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Optimal Fund Selection Problem

Assume investor wants to divide capital between two funds

risk-free fund (bonds) – interest rate ri known in advance

risky fund (stocks, indices) – return zi is random,
distribution is known, returns are independent

Time horizon: long term, e.g., k = 40 years

Possibility to rebalance every year based on current value

Investor’s objective: risk minimization

Motivation: long-term investment, pension savings
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Introduction to Stochastic Optimal Control

We use discrete stochastic optimal control to solve problem

There is object managed during several periods

New state of the object follows difference equation

We have to choose control value to maximize objective

Random variable

realization

Observe

current state

Choose 

control value
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Stochastic Optimal Control

We use stochastic optimal control to solve problem –
assuming discrete time, discrete finite random distribution

i – time period, i = 0, . . . , k − 1,
xi – capital at the beginning of year i , x0 start capital,
ui – share in risky fund in year i , ui ∈ Ui ≡ [0,1]

ri – known risk-free fund return in year i ,
zi – random risky return (year i), distribution zi ∼ Zi is known

Solution is optimal strategy – set of feedback functions

V = {v0, v1, . . . , vk−1}

Optimal control ui ≡ vi(xi) is based on current state xi ∈ Xi ,
it fulfils vi(xi) ∈ Ui for all i , xi
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Stochastic Optimal Control – Problem Formulation

Optimal Fund Selection Problem: Risk minimization

min E

[
k−1∑
i=0

ci CVaRDα

(
xi+1 | xi

) ]

xi+1 = xi

[
1 + uizi + (1− ui) ri

]
, i = 0, . . . , k − 1,

x0 = a > 0,

ui = vi(xi) ∈ Ui =
[
0,1
]
, i = 0, . . . , k − 1,

zi ∼ Zi , i = 0, . . . , k − 1.

(1)
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Unconstrained Problem Solution

What would be the solution of problem (1)?

It is unconstrained problem of risk minimization CVaRDα,
expected return is not considered

Certainty is always better than any risk

Simple solution: ui ≡ 0 (capital goes to risk-free fund)

We need to add terminal constraint into problem (1):
required level of terminal capital µ
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How To Formulate Terminal Constraint

1 Robust Constraint xk ≥ µ

it needs to be fulfilled in any case, even extremal

certainty in all cases might be very expensive or impossible

not very suitable for stochastic program

2 Expected Value Constraint E [xk | xk−1] ≥ µ

fulfilled in average case, outliers ignored

this condition respects that xk is random variable

3 Probabilistic Constraint P [ xk ≥ µ ] ≥ β,

relaxation of robust constraint, selected level β
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Dynamic Programming Equation

Problems with terminal constraints can be solved
using dynamic programming equation

Problem: some strategies vi(xi) ∈ Ui are not feasible

We need to define set of feasible control values Wi(xi)
for each time period i and each state xi

Then we can find a solution using dynamic program:

Vj(x) = max
vj (x)∈Wj (x)

Ej

[
f 0
j (x , vj(x), zj) + Vj+1(fj(x , vj(x), zj))

]
= Ej

[
f 0
j (x , v̂j(x), zj) + Vj+1(fj(x , v̂j(x), zj))

]
,

Vk (x) = ϕ(x), pre all x
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Expected Value Constraint

Now we focus on expected value constraint in a form:

E [ xk | xk−1 ] ≥ µ, for all xk−1 ∈ Xk−1

Based on Brunovský et al. 2012, we can derive following
sets of feasible control values for i = 0, . . . , k − 1:

Wi(x) =
{

ui ∈ Ui | fi (x ,ui , zi) ∈ Xi+1 for all zs
i ∼ Zi

}
,

Wk−1(x) =
{

uk−1 ∈ Uk−1 |E fk−1 (x ,uk−1, zk−1) ≥ µ
}
,

Xi =
{

x ∈ Xi |Wi(x) 6= ∅
}

(2)
Note: in this case, terminal constraint is a priority - if we
are not able to fulfill constraint, particular state is infeasible
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Alternative formulation for Expected Value Constraint

We derived alternative formulation for set of feasible
control values

For i < k − 1, we use relaxed condition for Ezi (instead of
"for all" zs

i ∼ Zi ):

Wi(x) =
{

ui ∈ Ui |Ezi fi (x , vi(x), zi) ∈ Xi+1
}
,

Wk−1(x) =
{

uk−1 ∈ Uk−1 | Ek−1 fk−1 (x ,uk−1, zk−1) ≥ µ
}
,

Xi =
{

x ∈ Xi | Wi(x) 6= ∅
}

(3)

This alternative formulation allows more feasible control
values, even the set of feasible states Xi is bigger
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Probabilistic Constraint

First we solve special problem suggested by Doyen 2010 –
maximization the probability P [xk ≥ µ], using dynamic
program

Pk (x) = Φ(x),

Pi(x) = max
ui∈Ui

Ei

[
Pi+1

(
fi(x ,ui , zi)

) ]
,

where Φ(xk ) =

{
1, if xk ≥ µ,
0, otherwise.

This leads to feasible sets:

Wi(x) =
{

ui ∈ Ui | Ei [Pi+1 [fi (x ,ui , zi)] ] ≥ β
}
,

Xi =
{

x | Pi(x) ≥ β
} (4)
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Problem with Penalization (1)

We also discussed alternative solution – move constraint
into objective function

min E

[
k−1∑
i=0

CVaRDα(xi+1 | xi) + δ · Λ(xk )

]
(5)

where first term is former objective function and a second
one represents penalization, with Λ(xk ) as penalization
function and δ its weight.

We used e.g. constant penalization

Λ1(x) =

{
0, if x ≥ µ
1, otherwise.

(6)
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Problem with Penalization (2)

Penalization is effective way to solve problem with terminal
constraint

Advantage: all states and all controls are considered
feasible (in contrast with terminal condition)

It this case we search for reasonable compromise solution
to fulfill both objectives (risk minimization and terminal
value maximization)

This reflects that problem (1) is a trade-off between risk
minimization and terminal value maximization, thus we
consider solution as a trade-off as well
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Numerical scheme and Parameters

We use discrete numerical scheme based on dynamic
programming equation

Feasible control values are calculated before optimization

We use following parameters:

Number of periods k = 40 years,

Starting value x0 = 100,

Requested terminal value µ = 300,

Risk-free rate – ri = 2% annually,

Risk fund random return – discrete approximation of normal
distribution with expected value z̄i = 6%, variance σ = 0.1
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Compare Feasible States for Expected Value

minHal500
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(a) Former formulation (2)
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(b) Alternative formulation (3)

Figure: Compare different feasible states for former and alternative
formulation. Infeasible states are marked white.

Axes: horizontal – amount of capital (state xi ), vertical – time period i
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Compare Feasible States – Notes

Each expected value formulation have its disadvantages

Former formulation: too many infeasible states, e.g.
x0 = 100 should be feasible intuitively, but in fact it is not

Alternative formulation: bigger set of feasible states (good),
but chance of getting into infeasible state during process

In both cases, there are many states that are infeasible:
if we reach such point, we need to reconsider terminal
condition (decrease µ)
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Results with Terminal Constraint

restricted−Ex−cvar
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(a) Area A
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(b) Area B
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(c) Area C

Figure: Risk minimization on restricted area.
Infeasible states are marked white.

A – expected value alternative formulation (3),
B – min. probability area with β = 90%,
C – expected value former formulation (2)



Introduction Terminal Constraints Numerical Results Summary

Results with Penalization
barrier−cvar−briadenie−0
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(a) δ = 0

barrier−cvar−briadenie−100
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(b) δ = 100

barrier−cvar−briadenie−250
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(c) δ = 250

barrier−cvar−briadenie−500
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(d) δ = 500
barrier−cvar−briadenie−1000
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(e) δ = 1 000

barrier−cvar−briadenie−10000
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(f) δ = 10 000

barrier−cvar−briadenie−1000000
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(g) δ = 106

barrier−cvar−briadenie−100000000000000000000
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(h) δ = 1020

Figure: Risk minimization with penalization – different weight δ
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Numerical Results – Notes

Results with Terminal Constraint

Solution more or less the same, only area shape is
different, like cropped

It is possible to fall down from feasible area

Outside feasible area, we don’t know what control value
shall be used

Results with Penalization

Changing weight δ changes the solution

One can choose proper weight that represents his
preference regarding terminal condition
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Summary

We discussed two main questions:

1 How to formulate terminal constraints in stochastic discrete
optimal control problems

2 How to solve such problems using dynamic programming
equation

We showed some disadvantages of particular constraints:

Possibility to reach infeasible state

Problem of infeasible starting point

We also presented effective alternative way of solution
using penalization term in objective function
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Thank you for your attention! :)

Martin.Lauko@fmph.uniba.sk


	Introduction
	Problem formulation

	Terminal Constraints
	Constraints formulation
	Expected value constraint
	Probabilistic constraint
	Problem with Penalization

	Numerical Results
	Numerical scheme
	Feasible states
	Results and Notes


