
University of OstravaInstitute for Research and Applications of Fuzzy Modeling
Evaluating Linguistic Expressionsand Functional Fuzzy Theories inFuzzy LogicVilém Novák, Irina Per�lieva

Research report No. 10February 12, 1998Submitted/to appear:L. A. Zadeh and J. Kacpryk (eds.): Computing with Words in Systems Analysis. Springer-Verlag,Heidelberg 1998Supported by:Grant 201/96/0985 GA ÈR, COST Action 15, ZI 104/27-1 (part 436 RUS 113/197/O(R))
University of OstravaInstitute for Research and Applications of Fuzzy ModelingBráfova 7, 701 03 Ostrava 1, Czech Republictel.: +420-69-622 2808 fax: +420-69-22 28 28e-mail: novakv@osu.cz, vep@oktava.msk.su



Evaluating Linguistic Expressions and Functional Fuzzy Theoriesin Fuzzy LogicVilém NovákUniversity of OstravaInstitute for Research and Applications of Fuzzy ModelingBráfova 7, 70100 Ostrava 1, Czech RepublicandInstitute of the Theory of Information and AutomationAcademy of Sciences of the Czech RepublicPod vodárenskou vì¾í 4, 186 02 Praha 8, Czech RepublicIrina Per�lievaMoscow State Academy of Instrument MakingStromynka 20, 107846 Moscow, RussiaAbstractIn this paper, we introduce a new mathematical model of the meaning of the basic linguistictrichotomy, which are the canonical words \small", \medium" and \big". The model is based on theconcept of horizon as elaborated in the Alternative Set Theory. Such a model makes also possibleto include naturally the linguistic hedges which form a consistent class of functions. Each linguistichedge is thus characterized by one number only.Then it is shown that continuous functional dependencies between x and y can be described (pre-cisely or approximately) by the collections of logical formulas of implicative form with predicatesinterpreted by fuzzy sets with meaning of the basic linguistic trichotomy. It demonstrates the ex-pressive power of modi�ed by linguistic hedges membership functions of fuzzy sets from the basictriplet.1 IntroductionOne of the most important features of fuzzy set theory which made it very attractive for applications isits potential for modelling of the meaning of natural language expressions. Most works done on this topiceither continue directly, or have been inspired by the works of L. A. Zadeh (see e.g., [23, 24, 25, 26]).He focused on some parts of natural language, mostly those which correspond to the so called evaluatinglinguistic expressions, i.e. the expressions which characterize position on an ordered scale.In this paper, we deal with two problems. First, we propose the model of the meaning of simplelinguistic evaluating expressions of the formhlinguistic modi�erihatomic termi; (1)which is based on modi�cation of the corresponding fuzzy sets.The second problem elaborated in this paper is formalization of the linguistic characterization offunctions in fuzzy logic and their approximation properties.The atomic terms in (1) characterize various properties of objects such as \small, medium, big, slim,stout, sour, sweet", etc. The linguistic modi�ers (often called also linguistic hedges) specify variousnuances of properties. In general, they modify the meaning of the atomic terms before which they stand.The leading role among them is played by words such as \very, extremely, roughly ", etc.1This work has been supported by the grant 201/96/0985 of the GA ÈR, partially by COST Action 15 and also partiallyby ZI 104/27-1 (part 436 RUS 113/197/O(R)). 2



It is easy to see that these properties form ordered linguistic scales. Inherent vagueness of theabove considered terms then makes us possible to characterize the set of objects using three basicatomic terms, namely hsmall, medium, bigi, hslim, normal, stouti, etc. As canonical, we take the triplehsmall, medium, bigi.The deliberation leading to our model of the meaning of (1) is based on the concept of horizon andits shift. Starting from this, we obtain the model of the meaning both of the basic linguistic triple as wellas of the linguistic modi�ers using speci�c fuzzy sets. This approach makes possible to give systematicrepresentation of (1) by a uni�ed parametric class of membership functions. The mathematical outcomeof this approach is that all the membership functions modeling the meaning of the evaluating expressions(1) are composed of simple functions of two kinds, called Z- and S-functions. We will mention alsopractical applications of this theory.2 The meaning of simple evaluating linguistic expressions2.1 Basic linguistic triple of atomic terms2.1.1 The concept of horizon and �nite numbersThe accepted form of the membership functions modelling the meaning of the basic linguistic triple are Z-,S- and �-functions (see Fig. 1). Notable on their form is the following: �rst, there is a kernel consisting ofthe elements which surely have the property in concern (i.e., elements which are surely \small, medium"or \big"). Second, when getting farther from the kernel (to the right or left), the truth that the elementshave this property decreases until the point is reached when it vanishes completely. Let us remark thatthis course is justi�ed by the intuition and some psychological experiments. The functions used in orderto express the described course are mostly of one of the three kinds: linear, quadratic, and exponential.
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Figure 1: Typical membership functions of the basic linguistic triple.However, the question raises, whether is it possible to �nd also other arguments in favour of the abovedescribed course and possible, the used functions. To this goal, we will employ the concept of �nitenumbers which seems to be related to the meaning of the atomic term small. The working mathematicalmodel of �nite and in�nite numbers can be found, for example, in the Alternative Set Theory (AST)[22] and in non-standard analysis (cf. [4]), and a simpli�ed one not leaving classical mathematics isconstructed also in fuzzy logic.Let us brie
y mention the main idea of �nite and in�nite numbers in these theories. In classical settheory, in�nity is taken as impossibility to reach the end; whatever number is at our disposal but wecannot regard the end of the in�nite set of all numbers. On the other hand, the AST begins with theobservation that big �nite numbers behave as in�nite ones (for demonstration, see [22]). We come toa new understanding of in�nity and therefore, we may distinguish between �nite and in�nite numbers.3



The in�nity of some number n stems from our inability to verify whether n is �nite. For example, thereis no direct way how to verify that the number 1, 000, 000, 005 is indeed �nite2. Hence, some (classically�nite!) numbers are thus �nite and some are in�nite. However, there is no clear border between themand, consequently, there is no last �nite number. We may distinguish �nite numbers from in�nite onesbut we are not able to say about each number whether it is �nite or not. Note that the �niteness is therea synonym for transparency, i.e. when seeing a �nite number, we are able to verify easily that this isindeed the case. The fundamental concept on the basis of which �nite numbers are constructed in AST isthat of horizon, which represents the border between �nite and in�nite numbers. The horizon is seen bythe observer (identi�ed with the number 0). Precise speci�cation of the position of the horizon, however,is not possible3.In this paper, we use these ideas for construction of the meaning of the basic linguistic triples. Thisprovides us with a uni�ed way how the membership functions can be constructed. Furthermore, themodel of linguistic modi�ers is naturally included in a way to extend the uni�cation of membershipfunctions to all (or, at least, a wide subclass of) evaluating expressions of the form (1).For our purposes, the direct application of the AST is unnecessary and therefore, we use fuzzy logicto obtain a possible mathematical model of the horizon and �nite numbers. Its idea follows the principlesdiscussed above, i.e. that �niteness of a number means the ability to verify it. This may be imagined,for example, as a necessity to count a number of lines written on a paper. For numbers 0 or 1, weimmediately see that this is indeed the case (we immediately see no or one line). However, veri�cationthat x is �nite does not generally imply that we will be able to verify �niteness of x + 1 with the samee�ort. Veri�cation of the �niteness of the latter requires to repeat the same procedure we did for x. Forexample, if we verify that 1000 is �nite by counting one thousand lines then veri�cation that 1001 is also�nite means that we have to count one line more, i.e. our e�ort to verify �niteness of 1001 is a little(imperceptibly) greater than that for 1000. In fuzzy logic, we will measure this e�ort by the degree oftruth, i.e. less e�ort means higher truth degree and vice-versa.Let FN (x) denote the proposition \the number x is �nite". Then the above discussion justi�es theformula FN (x)) FN (x + 1) to be true only in a degree 1 � " where " is some small number. Startingfrom this, we may formally construct the fuzzy set of �nite numbers | the numbers laying between theobserver identi�ed with 0 and the horizon.The formal demonstration that such a procedure is reasonable is given by the following theorem.Theorem 1 Let T be a fuzzy theory which includes Peano arithmetics and " > 0. Let FN be a newpredicate. Then the fuzzy theoryT+ = T [ f1�FN (0); 1� "�(8x)(FN (x)) FN (x + 1); 1�(9x): FN (x)gis a conservative extension of T .For details and the proof see [13, 15]. The theory T+ conservatively introduces a predicate FN which hasthe properties assumed for �nite numbers, namely that 0 is surely �nite, that FN (x)) FN (x + 1) is notsurely true and, �nally, that there surely exists a number which is not �nite.When interpreting FN from this theorem, we obtain the following formula for the fuzzy set FN of�nite numbers: FN (x) = maxf0; (1� ")xg = maxf0; 1� "xg (2)where the power is taken with respect to the  Lukasiewicz product de�ned bya
 b = maxf0; a+ b� 1g; a; b 2 [0; 1]:In [15], several important properties of such fuzzy set are also demonstrated.The position of the horizon is given by the least x such that FN (x) = 0. We easily see that the biggeris ", the sooner we reach the horizon, i.e. FN (x) = 0 for smaller x. Thus, the magnitude of the number" determines the \distance of the horizon" from 0.2Sitting and counting, say 1, 000, 000, 005 sticks would be ungrateful work with uncertain ending | could we be surethat we did not make a mistake?3All these concepts and much more have been explained in detail in [22] and from the point of view of natural languagediscussed also in [15]. 4



Due to formula (2), the horizon is approached linearly by uniform decreasing of the truth of FN (x)with the increase of x. However, it follows from our discussion that the e�ort to verify �niteness couldincrease more rapidly when moving farther from the observer. Consequently, the approach to the horizonmight be non-linear. Formula (2) can be made non-linear when considering " to be dependent on x, i.e." is taken as a function " : R �! R. Then (2) takes the formFN (x) = maxf0; 1� "(x) � xg: (3)The "(x) will be called the horizon approach function.2.1.2 Canonical membership functions of \Small" and \Big"In this section, we apply the above reasoning to the model of the linguistic meaning of the linguisticexpressions (1). The existence of the basic linguistic triples demonstrates that people always tend toclassify three positions on an ordered scale, namely \the leftmost" (the smallest), \the rightmost" (thebiggest), and \in the middle". This observation has also been experimentally veri�ed, e.g. in [10]. Hence,we may �nd three points on which we base this classi�cation.Let an ordered universe U be given. Without loss of generality, we putU = [u; v] � R (4)where R is the real line. The above considered three points (\leftmost", \rightmost" and \center") areu; v and s 2 U , u < s < v, respectively. We put L = [u; s] and R = [s; v]. Observe that the point s needsnot necessarily lay in the exact middle of [u; v]. The reason is that big values are less distinguishablethan small ones (cf., e.g., the discussion in [6]).The meaning of small is obtained when realizing that the border of small numbers lays \somewhereto the right from u". The u is the position of the observer and there is no last small number | we mayencounter only horizon of small numbers running \somewhere towards big ones". Thus, small numbersbehave similarly as �nite ones and it seems natural to identify the former with the latter.Using (3), we will construct the canonical fuzzy set Sm �� L of small (numbers) with the membershipfunction given by Sm (x) = 1� "Sm(x; a; c)x (5)where "Sm : L �! [0; 1] is a non-decreasing parametric function with the parameters a; c 2 L, c � a suchthat "Sm(x; a; c) = 8><>:0 for x � c;increasing for c < x < a;1 for a � x:The interval [u; c] is the set of numbers being surely small, i.e. Sm (x) = 1 for x 2 [u; c]. Similarly, theinterval [a; s] is the set of numbers surely not being small, i.e. Sm (x) = 0 for x 2 [a; s].As mentioned, the horizon approach function "Sm(x; a; c) \implements" the idea of approachingthe horizon. The bigger "Sm(x; a; c) is, the shorter is our way to it. By setting speci�c formulas for"Sm(x; a; c), we obtain various concrete membership functions. Note that in general, they will be Z-functions.The atomic term \big" is not a complement of \small" but its antonym. Therefore, big numbersalso behave as �nite ones but taken in the reversed ordering from the rightmost side of the universe. Toachieve this, we take the ordering of U reversely and change the position of the observer from u to v. Thehorizon of big then lays \somewhere to the left from v". Of course, it may not be in the same distancefrom the observer as the horizon of small ones. Thus, the corresponding horizon approach function "Bi,in general, di�ers from "Sm.The canonical fuzzy set of big (numbers) Bi �� R is given byBi (x) = 1� "Bi(x; a; c)x (6)5



where "Bi : R �! [0; 1] is a non-increasing parametric function with the parameters a; c 2 R, a � c suchthat "Bi(x; a; c) = 8><>:1 for x � adecreasing for a < x < c;0 for c � x:The interval [c; v] is the set of numbers being surely big, i.e. Bi (x) = 1 for x 2 [c; v] and [s; a] is the setof numbers surely not being big, i.e. Bi (x) = 0 for x 2 [s; a]. By setting speci�c formulas for "Bi(x; a; c),we obtain concrete membership functions, being generally S-functions.2.1.3 Canonical membership function of \Medium"In the case of the atomic term \medium", the observer is placed in the center s 2 U (cf. (4)). The horizonis spread both to the left as well as to the right from it. Hence, we may �nd two points c1Me � s � c2Meand analogously as above de�ne the canonical fuzzy set Me �� U of medium numbers given byMe (x) = (1� "1Me(x; a1; c1)x for x 2 L;1� "2Me(x; a2; c2)x for x 2 R (7)where "1Me and "2Me are parametric functions ful�lling the following conditions:1. "1Me : L �! [0; 1] is a non-increasing parametric function with the parameters a1; c1 2 L, a1 � c1such that "1Me(x; a1; c1) = 8><>:1 for x � a1decreasing for a1 < x < c1;0 for c1 � x:2. "2Me : R �! [0; 1] is a non-decreasing parametric function with the parameters a2; c2 2 R, c2 � a2such that "2Me(x; a2; c2) = 8><>:0 for x � c2;increasing for c2 < x < a2;1 for a2 � x:The interval [c1Me; c2Me] is the set of numbers being surely medium, i.e. Me (x) = 1 for x 2 [c1Me; c2Me].The canonical membership functions (5), (6) and (7) serve as a basis for derivation of the mentionedaccepted form of the membership functions Z, S and �-curves, respectively. It has always been acceptedthat and Z and S functions are special cases of the �-one. However, the opposite understanding | thatthe latter is composed of the formers | is also possible. Therefore, \medium" can be understood as acomposed term of the form
-Me 1 Me 2c1a1 c2 a2Figure 2: Membership function of \medium = medium1 OR medium2" composed of two adjacent S andZ curves.medium = medium1 OR medium2 6



where \medium1" and \medium2" are atomic terms with the meaning analogous to the meaning of theterms \big" and \small" respectively (cf. Fig. 2). The fuzzy set Me in (7) is then the union of two fuzzysets Me = Me 1 [Me 2de�ned by the corresponding two cases in (7).Note 1 Let us remark that fuzzy numbers are generally accepted to be triangular fuzzy sets where thepeak corresponds to the given number. For example \about 25" is represented by a triangular numberwith the peak in 25. Due to our approach, also fuzzy numbers can be explained in the same way as theterm \medium". Thus, we obtain a unique representation for all the basic atomic terms as well as for awider class of evaluating linguistic expressions which includes also fuzzy numbers.2.1.4 Concrete membership functions of basic atomic termsConcrete shapes of the membership functions depend on the form of the horizon approach function "(x; c).We will consider three basic kinds of membership functions, namely linear, quadratic and exponentialones which lead to the well known membership function widely used in applications.For the term \small", the corresponding membership functions are the following.(a) linear Sm (x) = 8>><>>:1 if 0 � x � ca�xa�c if c � x � a0 if a < x(b) quadratic Sm (x) = 8>>>>>>><>>>>>>>:1 if 0 � x � c1� 12 �x�cb�c�2 if c � x � b12 �a�xa�b�2 if b � x � a0 if a < x(c) exponential Sm (x) = (1 if 0 � x � ce�k(x�c)2 if c < xwhere u � a � b � c � v are parameters specifying position of the corresponding curve in the universeU = [u; v]. The parameter b is auxiliary and may be missing (cf. Fig. 1 and 3).These functions can be obtained from (5) by putting:"Sm(x; a; c) =8><>:0 for x � c;x�cx(a�c) for c < x < a;1 for a � x; (Sm linear) (8)
"Sm(x; a; b; c) =8>>>><>>>>:0 for x � c;(x�c)22x(b�c)2 for c < x < b;2(a�b)2�(a�x)22x(a�b)2 for b < x < a1 for a � x; (Sm quadratic) (9)
"Sm(x; a; c) =8><>:0 for x � c;1�e�k(x�c)2x for c < x < a;1 for a � x: (Sm exponential) (10)7



Similarly, the corresponding membership functions for big have the horizon approach functions asfollows: "Bi(x; a; c) =8><>:0 for c � x;c�xx(c�a) for a < x < c;1 for x � a; (Bi linear) (11)
"Bi(x; a; b; c) =8>>>><>>>>:0 for c � x;(c�x)22x(c�b)2 for b < x < c;2(b�a)2�(x�a)22x(b�a)2 for a < x < b;1 for x � a; (Bi quadratic) (12)
"Bi(x; a; c) =8><>:0 for c � x;1�e�k(c�x)2x for a < x < c;1 for x � a: (Bi exponential) (13)The membership functions for medium are obtained analogously.The linear membership functions of the basic triple of atomic terms have trapezoidal shape depictedon Fig. 3. The other two have the shape depicted on Fig. 1 (exponential, however, has the disadvantageof asymptotical approaching of the x axis, which is not favourable behavior).

u s vc aFigure 3: The meaning of the basic triple of atomic terms if the horizon approach function "(x; a; c) giveslinear membership functions (trapezoidal shape).2.2 Linguistic hedges2.2.1 Existing models of linguistic hedgesThe model of the meaning of natural language in fuzzy set theory works especially for adjectives andnouns. Verbs are omitted due to their extreme complexity4.L. A. Zadeh proposed in his works the model of the meaning of the linguistic hedges using certaintransformations of the membership functions. More exactly, if A �� U is a fuzzy set assigned to the wordA and M is a linguistic hedge so that MA is a linguistic expression then its meaning is a fuzzy setM(MA) = m(A) (14)where m is a transformation assigned to M which acts on the membership function A. The �rst studiedlinguistic hedge was the hedge very. The transformation assigned to it is the operation CON(a) de�nedby CON(a) = a2, a 2 [0; 1]. For example, the meaning of very small is the membership function A2Smwhere ASm is the fuzzy set assigned to the word small. The e�ect of such modi�er is depicted on Fig. 4.Later on, L. A. Zadeh proposed the model of some other hedges [23]. He used several classes offunctions which can be combined in various ways. Modi�cations of his theory have been proposed, e.g.,in [1, 11, 14].4The only elaborated mathematical model known to the author, which includes also the meaning of verbs, is presentedin his book [15]. 8



smallvery small���Figure 4:G. Lako� in his detailed linguistic analysis [11] demonstrated that the above model does not �t wellthe real linguistic e�ect. The hedge very and other similar ones should steepen the membership functionas well as shift it. Furthermore, the shifting depends on the kind of adjective so that there is a di�erencebetween the modi�cation of the adjectives small and big (see Fig. 5).Modi�cation of Zadeh's proposal aiming at ful�lling the above requirements was proposed in [14].Due to it, the meaning of MA above is computed using the composition of functionsM(MA) = �M �A � �M (15)where �M : [0; 1] �! [0; 1] is a modi�cation function and �M : U �! U is a shifting function. Forexample, the hedge very is determined using the functions�very(a) = CON(a) = a2; a 2 [0; 1];and �very = x + (�1)kd kKer(A)kwhere k = 1 for A := `small ', k = 2 for A := `big ', d is a shifting factor (experimentally it has been foundthat d 2 [0:25; 0:4]) and kKer(a)k is the width of the kernel of A, i.e., Ker(A) = fx j Ax = 1g (for detailsand other hedges, see [14]). This model behaves in accordance with Lako�'s discussion. However, it isfairly complicated and thus, most authors incorrectly stick to the original Zadeh's proposal.Shifting of the membership function as a method for realization of the linguistic hedges is proposedalso by B. Bouchon in [1]. Her approach considers only linear membership functions.2.2.2 A horizon shifting model of linguistic hedgesWhat does it mean \very small"? The hedge very makes the meaning of small numbers more accurate.Very small numbers are small but there are small numbers which are not very small. A very small numberis closer to 0 and, therefore, it is more transparent. Of course, the set (interval) of \surely very smallnumbers" is smaller than that of \surely small ones". In other words, the horizon of very small numbersis closer to the observer than that of small ones. This suggests to consider the meaning of the expressionvery small in the same way as small simply by changing the horizon approach function "Sm(x; a; c).We will introduce a new special parameter corresponding to the given hedge. Hence, the fuzzy setVeSm modeling the meaning of very small numbers is given byVeSm (x) = 1� "0Sm(x; a; c; �V )x (16)where 0 < �V < 1 is some parameter such that "0Sm(x; a; c; �V ) > "Sm(x; a; c). Since "Sm(x; a; c) can beunderstood as a special case of "0Sm(x; a; c; �V ) with the parameter �V = 1, we will omit the apostrophein the sequel.The function (16) realizes both the required actions: it shifts the horizon closer and steepens themembership function (cf. Fig. 5). Note that [u; �V c] � [u; c], i.e., the interval of surely very smallnumbers is shorter than that of surely small numbers.9



smallvery small big very bigc�V c cBi�V cBiFigure 5: The e�ect of the horizon shifting model of the hedge \very". Note that the membership functionof big is shifted to the right.Opposite e�ect, i.e. shifting the horizon farther from the observer, is encountered for the hedges suchas more or less, roughly, etc. In general, we speak about hedges with narrowing e�ect (very, highly, etc.)and those with widening e�ect (more or less, roughly, etc.).Let M denote a linguistic hedge. Then, applying it to the atomic term small in (5), we generally getMSm (x) = 1� "Sm(x; a; c; �M)x (17)where a; c 2 L and "Sm(x; a; c; �M) : L �! [0; 1] is a parametric function with the parameters c � a suchthat "Sm(x; a; c; �M) = 8><>:0 for x � minf�Mc; sg;increasing for minf�Mc < x < minf�Ma; sg;1 for minf�Ma; sg � xwhere x 2 [u; s] and moreover, "Sm(x; a; c; �M) � "Sm(x; a; c; �0M)for �M � �0M and "Sm(x; a; c; 1) = "Sm(x; a; c).The parameter �M works as follows: �M = 1 when no hedge in (1) is present (we may also speakabout empty hedge). Furthermore, 0 < �M < 1 for M being the hedge with narrowing e�ect and 1 < �Mfor M being the hedge with widening e�ect.The interval [u;minf�Mc; sg] is the set of numbers being surely M small, i.e. MSm (x) = 1 forx 2 [u;minf�Mc; sg]. Similarly, the interval [minf�Ma; sg; s] is the set of numbers surely not being Msmall, i.e. MSm (x) = 0 for x 2 [minf�Ma; sg; s]. Each linguistic hedge is thus characterized by oneparameter � only.Similarly we proceed for the linguistic hedges of big and medium, where we haveMMe = MMe 1 [MMe 2:Note that there is no linguistic hedge with narrowing e�ect applied to the atomic term medium.2.2.3 Linguistic hedges for speci�c types of membership functionsThe horizon approach functions for the atomic term \small" when linguistic modi�ers are included havethe following form:Sm linear: "Sm(x; a; c; �M) = 8><>:0 for x � �Mc;x��Mcx�M(a�c) for �Mc < x < �Ma;1 for �Ma � x; (18)10



Figure 6: The e�ect of the hedges extremely, signi�cantly, very, more or less roughly, quite roughly andvery roughly for the atomic term \small". Included is also the hedge rather, but this is exceptional anddoes not belong to the class of the previous ones.Sm quadratic: "Sm(x; a; c; �M) = 8>>>><>>>>:0 for x � �Mc;(x��Mc)22x�2M(b�c)2 for �Mc < x � �Mb;2�2M(a�b)2�(�Ma�x)22x�2M(a�b)2 for �Mb � x < �Ma;1 for �Ma � x; (19)Sm exponential: "Sm(x; a; c; �M) = 8><>:0 for x � �Mc;1�e�k(x��Mc)2x for �Mc < x < �Ma;1 for �Ma � x: (20)This model has been implemented in the software system called Linguistic Fuzzy Logic Controller(LFLC). Its theory is presented, for example in [18]. The behaviour of a few kinds of hedges used in itincluding the values of the corresponding parameters �M is depicted on Fig. 6. The membership functionsare quadratic, which seem to �t best all the linguistic requirements. The universe is [u; v] = [0; 1] andthe center s is set to s = 0:4. There are also few successful applications of LFLC in the control of realprocesses.The horizon approach functions (18), (19) and (20) for the terms \big" and \medium" are de�nedanalogously. Let us stress, however, that the values of �M are not unique. They depend on the de�nitionof the modi�ed membership function as well as on the kind of the atomic term in concern, i.e. theyshould di�er for the atomic terms \small", \medium" and \big". This is a necessary tax for the morerealistic behaviour5. Let us also mention that this theory opens a promising way for �nding e�ectivelearning procedures which could concentrate on �nding the optimal values of the parameters �M.2.3 Class of functions modeling the meaning of evaluating termsIt follows from the previous discussion that simple evaluating expressions (1) have the meaning whichcan be modeled using fuzzy sets with membership functions taken from the class of functions describedin this section.Let a set (interval) [p; q] = fx j x 2 U; p � x � qg be given where U is, by assumption, an ordered setof elements. Then the following class contains all the functions using which membership functions of themeaning of the simple evaluating expressions (1) can be constructed:Z([p; q]) = fZ; S j Z; S : [p; q] �! [0; 1]g (21)5All these problems are already solved in LFLC. 11



where Z; S are functions given byZ(x; aZ ; cZ ; �Z) = 1� "Z(x; aZ ; cZ ; �Z)x; (22)S(x; aS ; cS ; �S) = 1� "S(x; aS ; cS ; �S)x (23)where aZ ; cZ ; aS ; cS 2 [p; q], �Z ; �S > 0 and"Z(x; aZ ; cZ ; �Z) :[p; q] �! [0; 1];"S(x; aS ; cS ; �S) :[p; q] �! [0; 1]are functions with the following properties:(a) Denote uZ = minf�ZcZ ; qg and vZ = minf�ZaZ ; qg. Then "Z(x; aZ ; cZ ; �Z) is a parametric func-tion such that "Z(x; aZ ; cZ ; �Z) = 8><>:0 for x � uZ ;increasing for uZ < x < vZ ;1 for vZ � x;(b) Denote uS = minf�ScS ; qg and vS = minf�SaS ; pg. Then "S(x; aS ; cS ; �S) is a parametric functionsuch that "S(x; aS ; cS ; �S) = 8><>:1 for x � vS ;decreasing for vS < x < uS;0 for uS � x:Both functions are, moreover, decreasing with respect to �, i.e."(x; a; c; �) > "(x; a; c; �0)for � < �0. The functions from the class Z([p; q]) are depicted in Fig. 7.: : : : : : : : : : : : : : : : : :p qcZ�0cZ �00cZaZ �0aZ �00aZFigure 7: Scheme of the class of functions from Z([p; q]). The �0 has narrowing and �00 widening e�ect(this is marked for Z-functions only).The "Z ; "S are special parametric functions (horizon approach functions) providing concrete shapesof the membership functions of the the meaning of simple evaluating linguistic expressions (1).The outcome of this approach is that these membership functions are formed using only two forms offunctions from the class Z([p; q]). Furthermore, the use of them is well justi�ed to �t both the results ofthe linguistic analysis as well as the intuition.3 Representation of continuous functions using formulas con-taining linguistic terms3.1 Expressional ability of the `computing with words' methodologyAmazing ability of fuzzy logic formulas to represent functional dependencies does not surprize specialiststhanks to the results on fuzzy logic controllers to be universal approximators (see [3, 2, 7, 9]). This12



technique is based on the representation of continuous functions using fuzzy logic formulas of specialtype. It is notable that this kind of representation is a result of formalization of expert rules used for thecontrol of simple dynamic processes, such as steam engine, etc. For more complicated controlled objects,however, one kind of expert knowledge is insu�cient.As often happens, the experience has been generalized and a mechanism of elaboration of dependenciesof various kind (expert data and knowledge, algebraic expressions) has been expressed in a form of logicalformulas comprizing sets implications between antecedent and succedent. The fundamental part of thismechanism is based on making use of properties of logical operations being general for all algebraicsystems interpreting fuzzy logic. It has been demonstrated that the class of algebraic systems based onany of the three basic t-norms (minimum,  Luksiewicz product and ordinary product) has a su�cientexpressing power for approximation of continuous functions.The secondary part of this mechanism is based on the choice of basic membership functions interpret-ing fuzzy logic predicates in antecedents and succedents. In the existing literature on the approximatedescription of functions by fuzzy logic formulas, these membership functions are generalized characteristicfunctions of certain areas in the universe without any other speci�city. A consequent of this is unlimitedextension of the number of the used logical formulas (in the form of implications) necessary for approx-imation of the given dependence with a given precision. In some sense, this makes impossible a directuse of the approximation result in the practice. Hence, we face a problem of e�ective representation ofdependencies using logical formulas, i.e. how to �nd a minimal number of them.We solve this problem in this paper by choosing basic membership functions re
ecting the speci�cityof the given dependence. These basic functions serve also as interpretations of the meaning of wordsforming the above introduced canonical linguistic triple (\small, medium, high").To �t the concrete dependence, it is necessary to modify the membership functions of the basic triple.We will show that using linguistic modi�ers introduced in the previous section, it is possible to represente�ectively an arbitrary continuous function, monotonous on �nite number of intervals, using logicalformulas formed from the basic functions of the type mentioned above. Consequently, this representationis possible using the simple evaluating linguistic expressions (1).The obtained result means that the `computing with words' methodology has an expressing powercomparable, for example, with polynomial or other representations. However, the possibility to uselinguistic expressions in the description of the dependence makes this methodology signi�cantly attractivefor the applications.3.2 Normal forms for fuzzy logic formulasTo achieve the results outlined in the previous section, we will work with formulas in the form of impli-cations A(x))B(y), where A(x) is an atomic formula or equals to a conjunction of atomic formulas andB(y) is an atomic formula. Let us have a collection of such kind of formulasfAi(x))Bi(y) j 1 � i � Ng: (24)We aim at proving that continuous functional dependencies between x and y can be logically described(precisely or approximately) by those collections. We obtain this result by successive solution of thefollowing tasks:(i) interpretation of (24) by a fuzzy relation;(ii) transformation of a fuzzy relation to a function;(iii) reverse representation of a function by a collection of fuzzy logic formulas;(iv) generalization of (iii) to some special class of functions.In this section, we consider task (i) and show how the collection (24) can be interpreted by a fuzzy relationin the universe X � Y .Let Ai(x); Bi(y) be atomic formulas with one variable being interpreted by the corresponding fuzzysets on some universes X and Y , respectively. As the strict distinction between formulas and theirinterpretations is not necessary in this paper, we will employ the same symbols also for fuzzy sets.Hence, Ai �� X and Bi �� Y express that Ai(x); Bi(y) are interpreted by the respective fuzzy sets. We13



will work with these representations only, in the sequel. Using this agreement, (24) is represented by afuzzy relation in the universe X � Y .There are two basic general forms how (24) can be realized. They generalize the common disjunctiveand conjunctive normal forms (cf. [20], and also [7]), namelyN_i=1(Ai(x) �Bi(y)) (25)and N̂i=1(Ai(x) !� Bi(y)) (26)where � denotes some t-norm and !� the implication operator adjoint to �.When viewed as functions of independent variable x and dependent variable y, expressions (25) and(26) de�ne fuzzy relations on X �Y . Both these relations are used as interpretations of the set of logicalformulas (24).Due to results in the theory of t-norms (cf., for example, [8]), the following t-norms are su�cient forrepresentation of all continuous t-norms.a � b = a ^ b = min(a; b); a!G b = (1 if a � b;b if b < a:a � b = a
 b = maxf0; a+ b� 1g; a!L b = 1 ^ (1� a + b):a � b = a � b a!P b = (1 if a � b;ba if b < a:where !G;!L;!P are the corresponding adjoints.3.3 From fuzzy relations to functionsLet X;Y � R be subsets of the set of real numbers and R �� X � Y be a fuzzy relation correspondingto normal form (25) or (26) for some �xed t-norm �. We show the way how the relation R(x; y) can betransformed to a function fR : X �! Y (and it will be a solution of the task (ii)).Let x0 2 X be an arbitrary but �xed element in X . Consider R(x0; y) and note that it de�nes amembership function of some fuzzy set in Y . To de�ne a function fR it is su�cient to choose one elementfrom R(x0; y) and correspond it to x0. We will do it following the procedure of defuzzi�cation. Recallthat DF : F(Y ) �! Y is a defuzzi�cation function where F(Y ) is the set of all fuzzy sets on Y , when itassigns an element y0 to the fuzzy set R(x0; y) by a certain procedure so thaty0 = DF (R(x0; y)):The function fR we are looking for can be de�ned byfR : x0 7! DF (R(x0; y)):We call this function as function realized by fuzzy relation R or, we can say also that fuzzy relation Rde�nes the function fR.In the sequel we will restrict ourselves to the defuzzi�cation function such thatDF (B(y)) = inffy j B(y) = supu2Y B(u)g:
14



3.4 Representation of continuous and piecewise monotone functionsIn the previous section we showed that a collection of fuzzy logic formulas can represent a function.Precisely this fact makes fuzzy logic applicable in many areas. But choosing a fuzzy logic representationof a function, one should know how to obtain its algorithm and how to evaluate a complexity of such kindof representation. To answer these questions, we associate the complexity of a fuzzy logic representationof a function with a number of formulas in the representing collection (24).In this section we show, how is it possible to obtain a precise representation of a function by non-excessive collections of fuzzy logic formulas. It will be a solution of the task (iii). For the simplicity, weconsider the case of functions with one variable.Theorem 2 To any continuous and strictly monotonous real-valued real function f(x) : [a; b] �! Rthere are fuzzy sets A1; A2 �� [a; b] and B1; B2 �� f([a; b]) such that the collection of fuzzy logic formulasfAi(x))Bi(y) j 1 � i � 2g;describes a function fR(x) : [a; b] �! R and the fuzzy relation in the conjunctive normal form (see (26))R(x; y) = 2̂i=1(Ai(x) ! Bi(y))de�nes fR(x) in such a way that fR(x) = f(x) for every x 2 [a; b].proof: The proof is constructive and can be used as a basis for an algorithm. Fix a t-norm t and let! be its adjoint implication. Since f(x) is continuous and monotonous on [a; b] it de�nes a one-to-onecorrespondence between [a; b] and [f(a); f(b)]. Therefore, the inverse function f�1(y) exists.Assume that f(x) monotonously increases. The proof consists in construction of membership functionsof the fuzzy sets A1; A2 and B1; B2 in such a way that the equality fR(x) = f(x) is ful�lled for all x 2 [a; b].We suggest two possible solutions.1. Membership functions for the fuzzy sets A1; A2 and B1; B2 are the following:A1(x) = 1� x� ab� a ; A2(x) = x� ab� a ; x 2 [a; b]; (27)B1(y) = 1� f�1(y)� ab� a ; B2(y) = f�1(y)� ab� a ; y 2 [f(a); f(b)]: (28)Let x0 2 [a; b] be an arbitrary, but �xed element. We show that fR(x0) = f(x0). Indeed,A1(x0) ! B1(y) = 1 i� A1(x0) � B1(y) i� 1� x0 � ab� a � b� f�1(y)b� ai� y � f(x0);A2(x0) ! B2(y) = 1 i� A2(x0) � B2(y) i� x0 � ab� a � f�1(y)� ab� ai� f(x0) � y:Thus, R(x0; y) = 1 i� f(x0) = y;and then supy R(x0; y) = R(x0; f(x0)) = 1:By the de�nition, fR(x0) = DF (R(x0; y)) = f(x0):2. The second variant of membership functions of the fuzzy sets A1; A2 and B1; B2 is the following:A1(x) = 1� f(x)� f(a)f(b)� f(a) ; A2(x) = f(x)� f(a)f(b)� f(a) ; x 2 [a; b];B1(y) = 1� y � f(a)f(b)� f(a) ; B2(y) = y � f(a)f(b)� f(a) ; y 2 [f(a); f(b)]:15



Analogously as above, let x0 2 [a; b] be an arbitrary, but �xed element. We show that f(R(x0)) =f(x0). Indeed,A1(x0) ! B1(y) = 1 i� A1(x0) � B1(y)i� 1� f(x0)� f(a)f(b)� f(a) � 1� y � f(a)f(b)� f(a) i� y � f(x0);A2(x0) ! B2(y) = 1 i� A2(x0) � B2(y)i� f(x0)� f(a)f(b)� f(a) � y � f(a)f(b)� f(a) i� f(x0) � y:The rest follows the same way as above. 2To extend the class of functions which are non-excessively realized by fuzzy relation R we introducethe following de�nition.De�nition 1 By a piecewise monotonous function f on a compact U we mean a function, for whichthere exists a �nite partition of U such that the restriction of f to each set from the partition is strictlymonotonous.We again consider only the case of functions with one variable.Theorem 3 For any continuous and piecewise monotonous real-valued real function f(x) : [a; b] �! Rthere exist a number N and fuzzy sets Ai1; Ai2 �� [a; b] and Bi1; Bi2 �� f([a; b]), 1 � i � N , such that thecollection of fuzzy logic formulasfAij(x))Bij(y) j 1 � i � N; 1 � j � 2g;describes a function fR(x) : [a; b] �! R and the fuzzy relation in the conjunctive normal form (see (26))R(x; y) = N̂i=1 2̂j=1(Aij(x) ! Bij(y))de�nes fR(x) in such a way that fR(x) = f(x) for every x 2 [a; b].proof: Since f(x) is continuous and piecewise monotonous on [a; b], there exists a �nite partition of[a; b] into a �nite number of subintervals J1; : : : ; JN such that the restriction f jJi, 1 � i � N , to eachset from the partition is strictly monotonous. In accordance with Theorem 2, for each such restrictionthere exist fuzzy sets Ai1; Ai2 �� Ji and Bi1; Bi2 �� f(Ji) such that the fuzzy relationRi(x; y) = 2̂j=1(Aij(x) ! Bij(y))de�nes a function fRi(x) such that f(x) = fRi(x) for all x 2 Ji.We extend the de�nitions of the membership functions Aij(x); Bij(y), 1 � i � N , 1 � j � 2, to [a; b]and f([a; b]), by setting them equal to 0 outside of Ji and f(Ji), respectively. Consider the fuzzy relationR(x; y) = N̂i=1 2̂j=1(Aij(x) ! Bij(y))where x 2 [a; b], y 2 f([a; b]) and Aij(x); Bij (y) are the extensions. Since any arbitrary x0 2 [a; b] belongsto exactly one subinterval Ji (except for the bounds of subintervals) then not more than two membershipfunctions Ai1(x); Ai2(x) (Ai�1;2(x); Ai1(x) or Ai2(x), Ai+1;1(x); 2 � i � N � 1; for internal bounds) candi�er from 0 in x0. Thus, R(x0; y) = Ri(x0; y); y 2 f(Ji);16



and then fR(x0) = fRi(x0) = f(x0): 2Corollary 1 Let conditions of Theorem 3 be satis�ed and in addition, let f(x) be monotonously in-creasing or decreasing on the whole interval [a; b]. Then there exist fuzzy sets A1; : : : , AN+1 �� [a; b] andB1; : : : , BN+1 �� f([a; b] such that R(x; y) = N+1̂i=1 (Ai(x) ! Bi(y))de�nes fR(x) in such a way that fR(x) = f(x) for every x 2 [a; b].proof: We show only the case when f(x) is monotonously increasing. Consider the membershipfunctions Aij(x); Bij(y), 1 � i � N , 1 � j � 2, constructed in Theorem 3 and de�ne new ones as follows:A1(x) = A11(x);Ai(x) = Ai�1;2(x) _ Ai;1(x);AN+1(x) = AN2(x);and analogously for B1(y); Bi(y); BN+1(y), 2 � i � N � 1. It is easy to verify thatN+1̂i=1 (Ai(x) ! Bi(y)) = N̂i=1 2̂j=1(Aij(x) ! Bij(y)): 23.5 Representation of functions and computing with wordsIn this subsection we jointly consider linguistic and functional points of view on fuzzy sets and combineresults from the previous sections. We show that each continuous function de�ned on a compact set canbe realized or approximated by fuzzy relation with membership functions similar to those from the basictriplet small, medium, big. This fact precisely means that having at disposal three given linguistic labelsand the set of linguistic hedges, it is possible to construct a collection of logical formulas (based onlyon their combinations) and a fuzzy relation using which we can construct a function which either �tsprecisely or approximately each continuous function.Similarly as above, we start with a continuous piecewise monotonously increasing function f(x) de�nedon interval [a; b] � R. From Corollary 1 we see that to realize such a function by a fuzzy relation, we needmembership functions of three types in the universe X divided into N subintervals [a1; b1]; : : : ; [aN ; bN ],namely A1(x) = 1� f(x)� f(a1)f(b1)� f(a1) ; x 2 [a1; b1];Ai(x) = ( f(x)�f(ai�1)f(bi�1)�f(ai�1) ; for x 2 [ai�1; bi�1];1� f(x)�f(ai)f(bi)�f(ai) ; for x 2 [ai; bi]; 2 � i � N;AN+1(x) = f(x)� f(aN)f(bN)� f(aN ) ; x 2 [aN ; bN ]:Similarly, we divide the universe Y into N subintervals[f(a1); f(b1)]; : : : ; [f(aN ); f(bN )]17



and obtain the membership functionsB1(y) = 1� y � f(a1)f(b1)� f(a1) ; y 2 [f(a1); f(b1)];Bi(y) = ( y�f(ai�1)f(bi�1)�f(ai�1) ; for y 2 [f(ai�1); f(bi�1)];1� y�f(ai)f(bi)�f(ai) ; for y 2 [f(ai); f(bi)]; 2 � i � N;BN+1(y) = y � f(aN )f(bN )� f(aN ) ; y 2 [f(aN ); f(bN )]:Note, that the character and form of these membership functions depend on the character and form ofthe function f(x). Consider di�erent cases for f(x).1. The function f(x) is piecewise linear and monotonously increasing. In this case it is not di�cult tosee that:� the membership functions A1(x); B1(y) are precisely described and expressed by a modi�edlinguistic term \small",� the membership functions Ai(x); Bi(y), 2 � i � N , are precisely described and expressed by amodi�ed linguistic term \medium",� the membership functions AN (x); BN (y) are precisely described and expressed by modi�edlinguistic term \big".We verify this on the example of A1(x); B1(y). Let f j[a1; b1](x) = kx + l. ThenA1(x) = 1� k(x� a1)k(b1 � a1) = 1� x� a1b1 � a1 = b1 � xb1 � a1 ;B1(y) = 1� f�1(y)� a1b1 � a1 = 1� y�lk � a1b1 � a1 = (kb1 + l)� y(kb1 + l)� (ka1 + l) ;i.e. we obtain the linear membership functions of simple evaluating linguistic expressions as dis-cussed in Sections 2.1.4 and 2.2.3.2. The function f(x) is continuous and monotonously increasing on [a; b], but not necessarily piecewiselinear. It is well known that for the given function and each � > 0 there exist a partition of [a; b] intoa �nite number of subintervals J1; : : : ; JN and a piecewise linear function fL(x) such that fLjJi islinear and jf(x)� fL(x)j � �holds for for all x. It follows that fL(x) admits a representation by some fuzzy relation RL withthe membership functions expressed by (linear) fuzzy sets representing the meanings of simpleevaluating terms (1). Thence, the original function f(x) admits an approximation by RL.3. The function f(x) is continuous on [a; b] but the character of monotonicity can be di�erent. Then forthe given function and each � > 0 there exists a piecewise linear function fL(x) which approximatesf(x) on the whole interval [a; b] with the precision �. In this case, a fuzzy relation RL de�ningfunction fL(x) can be constructed on the basis of Theorem 3 rather than on its corollary. It meansthat membership functions characterized by a modi�ed term \medium" can be missing. With thisrestriction, the fuzzy relation RL approximately de�nes f(x).So far, we have exploited only linear membership functions among those modeling the meaning ofthe simple evaluating linguistic expressions (1). The non-linear (quadratic or exponential) membershipfunctions are used mainly for approximation. It is necessary to point out that the approximation ofcontinuous functions based on fuzzy relation with non-linear membership functions is more preferablebecause it enables to reduce the number of formulas in (24) and �ts better the linguistic environment. Aprecise formulation of this problem and its solution will be done in the future paper.18



On the other hand, if we stick on the precise description of the given function f(x), have have toemploy the membership functions constructed in accordance with Theorem 3. However, these may notnecessarily have the form suggested for the basic linguistic terms small, medium, big, even if they aremodi�ed due to the theory presented in Section 2.4 DiscussionIn this paper, we have proposed a horizon shifting method for computation of the linguistic hedges whichtechnically leads to parametric classes of membership functions. The method meets the requirements oflinguists, i.e., that the membership function should be shifted as well as modi�ed its steepness. Further-more, it has a potential for further development because it a�ects the basic parameters of the de�nedmembership functions in a uni�ed way and using one parameter only. Thence, the potential for e�ectivelearning is open.The expressing power of basic linguistic terms together with modi�ers has been demonstrated on theexample of the representation of an arbitrary continuous piecewise monotonous function. The obtainedresult means that the methodology of `computing with words' is comparable, for example, with polynomialor other representations. However, the possibility to use linguistic expressions in the description offunctions makes this methodology signi�cantly attractive for the applications.To conclude, let us remark the following. In this paper, we have elaborated the model of the meaningof linguistic expressions in a traditional way, which is purely extensional understanding of the semantics ofthe linguistic expressions. This means that their semantics is explained only on the basis of the groupings(i.e., fuzzy sets) of elements falling into the meaning of the expressions in concern. This is correct and quitewell working in various applications of fuzzy set theory. However, the groupings vary in various contextsand in time and therefore, the extensional approach is often criticized by linguists. A more realistictheoretically well founded interpretation of the linguistic semantics must take the intension (property)into consideration (cf., e.g. [21]). However, pure fuzzy set theory is unable to �t this requirement. It isa challenge to �nd a formal apparatus capable to model both the intension as well as extension of thelinguistic semantics including its vagueness (fuzziness). Promising in this respect seems to be fuzzy logicin broader sense (see [17, 19]) which is an extension of the fuzzy logic in narrow sense6. Fuzzy logicin broader sense attempts to elaborate methods of approximate reasoning including the formal modelof linguistic meaning. A more elaborated theory of the meaning of the evaluated linguistic expressionsdeveloped in the frame of fuzzy logic in broader sense is a task of future work.References[1] Bouchon-Meunier, B.: Fuzzy logic and knowledge representation using linguistic modi�ers. In: Zadeh,L.A. and J. Kacprzyk: Fuzzy Logic for the Management of Uncertainty, J. Wiley, New York1992.[2] Buckley, J. J. and Y. Hayashi, Fuzzy input-output controllers are universal approximators, FuzzySets and Systems 58(1993), 273{278.[3] Castro, J., Fuzzy Logic Controllers are Universal Approximators, IEEE Trans. on Systems, Man,and Cybernetics 25(1995), 629{635.[4] Davis, M.: Applied nonstandard analysis. J. Wiley, New York 1977.[5] Hájek P.: Metamathematics of fuzzy logic. Kluwer, Dordrecht (to appear).[6] Klawonn, F., Fuzzy sets and vague environments, Fuzzy Sets and Systems 66(1994), 207{221.[7] Klawonn, F. and V. Novák: The Relation between Inference and Interpolation in the Framework ofFuzzy Systems. Fuzzy Sets and Systems 81(1996), 331{354.6Presentation of fuzzy logic in narrow sense can be found, for example, in [5, 17] and elsewhere.19
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