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Abstract

Let X denote a locally compact metric space and ϕ : X → X be a continuous map. In the 1970s
L. Zadeh presented an extension principle, helping us to fuzzify the dynamical system (X, ϕ), i.e., to
obtain a map Φ for the space of fuzzy sets on X. We extend an idea mentioned in [P. Diamond, A.
Pokrovskii, Chaos, entropy and a generalized extension principle, Fuzzy Sets and Systems 61 (1994)]
and we generalize Zadeh’s original extension principle.

In this paper we study basic properties, such as the continuity of so-called g-fuzzifications. We also
show that, for any g-fuzzification: (i) a uniformly convergent sequence of uniformly convergent maps
on X induces a uniformly convegent sequence of continuous maps on the space of fuzzy sets, and (ii)
a conjugacy (a semi-conjugacy, resp.) between two discrete dynamical systems can be extended to a
conjugacy (a semi-conjugacy, resp.) between fuzzified dynamical systems. Moreover, at the end of
this paper we show that there are connections between g-fuzzifications and crisp dynamical systems
via set-valued dynamical systems and skew-product (triangular) maps.

Throughout this paper we consider different topological structures in the space of fuzzy sets;
namely, the sendograph, endograph and levelwise topologies.

1 Introduction

Let X be a locally compact metric space and ϕ : X → X be continuous. First,we would like to mention
that the terminology and notation we employ is introduced in Section 2. Commonly used definition
says that the pair (X,ϕ) forms a discrete dynamical system. In the seventies L. Zadeh established a
concept often called Zadeh’s extension that allows us to extend the dynamical system (X,ϕ) to a (self-)
map Φ defined on the space F(X) of fuzzy sets on X. Then, in 1982 P. E. Kloeden ([14]) defined the
sendograph metric on F(X). He also showed that the map Φ : F(X) → F(X) is continuous in the
metric topology given by the sendograph metric and proved that there is a closed connection between the
original dynamical system (X, ϕ) and the fuzzified one (F(X), Φ). Unfortunately, since Kloeden’s work,
the studies on the properties of Zadeh’s extension and, consequently, fuzzy dynamical systems induced
by Zadeh’s extension were reported only occasionally (e.g., [3], [14] etc.).

Thus, the author’s original purpose was to study how the different dynamical properties of one of
the mentioned dynamical systems are influenced by the dynamical behavior of the second system. Such
relations were already studied, but the results were mostly proved under specific assumptions and no
connections among the obtained results have been given so far – for instance, some results are obtained
for Zadeh’s extension of the set Rn of all n-dimensional real numbers (see [2], [5], [11] or [25]), and other
results are proved for the case where X is even compact metric space (see [8] or [20]). Further, not only
different spaces but also different metrics have been considered - namely, the endograph (see [8] or [20]),
sendograph (see [5] or [14]) and levelwise topologies (see [26] or [27]).

It should also be mentioned that the terminology used in the papers mentioned above is not uniform
(see [8] or [20]) as the endograph of a fuzzy set A is denoted send(A) – i.e., Kloeden’s original idea (send
to be an abbreviation of a supported endograph) is denied. Consequently, some statements are considered
to be valid even if they are wrong; for instance, [5] contains a mistake when considering the compactness
of the space of fuzzy sets on X when this space is equipped with a sendograph topology ((F(X), dS) is
not compact); also, [11] contains a wrong statement on completeness of the space of fuzzy sets equipped
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with an endograph topology ((F1(X), τE) can be complete), and in [27] they report that (F(X), d∞) is
separable.

Accordingly, we decided to change our original purpose: instead we will first summarize and complete
some basic metric and topological properties of the space of fuzzy sets on X (Section 3) when a(n)
sendograph, endograph or levelwise topology is considered. In the next part of this paper, each property
is studied for any of the mentioned topologies.

Further (Section 4), we study the continuity of Zadeh’s extension for the various topological spaces.
Some particular results concerning this topic are already known (see [2] or [25]), and we generalize these
results to the case where X is a locally compact metric space (Theorem 5). However, Zadeh’s extension
can have an unpleasant property: it can lose information that is carried by the original system (X,ϕ) (see
Example 3). This led us to generalize Zadeh’s extension principle in a way that allows us to modify fuzzy
sets in each iteration. Probably the first attempt to generalize Zadeh’s extension appeared in [8] where
either t-norm or t-conorm Γ was used to modify fuzzy sets; also, some basic properties of Γ-fuzzifications
were shown. However, the continuity of Γ-fuzzifications were not studied.

In Section 4 we discuss some properties of Γ-fuzzifications in order to show what led us to the notion
of a generalized fuzzification (abbr., g-fuzzification). The main part of this paper is devoted to the study
of generalized fuzzifications of the original dynamical system (X,ϕ). In Subsection 4.3 we show that
any g-fuzzification is well-defined and we also show that, under some assumptions (Theorems 6 and 7),
any g-fuzzification Φg is continuous on the space of fuzzy sets, i.e. (F(X), Φg) defines a discrete fuzzy
dynamical system that extends the original (crisp) one.

Moreover, we show that any uniformly convergent sequence of ”original” maps on X defines a uni-
formly convergent sequence of g-fuzzifications (Section 5). Then in Section 6 we prove that fuzzy
discrete dynamical systems induced by some g-fuzzification are commuting in the sense of Pederson’s
definition ([20]) and that such systems have the so-called unions-preserving property.

The next section (Section 7) is devoted to g-fuzzifications of two dynamical systems, which are
either conjugated or semi-conjugated. The notion of (semi-) conjugacy is very important in topological
dynamics. Roughly speaking, conjugacy is the following: if two dynamical systems are conjugated, their
dynamical behavior is the same; if they are semi-conjugated, then one of them is a (dynamical) factor of
the other system and inherits many dynamical properties. We also show that if the original dynamical
systems are conjugated (or semi-conjugated), then their generalized fuzzifications are conjugated (or
semi-conjugated) (Theorems 9 and 10).

In the last section, (Section 8) some conclusions on our results are drawn. We point out that
any generalized fuzzification (i.e., a fuzzy discrete dynamical system) is significantly connected to an
appropriate crisp discrete dynamical system in two different ways. One way was already illustrated when
some relations between the original system and the fuzzified one were analyzed: any g-fuzzified dynamical
system is connected via α-cuts to a set-valued discrete dynamical system induced by the same original
system (X, ϕ). The second way is a new result: we show that under some not very restrictive assumptions
any g-fuzzified discrete dynamical system (F(X),Φg) can be considered as a set-valued crisp discrete
dynamical system induced by a certain skew-product (or triangular) map (Proposition 4). Thus, fuzzy
discrete dynamical systems induced by generalized fuzzifications are connected to the crisp (set-valued
and skew-product) discrete dynamical systems that were studied intensively in the last two decades. At
the end of this paper we show that it is possible to consider further generalizations (called skew-product
or triangular fuzzifications) only when either the endograph or sendograph topology is considered.

Despite the author’s original purpose, we do not study the relations between the original dynamical
system and the fuzzified system. This paper mainly serves as a background for further study of such
relations. For completeness, it should be emphasized that all of our results are also valid for Zadeh’s
extension and Γ-fuzzifications since they are (except for some superfluous cases) special cases of the
studied g-fuzzifications.

2 Definitions and notation

In this paper, Rn, N denote the set of n-dimentional real numbers and the set of all integers, respectively.
Moreover, I is the closed unit interval [0, 1] ⊆ R and X is a locally compact metric space. Topological
closure of a set A ⊆ X is denoted by A. Further, by C(X) we denote a class of all continuous maps
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ϕ : X → X, and by Cm(I) we consider a class of nondecreasing maps from C(I). Finally, C ′m(I) denotes
a family of maps from Cm(I) that are strictly increasing at 0.

Later we will need some notions from topological dynamics. For a given dynamical system (X,ϕ) and
a given point x ∈ X, we denote the n-th iteration of the point x inductively by ϕ0(x) = x, ϕn+1(x) =
ϕ(ϕn(x)) for any n ∈ N. Then, the sequence {ϕn(x)}n∈N of all iterations of x is called a trajectory of
the point x. Any limit point of the trajectory of the point x is an ω-limit point of the point x, and the
union ωϕ(x) of all ω-limit points of the point x is an ω-limit set of the point x. The iteration of a given
set A ⊆ X is defined analogously.

The point x ∈ X is called fixed if ϕ(x) = x or periodic if ϕk(x) = x for some k ∈ N. We say that a
set A ⊆ X is ϕ-invariant (or invariant) if ϕ(A) ⊆ A. A dynamical system (X, ϕ) is transitive if, for any
two open sets U, V ⊆ X, there is n ∈ N for which ϕn(U) ∩ V 6= ∅.

Given two discrete dynamical systems (X, ϕ), (Y, ψ) are topologically conjugated if there exists a
homeomorphism h : X → Y , such that

h ◦ ϕ = ψ ◦ h. (2.1)

The systems (X,ϕ), (Y, ψ) are semi-conjugated if there exists a continuous surjection h : X → Y satisfying
the same equality (2.1).

The so-called skew-product (or triangular) map is a continuous map F : X × I → X × I of the form
(x, y) 7→ (ϕ(x), gx(y)) where gx ∈ C(I) for any x ∈ I. Usually, all gx are fiber maps and ϕ ∈ C(X) is a
base map. The set Ix = {x}× I is called a fibre over the point x ∈ X and Ax = A∩ Ix is called a fibre of
the set A ⊆ X × I over the point x ∈ X. T (X) denotes the space of skew-product maps on X × I and
Tm(X) denotes the space of all skew-product maps whose fiber maps gx are nondecreasing.

2.1 Metrics spaces of fuzzy sets

Let (X, d) denote a locally compact metric space and let A,B be non-empty closed subsets of X. The
Hausdorff metric between A and B is usually defined by

DX(A,B) = inf{ε > 0 |A ⊆ Uε(B) and B ⊆ Uε(A)},

where
Uε(A) = {x ∈ X |D(x,A) < ε}, and D(x,A) = inf

a∈A
d(x, a).

By K(X) we denote the space of all nonempty compact subsets of X equipped by the Hausdorff metric
DX . It is well known ([17]) that (K(X), DX) is compact, complete and separable whenever X is compact,
complete and separable.

A fuzzy set A on the space X is a function A : X → I. An α-cut (or an α-level set) [A]α and a support
supp(A) of a given fuzzy set A is defined usually as -

[A]α = {x ∈ X |A(x) ≥ α}, α ∈ [0, 1],

and
supp(A) = {x ∈ X |A(x) > 0}.

Further, we define F(X) as the system of all upper semi-continuous fuzzy sets A : X → I having compact
supports. Moreover, let

Fλ(X) = {A ∈ F(X) |A(x) ≥ λ for some x ∈ X}

and F1(X) denotes the system of all normal fuzzy sets on X. Finally, we define ∅X as the empty fuzzy
set (∅X(x) = 0 for each x ∈ X) on the space X and by F0(X) the system of all nonempty fuzzy sets.

For any A ∈ F (X),
end(A) = {(x, a) ∈ X × I |A(x) ≥ a}

the endograph and by
send(A) = end(A) ∩ (supp(A)× I)

denotes sendograph (like supported endograph) of the fuzzy set A.
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Since the fuzzy sets we consider are upper semi-continuous, all sendographs are members of the metric
space (K(X × I), DX×I) and, consequently, we can define some metrics on F0(X) and F(X) respectively.
Namely, the sendograph metric

dS(A,B) = DX×I(send(A), send(B))

is defined only for nonempty fuzzy sets A,B ∈ F0(X). The sendograph metric is established only for
non-empty fuzzy sets since send(∅X) = ∅ and the Hausdorff metric measures the distance between non-
empty closed sets. It should be mentioned that probably the most natural extension of the sendograph
metric to F(X) – namely,

dS(A,B) = max{max
x∈X

A(x),max
x∈X

B(x)}

if A, B ∈ F(X) and one of them is the empty fuzzy set ∅X , does not satisfy the triangle inequality. It is
important to realize this if we consider the sendograph metric and the initial space X is compact.

Since supp(A)∪supp(B) is compact for any A, B ∈ F0(X), the endograph metric dE is defined correctly
for any two A,B ∈ F0(X) by

dE(A, B) = DX×I(end(A), end(B)).

Moreover, we use
dE(∅X , ∅X)

and
dE(∅X , A) = Dsupp(A)×I(end(∅X), end(A)) for A ∈ F0(X)

in order to obtain a metric on the space F(X).
Let us define the third levelwise metric d∞ on F(X) by

d∞(A,B) = sup
α∈(0,1]

DX([A]α, [B]α). (2.2)

Similar to the previous case, this metric is correctly defined only for non-empty fuzzy sets A,B ∈ F(X)
whose maximal values are identical, since the Hausdorff distance DX is only measured between two non-
empty closed subsets of the space X. Thus, we consider the following extension of the Hausdorff metric:
DX :

DX(∅, ∅) = 0 and DX(∅, A) = diam (X) for any A ∈ K(X).

By using this extension, (2.2) correctly defines the levelwise metric on F(X). It is obvious that

d∞(∅X , ∅X) = 0 and d∞(∅X , A) = diam (X) for any A ∈ F0(X). (2.3)

2.2 Different fuzzifications

In fuzzy mathematics a t-norm is an associative binary relation T : I2 → I satisfying the following three
properties: for any x, y, w, z ∈ I,

(i) T is nondecreasing, i.e., T (x, y) ≤ T (w, z) if x ≤ w and y ≤ z,

(ii) 1 is the identity of T , i.e., T (1, x) = T (x, 1) = x,

(iii) T is symmetric, i.e., T (x, y) = T (y, x).

For any t-norm T a t-conorm T ? : I2 → I can be defined by

T ?(x, y) = 1− T (1− x, 1− y) for x, y ∈ I.

If Γ is any t-norm or t-conorm, ∆Γ(x) = Γ(x, x) denotes the diagonal of Γ.
Let us define some fuzzifications of a given dynamical system (X, ϕ) formed by a locally compact

metric space X and a continuous (self-)map ϕ : X → X. All fuzzifications are defined by formulas
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sending a given fuzzy set A ∈ F(X) to another fuzzy set on X. A usual fuzzification (often called Zadeh’s
extension) Φ : F(X) → F(X) is defined by

(ΦA)(x) = sup
y∈ϕ−1(x)

A(y)

for any A ∈ F(X) and x ∈ X. Now, if a t-norm or t-conorm Γ is given, we define a Γ-fuzzification ΦΓ

([8]) by
(ΦΓA)(x) = sup

y∈ϕ−1(x)

Γ(A(y))

for any A ∈ F(X) and x ∈ X.
Let us introduce generalized fuzzifications as well. We define Dm(I) as the set of all nondecreasing

left-continuous functions g : I → I for which g(x) = x if x = 0 and x = 1. We denote Cm(I) as the set
of all continuous maps from Dm(I). Let X be a locally compact metric space and ϕ ∈ C(X). Then, for
any g ∈ Dm(I), we define Φg : F(X) → F(X) by

(Φg(A))(x) = sup
y∈ϕ−1(x)

{g(A(y))} for any A ∈ F(X), x ∈ X, (2.4)

is called a generalized fuzzification (also called a g-fuzzification or g-fuzzification if we intend to emphasize
the dependence on g) of the crisp dynamical system (X, ϕ). It is obvious that the usual fuzzification and
any reasonable (see Subsection 4.2) Γ-fuzzification are special cases of certain g-fuzzifications (either put
g = idI or g = gΓ, resp.).

We also define α-cut [A]gα of a fuzzy set A ∈ F(X) with respect to g ∈ Dm(I) by

[A]gα = {x ∈ supp(A) | g(A(x)) ≥ α}.

3 Basic topological properties and convergences

In this section we will discuss some basic topological and metric properties on the space of fuzzy sets.
Each of the metrics mentioned above (dS , dE and d∞) induces a metric topology (τS , τE and τ∞) on
F(X) or F0(X), respectively, which is denoted in accordance with the considered metric. The topologies
τS , τE and τ∞ are called the sendograph, endograph and levelwise topologies. We will discuss (local)
compactness, separability and completeness of the space of fuzzy sets X, since the situation has not yet
been clarified sufficiently (see Section 1).

3.1 dS case

This case was first discussed by P. E. Kloeden in [13]. If X is a locally compact metric space, then
(F0(X), dS) is also a locally compact metric space. However, P. E. Kloeden showed that the space
(F0(X), dS) is not complete – to see this result, take any Cauchy sequence of fuzzy sets ”converging” to
∅X . According to Lemma 1, there can be some complete subspaces of (F0(X), dS). For completeness,
(Fλ(X), dS) is also locally compact for any δ ∈ (0, 1] since it is a closed subset of (F0(X), dS). Finally, it
is well known that (F0(X), dS) is separable whenever X is also separable.

If X is a compact metric space, the situation is a little bit different. In terms of the separability,
(F0(X), dS) is separable if X is separable ([13]). It is reported in several papers (see, e.g., [7] and [8])
that the compactness of (F(X), dS) was declared by the reasoning: ”it is straightforward but lengthy
to show ...”. However, unfortunately, this statement is wrong. In the papers mentioned the authors
did not follow the origin of the notation ([13], send(·) like supported endograph), but used the notation
send(·) for endographs of fuzzy sets. Thus they considered the endograph topology on F(X) instead of
the sendograph topology and, consequently, the compactness of (F(X), dS) has been falsly declared (see,
e.g., [5]).

The next simple example shows that even a closed subspace of (F0(X), dS) (namely (F1(X), dS)) need
not be compact. Before showing this example we recall that a characteristic function χB of a given set
B ∈ X is defined as usually by

χB(x) = 1 if x ∈ B and χB(x) = 0 otherwise.
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Example 1 Let X = I and An(x) = xn for any n ∈ N.
Obviously, since An(1) = 1 for any n ∈ N and the sequence {An}n∈N decreases otherwise, the

only possible limit point in the metric topology τS is the characteristic function χ1 of the point 1. Yet
dS(An, χ1) = 1 for each n ∈ N since supp(An) = I and supp(χ1) = {1}. Consequently, the sequence
{An}n∈N has no accumulation point (F1(X), dS). However, this contradicts the fact that any sequence
lying in a compact metric space has an accumulation point.

Concerning the completeness, P. E. Kloeden showed that (F0(X), dS) is not complete. We can show
that some subspaces of (F0(X), dS) can be complete.

Lemma 1 Let X be any locally compact, complete metric space and λ ∈ (0, 1]. Then, the metric space
(Fλ(X), dS) is complete.

Proof. Let us take any Cauchy sequence of fuzzy sets {An} ⊆ Fλ(X). Since the space K(X × I)
is complete the Cauchy sequence {send(An)}n∈N is convergent and it converges to a non-empty closed
subset Ã. Put A(x) = max{y ∈ I | (x, y) ∈ Ã} for any x ∈ supp(Ã) and A(x) = 0 otherwise.

Clearly, A is a function on X and Ã = send(A). Moreover, A ∈ Fλ(X) since maxx∈X An(x) ≥ λ for
any n ∈ N. To finish the proof, it is sufficient to show that the limit point Ã of {An}n∈N represents the
graph of an upper semi-continuous function whose support is bounded. Since the sendograph Ã of the
function A is a closed subset of X × I the function A is upper semi-continuous. To see that supp(A) is
bounded, note that the sequence {supp(An)}n∈N consists of closed bounded subsets of the space X and
hence lim supp(An) = suppA is bounded. ¤

3.2 dE case

Let us discuss the situation when X is a locally compact metric space. Then, by using arguments similar
to P. E. Kloeden’s in [13], we can show that the space (F(X), dE) is again separable and locally compact.

Concerning the completeness, we mentioned above (see [10] or [11]) that (F1(R), dE) is not complete.
The next lemma shows that this assertion is not true. The completeness of (F(X), dE) depends on the
completeness of the space X and the completeness assumption is essential – to make a counterexample,
it is sufficient to consider any non-complete space and (as the non-convergent sequence of fuzzy sets) to
take the characteristic functions of any nonconvergent Cauchy sequence lying in it.

Lemma 2 Let X be any locally compact, complete metric space. Then the metric space (F(X), dE) is
complete. Moreover, (Fλ(X), dE) is complete for any λ ∈ (0, 1].

Proof. Let us take any Cauchy sequence of fuzzy sets {An}n∈N. Then there are two possibilities -
either {An}n∈N converges to ∅X or B :=

⋃
supp(An) (and, consequently, also K(B × I)) is compact.

Thus the sequence {end(An)}n∈N converges in K(B × I) to Ã. Put A(x) = max{y ∈ I | (x, y) ∈ Ã} for
any x ∈ supp(Ã) and A(x) = 0 otherwise.

It remains to show that so defined function A is upper semi-continuous and its support supp(A) is
bounded. Clearly, since Ã = end(A) is a closed set, A is upper semi-continuous. To finish the proof we
must show that supp(A) is bounded; this is an obvious consequence of the fact that {supp(An)}n∈N is a
sequence of compact and hence bounded sets and supp(A) ⊆ lim supp(An). We showed that (F(X), dE)
is complete.

Fix any λ ∈ (0, 1]. It is obvious that if maxAn ≥ λ for any n ∈ N, then max A ≥ λ, i.e., (Fλ(X), dE)
is also complete. ¤

Now assume that X is a compact metric space. We recall that (K(X), DX×I) is compact in this
case. We have already established above that (F(X), dE) is separable and, as mentioned in Section 1, the
compactness of (F(X), dE) was declared without proof (see, e.g., [6] and [8]). The justification for the
compactness is rather easy. Really, since there exists a homeomorphism (F(X), dE) → (K(X×I), DX×I),
A 7→ end(A), F(X) can be considered as a closed subset of K(X × I). Consequently, the compactness
of (K(X), DX×I) implies the compactness of (F(X), dE). Finally, since (F(X), dE) is compact, it is also
complete.
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3.3 d∞ case

In 1983, Puri and Ralescu ([22]) proved that (F1(Rn), d∞) is a complete metric space. Moreover, they
also showed that the same space cannot be compact since it is non-separable. The proof showing non-
separability and completeness can easily be generalized to (F(X), d∞) if the original space X is complete.
The compactness of the general case was studied in [24]. The paper’s main result that ”(F(X), d∞) is
compact if and only if the diameter of the space X is 0” shows that (F(X), d∞) cannot be locally compact.

In accordance with (2.3), it is easy to see that if the space X is complete, then (Fλ(X), d∞) is also
complete for any λ ∈ (0, 1].

3.4 Summary

Let us summarize the results mentioned above. Below (•) denotes the fact that the result is true only if
the original space X has the same property.

3.4.1 X is a locally compact metric space

(F0(X), dS) (F(X), dE) (F0(X), d∞)
separability YES (•) YES (•) NO
local compactness YES YES NO
completeness NO YES (•) YES (•)

3.4.2 X is a compact metric space

(F0(X), dS) (F(X), dE) (F0(X), d∞)
separability YES YES NO
compactness NO YES NO
completeness NO YES (•) YES (•)

3.5 Convergences

We define τE , τS and τ∞ as the metric topologies given by the endograph, sendograph and level-wise
metrics. The relations between different kinds of convergences on the space of fuzzy sets have already been
studied by several authors (see also [23], where the convergence in the topology τE is called variational).
We note that there are several results showing that the topologies we study, in addition to some others,
coincide on certain subclasses of F(X), as shown by [24].

Following the results of [23], the τE-convergence is implied by both τS- and τ∞-one and the converse
implications do not hold. They only assumed the case where X = Rn, but their simple arguments are
also valid for any locally compact metric space X.

We also explain relations between τ∞ and τS . The next simple example shows that τS-convergence
does not imply the τ∞-one.

Example 2 Let X = I and let {An}n∈N be a sequence of fuzzy sets defined by An(x) = 1 − x
n for any

n ∈ N.
Then obviously {An}n∈N converges to χI in the sendograph metric. But,

DI{[χI ]1, [An]1} = 1

for any n ∈ N and, consequently, {An}n∈N does not converge to χI in the level-wise metric.
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Finally, it remains to be shown that the τ∞-convergence implies the τS-one. This is implied by the
inequality

dS(A,B) ≤ d∞(A,B)

which was proved in [5] for arbitrary fuzzy numbers, i.e., X = R and all α-cuts of fuzzy sets A,B ∈ F(X)
are convex subsets of R. A simple justification of this inequality, as given in [5], does not use a specific
property of fuzzy numbers and, therefore, is valid for any two fuzzy sets A,B ∈ F(X) on any locally
compact metric space X.

Consequently, we have
dE(A, B) ≤ dS(A,B) ≤ d∞(A, B) (3.1)

for any A,B ∈ F0(X) since the first inequality in (3.1) is implied directly from the definitions of dE and
dS .

Later we will need the next lemma, which describes the relation between the sendograph and endo-
graph convergences. This was already studied in 1996 ([23, Proposition 3.9 ]) for X = Rn. However, as
far as we know, the paper which the lemma originally comes from has never been published (G. Greco,
M. Moschen, E. Quelho, On the variational convergence of fuzzy sets).

Lemma 3 Let X be any locally compact metric space and {An}n∈N is a sequence in F0(X). Then, the
following two conditions are equivalent:

(i) {An}n∈N converges to A ∈ F0(X) in τS,

(ii) {An}n∈N converges to A ∈ F0(X) in τE and the sequence {supp(An)}n∈N converges to supp(A) in
the topology given by the Hausdorff metric DX on K(X).

Proof. The simple idea used in Example 1 shows that the convergence of {supp(An)} to supp(A) in
K(X) is essential for the τS-convergence of {An}n∈N. On the other hand, if {supp(An)}n∈N converges
to supp(A), then it follows directly from the definitions of dE and dS that the τE- and τS-convergences
coincide. ¤

4 Fuzzifications

4.1 Usual fuzzification

The purpose of this section is to present some basic properties of usual fuzzification. This usual fuzzifica-
tion was firstly defined by L. Zadeh in 1975. Since that time, only a few papers studying basic properties
(like the continuity or the uniform continuity etc.) of the usual fuzzification have been published. We
recall some results which we will generalize later.

Lemma 4 ([1] or [18]) Let ϕ : Rn → Rn be continuous. Then the usual fuzzification Φ : F(Rn) → F(Rn)
is well defined and we have

[Φ(A)]α = ϕ([A]α) (4.1)

for any A ∈ F(Rn) and α ∈ (0, 1].

It is obvious that the equality (4.1) holds for any usual fuzzification defined on a given metric space X.
Moreover, by the continuity of the original map ϕ ∈ C(X), ϕ([A]α) is non-empty, closed and ϕ(supp(A))
is compact if A ∈ F0(X). Thus, (4.1) implies that the upper semi-continuity and the compactness of the
support of a given fuzzy set is preserved by the usual fuzzification, i.e., Φ defines the map F(X) → F(X).

Papers dealing with the continuity of the usual fuzzification have recently appeared. For instance, in
[1] some variants of continuity of the usual fuzzification were studied for different metric topologies on
F(Rn).

Theorem 1 ([1]) Let ϕ : Rn → Rn be uniformly continuous. Then Φ : (F(Rn), d∞) → (F(Rn), d∞) is
also uniformly continuous.
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It should be mentioned that the converse is also true if the continuity of the usual fuzzification and
original map is considered (see [1] or Theorem 6). Theorem 1 was changed and generalized by Román-
Flores and his colleagues in recent work (Theorems 3 and 4).

Theorem 2 ([1]) A map ϕ : Rn → Rn is continuous if and only if Φ : (F0(Rn), dS) → (F0(Rn), dS) is
continuous.

Unfortunately, the proof of Theorem 2 is based on the result ([1], Proposition 4) which is not generally
accessible. We note that the proof of the generalization of Theorem 2 (Theorem 7) is not based on technical
Proposition 4 from [1].

Theorem 3 [25] A map ϕ : Rn → Rn is continuous if and only if Φ : (F(Rn), d∞) → (F(Rn), d∞) is
continuous.

Theorem 4 [26] Let X be any compact metric space. Then a map ϕ : X → X is continuous if and only
if Φ : (F(X), d∞) → (F(X), d∞) is continuous.

The purpose of this section is to generalize the results produced above and to show that the same
assertions can be stated regardless of which topology τS , τE or τ∞ is considered.

Theorem 5 Let X be any locally compact metric space and let τ denote one of the topologies τ∞, τS

and τE. Then ϕ : X → X is continuous if and only if Φ : (F0(X), τ) → (F(X)0, τ) is continuous.

The proof of this theorem is omitted since the usual fuzzification is a special case of g-fuzzifications
which are studied in Subsection 4.3. Theorem 5 is an easy conseqence of Theorems 7 and 6 (g : I → I is
the identity map). We will finish this section by giving an example of the usual fuzzification of certain
crisp dynamical systems that can lose information carried by the initial state of a given dynamical system.

Example 3 Let X = I and ϕ : I → I be a piece-wise linear map given by g(0) = 0, g( 1
2 ) = 1 and

g(1) = 0. This map has the following property: (?) [4, Proposition 45] - for any nondegenerate interval
J ⊆ I there is m ∈ N such that ϕm(J) = I.

Let ((F(X), dE), Φ) be a fuzzy dynamical system given by the usual fuzzification of (X, ϕ). Then, in
the crisp system, the trajectories of given points admit different behaviors – from the simplest ones (when
x ∈ I is fixed, periodic, etc.) to the most complex ones (when {y ∈ I |ϕn(x) = y for some n ∈ N} is
dense in I). On the other hand, in the fuzzy system, it follows from (?) and (4.1) that for any nontrivial
(i.e., continuous) normal fuzzy set A ∈ F1(X), ωΦ(A) consists only of the fixed point χI .

4.2 Γ-fuzzifications

Let us study some basic properties of Γ-fuzzifications. For any A ∈ F(X) and α ∈ (0, 1], an α-level
set [A]Γα with respect to a t-norm or t-conorm Γ is defined by [A]Γα = {x ∈ supp(A) |∆Γ(A(x)) ≥ α}.
Γ-fuzzifications were first studied in [8], where several basic properties were Shown; the authors proved
the following analogy of (4.1).

Lemma 5 Let ϕ ∈ C(X), A ∈ F0(X) and let Γ be any t-norm or t-conorm. Then

ϕ([A]Γα) = [ΦΓ(A)]α, α ∈ (0, 1], (4.2)

if and only if
sup

x∈ϕ−1(y)

{∆Γ(A(x))} (4.3)

is attained for any y ∈ ϕ(supp(A)).

The condition (4.3) depends only on the diagonal ∆Γ. Using the assumptions of Lemma 5, the set
B := ϕ−1(y) is closed for any y ∈ ϕ(supp(A)) since ϕ is continuous. Then the point x0 = maxx∈B{A(x)}
exists because A is upper semi-continuous. Thus (4.3) depends on ∆Γ(x0).
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So, since we want to obtain a reasonable Γ-fuzzification, i.e., satisfying (4.2), we require ∆Γ(x) to attain
its supremum for any x ∈ I. In this case, the diagonal ∆Γ induces a map gΓ : I → I, gΓ(x) = sup{∆Γ(x)},
such that gΓ(0) = 0 and gΓ(1) = 1. Moreover, since ∆Γ in nondecreasing for any t-norm or t-conorm Γ,
the map gΓ is nondecreasing too. In fact we have shown that any reasonable Γ-fuzzification induces a
map g : I → I satisfying the conditions mentioned above.

Thus, we can generalize the definition of Γ-fuzzification by using a non-decreasing map g : I → I
for which g(0) = 0 and g(1) = 1 and define a fuzzification depending on g instead of ∆Γ. These
generalized fuzzifications are introduced in Subsection 4.3. Finally, since Γ-fuzzications are special cases
of fuzzifications that are presented in the next subsection, we obtain the following results as consequences
of Theorems 6 and 7, Proposition 1 and Example 4. It should be also mentioned that the continuity of
Γ-fuzzifications has never been studied before.

Corollary 1 Let X be any locally compact metric space and let Γ be a t-norm or a t-conorm defining a
reasonable Γ-fuzzification. Then if ∆Γ is not a continuous function, ΦΓ : (F(X), τ) → (F(X), τ) is not
continuous whenever τ = τE or τS.

Proof. See Example 4. ¤

Corollary 2 Let X be any locally compact metric space and let Γ be a t-norm or a t-conorm defining a
reasonable Γ-fuzzification. Then ϕ : X → X is continuous if and only if ΦΓ : (F(X), τ∞) → (F(X), τ∞)
is also continuous.

Proof. See Theorem 6. ¤

Corollary 3 Let X be any locally compact metric space and let Γ be a t-norm or a t-conorm for which
∆Γ is a continuous function. Then ϕ : X → X is continuous if and only if ΦΓ : (F(X), τE) → (F(X), τE)
is also continuous.

Moreover, when τ = τS, let ∆Γ be strictly increasing at 0. Then ϕ : X → X is continuous if and only
if ΦΓ : (F0(X), τS) → (F0(X), τS) is also continuous.

Proof. See Theorem 7. ¤

It should be also mentioned that Γ-fuzzifications preserve the uniform convergence of uniformly con-
tinuous maps – for details, see Propositions 1 and 2.

4.3 Generalized fuzzifications (g-fuzzifications)

First of all, we would like to make two remarks concerning the empty fuzzy set on X.

Remark 1 Let g ∈ Cm(I) be such that g([0, a)) = 0 for some a ∈ (0, 1). Then, for any A ∈ F(X)
with max A ≤ a, the definition of g-fuzzification implies that Φg(A) = ∅X . Thus, Φg : (F0(X), dS) →
(F0(X), dS) is correctly defined only when g ∈ C ′m(I), i.e., g ∈ Cm(I) is strictly increasing at 0.

Remark 2 If τ = τ∞ or τ = τE then Φg is defined also at ∅X and Φg(∅X) = ∅X . Moreover, the
continuity of Φg : (F(X), d∞) → (F(X), d∞) (resp., Φg : (F(X), dE) → (F(X), dE)) at the point ∅X

follows directly from (2.3), which is due to the fact that g is left-continuous at 0.
Thus, to study the continuity of Φg, it is sufficient to study the continuity of fuzzifications on the

space of non-empty fuzzy sets.

Lemma 6 Let X be a locally compact metric space and ϕ ∈ C(X). Then

ϕ([A]gα) = [Φg(A)]α (4.4)

holds for any A ∈ F0(X), g ∈ Dm(I) and α ∈ (0, 1].
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Proof. Let the assumptions be fulfilled. We first prove ”≤”. Take any x ∈ ϕ([A]gα). Then there exists
y0 ∈ supp(A) for which g(A(y0)) ≥ α. Thus, since also ϕ(y0) = x,

(Φg(A))(x) = sup
y∈ϕ−1(x)

{g(A(y))} ≥ g(A(y0)) ≥ α,

i.e., x ∈ [Φg(A)]α.
To prove ”≥,” fix any x ∈ [Φg(A)]α. Then ϕ−1(x) is a non-empty closed subset of X. Moreover, since

A is upper semi-continuous and g is nondecreasing, there exists a := max{g(A(ϕ−1(x)))}. Thus there is
y0 ∈ supp(A) such that g(A(y0)) = a. By the choice of x, g(A(y0)) ≥ α, i.e., y0 ∈ [A]gα. Finally, since
y0 ∈ ϕ−1(x), x ∈ ϕ([A]gα). ¤

Lemma 7 Let X be any locally compact metric space and ϕ ∈ C(X). Then, for any g ∈ Dm(I), any
g-fuzzification Φg is correctly defined.

Proof. Let A ∈ F0(X). Since the case Φg(A) = ∅X is not interesting (see Remarks 1 and 2), we
may assume that Φg(A) 6= ∅X . We must show that Φg(A) is an upper semi-continuous function having
compact support. First, we show that Φg(A) is upper semi-continuous. It is sufficient to show that
[Φg(A)]α is closed for any α ∈ (0, 1]. So, fix α ∈ (0, 1] and A ∈ F(X).

We may assume that [Φg(A)]α 6= ∅. By (4.4), it suffices to show that [A]gα is closed since ϕ is
continuous. So, let {xn} ⊆ [A]gα be a sequence converging to x0. Since A is upper semi-continuous,
lim inf A(xn) ≤ A(x0). Then, by the choice of {xn}n∈N, and since g is nondecreasing and left-continuous,

α ≤ lim inf g(A(xn)) = g(lim inf A(xn)) ≤ g(A(x0)),

i.e., x0 ∈ [A]gα.
Thus we have shown that [A]gα (and hence ϕ([A]gα)) is closed. Moreover, since [A]gα ⊆ supp(A) and

supp(A) is compact, [A]gα is compact. Therefore, the continuity of ϕ and (4.4) imply that [Φg(A)]α is
compact too. Finally, since any compact subset of X is also bounded, we have shown that any α-cut of
Φg(A) is bounded.

It remains to be shown that supp(Φg(A)) is bounded. If supp(Φg(A)) 6= ∅, then we may assume
that, for any decreasing sequence of {αn} ⊆ (0, 1] converging to 0, there is an increasing sequence
{[Φg(A)]αn}n∈N of non-empty closed subsets of X. Since lim[Φg(A)]αn = supp(Φg(A)) and each [Φg(A)]αn

is bounded, supp(Φg(A)) is also bounded. ¤

The next example shows that the continuity of g ∈ Dm(I) is necessary for the continuity of Φg if we
consider either the sendograph or endograph topologies.

Example 4 Consider any locally compact metric space X and a map ϕ = idX . For instance, we
may assume that g is not continuous at x0 from the left, i.e., there are a, b ∈ I for which g(x0) = b,
limx→x−0

g(x) = a and a < b. Let τ denotes either τE or τS.
Now consider a strictly increasing sequence {xn}n∈N ⊆ I converging to x0. Take any compact set

B ⊆ X and put An = xnχB for any n ≥ 0. Then {An}n∈N converges to A0 in τ . But

max
x∈X

Φg(An)(x) ≤ a < b = max
x∈X

Φg(A0)(x).

Thus Φg is not continuous if the topology τ is considered. If g is not continuous at x0 from the right the
construction is similar.

We have shown that the discontinuity of g implies the discontinuity of the induced g-fuzzifications.
On the other hand, if g is continuous, then an analogy of Theorem 5 can be proposed. Moreover, for the
case of levelwise topology, the continuity of g on I does not need to be assumed.

Lemma 8 Let g ∈ Dm(I). Then for any α ∈ (0, 1] there is c ∈ [0, 1] such that [A]gα = [A]c.
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Proof. Obviously, there are three possibilibies:
(i) g−1(α) is a singleton. In this case, c = g−1(α).
(ii) g−1(α) is a nondegenerate closed interval [c, d] and c is so given.
(iii) g−1(α) = ∅. This means that there is a point x0 ∈ I at which g is not continuous, i.e.,

limx→−x0 g(x) = a < b = g(x0). In this case, [A]gα = [A]gb and this case can be reduced either to (i)
or to (ii). ¤

Theorem 6 Let X be any locally compact metric space and let g ∈ Dm(I). Then ϕ : X → X is
continuous if and only if Φg : (F(X), τ∞) → (F(X), τ∞) is also continuous.

Proof. With respect to Remark 2, let {An}n∈N be a convergent sequence of non-empty fuzzy sets and
let A0 be the limit point of this sequence. Since A0 6= ∅X , supp(Ai) is compact for any i ∈ N, K :=⋃

i∈N supp(Ai) and also ϕ(K) are compact. Again, by the continuity of ϕ, the map ϕ̃ : K(K) → K(ϕ(K))
defined for any B ∈ K(K) by

ϕ̃(B) = {y ∈ ϕ(K) |ϕ(x) = y for some x ∈ B}

is uniformly continuous ([17]). This means that for any ε > 0 there is δ > 0 satisfying, for any Ã, B̃ ∈
K(K),

DX(Ã, B̃) < δ ⇒ DX(ϕ̃(Ã, ϕ̃(B̃))) < ε. (4.5)

To show the continuity of Φg we need to show the uniform continuity in α-cuts. Let ε > 0 be fixed
and let δ > 0 be given by (4.5). Since {An}n∈N converges to A0 in τ∞, there is n0 ∈ N such that,
d∞(An, A0) ≥ δ for any n ≥ n0. So, for any α ∈ (0, 1] and n ≥ n0,

DX([An]α, [A0]0) < δ.

Again by (4.5),
DX(ϕ̃([An]α), ϕ̃([A0]α)) = DX(ϕ([An]α), ϕ([A0]α)) < ε

holds for any α > 0 and n ≥ n0. Thus, see (4.4) and Lemma 8, we have finished.
The converse implication is obviously true, since the original dynamical system (X, ϕ) can be isomet-

rically embedded to (F(X), d∞) by i : X → F(X), x → χx. In this case obviously, Φg(χx) = χϕ(x) and
d∞(χx, χy) = dX(x, y) for any x, y ∈ X. Thus, for any {xn} ⊆ X converging to x0 ∈ X there exists
a sequence {χxn} ⊆ F(X) converging to χx0 . Now the continuity of Φg implies that {χϕ(xn)} ∈ F(X)
converges to χϕ(x0), i.e., {ϕ(xn)} ∈ X converges to ϕ(x0). ¤

Theorem 7 Let X be any locally compact metric space and let g ∈ Cm(I). Then ϕ : X → X is
continuous if and only if Φg : (F(X), τE) → (F(X), τE) is continuous.

Moreover, if g ∈ C ′m(I), then ϕ : X → X is continuous if and only if Φg : (F0(X), τS) → (F0(X), τS)
is continuous.

Proof. Let τ denotes one of τS , τE . With respect to Remark 2, let {An} ⊆ F0(X) be a sequence
of non-empty fuzzy sets convergent in the topology τ and let A0 6= ∅X be its limit point. Similarly to
the proof of Theorem 6, we obtain a compact set K ⊆ X containing

⋃
supp(An). Consider the product

map κ := (ϕ, g) : K × I → ϕ(K) × I. Since κ is continuous and K × I is non-empty and compact, the
set-valued map κ̃ : K(K × I) → K(ϕ(K)× I) induced from the map κ is uniformly continuous.

For the rest of the proof we will identify fuzzy sets by their sendographs or endographs. To finish the
proof it is sufficient to show that

κ̃(send(A)) = send(Φg(A)) for any A ∈ F(K), (4.6)

or
κ̃(end(A)) = end(Φg(A)) for any A ∈ F(K). (4.7)
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Really, if (4.6) or (4.7) is true the g-fuzzification Φg can be considered as the restriction of κ̃ to (F0(K), τ).
Finally, since (F0(K), τ) can be considered as a subspace of (K(K × I), DK×I), the uniform continuity
of κ̃ implies the continuity of Φg.

Let us prove (4.6). By the definition, for any x ∈ supp(Φg(A)),

(Φg(A))(x) = sup
y∈ϕ−1(x)

{g(A(y))}.

Since ϕ−1(x) is non-empty and closed there is a point y0 ∈ supp(A) for which max A|ϕ−1(x) = A(y0).
Thus (Φg(A))(x) = g(A(y0)). Finally it is obvious κ(y0, A(y0)) = (x, g(A(y0))) and, by the choice of y0,

κ̃(send(A)) ∩ Ix = {(x, z) ∈ ϕ(K)× I | z ≤ (Φg(A))(x)}.

The proof of (4.7) similar.
The proof of the converse is easy. As in the previous proof, there is an isometrical embedding

i : X → F0(X), i(x) = χx. Obviously, Φg(x) = χϕ(x) and dX(x, y) = dE(χx, χy) = dS(χx, χy) for any
x, y ∈ X. ¤

5 Uniform convergence

It was shown in [19] that the usual fuzzification preserves the uniform continuity if fuzzy-number valued
functions are considered. The main purpose of this section is to generalize this result to g-fuzzifications
and to show that functions other than fuzzy-number valued functions might be considered. For com-
pleteness, it was shown in [19] that the uniform continuity cannot be replaced by the continuity. In the
proof of Proposition 1 we will need the next lemma, which is a simple generalization of the result proved
by Dubois and Prade ([9]).

Lemma 9 Let X be any locally compact metric space and {ϕn} ⊆ C(X) be a sequence of uniformly
continuous maps that uniformly converges to ϕ0 ∈ C(X). Then the sequence {ϕ̃n} ∈ C(K(X)) consists
of uniformly continuous maps and converges to ϕ̃0 ∈ C(K(X)).

Proof. Let the assumptions be fulfilled. The uniform continuity of any ϕ̃n, n ≥ 0, is an easy consequence
of the uniform continuity of the original map ϕn and the definition of the Hausdorff metric on K(X).

We show that the sequence {ϕ̃n}n∈N uniformly converges to ϕ̃0. Let ε > 0 be fixed. Since {ϕn}n∈N
uniformly converges to ϕ0 there is m ∈ N such that, for any n > m,

DX(ϕn(x), ϕ0(x)) < ε for any x ∈ X.

Thus, for any B ∈ K(X), the last sentence imply that ϕ0(B) ⊆ Uε(ϕn(B)) and also ϕn(B) ⊆ Uε(ϕ0(B))
for any n > m. By the definitions of the Hausdorff metric on X and the induced map on K(X),

DX(ϕ̃n(B), ϕ̃0(B)) < ε

for any B ∈ K(X) and n > m. ¤

Proposition 1 Let X be a locally compact metric space, g ∈ Dm(I) and let the metric topology τ∞ be
considered on F(X). Denote by Φg,n the g-fuzzification induced by a given map ϕn for n ≥ 0.

If {ϕn} ⊆ C(X) is a sequence of uniformly continuous maps that uniformly converges to ϕ0, then a
sequence of g-fuzzifications {Φg,n}n∈N uniformly converges to Φg,0.

Proof. We have shown in Theorem 6 that Φg,n : F(X) → F(X) is continuous for any n > 0. Since
Φg,n(∅X) = ∅X for any n ∈ N it remains to show that {Φg,n}n∈N converges uniformly to Φg,0 on F0(X),
i.e., for any ε > 0 there is m ∈ N such that for any n > m

d∞(Φg,n(A), Φg,0(A)) < ε for any A ∈ F0(X). (5.1)

14



Therefore, we fix ε > 0. Employing the assumptions, each ϕn is unifomly continuous. By Lemma 9
the sequence {ϕ̃n} ⊆ C(X) is a uniformly convergent sequence of uniformly continuous maps. From this
result it follows that there is m ∈ N such that, for any n > m,

DX(ϕ̃n(B), ϕ̃0(B)) for any B ∈ K(X). (5.2)

Since α-cuts of any fuzzy set A ∈ F(X) are connected with set-valued maps, see 4.2 and Lemma 8, (5.2)
implies (5.1) directly from the definition of the metric d∞. ¤

Proposition 2 Let X be a locally compact metric space and let g ∈ Cm(I) if τ = τE or g ∈ C ′m(I) if
τ = τS. Denote by Φg,n the g-fuzzification induced by a given map ϕn for n ≥ 0.

If {ϕn} ⊆ C(X) is a sequence of uniformly continuous maps that uniformly converges to ϕ0, then a
sequence of g-fuzzifications {Φg,n}n∈N uniformly converges to Φg,0 on F(X) if τ = τE (resp., on F0(X)
if τ = τS).

Proof. First we consider the topology dS on F0(X). The crux of this proof is similar to that mentioned
in Theorem 7. A map g : I → I is uniformly continuous – just as any continuous map defined on a
compact metric space. Since a product map consisting of two uniformly continuous maps is uniformly
continuous, any map κn = (ϕn, g) : X × I → X × I is uniformly continuous for any n ≥ 0. Moreover,
it is easy to see that also {κn}n∈N uniformly converges to κ0. Consequently, by Lemma 9, the sequence
of set-valued maps {κ̃n} ⊆ K(X × I) uniformly converges to κ̃0 ∈ K(X × I). In fact, this completes the
proof since the uniform convergence is preserved on any subspace of K(X × I); since (4.6) was shown,
(F(X), dS) can be considered as a subspace of K(X × I).

If the topology τE on F(X) is taken, the proof is analogous since (F0(X), dE) Can also be considered
as subset of K(X × I) and Φg,n(∅X) = ∅X for any n ∈ N. ¤

6 Further properties

Fuzzified dynamical systems have a property that is not typical of crisp systems. For example, fuzzy sets
represent imprecise values that are used for some application. For instance, fuzzy set A =”approximately
5” can be considered as the union or addition of two fuzzy sets B =”approximately but not bigger than
5” and C =”approximately but not smaller than 5”. Then, regardless of how the input is represented,
we want to obtain the same result, i.e. the output of the system can be obtained either as an output
given the fuzzy set A, or as the union of outputs depending on the fuzzy sets B and C. More formally,
if ϕ : F(X) → F(Y ) is the considered system and A = B ∪ C then

ϕ(A) = ϕ(B) ∪ ϕ(C).

Consequently, many fuzzy systems also represent their own set-valued system. This property can be
generalized as follows: given two spaces X and Y , we say that a system ϕ : F0(X) → F0(Y ) has the
unions-preserving property (shortly UP-property) if

end(ϕ(A)) =
⋃

i

end(ϕ(Ai)) (6.1)

where {Ai} is any (even uncountable) system of fuzzy sets such that

end(A) =
⋃

i

end(Ai). (6.2)

It is clear that the sendographs of fuzzy sets could be used in this definition instead of the endographs.
The next lemma shows that any discrete fuzzy dynamical system that is a generalized fuzzification of any
crisp dynamical system has the UP-property. On the other side, it is very easy to construct an example
(see Example 5) of a non-fuzzified system that satisfies the UP-property.

15



Lemma 10 Let (F0(X), Φg) be any g-fuzzification of a system (X, ϕ) and let g ∈ Dm(I). Then (F0(X), Φg)
has the UP-property.

Proof. Let the assumptions be fulfilled and take any A ∈ F(X). Let {Ai} ⊆ F(X) be any system of
fuzzy sets satisfying (6.2). The case Φg(A) 6= ∅X is trivial. So. let x ∈ supp(Φg(A)). Then

Φg(A(x)) = sup
y∈ϕ−1(x)

{g(A(y))}.

Consider now y0 ∈ supp(A) attaining supy∈ϕ−1(x){g(A(y)). By (6.2) we have Ai(y0) ≤ A(y0). Moreover,
there exists a non-empty index set J such that Aj(y0) = A(y0) for each j ∈ J . Thus, for any j ∈ J ,

Φg(A)(x) = sup
y∈ϕ−1(x)

{g(A(y))} = g(A(y0)) ≤ sup
y∈ϕ−1(x)

{g(Aj(y))} = ΦgAj(x),

Finally, since A(y) ≥ Ai(y) for any y ∈ X and any i,

Φg(A)(x) = sup
y∈ϕ−1(x)

{g(A(y))} ≥ sup
y∈ϕ−1(x)

{g(Ai(y))} = Φg(Ai)(x).

The proof is finished. ¤

Example 5 Let X = { 1
n |n ∈ N}. A map Φ : F(X) → F(X) is defined for A ∈ F(X) as follows -

Φ(A) = A if min{supp(A)} = 0. Otherwise, for any A ∈ F(X) put b := maxx∈X{A(x)} and a := 1
n+1 if

1
n = min{supp(A)}. Then let

Φ(A)(x) =
{

A(x) if x 6= a,
A(x) = b if x = a.

It is obvious that this map is continuous regardless of which topology is used (τS, τE or τ∞). Moreover,
since any fuzzy set of the form cχ{x}, x 6= 0, c ∈ (0, 1], is mapped to a fuzzy set whose support consists
of exactly two points of the set X, the map Φ cannot be a fuzzification of a crisp dynamical system.

Another notion concerning fuzzy discrete dynamical systems was recently established ([20]). S. M.
Pederson defined so-called commuting fuzzifications by a nonconstant continuous map between a given
crisp and fuzzy discrete dynamical system. It is necessary to emphasize that even if only the sendograph
topology on F(X) is considered in [20], the following notion can also be stated for the endograph and
levelwise topologies.

The original definition was established for compact metric spaces, but we assume that X is a locally
compact metric space. For given discrete dynamical systems ((X, ϕ) and (F0(X), Φ)) we say that Φ(ϕ) :
F0(X) → F0(X) is a commuting fuzzification of ϕ if there is a nonconstant continuous map Φ : X → F(X)
for which

Φ(ϕ(x)) = (Φ(ϕ))(Φ(x)) for any x ∈ X. (6.3)

The last equality says that the diagram

X
ϕ→ X

Φ ↓ ↓ Φ

F0(X)
Φ(ϕ)→ F0(X)

(6.4)

commutes.
We have several remarks concerning this definition. In our opinion, the assumption that Φ is noncon-

stant is not necessary and the justification of this assumption mentioned in [20] is not valid1. In any case,
it is obvious that any g-fuzzification is commuting if g ∈ Dm(I) and for any of the topologies considered
in this article. Really, let (X, ϕ) be a discrete dynamical system and τ denotes any of τS , τE and τ∞.
Following the notation of the Pederson’s definition the map Φg : X → F0(X) defined by x 7→ χ{x} is
obviously continuous in τ - in fact, Φg is an isometrical embedding of X to F0(X). Moreover, since
Φg(χx) = χϕ(x) for any x ∈ X and g ∈ Dm(I), the diagram (6.4) commutes. Thus we have the following
result.

1Without repeating Pederson’s argument (page 364 of [20]) the conclusion that ”every continuous fuzzification of ϕ is
commuting” is not right. Instead, it should be written that ”every continuous fuzzification of ϕ having v as a fixed point
is commuting”.
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Theorem 8 Let X be any locally compact metric space and ϕ ∈ C(X).
(i) If g ∈ Dm(I) then g-fuzzification ((F(X), τ∞), Φg) of (X,ϕ) is commuting.
(ii) If g ∈ Cm(I) then g-fuzzification ((F(X), τE),Φg) of (X, ϕ) is commuting.
(iii) If g ∈ C ′m(I) then g-fuzzification ((F0(X), τS), Φg) of (X,ϕ) is commuting.

Seemingly, well established notions of conjugacy or semiconjugacy are more convenient for describing
relations between a given crisp dynamical system and its g-fuzzification. It was already shown in [14]
that a dynamical system (F0(X), Φ) is an extension of the original system (X,ϕ) if we consider the
sendograph topology. However, the dynamical systems we consider (i.e., fuzzy dynamical systems given
by a g-fuzzification) are not conjugated because they have different cardinalities.

Moreover, the next example shows that there is no semi-conjugacy between the fuzzified and original
systems.

Example 6 Let X be any compact metric space without the fixed point property, and let ϕ ∈ C(X) be
a map that does not have a fixed point on X (for instance, the unit circle S1 and an irrational rotation
S1 → S1). Let g ∈ C ′m(I) and (F0(X), Φg) be a g-fuzzification of (X, ϕ).

Since X is a compact space, there exists a minimal subset U of X, i.e., U is closed, non-empty,
ϕ(U) = U and no proper subset of U has the same three properties. Then, obviously by the UP-property,
χU is a fixed point of Φg. Moreover, it is well-known that any semi-conjugacy h : F0(X) → X maps fixed
points of (F0,Φg) to fixed points of the factor (X, ϕ). Accordingly, for the choice of the space X, there is
no semi-conjugacy h : F0(X) → X.

7 Topological (semi-)conjugacy

The main aim of this section is to show that a given (semi-)conjugacy between two dynamical systems
can be naturally extended to discrete dynamical systems that are fuzzified in the same way (by the same
fuzzification). Similarly, as in the previous section, we obtain different results for the different topologies.

Theorem 9 Let X, Y be locally compact metric spaces. Let (X, ϕ), (Y, ψ) be discrete dynamical systems
that are conjugated by h : X → Y and let g ∈ Dm(I). Then, a map H : (F(X), τ∞) → (F(Y ), τ∞), is
defined by

H(∅X) = ∅Y and [(H(A))]α = h([A]α))

for any A ∈ F0(X) and α ∈ (0, 1], conjugates (F(X),Φg) to (F(Y ), Ψg).
If h is only a semi-conjugacy, then H is a semi-conjugacy too.

Proof. Let the assumptions be fulfilled. It is obvious that the map H is correctly defined, since any
α-cut of any upper semi-continuous fuzzy set is closed, any upper semicontinuous fuzzy set A ∈ F0(X)
is mapped to an upper semicontinuous fuzzy set, and the uniform continuity of the set-valued map
h̃([A]α) = h([A]α) on supp(A) assures that supp(H(A)) is also compact.

First we prove that H : (F(X), τ∞) → (F(Y ), τ∞) is continuous. Since the continuity of H at ∅X is
obvious, we follow the proof of Theorem 6. For any sequence {An} ⊆ F0(X) converging to A ∈ F0(X)
there is a compact set K ⊆ X containing support of all fuzzy sets An. Then, for any α ∈ (0, 1], the
uniform continuity of the set-valued map h̃ : K → h(K) assures that the sequence {An}n∈N converges
to A uniformly in each α-cut and, consequently, {H(An)}n∈N converges to H(A) in the topology τ∞.
Moreover, the surjectivity of h (and of the set-valued map h̃, respectively) easily implies that H is
surjective too.

To finish the proof it is necessary to show that for any A ∈ F0(X),

H(Φg(A)) = Ψg(H(A)). (7.1)

We show that (7.1) coincide in each α-cut where α ∈ (0, 1]. Thus let α ∈ (0, 1] and A ∈ F0(X) be fixed.
By the definition of g-fuzzification (see also Lemma 8),

[Φg(A)]g(α) = ϕ([A]α)
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and by the definition of the map H,

[H(B)]g(α) = h([B]g(α)).

Consequently,
[H(Φg(A))]g(α) = h([Φg(A)]g(α)) = h(ϕ([A]α)). (7.2)

Analogously we get
[Ψg(H(A))]g(α) = ψ([H(A)]α = ψ(h([A]α)). (7.3)

Finally since h is a conjugacy (ψ ◦ h = h ◦ ϕ)

h(ϕ([A]α)) = ψ(h([A]α)) for any α ∈ (0, 1].

Consequently, (7.2) and (7.3) imply (7.1).
In fact we have shown that H : (F(X), τ∞) → (F(Y ), τ∞) is a semi-conjugacy whenever h : X → Y is

a semi-conjugacy. To prove that H : (F(X), τ∞) → (F(Y ), τ∞) is a conjugacy, we can analogously use the
continuity and the surjectivity of h−1 : Y → X and we get that the map H−1 : (F(Y ), τ∞) → (F(X), τ∞)
is also continuous and surjective. The validity of (7.1) is preserved. ¤

Theorem 10 Let (X,ϕ), (Y, ψ) be discrete dynamical systems (semi-)conjugated by h : X → Y . Let a
map H : F(X) → F(Y ) be defined by

H(∅X) = ∅Y , and [(H(A))]α = h([A]α))

for any A ∈ F0(X) and α ∈ (0, 1].
(i) If g ∈ Cm(I) then H (semi-)conjugates ((F(X), dE),Φg) to ((F(Y ), dE), Ψg).
(ii) If g ∈ C ′m(I) then H (semi-)conjugates ((F0(X), dS), Φg) to ((F0(Y ), dS), Ψg).

Proof. Let the assumptions be fulfilled. First we show that H : (F(X), τ) → (F(Y ), τ) is continuous if
τ is either τS or τE . Consider the map κ := (h, idI) : X× I → Y × I. Since κ is continuous the set-valued
map κ̃ : K(X× I) → K(Y × I) is also continuous in the metric topology induced by the Hausdorff metric.

Since the metric dS on F0(X) is induced from the Hausdorff metric on K(X × I), the set B :=
{send(A) |A ∈ F(X)} is a subset of K(X × I). Clearly, since there is a one-to-one correspondence
between fuzzy sets and their sendographs, H : (F0(X), τS) → (F0(Y ), τS) can be considered as κ̃|B .
Finally, the continuity of κ̃|B implies the continuity of H : (F0(X), τS) → (F0(Y ), τS).

Now, let τ = τE and let {An}n∈N be a sequence convergent to A0 in τ . Then, there are two possibilities.
If A0 = ∅X , then the continuity of H is easily obtained by the definition of H. If A0 6= ∅X , then

B =
⋃

n∈N
supp(An)

and, consequently, K(B × I) are also compact. Moreover, κ̃ : K(B × I) → K(ϕ(B) × I) is continuous.
Analogous to Theorem 7,

κ̃(end(A)) = end(H(A)) for A ∈ F(X).

Thus, the continuity of κ̃ implies the continuity of H on {A ∈ F(X) | supp(A) ⊆ B}. Thus, by the choice
of B, {H(An)}n∈N converges to H(A).

In the proof of Theorem 9, (7.1) was proved. Since the surjectivity of H is obvious, we have shown
that H semiconjugates (F(X),ΦΓ) to (F(Y ), ΨΓ). However, H is a conjugacy because h : X → Y is a
bijection and, consequently, κ̃ is a bijection too. ¤
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8 Possible connections to crisp discrete dynamical systems

In this section we mention some approaches to further the study of fuzzified discrete dynamical systems.
Even though the notion of usual fuzzification (known also as Zadeh’s extension) has been known for
more than thirty years, there are only a few papers that study the connections between the original
crisp discrete dynamical system and the fuzzified system. For instance, the chaotic behavior of fuzzified
systems was studied when the sendograph metric on the space of fuzzy sets was considered [for instance
[8]]. Other notions connected to chaotic behavior were also studied in the case of the levelwise metric
[26] but, seemingly, there is no connection between these papers.

One possible connection can be elucidated by the fact that the topologies considered in this paper are
comparable (see (3.1)). This immediatelly provides some relations among fuzzified systems. For instance,
an immediate consequence of (3.1) is the following statement.

Proposition 3 Let X be any locally compact metric space and g ∈ Cm(I). If a dynamical system
((F(X), τ∞),Φg) is transitive, then ((F(X), τE),Φg) is also transitive.

Proof. Following the definition of the transitivity, let U, V be any open subsets of (F(X), τE). By (3.1),
there are open subsets U ′, V ′ of (F(X), τ∞) such that U ′ ⊆ U and V ′ ⊆ V . Since ((F(X), τ∞), Φg) is
transitive, Φn

g (U ′) ∩ V ′ 6= ∅ for some n ∈ N. Consequently, by the choice of U ′, V ′, also Φn
g (U) ∩ V 6= ∅

for some n ∈ N. ¤

Now we are going to discuss two connections between fuzzy discrete dynamical systems and the
original system. The first connection is easy to see from Lemma 8 and (6) – any generalized fuzzification
is connected to the dynamics of the set-valued system induced by the original map via α-cuts. This
approach is already known and was used, for instance, in [26] where fuzzy discrete dynamical systems
induced by the usual fuzzification were studied.

Another possibility is to consider generalized fuzzy discrete dynamical systems as set-valued dynamical
systems induced by suitable skew-product maps. Skew-product maps form some of the simplest extensions
of original systems and have been intensively studied approximately since 1990 (see, e.g., [15] or [16]
for further information). In this section, we want to show that some generalized fuzzifications can be
expressed by a suitable skew-product map, and this approach allows us to simplify the computation of
the fuzzified system.

In the rest of this section we identify fuzzy sets with their endographs. Following this identification,
end(A)(x) := max{y ∈ I | (x, y) ∈ endA}.
Proposition 4 Let X be a locally compact metric space and ϕ ∈ C(X). Then, for any g ∈ Cm(I), there
is a unique skew-product map F : X× I → X× I such that, F (end(A))(x) = Φg(A)(x) for any A ∈ F(X)
and x ∈ X.

Proof. Let F : X × I → X × I be a skew-product map for which ϕ is the base map and all fiber maps
gx are equal to g.

Take any A ∈ F(X) and y ∈ X. It remains to show that

F (end(A))(x) = Φg(A)(x). (8.1)

By the definition of g-fuzzification,

Φg(A)(x) = sup
y∈ϕ−1(x)

{g(A(y))}.

By the continuity of ϕ, ϕ−1(x) is closed and, consequently, there is y0 ∈ ϕ−1(x) for which

Φg(A)(x) = max
y∈ϕ−1(x)

{g(A(y))} = g(A(y0)). (8.2)

On the other hand, by the choice of y0,

F (end(A))(x) =
⋃

y∈ϕ−1(x)

F (Ay) = F (Ay0), (8.3)
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i.e., F (end(A))(x) = g(A(y0)). Thus, (8.2) together with (8.3) imply (8.1). ¤

However, even if we use generalized fuzzifications of a given crisp system (X, ϕ), their skew-product
representations are very simple – in each case, all fiber maps gx of the map F are equal to g ∈ Cm(I). In
general, skew product maps can be more complex and this could lead to the idea of a further generalization
of g-fuzzifications by using skew-product maps.

We establish the definition of a skew-product fuzzification, but we also show that it makes sense to
consider this kind of fuzzification only if the levelwise metric on the space of fuzzy sets is not considered.
So, let a locally compact metric space X and ϕ ∈ C(X) form a discrete dynamical system. Consider also
a skew-product map F ∈ Tm(X) for which gx(0) = (0) for any x ∈ X. Then a skew-product or triangular
F -fuzzification ( shortly F -fuzzification) of the original system (X, ϕ) is a map ΦF : F(X) → F(X) given
by

F̃ (end(A))(x) = ΦF (A)(x). (8.4)

Here we study the continuities of the skew-product fuzzification ΦF : (F(X), τ) → (F(X), τ) if τ is
equal to any of τS , τE or τ∞. With respect to Remark 1, for the case of the sendograph topology, we
consider F -fuzzifications for which all fiber maps belong to C ′m(I) (F ∈ T ′m(X)). The next proposition
shows that F -fuzzifications are continuous if either the sendograph or endograph topology on the space
of fuzzy sets is taken. However, Example 7 shows that ΦF need not be continuous in the case of levelwise
topology.

Proposition 5 Let X be a locally compact metric space, ϕ ∈ C(X) and F ∈ Tm(X) (resp. F ∈ T ′m(X)).
If τ = τE (resp. τ = τS) then the skew-product F -fuzzification ΦF : F(X) → F(X) (resp. ΦF : F0(X) →
F0(X)) is continuous if the topology τ is considered.

Proof. If τ = τS then the continuity of ΦF is obvious, since ΦF is a restriction of a continuous map F̃
to a subspace of (K(X × I), DX×I), namely, to the subspace of all sendographs of fuzzy sets.

Consider now the case of the endograph topology. Any sequence {An}n∈N of fuzzy sets converges
either to A0 = ∅X (and the continuity of ΦF is obvious) or B =

⋃
n∈N supp(An) is compact. Then,

similar to the proof of Theorem 10 the continuity of ΦF on F0(X) is implied by the continuity of F̃ on
K(B × I). ¤

Example 7 Let X = I and let ϕ = idI . Consider any linear function f : I → I such that f(0) = a 6=
b = f(1) for some a, b ∈ [0, 1]. Then, for each x ∈ X, let gx : I → I be defined as a linear function such
that gx(0) = 0 and gx(1) = f(x).

Now we consider any sequence of pairwise disjoint points {xn} ⊆ X converging to x0 ∈ X. Obviously,
the sequence of fuzzy sets {χxn}n∈N converges to χx0 in the levelwise topology. But, max(ΦF (χxn)) =
f(xn) for any n ∈ N. Thus,

max{ΦF (χxn)} 6= max{ΦF (χx0)}
for any n ∈ N, and this is equivalent to

d∞(ΦF (χxn),ΦF (χx0)) = diamX = 1 for any n ∈ N,

i.e., ΦF is not continuous for levelwise topology.
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