∨

a′∈f(A)

γ(a′, y)

)

≥
∨

b∈B

δ(b, b)⊗
∧

x∈X

( ∨

b∈B

δ(b, x) →
∨

a∈A

δ(a, x)
)
.

Hence, we obtain γ̂(F(f)(A, δ), F(f)(B, δ)) ≥ δ̂((A, δ), (B, δ)). Moreover, we
have

γ̂(F(f)(A, δ), F(f)(A, δ)) =
∨

a′∈f(A)

γ(a′, a′) =

∨

a∈A

γ(f(a), f(a)) =
∨

a∈A

δ(a, a) = δ̂((A, δ), (A, δ))

and thus F(f) is a morphism in Ω−FSet. One checks easily that F(f ◦ g) =
F(f) ◦ F(g) and F(1(X,δ)) = 1F(X,δ). Hence, F is a covariant functor. 2
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Proposition 48 F is a pre-powerset functor.

PROOF. Let us define G, Gop : Ω−FSet - Poset as follows

(i) G(X, δ) = Gop(X, δ) = (Sub(X, δ),⊆), where (A, δ) ⊆ (B, δ), if A ⊆ B,
(ii) if f : (X, δ) - (Y, γ) is a morphism, then

G(f) : (Sub(X, δ),⊆) - (Sub(Y, γ),⊆)

is given by G(f)(A, δ) = (f(A), γ) for any (A, δ) ∈ Sub(X, δ),
(iii) if f : (X, δ) - (Y, γ) is a morphism, then

Gop(f) : (Sub(Y, γ),⊆) - (Sub(X, δ),⊆)

is given by Gop(f)(B, γ) = (f−1(B), δ) for any (B, γ) ∈ Sub(Y, γ).

Obviously, both mappings G(f) and Gop(f) preserve the partial order ⊆ and
thus they are morphisms in Poset. Moreover, the diagram (32) commutes.
Hence, it is easy to see that G is a covariant functor and Gop is a contravariant
functor of Ω−FSet to Poset. As we have mentioned G(f) and Gop(f) can be
understood as functors

(Sub(X, δ),⊆)
G(f)-�

Gop(f)
(Sub(Y, γ),⊆).

for any morphism f : (X, δ) - (Y, γ). Let us prove that Gop(f) is the unique
adjoint to G(f), i.e., for any (A, δ) ∈ Sub(X, δ) and (B, γ) ∈ Sub(Y, γ), there
is

G(f)(A, δ) ⊆ (B, γ) if and only if (A, δ) ⊆ Gop(f)(B, γ)

and Gop(f) is the unique functor with such property. Obviously, if G(f)(A, δ) ⊆
(B, γ), then f(A) ⊆ B. Hence, A ⊆ f−1(f(A)) ⊆ f−1(B) and thus (A, δ) ⊆
Gop(f)(B, γ). Analogously, we can prove the opposite implication and thus
G(f) ⊢ Gop(f) holds for any morphism f in Ω−FSet.

Let g : (Sub(Y, γ),⊆) - (Sub(X, δ),⊆) be a functor such that G(f)(A, δ) ⊆
(B, γ) if and only if (A, δ) ⊆ g(B, γ). If we put (A, δ) = g(B, γ), then we obtain
G(f)(g(B, γ)) ⊆ (B, γ). Hence, we obtain g(B, γ) ⊆ G(f)(B, γ). Analogously,
we can prove that G(f)(B, γ) ⊆ g(B, γ) and thus Gop(f) is the unique right
adjoint to G(f). Hence, F is a pre-powerset functor. 2

In the subsection 4.2, we showed that complete (join) semi-lattices objects
can be constructed in the subcategories Ωα−FSet (for α ∈ L) of the category
Ω−FSet. Hence, the functor F cannot be a powerset functor. Nevertheless,
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we proved that the category Ω−FSet is representable in C = {Ωα−FSet |
α ∈ L}. This enables us to investigate further properties of the functor F
over the subcategories Ωα−FSet in the sense of Definition 44. Note that the
construction of complete (join) semi-lattice objects in Ω−FSet is not the
main obstacle in the proof of that F is not the powerset functor. Further
problems are, for example, that the structure Ω is not completely distributive
or δ(x, x) 6= δ(y, y) holds for some x, y ∈ X in general.

Lemma 49 Let (X, δ) be an object of Ωα−FSet. Then

δ(a, b) = α ⊗ (
∧

x∈X

(δ(a, x) → δ(b, x)) ∧
∧

y∈X

(δ(b, y) → δ(a, y))) (36)

holds for any a, b ∈ X.

PROOF. It easy to see that

α ⊗ (
∧

x∈X

(δ(a, x) → δ(b, x)) ∧
∧

x∈X

(δ(b, x) → δ(a, x))) ≤

α ⊗
(
(δ(a, a) → δ(b, a)) ∧ (δ(b, b) → δ(a, b))

)
=

α ∧ δ(a, b) ∧ δ(b, a) = δ(a, b).

Conversely. Since δ(x, a) ⊗ (α → δ(a, b)) ≤ δ(b, x) is satisfied for any x ∈ X,
then we have

α → δ(a, b) ≤
∧

x∈X

(δ(x, a) → δ(b, x)) =
∧

x∈X

(δ(a, x) → δ(b, x))

and thus

δ(a, b) = α ⊗ (α → δ(a, b)) ≤ α ⊗
∧

x∈X

(δ(a, x) → δ(b, x)).

Analogously, we have δ(a, b) ≤ α ⊗
∧

x∈X(δ(b, x) → δ(a, x). The inequality
follows from α ⊗ (α1 ∧ α2) = (α ⊗ α1) ∧ (α ⊗ α2) holding in each BL-algebra
and thus (36) is proved. 2

Proposition 50 Let α ∈ L and P : Ωα−FSet - CSLatΩα−FSet be defined
by

(i) P(X, δ) = ((Sub(X, δ), δ̂),∪,⊥), where ((Sub(X, δ), δ̂),∪,⊥) is defined
in Theorem 38,

(ii) if f : (X, δ) - (Y, γ) is a morphism, then

P(f) : ((Sub(X, δ), δ̂),∪,⊥Sub(X,δ)) - ((Sub(Y, γ), γ̂),∪,⊥Sub(Y,γ))

is given by P(f)(A, δ) = (f(A), γ) for any (A, δ) ∈ Sub(X, δ).
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Then P is a covariant functor.

PROOF. According to Theorem 38, P(X, δ) is an object of CSLatΩα−FSet.
Analogously to the proof of Proposition 47, we can show that P(f) is a mor-
phism in Ωα−FSet for any morphism f in Ωα−FSet. Let {(Ai, δ) | i ∈ I} be
a non-empty index set. Then we have

P(f)(
⋃

i∈I

(Ai, δ)) = (f(
⋃

i∈I

Ai), γ) = (
⋃

i∈I

f(Ai), γ) =
⋃

i∈I

P(f)(Ai, δ).

Hence, the left diagram in (18) commutes for any non-empty set I. Moreover,
we have f ◦ ⊥Sub(X,δ)(α) = f(∅, ∅) = (f(∅), ∅) = (∅, ∅) = ⊥Sub(Y,γ)(α) and
thus the right diagram in (18) also commutes. Hence, P(f) is a morphism in
CSLatΩα−FSet. One checks easily that P(f ◦ g) = P(f) ◦P(g) and P(1(X,δ)) =
1P(X,δ) and thus P is a covariant functor. 2

Proposition 51 Let Z : CSLatΩα−FSet
- Ωα−FSet be the forgetful func-

tor. Then η : IΩα−FSet
- Z ◦ P defined by η(X,δ)(x) = ({x}, δ) is a natural

transformation, i.e., the following diagram

(X, δ)
f - (Y, γ)

Z ◦ P(X, δ)

η(X,δ)
? Z ◦ P(f) - Z ◦ P(Y, γ)

η(Y,δ)
?

(37)

is commutative for any morphism f of the category Ωα−FSet.

PROOF. Let (X, δ) be an object of Ωα−FSet and a, b ∈ X. Then, according
to the definition of δ̂α in (24) and the equality (36), we have

δ̂α(η(X,δ)(a),η(X,δ)(b)) = δ̂α(({a}, δ), ({b}, δ)) =

α ⊗
( ∧

x∈X

(δ(a, x) → δ(b, x)) ∧
∧

y∈X

(δ(b, y) → δ(a, y))
)

= δ(a, b).

Moreover, we have

δ̂(η(X,δ)(a), η(X,δ)(a)) = α ⊗
∧

x∈X

(δ(a, x) → δ(a, x)) = α ⊗ 1Ω = α = δ(a, a)

for any a ∈ X. Hence, the mapping η(X,δ) is a morphism of the category
Ωα−FSet. Further, if x ∈ X, then Z ◦P(f) ◦ η(X,δ)(x) = ({f(x)}, γ) = η(Y,γ) ◦
f(x). Hence, the diagram (37) commutes and η is a natural transformation. 2
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Proposition 52 Let α ∈ L and (X, δ) be an object of Ωα−FSet. Then the
morphism η(X,δ) : (X, δ) - Z ◦ P(X, δ) defined above is a universal arrow,
i.e.,

(X, δ)
η(X,δ)- Z ◦ P(X, δ) P(X, δ)

@
@

@
@

@

◦ (4)

∀f (2)

R

(Y, γ)

Z(f̂)

?
∀((Y, γ),∨,⊥Y ) (1).

∃!f̂ (3)

?

(38)

PROOF. Let (X, δ) be an object of Ωα−FSet and ((Y, γ),∨,⊥) be an object
of CSLatΩα−FSet. If f : (X, δ) - (Y, γ) is a morphism of Ωα−FSet, then
let us define

f̂ : ((Sub(X, δ), δ̂),∪,⊥Sub(X,δ)) - ((Y, γ),∨,⊥Y )

by

f̂(A, δ) =






∨
a∈A f(a), if A 6= ∅,

⊥Y (α), otherwise.
(39)

First, let us show that f̂ is a morphism in CSLatΩα−FSet. Let (A, δ), (B, δ) ∈
Sub(X, δ) such that A = ∅ or B = ∅. If A = B = ∅, then δ̂α((A, δ), (B, δ)) =
α = γ(⊥(α),⊥(α)) = γ(f̂(A, δ), f̂(B, δ)). If A 6= ∅, then one checks easily that
δ̂α((A, δ), (B, δ)) = α ⊗ (α → 0Ω) = 0Ω. Hence, we obtain δ̂α((A, δ), (B, δ)) ≤
γ(f̂(A, δ), f̂(B, δ)). The same result could be obtained for B 6= ∅. Now, let us
suppose that (A, δ), (B, δ) ∈ Sub(X, δ) such that A 6= ∅ and B 6= ∅. Then we
can write

δ̂α((A, δ), (B, δ)) ≤ α ⊗
∧

x∈X

(
∨

a∈A

δ(a, x) →
∨

b∈B

δ(b, x)) ≤

α ⊗ (
∧

x∈A

∨

a∈A

δ(a, x) →
∧

x∈A

∨

b∈B

δ(b, x)) =

α ⊗ (α →
∧

x∈A

∨

b∈B

δ(b, x)) =
∧

x∈A

∨

b∈B

δ(x, b).

Analogously, we can prove that δ̂α((A, δ), (B, δ)) ≤
∧

y∈B

∨
a∈A δ(a, y). Hence,

we obtain

δ̂α((A, δ), (B, δ)) ≤
∧

a∈A

∨

b∈B

γ(f(a), f(b)) ∧
∧

b∈B

∨

a∈A

γ(f(a), f(b)). (40)

A straightforward consequence of the fact that, for any non-empty set I, the
mapping

∨
I is a morphism in Ωα−FSet is the inequality

∧
i∈I γ(ai, bi) ≤
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γ(
∨

i∈I ai,
∨

i∈I bi) holding for any non-empty index sets {ai ∈ Y | i ∈ I}
and {bi ∈ Y | i ∈ I}. Since Ωα is a complete and completely distributive
BL-algebra (see Theorem 2), then

δ̂((A, δ), (B, δ)) ≤
∧

a∈A

∨

b∈B

γ(f(a), f(b)) ∧
∧

b∈B

∨

a∈A

γ(f(a), f(b)) =

∨

π∈BA

∧

a∈A

γ(f(a), f(π(a))) ∧
∨

̺∈AB

∧

b∈B

γ(f(̺(a)), f(b)) ≤

∨

π∈BA

γ(
∨

a∈A

f(a),
∨

b∈π(A)

f(b)) ∧
∨

̺∈AB

γ(
∨

a∈̺(B)

f(a),
∨

b∈B

f(b)) =

∨

π∈BA

∨

̺∈AB

(
γ(
∨

a∈A

f(a),
∨

b∈π(A)

f(b)) ∧ γ(
∨

a∈̺(B)

f(a),
∨

b∈B

f(b))
)
≤

∨

π∈BA

∨

̺∈AB

γ(
∨

a∈A

f(a) ∨
∨

a∈̺(B)

f(a),
∨

b∈π(A)

f(b) ∨
∨

b∈B

f(b)) =

∨

π∈BA

∨

̺∈AB

γ(
∨

a∈A

f(a),
∨

b∈B

f(b)) = γ(
∨

a∈A

f(a),
∨

b∈B

f(b)) = γ(f̂(A, δ), f̂(B, δ)).

Hence, f̂ is a morphism in Ωα−FSet.

Further, we have

f̂(
⋃

i∈I

(Ai, δ)) = f̂(
⋃

i∈I

Ai, δ) =
∨

a∈
⋃

i∈I
Ai

f(a) =
∨

i∈I

∨

a∈Ai

f(a) =
∨

i∈I

f̂(Ai, δ)

for any non-empty set I. Hence, the left diagram in (18) commutes for any
non-empty set I. Moreover, f̂ ◦ ⊥Sub(X,δ)(α) = f̂(∅, ∅) = ⊥Y (α). Hence, the

right diagram in (18) commutes and thus f̂ is a morphism in CSLatΩα−FSet.

Further, we have Z(f̂) ◦ η(X,δ)(x) = f̂({x}, δ) =
∨

a∈{x} f(a) = f(x) which
makes the diagram in (38) commutative. Finally, we have to show that the
morphism f̂ is the unique extension of f . Let g : P(X, δ) - ((Y, γ),∨,⊥)
be a morphism such that the diagram in (38) is commutative. Then, for any
(A, δ) ∈ Sub(X, δ) such that (A, δ) 6= (∅, ∅), we can write

g(A, δ) = g(
⋃

a∈A

({a}, δ)) =
∨

a∈A

g({a}, δ) =
∨

a∈A

f̂({a}, δ) =

f̂(
⋃

a∈A

({a}, δ)) = f̂(A, δ).

Moreover, we have g(∅, ∅) = g(⊥Sub(X,A)(α)) = g ◦ ⊥Sub(X,A)(α) = ⊥Y (α) =

f̂(∅, ∅), since g is a morphism in CSLatΩα−FSet. Hence, g = f̂ and the proof
is finished. 2

Theorem 53 F is a C-powerset functor.
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PROOF. Obviously, if (X, δ) is an object of Ωα−FSet, then F(X, δ) is an
object of Ωα−FSet. Let us denote Fα the restriction of F on Ωα−FSet, i.e.,
Fα : Ωα−FSet - Ωα−FSet is defined by Fα(X, δ) = F(X, δ) for any object
(X, δ) and Fα(f) = F(f) for any morphism f of the category Ωα−FSet.

According to Theorem 19 and Proposition 48, the category Ω−FSet is rep-
resentable in C and F is a pre-powerset functor, respectively. It is easy to see
that, for any α ∈ L, there exists a functor P : Ωα−FSet - CSLatΩα−FSet

(according to Proposition 50) making the following diagram

Ωα−FSet
Fα - Ωα−FSet

CSLatΩα−FSet

P
? Z - Ωα−FSet,

IΩα−FSet

?

commutative. Since a straightforward consequence of Propositions 51 and 52
is that P is a left adjoint to Z (i.e., P ⊢ Z), then Fα is a powerset functor for
any α ∈ L. Hence, F is a C-powerset functor and the proof is finished. 2

5.3 Powerset functor for Set(Ω)

Analogously to the previous subsection, the aim of this part is to show that
F : Set(Ω) - Set(Ω) defined by

(i) F(X, A) = (Sub(X, A), Â),
(ii) if f : (X, A) - (Y, B) is a morphism, then

F(f) : (Sub(X, A), δ̂) - (Sub(Y, B), B̂)

is given by F(f)(Z, A) = (f(Z), B) for any (Z, A) ∈ Sub(X, A).

is a powerset functor. Again, the proof is divided to several propositions.

Proposition 54 F is a covariant functor.

PROOF. According to Theorem 41, F(X, A) is an object of Set(Ω). If f :
(X, A) - (Y, B) is a morphism in Set(Ω), then

Â(Z, A) =
∧

x∈Z

A(x) ≤
∧

x∈Z

A′(f(x)) =

∧

y∈f(Z)

B(y) = B̂(f(Z), B) = B̂(F(f)(Z, B))
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for any (Z, A) ∈ Sub(X, A). Hence, F(f) is a morphism in Set(Ω). One checks
easily that F(f ◦ g) = F(f) ◦ F(g) and F(1(X,A)) = 1F(X,A). Hence, F is a
covariant functor. 2

Proposition 55 F is a pre-powerset functor.

PROOF. Let us define G, Gop : Set(Ω) - Poset as follows

(i) G(X, A) = Gop(X, A) = (Sub(X, A),⊆), where (Z, A) ⊆ (Z ′, A), if Z ⊆
Z ′,

(ii) if f : (X, A) - (Y, B) is a morphism in Set(Ω), then

G(f) : (Sub(X, A),⊆) - (Sub(Y, B),⊆)

is given by G(f)(Z, A) = (f(Z), B) for any (Z, A) ∈ Sub(X, A),
(iii) if f : (X, A) - (Y, B) is a morphism in Set(Ω), then

Gop(f) : (Sub(Y, B),⊆) - (Sub(X, A),⊆)

is given by Gop(f)(Z, B) = (f−1(Z), A) for any (Z, B) ∈ Sub(Y, B).

Obviously, both mappings G(f) and Gop(f) preserve partial order ⊆ and thus
they are morphisms in Poset. Moreover, the diagram (32) commutes. Anal-
ogously to the proof of Proposition 48, one verifies that Gop(f) is the unique
right adjoint to G(f) for any morphism f in Set(Ω) and thus F is a pre-
powerset functor. 2

Proposition 56 Let P : Set(Ω) - CSLatSet(Ω) be defined by

(i) P(X, A) = (Sub(X, A), Â,∪,⊥), where (Sub(X, A), Â,∪,⊥) is defined
in Theorem 41,

(ii) if f : (X, A) - (Y, B) is a morphism, then

P(f) : ((Sub(X, A), Â),∪,⊥Sub(X,A)) - ((Sub(Y, B), B̂),∪,⊥Sub(Y,B))

is given by P(f)(Z, A) = (f(Z), B) for any (Z, A) ∈ Sub(X, A).

Then P is a covariant functor.

PROOF. This is analogous to the proof of Proposition 50. 2

Proposition 57 Let Z : CSLatSet(Ω)
- Set(Ω) be the forgetful functor.

Then η : ISet(Ω)
- Z ◦ P defined by η(X,A)(x) = ({x}, A) is a natural trans-

formation.
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PROOF. Let (X, A) be an object of Set(Ω) and x ∈ X. Then

A(x) =
∧

y∈{x}

A(y) = Â({x}, A) = Â(η(X,A)(x))

and thus η(X,A) is a morphism in Set(Ω). Moreover, if f : (X, A) - (Y, B) is
a morphism in Set(Ω) (see the diagram 37 and replace objects of Ωα−FSet by
objects of Set(Ω)), then we have η(Y,B) ◦ f(x) = ({f(x)}, B) = (f({x}), B) =
Z◦P(f)({x}, A) = Z◦P(f)◦η(X,A)(x). Hence, η is a natural transformation. 2

Proposition 58 Let (X, A) be an object of the category Set(Ω). Then the
morphism η(X,A) : (X, A) - Z ◦ P(X, A) is a universal arrow, i.e.,

(X, A)
η(X,A)- Z ◦ P(X, A) P(X, A)

@
@

@
@

@

◦ (4)

∀f (2)

R

(Y, B)

Z(f̂)

?
∀((Y, B),∨,⊥Y ) (1).

∃!f̂ (3)

?

(41)

PROOF. Let (X, A) be an object of Set(Ω) and ((Y, B),∨,⊥Y ) be an object
of CSLatSet(Ω). If f : (X, A) - (Y, B) is a morphism in Set(Ω), then we
define

f̂(Z, A) =






∨
x∈Z f(x), if Z 6= ∅,

⊥Y (0), otherwise,
(42)

for any (Z, A) ∈ Sub(X, A). First, we will prove that f̂ is a morphism in
CSLatSet(Ω). Since f is a morphism in Set(Ω) and

∧
i∈I B(yi) ≤ B(

∨
i∈I yi)

holds for any non-empty index set {yi ∈ Y | i ∈ I}, then we can write

Â(Z, A) =
∧

x∈Z

A(x) ≤
∧

x∈Z

B(f(x)) ≤ B(
∨

x∈Z

f(x)) = B(f̂(Z, A))

for any (Z, A) ∈ Sub(X, A) \ {∅, ∅}. Since ⊥Y : ({0}, χ{0}) - (Y, B) is a
morphism in Set(Ω), then χ{0}(0) = 1Ω ≤ B(⊥Y (0)). Hence, if (Z, A) = (∅, ∅),

then Â(Z, A) = 1Ω = B(⊥Y (0)) = B(f(Z, A)) and thus f̂ is a morphism in
Set(Ω).

Further, we have

f̂(
⋃

i∈I

(Xi, A)) = f̂((
⋃

i∈I

Xi, A)) =
∨

x∈
⋃

i∈I
Xi

f(x) =
∨

i∈I

∨

x∈Xi

f(x) =
∨

i∈I

f̂(Xi, A)
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for any non-empty set I. Hence, the left diagram in (18) commutes for any
non-empty set I. Moreover, f̂ ◦ ⊥Sub(X,A)(0) = f̂(∅, ∅) = ⊥Y (0). Hence, the

right diagram in (18) commutes and thus f̂ is a morphism in CSLatSet(Ω).

Further, we have

Z(f̂) ◦ η(X,A)(x) = f̂({x}) =
∨

y∈{x}

f(y) = f(x)

and the diagram in (41) commutes. Finally, we have to prove that f̂ is the
unique extension of f . Let g : P(X, A) - ((Y, B),∨,⊥Y ) be a morphism
such that the diagram in (41) is commutative. Then, for any (Z, A) ∈ Sub(X, A)
such that (Z, A) = (∅, ∅), we can write

g(Z, A) = g(
⋃

x∈Z

({x}, A)) =
∨

x∈Z

g({x}, A) =
∨

x∈Z

f(x) = f̂(Z, A).

Moreover, if (Y, A) = (∅, ∅), then we have g(Y, A) = g(⊥Sub(X,A)(0)) = g ◦

⊥Sub(X,A)(0) = ⊥Y (0) = f̂(Y, A), since g is a morphism in Set(Ω). Hence,

g = f̂ and the proof is finished. 2

Theorem 59 F is a powerset functor.

PROOF. According to Proposition 55, F is a pre-powerset functor. A straight-
forward consequence of Propositions 57 and 58 is that P is a left adjoint to
Z (i.e., P ⊢ Z), then F is a powerset functor for any α ∈ L. Hence, F is a
powerset functor and the proof is finished. 2
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Category Theory to Fuzzy Subsets, pages 177–231. Kluwer Academic Publisher,
Dordrecht, 1992.

[9] S. E. Rodabaugh. Powerset operator foundations for poslat fuzzy set theories
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