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Abstract

In this paper, we introduce a new mathematical model of the meaning of the basic linguistic
trichotomy, which are the canonical words “small”, “medium” and “big”. The model is based on the
concept of horizon as elaborated in the Alternative Set Theory. Such a model makes also possible
to include naturally the linguistic hedges which form a consistent class of functions. Each linguistic
hedge is thus characterized by one number only.

Then it is shown that continuous functional dependencies between x and y can be described (pre-
cisely or approximately) by the collections of logical formulas of implicative form with predicates
interpreted by fuzzy sets with meaning of the basic linguistic trichotomy. It demonstrates the ex-
pressive power of modified by linguistic hedges membership functions of fuzzy sets from the basic
triplet.

1 Introduction

One of the most important features of fuzzy set theory which made it very attractive for applications is
its potential for modelling of the meaning of natural language expressions. Most works done on this topic
either continue directly, or have been inspired by the works of L. A. Zadeh (see e.g., [23, 24, 25, 26]).
He focused on some parts of natural language, mostly those which correspond to the so called evaluating
linguistic expressions, i.e. the expressions which characterize position on an ordered scale.

In this paper, we deal with two problems. First, we propose the model of the meaning of simple
linguistic evaluating expressions of the form

(linguistic modifier) (atomic term), (1)

which is based on modification of the corresponding fuzzy sets.

The second problem elaborated in this paper is formalization of the linguistic characterization of
functions in fuzzy logic and their approximation properties.

The atomic terms in (1) characterize various properties of objects such as “small, medium, big, slim,
stout, sour, sweet”, etc. The linguistic modifiers (often called also linguistic hedges) specify various
nuances of properties. In general, they modify the meaning of the atomic terms before which they stand.
The leading role among them is played by words such as “very, extremely, roughly ”, etc.

I This work has been supported by the grant 201/96/0985 of the GA CR, partially by COST Action 15 and also partially
by ZI 104/27-1 (part 436 RUS 113/197/0O(R)).



It is easy to see that these properties form ordered linguistic scales. Inherent vagueness of the
above considered terms then makes us possible to characterize the set of objects using three basic
atomic terms, namely (small, medium, big), (slim, normal, stout), etc. As canonical, we take the triple
(small, medium, big).

The deliberation leading to our model of the meaning of (1) is based on the concept of horizon and
its shift. Starting from this, we obtain the model of the meaning both of the basic linguistic triple as well
as of the linguistic modifiers using specific fuzzy sets. This approach makes possible to give systematic
representation of (1) by a unified parametric class of membership functions. The mathematical outcome
of this approach is that all the membership functions modeling the meaning of the evaluating expressions
(1) are composed of simple functions of two kinds, called Z- and S-functions. We will mention also
practical applications of this theory.

2 The meaning of simple evaluating linguistic expressions

2.1 Basic linguistic triple of atomic terms
2.1.1 The concept of horizon and finite numbers

The accepted form of the membership functions modelling the meaning of the basic linguistic triple are Z-,
S- and II-functions (see Fig. 1). Notable on their form is the following: first, there is a kernel consisting of
the elements which surely have the property in concern (i.e., elements which are surely “small, medium”
or “big”). Second, when getting farther from the kernel (to the right or left), the truth that the elements
have this property decreases until the point is reached when it vanishes completely. Let us remark that
this course is justified by the intuition and some psychological experiments. The functions used in order
to express the described course are mostly of one of the three kinds: linear, quadratic, and exponential.
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Figure 1: Typical membership functions of the basic linguistic triple.

However, the question raises, whether is it possible to find also other arguments in favour of the above
described course and possible, the used functions. To this goal, we will employ the concept of finite
numbers which seems to be related to the meaning of the atomic term small. The working mathematical
model of finite and infinite numbers can be found, for example, in the Alternative Set Theory (AST)
[22] and in non-standard analysis (cf. [4]), and a simplified one not leaving classical mathematics is
constructed also in fuzzy logic.

Let us briefly mention the main idea of finite and infinite numbers in these theories. In classical set
theory, infinity is taken as impossibility to reach the end; whatever number is at our disposal but we
cannot regard the end of the infinite set of all numbers. On the other hand, the AST begins with the
observation that big finite numbers behave as infinite ones (for demonstration, see [22]). We come to
a new understanding of infinity and therefore, we may distinguish between finite and infinite numbers.



The infinity of some number n stems from our inability to verify whether n is finite. For example, there
is no direct way how to verify that the number 1, 000, 000, 005 is indeed finite?. Hence, some (classically
finite!) numbers are thus finite and some are infinite. However, there is no clear border between them
and, consequently, there is no last finite number. We may distinguish finite numbers from infinite ones
but we are not able to say about each number whether it is finite or not. Note that the finiteness is there
a synonym for transparency, i.e. when seeing a finite number, we are able to verify easily that this is
indeed the case. The fundamental concept on the basis of which finite numbers are constructed in AST is
that of horizon, which represents the border between finite and infinite numbers. The horizon is seen by
the observer (identified with the number 0). Precise specification of the position of the horizon, however,
is not possible3.

In this paper, we use these ideas for construction of the meaning of the basic linguistic triples. This
provides us with a unified way how the membership functions can be constructed. Furthermore, the
model of linguistic modifiers is naturally included in a way to extend the unification of membership
functions to all (or, at least, a wide subclass of) evaluating expressions of the form (1).

For our purposes, the direct application of the AST is unnecessary and therefore, we use fuzzy logic
to obtain a possible mathematical model of the horizon and finite numbers. Its idea follows the principles
discussed above, i.e. that finiteness of a number means the ability to verify it. This may be imagined,
for example, as a necessity to count a number of lines written on a paper. For numbers 0 or 1, we
immediately see that this is indeed the case (we immediately see no or one line). However, verification
that z is finite does not generally imply that we will be able to verify finiteness of  + 1 with the same
effort. Verification of the finiteness of the latter requires to repeat the same procedure we did for z. For
example, if we verify that 1000 is finite by counting one thousand lines then verification that 1001 is also
finite means that we have to count one line more, i.e. our effort to verify finiteness of 1001 is a little
(imperceptibly) greater than that for 1000. In fuzzy logic, we will measure this effort by the degree of
truth, i.e. less effort means higher truth degree and vice-versa.

Let FN(z) denote the proposition “the number z is finite”. Then the above discussion justifies the
formula FN(z) = FN(z + 1) to be true only in a degree 1 — & where ¢ is some small number. Starting
from this, we may formally construct the fuzzy set of finite numbers — the numbers laying between the
observer identified with 0 and the horizon.

The formal demonstration that such a procedure is reasonable is given by the following theorem.

Theorem 1 Let T be a fuzzy theory which includes Peano arithmetics and € > 0. Let FN be a new
predicate. Then the fuzzy theory

T+ =TuU{1/FN(0),! —€/(Vz)(FN(z) = FN(z + 1), 1 /(3z) - FN(z)}
is a conservative extension of T.

For details and the proof see [13, 15]. The theory T'" conservatively introduces a predicate FN which has
the properties assumed for finite numbers, namely that 0 is surely finite, that FN(z) = FN(z + 1) is not
surely true and, finally, that there surely exists a number which is not finite.

When interpreting FN from this theorem, we obtain the following formula for the fuzzy set FN of
finite numbers:

FN(z) = max{0, (1 — )} = max{0,1 —ex} (2)
where the power is taken with respect to the Lukasiewicz product defined by
a®b=max{0,a+ b — 1}, a,b e [0,1].

In [15], several important properties of such fuzzy set are also demonstrated.

The position of the horizon is given by the least = such that FN(z) = 0. We easily see that the bigger
is €, the sooner we reach the horizon, i.e. FN(x) = 0 for smaller . Thus, the magnitude of the number
€ determines the “distance of the horizon” from 0.

2Sitting and counting, say 1, 000, 000, 005 sticks would be ungrateful work with uncertain ending — could we be sure
that we did not make a mistake?

3All these concepts and much more have been explained in detail in [22] and from the point of view of natural language
discussed also in [15].



Due to formula (2), the horizon is approached linearly by uniform decreasing of the truth of FN(x)
with the increase of ©. However, it follows from our discussion that the effort to verify finiteness could
increase more rapidly when moving farther from the observer. Consequently, the approach to the horizon
might be non-linear. Formula (2) can be made non-linear when considering e to be dependent on z, i.e.
¢ is taken as a function € : R — R. Then (2) takes the form

FN(z) = max{0,1 —e(z) - z}. (3)

The e(z) will be called the horizon approach function.

2.1.2 Canonical membership functions of “Small” and “Big”

In this section, we apply the above reasoning to the model of the linguistic meaning of the linguistic
expressions (1). The existence of the basic linguistic triples demonstrates that people always tend to
classify three positions on an ordered scale, namely “the leftmost” (the smallest), “the rightmost” (the
biggest), and “in the middle”. This observation has also been experimentally verified, e.g. in [10]. Hence,
we may find three points on which we base this classification.

Let an ordered universe U be given. Without loss of generality, we put

U=[uv]CR (4)

where R is the real line. The above considered three points (“leftmost”, “rightmost” and “center”) are
u,vand s € U, u < s < v, respectively. We put L = [u, s] and R = [s,v]. Observe that the point s needs
not necessarily lay in the exact middle of [u,v]. The reason is that big values are less distinguishable
than small ones (cf., e.g., the discussion in [6]).

The meaning of small is obtained when realizing that the border of small numbers lays “somewhere
to the right from «”. The u is the position of the observer and there is no last small number — we may
encounter only horizon of small numbers running “somewhere towards big ones”. Thus, small numbers
behave similarly as finite ones and it seems natural to identify the former with the latter.

Using (3), we will construct the canonical fuzzy set Sm C L of small (numbers) with the membership
function given by

Sm(z) =1—esm(z,a,c)x (5)

where gy, : L — [0, 1] is a non-decreasing parametric function with the parameters a,c € L, ¢ < a such
that

0 for x <e¢,
esm(z,a,¢) = { increasing for c < z < a,
1 for a < x.

The interval [u,c] is the set of numbers being surely small, i.e. Sm(z) = 1 for ¢ € [u,c]. Similarly, the
interval [a, s] is the set of numbers surely not being small, i.e. Sm(z) =0 for x € [a, s].

As mentioned, the horizon approach function eg,,(z,a,c¢) “implements” the idea of approaching
the horizon. The bigger €g,,(z,a,c) is, the shorter is our way to it. By setting specific formulas for
esm(x,a,c), we obtain various concrete membership functions. Note that in general, they will be Z-
functions.

The atomic term “big” is not a complement of “small” but its antonym. Therefore, big numbers
also behave as finite ones but taken in the reversed ordering from the rightmost side of the universe. To
achieve this, we take the ordering of U reversely and change the position of the observer from w to v. The
horizon of big then lays “somewhere to the left from v”. Of course, it may not be in the same distance
from the observer as the horizon of small ones. Thus, the corresponding horizon approach function €p;,
in general, differs from eg,,.

The canonical fuzzy set of big (numbers) Bi C R is given by

Bi(z) =1 —epi(z,a,c)z (6)



where ep; : R — [0, 1] is a non-increasing parametric function with the parameters a,c € R, a < ¢ such
that

1 for z <a
epi(z,a,c¢) = < decreasing fora <z <,
0 for ¢ < z.

The interval [c,v] is the set of numbers being surely big, i.e. Bi(z) =1 for x € [¢,v] and [s, a] is the set
of numbers surely not being big, i.e. Bi(z) =0 for = € [s, a]. By setting specific formulas for eg;(z, a, ¢),
we obtain concrete membership functions, being generally S-functions.

2.1.3 Canonical membership function of “Medium”

In the case of the atomic term “medium”, the observer is placed in the center s € U (cf. (4)). The horizon
is spread both to the left as well as to the right from it. Hence, we may find two points ¢};, < s < %,

and analogously as above define the canonical fuzzy set Me C U of medium numbers given by

Me (x) = (7)

1—eb(z,at, Mz forz e L,
1—¢&3.(z,a% *)z forz€R

where €},, and €%, are parametric functions fulfilling the following conditions:

1. e}y, : L — [0,1] is a non-increasing parametric function with the parameters a',c' € L, a! < ¢!

such that
1 for < a!
eire(T,at,c') = < decreasing  for a! <z < ¢!,
0 for ¢! < z.

2. €%, + R — [0, 1] is a non-decreasing parametric function with the parameters a?,¢* € R, ¢* < a?

such that
0 for z < 2,
e3e(r,a*,¢?) = { increasing  for 2 < z < a2,
1 for a® < .

The interval [c};,, c3s.] is the set of numbers being surely medium, i.e. Me(z) =1 for x € [c};,, 3. ]-

The canonical membership functions (5), (6) and (7) serve as a basis for derivation of the mentioned
accepted form of the membership functions Z, S and II-curves, respectively. It has always been accepted
that and Z and S functions are special cases of the II-one. However, the opposite understanding — that
the latter is composed of the formers — is also possible. Therefore, “medium” can be understood as a
composed term of the form

Me?

9

Figure 2: Membership function of “medium = medium! OR medium?” composed of two adjacent S and

Z curves.

medium = medium' OR medium?
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where “medium*” and “medium=” are atomic terms with the meaning analogous to the meaning of the
terms “big” and “small” respectively (cf. Fig. 2). The fuzzy set Me in (7) is then the union of two fuzzy
sets

Me = Me' U Me?

defined by the corresponding two cases in (7).

Note 1 Let us remark that fuzzy numbers are generally accepted to be triangular fuzzy sets where the
peak corresponds to the given number. For example “about 25” is represented by a triangular number
with the peak in 25. Due to our approach, also fuzzy numbers can be explained in the same way as the
term “medium”. Thus, we obtain a unique representation for all the basic atomic terms as well as for a
wider class of evaluating linguistic expressions which includes also fuzzy numbers.

2.1.4 Concrete membership functions of basic atomic terms

Concrete shapes of the membership functions depend on the form of the horizon approach function e(z, c¢).
We will consider three basic kinds of membership functions, namely linear, quadratic and exponential
ones which lead to the well known membership function widely used in applications.

For the term “small”, the corresponding membership functions are the following.

(a) linear
1 ifo<z<ec
Sm(z) =< 22 ifc<z<a

—C

a
0 ifa<ax

(b) quadratic

(1 ifo<z<c
2
1-4(5) ife<w<o
Sm(x) = ,
%(g:g) ifb<z<a
0 ifa<ax

(c) exponential
ifo<z<e

1
Sm(x) = {

e k=0 ife< g

where u < a < b < ¢ < v are parameters specifying position of the corresponding curve in the universe
U = [u,v]. The parameter b is auxiliary and may be missing (cf. Fig. 1 and 3).
These functions can be obtained from (5) by putting:

0 for z <,
esm(w,a,¢) = § 7ia=g fore<e<a, (Sm linear) (8)
1 for a <,
0 for x <g,
ng(b_f)c; forc < x < b,

esm(z,a,b,c) =

2(a—b)?—(a—z)>

(Sm quadratic)

STICEL forb<xz<a
1 fora < z,
0 for z <e¢,

esm(z,a,c) = 1—6*';(””)2

forc <z < a,

(Sm exponential)

1 fora < x.

(10)



Similarly, the corresponding membership functions for big have the horizon approach functions as
follows:

0 for ¢ <z,
epi(z,a,c) = Ty fore<wz<e, (Bi linear) (11)
1 for x < a,
0 forc <z,
(c—o) forb<z<c
epi(z,a,b,¢) = f”b(c"’f 5 " (Bi quadratic) (12)
% fora <z <b,
1 for z < a,
0 forc <z,
epilw,a,0) = { LeM T p 0 cp c, (Bi exponential) (13)

T

1 for z < a.

The membership functions for medium are obtained analogously.

The linear membership functions of the basic triple of atomic terms have trapezoidal shape depicted
on Fig. 3. The other two have the shape depicted on Fig. 1 (exponential, however, has the disadvantage
of asymptotical approaching of the z axis, which is not favourable behavior).

Figure 3: The meaning of the basic triple of atomic terms if the horizon approach function e(z, a, ¢) gives
linear membership functions (trapezoidal shape).

2.2 Linguistic hedges
2.2.1 Existing models of linguistic hedges

The model of the meaning of natural language in fuzzy set theory works especially for adjectives and
nouns. Verbs are omitted due to their extreme complexity?.

L. A. Zadeh proposed in his works the model of the meaning of the linguistic hedges using certain
transformations of the membership functions. More exactly, if A C U is a fuzzy set assigned to the word
A and M is a linguistic hedge so that M A is a linguistic expression then its meaning is a fuzzy set

M(MA) =m(A) (14)

where m is a transformation assigned to M which acts on the membership function A. The first studied
linguistic hedge was the hedge very. The transformation assigned to it is the operation CON (a) defined
by CON(a) = a?, a € [0,1]. For example, the meaning of very small is the membership function A%
where Ag,, is the fuzzy set assigned to the word small. The effect of such modifier is depicted on Fig. 4.

Later on, L. A. Zadeh proposed the model of some other hedges [23]. He used several classes of
functions which can be combined in various ways. Modifications of his theory have been proposed, e.g.,
in [1, 11, 14].

4The only elaborated mathematical model known to the author, which includes also the meaning of verbs, is presented
in his book [15].



Figure 4:

G. Lakoff in his detailed linguistic analysis [11] demonstrated that the above model does not fit well
the real linguistic effect. The hedge very and other similar ones should steepen the membership function
as well as shift it. Furthermore, the shifting depends on the kind of adjective so that there is a difference
between the modification of the adjectives small and big (see Fig. 5).

Modification of Zadeh’s proposal aiming at fulfilling the above requirements was proposed in [14].
Due to it, the meaning of MA above is computed using the composition of functions

M(MA) =vpo0Ao(m (15)

where vp : [0,1] — [0, 1] is a modification function and (a¢ : U — U is a shifting function. For
example, the hedge very is determined using the functions

Vvery(a) = CON(a) = a2: a € [0,1],
and

Cvery =T+ (_l)kd || Ker(A)”

where k = 1 for A := ‘small’, k = 2 for A := ‘big’, d is a shifting factor (experimentally it has been found
that d € [0.25,0.4]) and || Ker(a)|| is the width of the kernel of A, i.e., Ker(A) = {x | Az = 1} (for details
and other hedges, see [14]). This model behaves in accordance with Lakoff’s discussion. However, it is
fairly complicated and thus, most authors incorrectly stick to the original Zadeh’s proposal.

Shifting of the membership function as a method for realization of the linguistic hedges is proposed
also by B. Bouchon in [1]. Her approach considers only linear membership functions.

2.2.2 A horizon shifting model of linguistic hedges

What does it mean “very small”? The hedge very makes the meaning of small numbers more accurate.
Very small numbers are small but there are small numbers which are not very small. A very small number
is closer to 0 and, therefore, it is more transparent. Of course, the set (interval) of “surely very small
numbers” is smaller than that of “surely small ones”. In other words, the horizon of very small numbers
is closer to the observer than that of small ones. This suggests to consider the meaning of the expression
very small in the same way as small simply by changing the horizon approach function eg,,(z, a, ¢).

We will introduce a new special parameter corresponding to the given hedge. Hence, the fuzzy set
VeSm modeling the meaning of very small numbers is given by

VeSm(z) =1 — ¢, (z,a,c,0v)z (16)

where 0 < oy < 1 is some parameter such that €, (z,a,c,0v) > esm(2, a,c). Since g (,a,c) can be
understood as a special case of €%, (z,a, ¢, o) with the parameter oy = 1, we will omit the apostrophe
in the sequel.

The function (16) realizes both the required actions: it shifts the horizon closer and steepens the
membership function (cf. Fig. 5). Note that [u,ovc] C [u,c], i.e., the interval of surely very small
numbers is shorter than that of surely small numbers.



Figure 5: The effect of the horizon shifting model of the hedge “very”. Note that the membership function
of big is shifted to the right.

Opposite effect, i.e. shifting the horizon farther from the observer, is encountered for the hedges such
as more or less, roughly, etc. In general, we speak about hedges with narrowing effect (very, highly, etc.)
and those with widening effect (more or less, roughly, etc.).

Let M denote a linguistic hedge. Then, applying it to the atomic term small in (5), we generally get

MSm(x) =1—esm(z,a,¢c,0p)T (17)

where a,c € L and egp,(z,a,¢,00m) : L — [0, 1] is a parametric function with the parameters ¢ < a such
that

0 for ¢ < min{omec, s},
esm(®,a,c,00) = ¢ increasing  for min{orc < z < min{oma, s},
1 for min{oma,s} <z

where x € [u, s] and moreover,
6STn(l'a a, c, UM) Z Esm(I, a, c, U,I/\/l)

for opm < o'y and esm(w,a,¢,1) = esm(z, a,c).

The parameter oy works as follows: op¢ = 1 when no hedge in (1) is present (we may also speak
about empty hedge). Furthermore, 0 < o < 1 for M being the hedge with narrowing effect and 1 < oy
for M being the hedge with widening effect.

The interval [u, min{oc,s}] is the set of numbers being surely M small, i.e. MSm(z) = 1 for
x € [u,min{oamec, s}]. Similarly, the interval [min{oaqa, s}, s] is the set of numbers surely not being M
small, i.e. MSm(xz) = 0 for ¢ € [min{oma, s}, s]. Each linguistic hedge is thus characterized by one
parameter o only.

Similarly we proceed for the linguistic hedges of big and medium, where we have

MMe = MMe* U MMe?2.

Note that there is no linguistic hedge with narrowing effect applied to the atomic term medium.

2.2.3 Linguistic hedges for specific types of membership functions

The horizon approach functions for the atomic term “small” when linguistic modifiers are included have
the following form:

Sm linear:
0 for z < o e,
esm(x,a,c,onm) = % for opc < x < oma, (18)
1 for opa < z,

10
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Figure 6: The effect of the hedges extremely, significantly, very, more or less roughly, quite roughly and
very roughly for the atomic term “small”. Included is also the hedge rather, but this is exceptional and
does not belong to the class of the previous ones.

Sm quadratic:

0 for x < ope,
_ 2
255%\:7(}\;2)2 for opec < x < opmb,
ESm(waa/ac7 UM) = 20_3\4(017[))27(0_/\4”71)2 (19)
2202 (a=b)? for opmb < x < opma,
1 for opma < z,
Sm exponential:
0 for z < o,
_—k(z—opqc)?
ESm(waaaQ UM) = loe = 7M" for ome < T < oma, (20)

T
1 for opqa < .

This model has been implemented in the software system called Linguistic Fuzzy Logic Controller
(LFLQC). Its theory is presented, for example in [18]. The behaviour of a few kinds of hedges used in it
including the values of the corresponding parameters o4 is depicted on Fig. 6. The membership functions
are quadratic, which seem to fit best all the linguistic requirements. The universe is [u,v] = [0, 1] and
the center s is set to s = 0.4. There are also few successful applications of LFLC in the control of real
processes.

The horizon approach functions (18), (19) and (20) for the terms “big” and “medium” are defined
analogously. Let us stress, however, that the values of oy are not unique. They depend on the definition
of the modified membership function as well as on the kind of the atomic term in concern, i.e. they
should differ for the atomic terms “small”, “medium” and “big”. This is a necessary tax for the more
realistic behaviour®. Let us also mention that this theory opens a promising way for finding effective
learning procedures which could concentrate on finding the optimal values of the parameters o a4.

2.3 Class of functions modeling the meaning of evaluating terms

It follows from the previous discussion that simple evaluating expressions (1) have the meaning which
can be modeled using fuzzy sets with membership functions taken from the class of functions described
in this section.

Let a set (interval) [p,q] = {« | « € U,p < « < ¢} be given where U is, by assumption, an ordered set
of elements. Then the following class contains all the functions using which membership functions of the
meaning of the simple evaluating expressions (1) can be constructed:

Z(lp,a) ={2,51 2,5 : [p,q] — [0,1]} (21)

5All these problems are already solved in LFLC.

11



where Z, S are functions given by
Z(w,az,cz,07) =1 —ez(x,az,cz,07), (22)
S(z,as,cs,05) =1 —es(x,as,cs5,05)x (23)
where ay,cz,as,cs € [p,q], 07,05 > 0 and
5Z(waaZ;cZ;0—Z) :[pa q] — [Oa 1];
es(z,as,cs,08) :[p,q] — [0,1]
are functions with the following properties:

(a) Denote uy = min{ozcyz,q} and vz = min{ozaz,q}. Then ey (z,az,cz,0z) is a parametric func-
tion such that

0 for z < uyg,
ez(z,az,cz,07) = { increasing for uy < x < vz,
1 for vy <,

(b) Denote us = min{oscs, ¢} and vs = min{osag,p}. Then es(z,as,cs,0s) is a parametric function

such that
1 for z <wg,
Es(l’,as, cs,crs) = decreasing forvg <z < us,
0 for ug < .

Both functions are, moreover, decreasing with respect to o, i.e.
!
e(x,a,¢,0) >e(x,a,¢0')

for 0 < o'. The functions from the class Z([p, g]) are depicted in Fig. 7.

4 - - - - - - =

Figure 7: Scheme of the class of functions from Z([p,q]). The ¢' has narrowing and ¢’ widening effect
(this is marked for Z-functions only).

The e4,eg are special parametric functions (horizon approach functions) providing concrete shapes
of the membership functions of the the meaning of simple evaluating linguistic expressions (1).

The outcome of this approach is that these membership functions are formed using only two forms of
functions from the class Z([p, q]). Furthermore, the use of them is well justified to fit both the results of
the linguistic analysis as well as the intuition.

3 Representation of continuous functions using formulas con-
taining linguistic terms

3.1 Expressional ability of the ‘computing with words’ methodology

Amazing ability of fuzzy logic formulas to represent functional dependencies does not surprize specialists
thanks to the results on fuzzy logic controllers to be universal approximators (see [3, 2, 7, 9]). This
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technique is based on the representation of continuous functions using fuzzy logic formulas of special
type. It is notable that this kind of representation is a result of formalization of expert rules used for the
control of simple dynamic processes, such as steam engine, etc. For more complicated controlled objects,
however, one kind of expert knowledge is insufficient.

As often happens, the experience has been generalized and a mechanism of elaboration of dependencies
of various kind (expert data and knowledge, algebraic expressions) has been expressed in a form of logical
formulas comprizing sets implications between antecedent and succedent. The fundamental part of this
mechanism is based on making use of properties of logical operations being general for all algebraic
systems interpreting fuzzy logic. It has been demonstrated that the class of algebraic systems based on
any of the three basic t-norms (minimum, Luksiewicz product and ordinary product) has a sufficient
expressing power for approximation of continuous functions.

The secondary part of this mechanism is based on the choice of basic membership functions interpret-
ing fuzzy logic predicates in antecedents and succedents. In the existing literature on the approximate
description of functions by fuzzy logic formulas, these membership functions are generalized characteristic
functions of certain areas in the universe without any other specificity. A consequent of this is unlimited
extension of the number of the used logical formulas (in the form of implications) necessary for approx-
imation of the given dependence with a given precision. In some sense, this makes impossible a direct
use of the approximation result in the practice. Hence, we face a problem of effective representation of
dependencies using logical formulas, i.e. how to find a minimal number of them.

We solve this problem in this paper by choosing basic membership functions reflecting the specificity
of the given dependence. These basic functions serve also as interpretations of the meaning of words
forming the above introduced canonical linguistic triple (“small, medium, high”).

To fit the concrete dependence, it is necessary to modify the membership functions of the basic triple.
We will show that using linguistic modifiers introduced in the previous section, it is possible to represent
effectively an arbitrary continuous function, monotonous on finite number of intervals, using logical
formulas formed from the basic functions of the type mentioned above. Consequently, this representation
is possible using the simple evaluating linguistic expressions (1).

The obtained result means that the ‘computing with words’ methodology has an expressing power
comparable, for example, with polynomial or other representations. However, the possibility to use
linguistic expressions in the description of the dependence makes this methodology significantly attractive
for the applications.

3.2 Normal forms for fuzzy logic formulas

To achieve the results outlined in the previous section, we will work with formulas in the form of impli-
cations A(z) = B(y), where A(x) is an atomic formula or equals to a conjunction of atomic formulas and
B(y) is an atomic formula. Let us have a collection of such kind of formulas

{Ai(e)= Bi(y) | 1 <i < N}. (24)

We aim at proving that continuous functional dependencies between = and y can be logically described
(precisely or approximately) by those collections. We obtain this result by successive solution of the
following tasks:

(i) interpretation of (24) by a fuzzy relation;

)
(ii) transformation of a fuzzy relation to a function;
) reverse representation of a function by a collection of fuzzy logic formulas;

(i
(iv) generalization of (iii) to some special class of functions.

In this section, we consider task (i) and show how the collection (24) can be interpreted by a fuzzy relation
in the universe X x Y.

Let A;(x), Bi(y) be atomic formulas with one variable being interpreted by the corresponding fuzzy
sets on some universes X and Y, respectively. As the strict distinction between formulas and their
interpretations is not necessary in this paper, we will employ the same symbols also for fuzzy sets.
Hence, A; C X and B; C Y express that A;(z), B;(y) are interpreted by the respective fuzzy sets. We
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will work with these representations only, in the sequel. Using this agreement, (24) is represented by a
fuzzy relation in the universe X x Y.

There are two basic general forms how (24) can be realized. They generalize the common disjunctive
and conjunctive normal forms (cf. [20], and also [7]), namely

N
V(A=) * Bi(y)) (25)

i=1

and

N
N\ (Ai(z) = Bi(y)) (26)

i=1

where % denotes some t-norm and —, the implication operator adjoint to .

When viewed as functions of independent variable x and dependent variable y, expressions (25) and
(26) define fuzzy relations on X x Y. Both these relations are used as interpretations of the set of logical
formulas (24).

Due to results in the theory of t-norms (cf., for example, [8]), the following t-norms are sufficient for
representation of all continuous t-norms.

1 ifa<b
a*b=aAb=min(a,b), a—gb= ?a_,
b ifb<a.
axb=a®b=max{0,a+b— 1}, a—=pb=1A(1-a+b).
1 ifa<d
axb=a-b a—>Pb={b }a_,
2 ifb<a.

where =g, =1, —p are the corresponding adjoints.

3.3 From fuzzy relations to functions

Let X,Y C R be subsets of the set of real numbers and R C X X Y be a fuzzy relation corresponding

to normal form (25) or (26) for some fixed t-norm *. We show the way how the relation R(z,y) can be
transformed to a function fr: X — Y (and it will be a solution of the task (ii)).

Let 2° € X be an arbitrary but fixed element in X. Consider R(z°,y) and note that it defines a
membership function of some fuzzy set in Y. To define a function fg it is sufficient to choose one element
from R(z°,y) and correspond it to 2°. We will do it following the procedure of defuzzification. Recall
that DF : F(Y) — Y is a defuzzification function where F(Y") is the set of all fuzzy sets on Y, when it
assigns an element y° to the fuzzy set R(z°,y) by a certain procedure so that

y* = DF(R(z’,y)).
The function fr we are looking for can be defined by
fr:2° = DF(R(2°,y)).

We call this function as function realized by fuzzy relation R or, we can say also that fuzzy relation R
defines the function fg.
In the sequel we will restrict ourselves to the defuzzification function such that

DF(B(y)) = inf{y | B(y) = SggB(U)}-
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3.4 Representation of continuous and piecewise monotone functions

In the previous section we showed that a collection of fuzzy logic formulas can represent a function.
Precisely this fact makes fuzzy logic applicable in many areas. But choosing a fuzzy logic representation
of a function, one should know how to obtain its algorithm and how to evaluate a complexity of such kind
of representation. To answer these questions, we associate the complexity of a fuzzy logic representation
of a function with a number of formulas in the representing collection (24).

In this section we show, how is it possible to obtain a precise representation of a function by non-
excessive collections of fuzzy logic formulas. It will be a solution of the task (iii). For the simplicity, we
consider the case of functions with one variable.

Theorem 2 To any continuous and strictly monotonous real-valued real function f(z) : [a,b)] — R
there are fuzzy sets Ay, Ay C [a,b] and By, By C f([a,b]) such that the collection of fuzzy logic formulas

{Ai(z) = Bi(y) | 1 <i < 2},

describes a function fr(x) : [a,b] — R and the fuzzy relation in the conjunctive normal form (see (26))
2
R(z,y) = \(Ai(x) = Bi(y))
i=1
defines fr(z) in such a way that fr(x) = f(z) for every x € [a,b].

PROOF: The proof is constructive and can be used as a basis for an algorithm. Fix a t-norm t and let
— be its adjoint implication. Since f(z) is continuous and monotonous on [a,b] it defines a one-to-one
correspondence between [a, b] and [f(a), f(b)]. Therefore, the inverse function f~!(y) exists.

Assume that f(z) monotonously increases. The proof consists in construction of membership functions
of the fuzzy sets Ay, A and By, By in such a way that the equality fr(z) = f(z) is fulfilled for all z € [a, b].
We suggest two possible solutions.

1. Membership functions for the fuzzy sets A;, A2 and By, By are the following:

r—a r—a

Al(m):1_b—a, AZ(w):b_aa CEE[(L,b], (27)
—1 _ —1 _
By =1- 1020 ) < L W0y e ), s 29)
Let 2° € [a, b] be an arbitrary, but fixed element. We show that fr(z°) = f(2°). Indeed,
0 _ _ £—1
A1(2%) = Bi(y) =1 iff A;(a°) < Bi(y) iff 1- xb_ a“ <!t bf_ a(y)
iff y < f(a°);

Az(CEO) — Bz(y) =1 iff A2(m0) < Bz(y) iff

iff  f(a®) <y.
Thus,
R(azo,y) =1 iff f(mo) =y,
and then
sup R(z°,y) = R(z°, f(«°)) = 1.
y
By the definition,
fr(«") = DF(R(z°,y)) = f(z°).
2. The second variant of membership functions of the fuzzy sets A;, A> and Bj, Bs is the following:

fz) — f(a) f(z) = fa)

AO=150"rw MO0 i@ Y
_,__y—fl@) _ y—fa) .
mw =1- 2L ) = 2 et o)



Analogously as above, let 2° € [a,b] be an arbitrary, but fixed element. We show that f(R(z°)) =
f(z°). Indeed,

o S-S - f@) e
F @ TR - fw TSI
Az(CEO)—)Bz(y)—l iff Az(CEO)SBz(y)
f(a°) = f(a y — f(a) 0
T 501w STo-s@ I =Y
The rest follows the same way as above. O

To extend the class of functions which are non-excessively realized by fuzzy relation R we introduce
the following definition.

Definition 1 By a piecewise monotonous function f on a compact U we mean a function, for which
there exists a finite partition of U such that the restriction of f to each set from the partition is strictly
monotonous.

We again consider only the case of functions with one variable.

Theorem 3 For any continuous and piecewise monotonous real-valued real function f(z) : [a,b] — R
there exist a number N and fuzzy sets Aj, Aiz C [a,b] and By, Bi2 C f([a,b]), 1 <i < N, such that the
collection of fuzzy logic formulas

{Aij(x)=Byj(y) |[1<i< N, 1<j <2},

describes a function fr(z) : [a,b] — R and the fuzzy relation in the conjunctive normal form (see (26))

N 2
R(z,y) = \ N\ (Ai(@) = By )

i=1j=1
defines fr(z) in such a way that fr(x) = f(z) for every x € [a,b].
PROOF: Since f(z) is continuous and piecewise monotonous on [a,b], there exists a finite partition of
[a,b] into a finite number of subintervals Jp,...,Jy such that the restriction f|J;, 1 < i < N, to each

set from the partition is strictly monotonous. In accordance with Theorem 2, for each such restriction
there exist fuzzy sets A;1, Ajp C J; and By, Biz C f(J;) such that the fuzzy relation

Ri(z,y) = \ (4ij(x) = By;(y))
j=1

defines a function fg,(z) such that f(z) = fg,(z) for all z € J;.
We extend the definitions of the membership functions A;;(z), B;j(y), 1 <i < N, 1< j <2, to [a,b]
and f([a,b]), by setting them equal to 0 outside of J; and f(J;), respectively. Consider the fuzzy relation

N 2
Rlew) = \ A\ (i) = By )

where z € [a,b], y € f([a,b]) and A;j(z), B;;(y) are the extensions. Since any arbitrary z° € [a, b] belongs
to exactly one subinterval J; (except for the bounds of subintervals) then not more than two membership
functions A1 (), Az (x) (Ai—1,2(x), Ai1 (z) or Aspp(x), Aix11(z), 2 <i < N —1, for internal bounds) can
differ from 0 in 2°. Thus,

R(‘Tovy) = Ri(IO,y), yE f(']l)a
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and then

O

Corollary 1 Let conditions of Theorem 8 be satisfied and in addition, let f(z) be monotonously in-
creasing or decreasing on the whole interval [a,b]. Then there ewist fuzzy sets A, ..., Any1 C [a,b] and

By,..., Bn+1 C f([a,b] such that

N+1
R(z,y) = N (Ai(z) = Bi(y))

i=1
defines fr(z) in such a way that fr(x) = f(z) for every x € [a,b].

PROOF: We show only the case when f(z) is monotonously increasing. Consider the membership
functions A;;(z), Bij(y), 1 <i < N, 1< j <2, constructed in Theorem 3 and define new ones as follows:

Al (CE) = All (CE),
Az(CE) = Ai,LQ(ZE) \Y Ai71 (CE),
Ant1(x) = Ana(2),

and analogously for By (y), Bi(y), Bn+1(y), 2 <i < N — 1. It is easy to verify that

N+1 N 2
/\ (Ai(z) — Bi(y)) = /\ (Aij(z) = Bij(y)).
=1 i=1j=1

3.5 Representation of functions and computing with words

In this subsection we jointly consider linguistic and functional points of view on fuzzy sets and combine
results from the previous sections. We show that each continuous function defined on a compact set can
be realized or approximated by fuzzy relation with membership functions similar to those from the basic
triplet small, medium, big. This fact precisely means that having at disposal three given linguistic labels
and the set of linguistic hedges, it is possible to construct a collection of logical formulas (based only
on their combinations) and a fuzzy relation using which we can construct a function which either fits
precisely or approximately each continuous function.

Similarly as above, we start with a continuous piecewise monotonously increasing function f(x) defined
on interval [a,b] C R. From Corollary 1 we see that to realize such a function by a fuzzy relation, we need
membership functions of three types in the universe X divided into N subintervals [a;,b1],... ,[an, bn],
namely

Ar(g) =1 L@ =)

f(b1) — flar)’

Mj for z € [a;_1,bi 1],
Ai(z) = {f(bi—}zx—)f_(;?;il)) [ai—1 1] 2<i<N,
1= forey  for« € [as b,
r)— Jla
Anta(z) = /() = Jlan) x € lan,by].

fn) = flan)’

Similarly, we divide the universe Y into N subintervals

[F(a1), f(bu)], -, [F(an), f(ON)]
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and obtain the membership functions

y — fla1)

B1(y)=1—ma y € [f(a1), f(b1)],
Bi(y) = {#"ﬂ;ll), fory € [f(aia), fbr)l, ) _ i<,
1— L%, fory € [f(a), F(B)], -
Bria(y) = 2O e (), £ow))

~ f(bn) — f(an)’

Note, that the character and form of these membership functions depend on the character and form of
the function f(x). Consider different cases for f(z).

1. The function f(z) is piecewise linear and monotonously increasing. In this case it is not difficult to
see that:

e the membership functions A4, (z), B (y) are precisely described and expressed by a modified
linguistic term “small”,

e the membership functions A;(z), B;(y), 2 < i < N, are precisely described and expressed by a
modified linguistic term “medium?”,

e the membership functions Ay (z), By(y) are precisely described and expressed by modified
linguistic term “big”.

We verify this on the example of 4, (z), B1(y). Let f|la1,b1](z) = kxz + . Then

k(z —ay) T —ay by —x
A :1—7: — =
1) k(by — ay) bh—ar  bi—ar’
B ):l_f_l(y)_al :l_yT—l—al _ (4D -y
1y by — ar by —ar (kb +1) — (kay +1)’

i.e. we obtain the linear membership functions of simple evaluating linguistic expressions as dis-
cussed in Sections 2.1.4 and 2.2.3.

2. The function f(z) is continuous and monotonously increasing on [a, b], but not necessarily piecewise
linear. It is well known that for the given function and each € > 0 there exist a partition of [a, b] into
a finite number of subintervals Ji, ... ,Jy and a piecewise linear function fL(x) such that f£|J; is
linear and

[f(z) = fH(2)] <e

holds for for all z. It follows that f¥(z) admits a representation by some fuzzy relation R” with
the membership functions expressed by (linear) fuzzy sets representing the meanings of simple
evaluating terms (1). Thence, the original function f(z) admits an approximation by R%.

3. The function f(x) is continuous on [a, b] but the character of monotonicity can be different. Then for
the given function and each e > 0 there exists a piecewise linear function f¥(x) which approximates
f(x) on the whole interval [a,b] with the precision e. In this case, a fuzzy relation RY defining
function fL(z) can be constructed on the basis of Theorem 3 rather than on its corollary. It means
that membership functions characterized by a modified term “medium” can be missing. With this
restriction, the fuzzy relation R” approximately defines f(z).

So far, we have exploited only linear membership functions among those modeling the meaning of
the simple evaluating linguistic expressions (1). The non-linear (quadratic or exponential) membership
functions are used mainly for approximation. It is necessary to point out that the approximation of
continuous functions based on fuzzy relation with non-linear membership functions is more preferable
because it enables to reduce the number of formulas in (24) and fits better the linguistic environment. A
precise formulation of this problem and its solution will be done in the future paper.
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On the other hand, if we stick on the precise description of the given function f(z), have have to
employ the membership functions constructed in accordance with Theorem 3. However, these may not
necessarily have the form suggested for the basic linguistic terms small, medium, big, even if they are
modified due to the theory presented in Section 2.

4 Discussion

In this paper, we have proposed a horizon shifting method for computation of the linguistic hedges which
technically leads to parametric classes of membership functions. The method meets the requirements of
linguists, i.e., that the membership function should be shifted as well as modified its steepness. Further-
more, it has a potential for further development because it affects the basic parameters of the defined
membership functions in a unified way and using one parameter only. Thence, the potential for effective
learning is open.

The expressing power of basic linguistic terms together with modifiers has been demonstrated on the
example of the representation of an arbitrary continuous piecewise monotonous function. The obtained
result means that the methodology of ‘computing with words’ is comparable, for example, with polynomial
or other representations. However, the possibility to use linguistic expressions in the description of
functions makes this methodology significantly attractive for the applications.

To conclude, let us remark the following. In this paper, we have elaborated the model of the meaning
of linguistic expressions in a traditional way, which is purely extensional understanding of the semantics of
the linguistic expressions. This means that their semantics is explained only on the basis of the groupings
(i-e., fuzzy sets) of elements falling into the meaning of the expressions in concern. This is correct and quite
well working in various applications of fuzzy set theory. However, the groupings vary in various contexts
and in time and therefore, the extensional approach is often criticized by linguists. A more realistic
theoretically well founded interpretation of the linguistic semantics must take the intension (property)
into consideration (cf., e.g. [21]). However, pure fuzzy set theory is unable to fit this requirement. It is
a challenge to find a formal apparatus capable to model both the intension as well as extension of the
linguistic semantics including its vagueness (fuzziness). Promising in this respect seems to be fuzzy logic
in broader sense (see [17, 19]) which is an extension of the fuzzy logic in narrow sense®. Fuzzy logic
in broader sense attempts to elaborate methods of approximate reasoning including the formal model
of linguistic meaning. A more elaborated theory of the meaning of the evaluated linguistic expressions
developed in the frame of fuzzy logic in broader sense is a task of future work.
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