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Comparing Partition of Clustering

• Cluster Analysis

• Similarity

• Entropy

• Application in hydrology
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Cluster Analysis- applications

• biology

• medicine

• economy

• hydrology

• psychology…

R.C.Tyron (1939) was the first who worked up the methods

of cluster analysis and it’s usage in psychology
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numerical taxonomy, mathematic, 

taxonomy,categorisation, clasification... 



Cluster Analysis

• the objects inside the cluster have the 

greatest degree of similarity while the 

objects from different clusters show the 

highest rate of dissimilarity. 
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Distances are 

minimized

Distances are 

maximized



Cluster Analysis- purpose

• Understanding-
groups/clusters-forming in set

of all objects allows clearer view

and better orientation among 

the objects.

• find the similar genes

• group words in documents

• life conditions

• flow of the rivers

• similar behavior of animals …

• Summarization - reduction of large data sets
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Similarity-dissimilarty

There exist many coefficients suitable for measurement of 

similarity. The measurement usage depends on what are we 

going to compare.

• Objects

• Attributes

• Category

• Clusters

• Results of clusterings
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Similarity measure

Let ��be a nonempty set�.  A function ��

��� �� � �

with properties

1. � 
� �  �

2. � 
� 
 � 1�

3. � 
� � � � �� 


will be called similarity measure
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Dissimilarity measure

Let ��be a nonempty set. Then the functions �

�� �� �� � �

with properties

1. � 
� �  � � 
� �  �

2. � 
� 
 � 1�� � 
� 
 � ���

3. � 
� � � � �� 
 
� � � � �� 


will be called similarity measure dissimilarity measure

� � 1 � ������ � 
� � � � 
� � � � �� �
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Distance measure

Mea�urement�of��i�tance��between�object��in�the��pace

• Eukli�e� ,- 
. � 
/ � 0 1.2 � 1/2
3
4

�

• Manhatan ,5 
. � 
/ � 0 1.2 � 1/2
3
4

�

• Minkovski ,6 
. � 
/ � 0 1.2 � 1/2
3
4

78

• ….
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Symmetric difference

Let���������9� : are a- number of objects which belong 

currently to cluster A and B

A                    B b- number of objects which belong 

only to cluster A

c-number of objects which belong 

to cluster B

d-number of objects which don’t 

belong to any of A and B

� 9� : � ; 9<:

9<: � 9 = : � 9 > : � 9 > :? = 9? > :

; 9<: @ ��1
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d

b a
c

E



Asociation coeficients

• Sokal-Michener
ABC

ABDBEBC
1 � ; 9<:

• Dice coefficient
�A

�ABDBE

�F4GH I<5JI=5K

�GH I<5JI=5

In general we can define the function 

L M� N� O� 1 �
P 4GQ

RB7Q
�,

where�M� O� N @ �B� 1 @ ��1

1 � ; 9<:

1 � ; 9<: 9 = :S
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Entropy

The concept entropy was originally derived in 

thermodynamics in1865 by Rudolf Clausius.

Claude E. Shanon developed the modern concept of 

‘information’ and ‘logical’ entropy as a part of information 

theory in the late 1940s (1947). The second notion of 

information was mutual information. There is a measure of te

information contained in one process about another process.

I S C A M I  2 0 1 3 - M A L E N O V I C E 12



Entropy

Let � T U , 

9��is a partitions of � , 9 � V4� W � VX ,  V. > V/ � U, 

�V.= V.� �

then  Y 9 � �0ZP ln ZP,  

where  Z � is probability �Z V. �
A[

-

Let us denote   �- � �

1- � 1 \ 1 @ �

� � Y �- � Y 9 � Y 1- � ]^ �
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Entropy

Let A and B are two partitions of E

9 � V4� W � VX

: � _4� W � _P

refinement 9`: � V. > _/ T U� a T b

Join entropy

Y 9� : � Y 9`: � �0 Z V. > _/ ln Z V. > _/./
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Basic properties

9� : are partitions of �
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Y 9� :

Y 9c:
I 9� :

Y :c9

Y 9 Y : Y 9� : � Y 9 � Y :

Mutual information

d 9� : � Y 9 � Y : � Y 9� :

d 9� 9 � Y 9 \ ���d �- � 9 � �

� 9� : � Y 9� : � d 9� :

is a metric

� 9� : � � 9� e � � e� :



Catchments

I S C A M I  2 0 1 3 - M A L E N O V I C E 16



Applications 
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b1 b2 b3 b4 b5 b6

a1 18 21 24 0 0 0 63

a2 9 25 7 11 0 0 52

a3 6 12 0 12 4 2 36

a4 21 8 3 0 0 0 32

a5 13 2 1 0 0 0 16

a6 5 1 0 4 0 0 10

72 69 35 27 4 2 209

A

B



Applications 
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fghi6 � fV]jkJY 9� :

Value Vnorm

H(A) 1.64004 0.59658

H(B) 1.41683 0.51538

H(A,B) 2.74908 1

I(A,B) 0.30779 0.11196

d(A,B) 2.4413 0.88804



Partition A
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Partition B
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attention


