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m It is usually missing in curriculae of universities in our
regions.
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m It is usually missing in curriculae of universities in our
regions.
m | found it interesting. The topic contains nice results

D with many deep applications.
[Ergodicity]

m In this topic both deterministic and stochastic points of
view meet in result of the kind: "For a truly random
element the following surely holds”.

i

m Typical result of the theory is educational, it says:
"Under stated conditions, almost all elements behave
fairly.”
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WISl m Statistical mechanics: Consider a system of N particles

enclosed in a box. Their positions and momenta
determine the system by 6 N numbers, i.e.the state of

I:l the system at each moment can be represented by a
point in a bounded subset X of 6 N-dimensional

D Euclidean space (the so-called phase space). The
behaviour of the system is then represented by a

[ErgodicTiy] . .

trajectory in the phase space.
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Ladislav

WISl m Statistical mechanics: Consider a system of N particles
enclosed in a box. Their positions and momenta
determine the system by 6 N numbers, i.e.the state of
the system at each moment can be represented by a

D point in a bounded subset X of 6 N-dimensional
[ErgodicTiy]

Euclidean space (the so-called phase space). The
behaviour of the system is then represented by a
trajectory in the phase space.

m In classical, deterministic mechanics, the entire
trajectory is determined once one of its point is known.
In practice we almost never have enough information
for such a complete determination.
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Boltzmann): Instead of asking: "what will the state be at
I:l time t?” we should ask "what is the probability that at
time t the state of the system will belong to a specified
D subset of the phase space?” The questions of greatest
interest are the asymptotic ones: "what will (probably)
— happen to the system as t tends to infinity”?
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gt m The basic idea of statistical mechanics (Gibbs,
Boltzmann): Instead of asking: "what will the state be at

I:l time t?” we should ask "what is the probability that at
time t the state of the system will belong to a specified

D subset of the phase space?” The questions of greatest

interest are the asymptotic ones: "what will (probably)
happen to the system as t tends to infinity”?

:l m Concentration on asymptotic questions allows us to
simplify the model passing from the continuous to the
discrete as follows.
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Theor
N i m In classical model the behaviour of the system is
determined by the system of 6 N Hamilton’s equations.
Solution of this system yields a parametric system of

transformations { Tt} c0,-) Of the phase space X into
itself where T;(x) is the state of system at time ¢ from

D the initial state x. It forms a one parametric semigroup
[ErgodicTiy]

with unit To = idy (obviously Tiis = T;Ts).
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i m In classical model the behaviour of the system is
determined by the system of 6N Hamilton’s equations.
Solution of this system yields a parametric system of
transformations { Tt} +c0,.) Of the phase space X into
itself where T;(x) is the state of system at time ¢ from

D the initial state x. It forms a one parametric semigroup
[ErgodicTiy]

with unit Ty = idy (obviously Ti s = T;Ts).

m From the point of view of the asymptotic behaviour
(t — o0) we can simplify the model passing from the
continuous to the discrete considering a subgroup
{Ts | n € Z} for a suitable choice of the time unit { = 1.
Moreover, simplifying T = T4, the composed
transformation T, is in fact T".
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m Notice that the asymptotic behaviour of both continuous
and discrete systems should be identical. In practice
the problem is intractable because of enormous
number of equations (N ~ 10%4).
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[Ergodicity of the phase space are recurrent, i.e. infinitely many of

- T"(x) are arbitrarily close to x”.
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m Notice that the asymptotic behaviour of both continuous
IR and discrete systems should be identical. In practice
l:‘ the problem is intractable because of enormous
number of equations (N ~ 10%4).
D m Nevertheless, Poincaré was able to found important
information on asymptotic behaviour: "Almost all points
[Ergodicity of the phase space are recurrent, i.e. infinitely many of
- T"(x) are arbitrarily close to x”.
m He used the Liuville’s theorem: The Lebesgue measure
A on the phase space X satisfies A(T:(E)) = A\(E) for
all t and all measurable E C X.
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W={xeX|VneNd(x, T"(x)) > c}. Divide W into
finitely many pieces W, each of diameter less than ¢.
For each fixed /, all the sets T~"(W;); n€ N are
pairwise disjoint.
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Theor

Ladisiay m Fix ¢ > 0 and denote
W={xeX|VneNd(x, T"(x)) > c}. Divide W into
finitely many pieces W;, each of diameter less than .
l:‘ For each fixed /, all the sets T~"(W;); n€ N are
pairwise disjoint.
D m To see this, assume x € T-"(W,) n T-("+R(W;) +# 0.
Then there exists an y = T"(x) € W; 0 T-%(W;) and,
Eae] consequently d(y, TX(y)) < diam W; < ¢, a

:] contradiction.

m Consequently ioj MTK(W;)) < M\(X) < oo. Using
k=1

Introductionl

Liuville’s theorem we get A\(T—%(W;)) = 0 for each
k € N, yielding A(W) = 0.
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m Probability and measure. The main object of the theory
iS @ measure preserving mapping.

I:l m Topology. The convergence concept is needed. A
typical result says something about some limit, or
D compares two limits.
m Functional analysis. Most, originally concrete, results
are generalized as results on operators in Hilbert
spaces.

m Applications in: dynamical systems, measure theory,
number theory, physics, combinatorics, .....
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intoErgodic| Y Almost all sets of positive integers have density }

Ladislav

MISIK m Assume that X is the binary uniformly distributed
Infrodustiont random variable, i.e. X € {0,1} and

l:‘ ({0}) = p({1}) = 3
m Consider a sequence (X,)nen of independent random

variables as described above. Then each such (Xj)
can be identified with the real number
[Ergodiciy r= Z 2" € [0, 1] as well as with (via characteristic
:l functlon) asubset AC N,ie. A, ={neN|X,=1}.

m By Borel's law of large numbers: The relation
d(A;) = lim #ESNIKEAL _ 1 holds for almost all
n—oo
re[0,1].
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SE— m A sequence (xp) in [0, 1] is uniformly distributed (u.d.) if
i i lim #sNIxcab)l — p_ g holds for every

=
0<a<b<.

m Product measure \*>° on [0, 1]*° is the unique measure
defined on the o-algebra generated by all cylinders
[Ergodiciy] C:[a1,b1r]7><~~-><[an,bn]x[0,1]><...Suchthat

Eopieationd A*(C) = T1(b; — a).
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SE— m A sequence (xp) in [0, 1] is uniformly distributed (u.d.) if
i i lim #sNIxcab)l — p_ g holds for every

=
0<a<b<.

m Product measure A\ on [0, 1]*° is the unique measure
defined on the o-algebra generated by all cylinders
[Ergodiciy] C:[a1,b1,]7><---><[an,bn]x[0,1]><...Suchthat
Eepicationd A>(C) = _1_[1(bi - a).
=
m Almost all sequences in [0, 1] are u.d. with respect to
the product measure A> on [0, 1]>°.
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normalized (or probability measure) if u(X) = 1.
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Wik m Measure space is a triplet (X, A, u) where X' is a
Tt nonempty set, A a o-algebra on X and p a o-additive
Wain objects measure on A. A measure is finite if (X)) < oo and
Thoory normalized (or probability measure) if 1(X) = 1.

m Unit interval, unit circle, unit ball, bounded subset of R”
D with corresponding Borel measurable sets (i.e.
Ergoae] o-algebra generated by open sets) and Lebesgue
:l (often normalized) measure.



Vieasure spaces

nexcursu_)n
e dodic| M Basic definitions and examples

Ladislav

Wik m Measure space is a triplet (X, A, u) where X' is a
Tt nonempty set, A a o-algebra on X and p a o-additive
Wain objects measure on A. A measure is finite if (X)) < oo and
normalized (or probability measure) if (X) = 1.

with corresponding Borel measurable sets (i.e.
o-algebra generated by open sets) and Lebesgue
(often normalized) measure.

m A locally compact topological group with a countable
base, with Borel measurability and Haar measure (i.e.
shift invariant measure u(gE) = p(E) for all g € G and
Borel E).

D m Unit interval, unit circle, unit ball, bounded subset of R”
[Ergodicity]

i
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Basic examples

[Eeduction
SPHEIzES m The set of all sequences x = {x,} of 0’s and 1’s, where
Theory n ranges either over the set of all positive integers or

over the set of all integers. The measurable sets are
D the elements of the o-algebra of generated by sets of
] the form {x | x, = 1}. The measure is uniquely

determined by the condition that its value on each
intersection of k generating sets is always 2.

i
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m A measurable transformation is a mapping T from a

[Eeduction :

Tl OBjeeTa measure space (X, A, 1) into a measure space

dEEs (Y,B,v) suchthat T-'(E) € Aforall E € B. ltis
measure preserving if (T~'(E)) = v(E) for all E € B.

D We always identify all transformations differing on a set
of measure 0, thus speaking about a transformation we

[ErgodicTiy]

will always mean its equivalence class. Notice that if a
measure preserving transformation is invertible (i.e. its
inverse transformation exists), then its inverse is also
measure preserving.

i
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fact, \(T~'E) = JA(E) holds for all Borel sets E.
[ErgodicTiy]
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into Ergodic| [ll Basic examples
Theor
S m Transformation of the real line given by Tx = 2x is
invertible, measurable, but not measure preserving. In

fact, \(T~'E) = JA(E) holds for all Borel sets E.

Main objects;
m A closely related transformation of [0, 1) is defined by
T x = 2x (mod 1). Notice that Tx = 2x if x € [0, }) and
Tx = 2x — 1 otherwise. It is not invertible (it is
everywhere two - to - one), it is measurable and also
measure preserving For example

T'5.3) =13 %) Uls + 2 1 + 3). Similar
consrderatlons prove that A(T— 1E) = A\(E) holds for
each half-open interval with dyadically rational
endpoints and from there it follows that T is measure
preserving. On the other side, notice that
M T E) # XNE) in general.

=
=
13
o
9

Al
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m An isomorphic transform is obtained as follows.

Consider the unit circle with Borel measurability and
with the normalized Lebesgue measure \/2r and
Theor

|

define T z = 22 for a complex unit z.

-
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m An isomorphic transform is obtained as follows.

Consider the unit circle with Borel measurability and
with the normalized Lebesgue measure /27 and
Theor define T z = 2 for a complex unit z.

D m Now consider the two-dimensional Euclid space with
[ErgodicTiy]

|

the transform given by T(x,y) = (2x, 3y). It is measure
preserving as the inverse image of any rectangle is a
rectangle with the same area. This example can be
generalized to arbitrary finitely dimensional Euclid
spaces and linear mapping with determinant with
absolute value equal to 1.

i
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m Let X be the space of all unilateral sequences (x5)52,

[Eeduction

ain oBjcTS such that x, € {0, 1} as described before. Let T be the

transformation described by a unit shift on the indices,
i.e. Tx =y = (yn), where y, = X,1. This

D transformation is measure preserving, but not invertible.

[ErgodicTiy]
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m Let X be the space of all unilateral sequences (x5)52,

[Eeduction

T ObjeeTs such that x, € {0, 1} as described before. Let T be the

transformation described by a unit shift on the indices,
i.e. Tx =y = (yn), where y, = xp1. This

D transformation is measure preserving, but not invertible.

— m Denote by Y the space of all bilateral sequences

(¥n)nez such that y, € {0, 1} as described before. Let
U be the transformation described by a unit shift on the
indices, i.e. Ux =y = (¥n), Where yn = Xp11. This
transformation is measure preserving and invertible.

i
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Theor

i m There is a natural mapping S of X onto [0, 1] assigning

iize it to x = xp, X1, Xo, ... the number Z G- This mapping
Main objects|

is measure preserving and essentlally one-to-one. Only
Theor

dyadically rational numbers have two different
pre-images. As this set is countable and of measure 0,
it plays no role from the point of view of measure theory
in further investigations and, consequently, the
measure-theoretic structure of both spaces are
isomorphic. The isomorphism S carries the unilateral
shift T onto a measure preserving transformation 7’ on
the unit interval defined (mod sets of measure 0) by

T' = STS~'. An examination shows that T is an old
friend: T’ x = 2x(mod 1) almost everywhere.

Al
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— m There is a natural correspondence P between the
T bilateral sequence space Y and X x X sending
[Theory (-..X_2,X_1, X0, X1, X2, ... ) to the couple
({X(),X1,X27 },{X_1,X_27 )} Again, this
transformation is measure preserving. Denoting
ErgodicTy] Q(x,y) = (Sx,Sy) for x, y € X we have that QP is an
:l isomorphism of Y onto [0, 1)2. This isomorphism sends

the bilateral shift onto a invertible and measure
preserving transformation 7" of [0, 1)2.
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— m An examination of the definition shows that the
Wain objects isomorphic image of the bilateral shift is the mapping
T" defined (mod 1) by

/ 1 1
T"(x,y) = (2x, éy) when x € [0, é)
[Ergodicity
and

i

T"(x,y) = (2x, 3(y +1)) when x € [3.1)
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[rodicTion

ol objects m The transformation T” can be geometrically described

gl as follows. It first transforms the unit square by a linear
transform onto the rectangle with bottom edge the

D interval [0,2) and the left edge [0, 3) and then cut off
the right half of this rectangle (with bottom edge [1,2))

[Ergodicrty and move it, by translation, to the top half of the unit

:] square. Because of its geometric nature, T” is called

Baker’s transform.
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Poincaré’s theorem

m Let T be a measure preserving transformation on a
measure space (X, A, ) and x € E € A be given. The
point x is called recurrent (with respect to E and T) if
T"(x) € E for at least one n € N.
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Misik m Let T be a measure preserving transformation on a
| measure space (X, A, 1) and x € E € A be given. The
point x is called recurrent (with respect to E and T) if
I:l T"(x) € E for at least one n € N.
I m Recurrence theorem (Poincaré). If T is a measure
Zmin preserving transformation on a space of finite measure,
— and if E is a measurable set, then almost every point of

:l E is recurrent.



AN excursion|

into Ergodi - Zp
e moodic| M Poincaré’s theorem

Ladislav a .

Misik m Let T be a measure preserving transformation on a
| measure space (X, A, pn) anq x € E € Abe given. The
point x is called recurrent (with respect to E and T) if

l:‘ T"(x) € E for at least one n € N.
I m Recurrence theorem (Poincaré). If T is a measure
Zmin preserving transformation on a space of finite measure,

eor . . 1
— and if E is a measurable set, then almost every point of

:l E is recurrent.

m We will show that a stronger version of this theorem
holds. In fact, it is easy to show that for almost every
x € E there are infinitely many values of n € N such
that T"(x) € E.
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" ooy | Il Stronger version of Poincaré’s theorem

Ladislav

WISl m As each T" is measure preserving, for all sets F, of
non-recurrent points of 7" we have u(F,) =0,

[iroducTionl
I:l consequently u( |J Fn) =0.

n=1

Main
theorems of
Ergodic
Theor
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"o | Ml Stronger version of Poincaré’s theorem

Ladislav

sk m As each T" is measure preserving, for all sets F, of
[rodicTion non-recurrent points of 7" we have u(Fp) =0,
I:l consequently U Fn) =0.
'E'E{:;’c"“' m Suppose x € E\ U1 Fn. Then for every n € N there is a
Theor
Ergodicy] k € N such that T*"(x) € E.

Eopieatond
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Main
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Stronger version of Poincaré’s theorem

m As each T" is measure preserving, for all sets F, of
non-recurrent points of 7" we have u(Fp) =0,

consequently 8 Fn) =0.
n=1

m Suppose x € E\ |J Fn. Then for every n € N thereis a
n=1

k € N such that T*"(x) € E.
m Thus the conclusion of the Recurrence theorem can be
formulated in terms of the characteristicoiunction as

follows: for almost all x € E the series > xeg(T"(x))
n=1
diverges.



into ergosic| ll  Generalized theorem

Theor

Ladiay m This conclusion can be generalized: if f is an arbitrary
non-negative measurable function, then for almost

EfrodieTon o0
I:l every x € {x | f(x) > 0} the series ; f(T"(x))

diverges.
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theorems of
Ergodic
Theor

il



into ergosic| ll  Generalized theorem

Theor

Ladislav m This conclusion can be generalized: if f is an arbitrary
non-negative measurable function, then for almost

[EiodiclH o0
I:l every x € {x | f(x) > 0} the series 2_:1 f(T"(x))

diverges.
tEh;g'{rdeircnsot m The proof is easy: for each k € N consider the set
Theor Ex = {x | f(x) > }}. Then, by Recurrence theorem, the

o0
series > xg (T"(x)) diverges except a set of measure
n=1

il

zero, say F,. Consequently, the series > f(T"(x))
n=1

diverges except the set of measure zero |J Fp.
n=1
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Misik m Let T be an ergodic transformation on a space X with
| probability measure 1 and let E C X be measurable.
For x € E denote by n(x) the smallest integer such that
I:l T"(¥) ¢ E. Then, by Recurrence theorem, n is defined
e almost everywhere in E. It is easy to see that niis
e measurable.

Theor
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An aaddition to Recurrence theorem
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into E di
LS Index of recurrence

Ladislav

Misik m Let T be an ergodic transformation on a space X with
| probability measure 1 and let E C X be measurable.
For x € E denote by n(x) the smallest integer such that
I:l T"(¥) ¢ E. Then, by Recurrence theorem, n is defined
e almost everywhere in E. It is easy to see that niis
e measurable.

Theor

m M.Kac (Bull. A.M.S. 1947, p. 1006) showed that

J n(x) dx = 1. It can be expressed in the form
E

il

1 1 .
w(E) g n(x) dx = E)" The last equation says that the

average length of the time that it takes a point of E to
return to E is the reciprocal of the measure of E.
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Misik m We already know that almost all points of E infinitely
— many times turn back to £ under the repeated action of
measure preserving transformation T. It is natural to
I:l ask for some more precise characteristics of the set of
Wain all indices {ne N | T"(x) € E}.
theorems of}
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Viean convergence

AN excursu_)n N
into Ergodic| i Mean Ergodic Theorem
eor’

Ladislav

Misik m We already know that almost all points of E infinitely

— many times turn back to £ under the repeated action of
measure preserving transformation T. It is natural to

l:‘ ask for some more precise characteristics of the set of
Wain allindices {ne N | T"(x) € E}.
theorems of
Ergodic m There is a natural "measure” on subsets of N called
] asymptotic denslity. For A C N it is defined by

Eor sond d(A) = nimm% zo xa(i) provided the limit exists.
1=



Viean convergence

AN excursu_)n N
into Ergodic| i Mean Ergodic Theorem
eor’

Ladislav

Misik m We already know that almost all points of E infinitely

— many times turn back to £ under the repeated action of
measure preserving transformation T. It is natural to

l:‘ ask for some more precise characteristics of the set of
Wain allindices {ne N | T"(x) € E}.
theorems of
S m There is a natural "measure” on subsets of N called
] asymptotic densrity. For A C N it is defined by
Eor sond d(A) = lim 13" xa(i) provided the limit exists.

m We will be interested in asymptotic behaviour of
n—1 .
Sn(E, T,x) =12 > xe(T'(x)).
i=0

j=
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a measure preserving transformation T on X, consider
the mapping U = U(T) operating on functions on X by
|:| Uf = fo T ie. Uf(x) = f(T(x)). Notice that
Uf(x) = f(T"(x)) for all n € N.
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N i m We will set the problem in a more general frame. Given
a measure preserving transformation 7 on X, consider
the mapping U = U(T) operating on functions on X by
I:l Uf = fo Tie. Uf(x) = f(T(x)). Notice that
U"f(x) = f(T"(x)) for all n € N.

[nfroduction]

Main
itheorems of

i n—-1
raon m We will be interested in S, (U) = 1 3~ U'. Notice that

ETeTy Sa (U)xe(x) = Sn (E. T ). -

:l m |t is easy to see that U is a linear operator and, for
measure preserving T, it is not difficult to show that U
is an isometry on Ly. It is based on the fact that if E is a
set of finite measure, then

Uxe(x) = xe(T(x)) = x7-1£(X)
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I:l projection on the space of all vectors invariant under U,
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AN excursion|

"oy | Il Mean Ergodic Theorem

Ladislav

MISIK m Mean Ergodic Theorem (von Neumann). If U is an
[T isometry on a complex Hilbert space H and if P is the
I:l projection on the space of all vectors invariant under U,

n—1
w— then 1 3~ U'f converges to Pf for every f € H.
theorems of i=0
Fraodic m The proof is trivial in dimension one. In this case
Ergoaieny Uz = uz, where u is a complex unit. If u =1, each
:l Sn(U) = idy and, as U = idy, also P = idy,

consequently nlim Sn (U) = P. In other case

Sh(U) = ,71(1‘—_“2) — 0 and, as 0 is the only invariant
element in H, also Pz = nlim Snh(U)z =0.
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[Eeduction
m In the finite-dimensional case U can be represented by
I:l a diagonal matrix with only complex units on the
eI— diagonal. It follows that each S, (U) is also diagonal
Ergodic and, by one-dimensional case, it tends to a diagonal
matrix with only 0’s and 1’s one the diagonal. The limit
matrix is therefore a projection, in fact the projection on

the space of all vectors f such that Uf = f.

il
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m The adjective "Mean” in the previous theorem is due to
nreducior convergence in the L, norm. In this section we will be
I:l interested in the pointwise convergence.
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m The adjective "Mean” in the previous theorem is due to

nreducior convergence in the L, norm. In this section we will be
I:l interested in the pointwise convergence.
— m Individual Ergodic Theorem (Birkhoff). If T is a
bl measure preserving transformation on a space X (with
Theor possibly infinity measure) and if f € L4, then

1 nf f(T'(x)) converges for almost all x € X. The limit
Espicatond = ° |

function * is integrable and invariant (i.e.
f*(T(x)) = f*(x) almost everywhere). Moreover, if
w(X) < oo, then [f*du= [fdpu.
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o TR Individual Ergodic Theorem

I:l m Notice that the condition x(X) < oo is necessary for

e J f*dp = [ fdu. Consider the translation T(x) = x + 1

Ergodic | in R and choose f = x(o.1). Then [ f(x) dx = 1, while

Thé] f<(x) =0forall x e Ras f(T/(x)) = 0 for all i € N with
one possible exception.

Eopieatond
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Decomposability of a mapping
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Mk m Suppose that T is a measure preserving transformation
on X and X is the union of two disjoint measurable
subsets E and F of positive measures, each of which is
invariant under T (i.e. T-1E = E). Then the study of
any property of T on X reduces to the separate studies
of the corresponding properties of T on E and F.
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L m Suppose that T is a measure preserving transformation
on X and X is the union of two disjoint measurable
subsets E and F of positive measures, each of which is
invariant under T (i.e. T~-'E = E). Then the study of
any property of T on X reduces to the separate studies
of the corresponding properties of T on E and F.

m In such a case we call T decomposable. The most
significant transformations are the indecomposable
ones, they are called ergodic.
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Decomposability of a mapping
Ladislav

L m Suppose that T is a measure preserving transformation
on X and X is the union of two disjoint measurable
subsets E and F of positive measures, each of which is
invariant under T (i.e. T~-'E = E). Then the study of
any property of T on X reduces to the separate studies
of the corresponding properties of T on E and F.

m In such a case we call T decomposable. The most
significant transformations are the indecomposable
ones, they are called ergodic.

m Informally, ergodicity means that the transformation
does a good job of stirring up the points of the space it
acts on.

I
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m [t is often useful to work with some conditions
equivalent to ergodicity. Trivially, T is ergodic iff it has
only trivial invariant subsets, i.e. if E is invariant, then
either u(E) =0, or u(X \ E) = 0.
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m It is often useful to work with some conditions
equivalent to ergodicity. Trivially, T is ergodic iff it has
only trivial invariant subsets, i.e. if E is invariant, then
either u(E) =0, or u(X \ E) = 0.

m A function f is invariant under T iff T does not effect the
value of f(x), i.e. iff f(T(x)) = f(x) for (almost) all x.
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m It is often useful to work with some conditions
equivalent to ergodicity. Trivially, T is ergodic iff it has
only trivial invariant subsets, i.e. if E is invariant, then
either u(E) =0, or u(X \ E) = 0.

A function f is invariant under T iff T does not effect the
value of f(x), i.e. iff f(T(x)) = f(x) for (almost) all x.

m A useful reformulation of ergodicity is this: T is ergodic
if and only if every measurable invariant function is a
constant. To see this, notice that a measurable set is
invariant iff its characteristic function is invariant.

I
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Equivalent conditions

m Consequently, the "if” statement is trivial.



AN excursion|

"'l Equivalent conditions

Ladislav
ISk m Consequently, the "if” statement is trivial.
m To see the "only if” statement, assume that f is
measurable. For every n € N consider the system of
sets

K K+ 1
X(k,n):{xeX|2n<f(x)< ;}

I

end observe that all they are invariant. Ergodicity
implies that for every n there is a unique k(n) such that
w(X(k,n)) =1, while all the others are of measure 0.
Then f(x) = ¢ almost everywhere, where ¢ = |im kz(ﬂ).

n—oo
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I

Translations in Z and R

m For a € Z, the translation T(x) = x + a on the space of
integers is ergodic if and only if |a] = 1.
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m For a € Z, the translation T(x) = x + a on the space of
integers is ergodic if and only if |a] = 1.
m If |a| = 1, then the only invariant sets are () and Z.
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m For a € Z, the translation T(x) = x + a on the space of
integers is ergodic if and only if |a] = 1.

m If |a| = 1, then the only invariant sets are () and Z.

m If a= 0, thenall A C Z are invariant.

I
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I

Translations in Z and R

m For a € Z, the translation T(x) = x + a on the space of
integers is ergodic if and only if |a] = 1.

m If |a| = 1, then the only invariant sets are () and Z.

m If a= 0, then all A C Z are invariant.

mif|a >1,allsets{neZ|n=b(mod |al)} are
invariant.
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m For a € Z, the translation T(x) = x + a on the space of
integers is ergodic if and only if |a] = 1.

m If |a| = 1, then the only invariant sets are () and Z.

m If a= 0, then all A C Z are invariant.

mIf|a >1,allsets{neZ|n=b(mod |a|)} are
invariant.

m No translation T(x) = x + a on the space of reals is
ergodic.

I
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Translations in Z and R
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e m For a € Z, the translation T(x) = x + a on the space of

integers is ergodic if and only if |a] = 1.

m If |a| = 1, then the only invariant sets are () and Z.

If a=0, then all A C Z are invariant.

If |a] > 1, allsets {ne€Z | n=b(mod |a|)} are
invariant.

m No translation T(x) = x + a on the space of reals is

ergodic.

m More generally, there is no ergodic linear transformation

on a finite dimensional real Euclidean space.

I
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I

Rotation of the unit circle

m Let X be the unit circle (as a subset of the complex
plane). If c € X and T is defined by T(x) = cx, then T
is ergodic iff ¢ is not a root of unity.
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Misik m Let X be the unit circle (as a subset of the complex
plane). If c € X and T is defined by T(x) = cx, then T
is ergodic iff ¢ is not a root of unity.

m If ¢" =1, then f(x) = x" is a non-constant measurable
invariant function.

I



AN excursion|

nto *r9odc| Ml Rotation of the unit circle
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Misik m Let X be the unit circle (as a subset of the complex
Tt plane). If c € X and T is defined by T(x) = cx, then T

is ergodic iff ¢ is not a root of unity.
I:l m If ¢" =1, then f(x) = x" is a non-constant measurable

invariant function.
m If cis not a root of unity, then no f,(x) = x", ne Zis

ergodic. The rest of proof follows from the fact that
:l {fn | n € Z} forms a complete orthogonal system in L.




AN excursion|

nto *r9odc| Ml Rotation of the unit circle

Ladislav

Misik m Let X be the unit circle (as a subset of the complex
Tt plane). If c € X and T is defined by T(x) = cx, then T

is ergodic iff ¢ is not a root of unity.
l:‘ m If ¢" =1, then f(x) = x" is a non-constant measurable

invariant function.
m If cis not a root of unity, then no f,(x) = x", ne Zis

ergodic. The rest of proof follows from the fact that
:l {fn | n € Z} forms a complete orthogonal system in L,.
mlff= > apfy, then f(T(x)) = > anc"x"If fis
nezZ neZ

invariant, then a, = ¢"a, for all n € Z, hence a, = 0 for
all n# 0, i.e. f is a constant function.
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m The preceding example can be generalized as follows.
Let X be a compact abelian group with a countable
base and T(x) = cx for some ¢ € X. Then T is ergodic
if and only if the set {c" | n € Z} is dense in X.

I
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EE Multiplication in compact abelian groups
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m The preceding example can be generalized as follows.
Let X be a compact abelian group with a countable
base and T(x) = cx for some ¢ € X. Then T is ergodic
if and only if the set {c" | n € Z} is dense in X.

The proof is based on the following self-interesting
lemma: If the measure space X is a topological space
with a countable base, such that each non-empty open
set has positive measure, and if T is an ergodic
transformation on X, then for almost all x € X the orbit
of x (i.e. the sequence {T"(x) | n € N} is dense in X.

I



AN excursion|

into Ergodic . . . . .
LG Multiplication in compact abelian groups

Ladislav
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m The preceding example can be generalized as follows.
Let X be a compact abelian group with a countable
base and T(x) = cx for some ¢ € X. Then T is ergodic
if and only if the set {c" | n € Z} is dense in X.

m The proof is based on the following self-interesting
lemma: If the measure space X is a topological space
with a countable base, such that each non-empty open
set has positive measure, and if T is an ergodic
transformation on X, then for almost all x € X the orbit
of x (i.e. the sequence {T"(x) | n € N} is dense in X.

m Remark: The condition of denseness is not sufficient.

I
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Rotation on torus and linear transformations in
Euclidean spaces

m Torus is the Cartesian product of two circles and it can
be represented as [0, 1), with operations on each
coordinate taken (mod 1). For two complex units b, ¢
define the transformation of rotation on the torus by
T(x,y) = (bx, cy), where x and y are complex units,
i.e. (x,y) is a point on the torus.
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Theor . . . .
il Rotation on torus and linear transformations in
Misik Euclidean spaces

m Torus is the Cartesian product of two circles and it can
be represented as [0, 1), with operations on each
coordinate taken (mod 1). For two complex units b, ¢
define the transformation of rotation on the torus by
T(x,y) = (bx, cy), where x and y are complex units,
i.e. (x,y) is a point on the torus.

m A rotation on the torus is ergodic if and only if the
numbers b and c are integrally independent, i.e. for any
integers m, n the relation b™c"” = 1 implies m=n=0.

I
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m Both the unilateral and the bilateral shifts are ergodic.
Main idea of the proof follows.
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I

Both the unilateral and the bilateral shifts are ergodic.
Main idea of the proof follows.

Let E be a measurable invariant set. As the measure
on the space {0,1}7 (or {0, 1}%) is almost determined
by its values on sets that depend on a finite numbers of
coordinates, there exists such a "finitely-dimensional”
set A that is an arbitrary close approximation of E. For
nlarge enough is the set B = T~ "A determined by a
disjoint set of coordinates, therefore

w(AnN B) = u(A)u(B). Since all powers of T are
measure preserving and E is invariant, B is also very
close to E and, consequently also An B is so. Thus
w(E) ~ u(AN B) ~ p?(E). Thus u(E) is either 0 or 1.
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 [Some applications



transformations

i m Recall that Birkhoff’s theorem holds for any measure
preserving transformation. Suppose now, that T is also
ergodic. Firstly, ergodicity yields that 7*, being invariant
under T, has to be constant. Secondly, integrability of
f* and the relation [ f*du = [ f dyp imply that this

[rodicTion
D constant is equal to ﬁ J f du (especially, 0 if
[Ergodicity]

u(X) = o0). Thus we have:

Some
applications|
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Misik m Recall that Birkhoff’s theorem holds for any measure
preserving transformation. Suppose now, that T is also
ergodic. Firstly, ergodicity yields that f*, being invariant
l:‘ under T, has to be constant. Secondly, integrability of

f* and the relation [ f*du = [ f dyp imply that this
D constant is equal to ﬁ [ f du (especially, 0 if

p(X) = o0). Thus we have:
m A transformation T on X with x(X) < oo is ergodic iff

Some
applications|

N =P
n[mwniz;f(T(x))_ M(X)/fdu.

holds for every integrable f and for almost all x € X.
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Misik m For a moment, let us turn back to the continuous
version of the model. Remember that the sequence
{T"(x)}nen has been chosen as a discrete
approximation of the continuous model { T¢(x)}tc[0,00)-

[Eeduction
In the continuous case the "time term” of the space-time
T
D means equation is replaced by _lim 1Tff(Tt(x))dx.
ey T 0

Thus, for ergodic T and integrable f on X, we have:

Some
applications|

)
TIEnOO;_/f(Tf(x)) dt — M(1X)/fdu.
0
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m A sequence (xp) in R is said to be uniformly distributed
mod 1 (u.d) if for every a < b € [0, 1) the limit

| i
N
I:l Jim N = Xjab)(Xn) exists and is equal to b — a.
S
[ErgodicTiy]

Some
applications|
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m A sequence (x,) in R is said to be uniformly distributed
mod 1 (u.d) if for every a < b € [0, 1) the limit

N
lim 4 > X[ap)(Xn) exists and is equal to b — a.
N—oo ™ n=4 '

[rodicTion

D m Informally, the time that (x,) "spends in [a, b)” is
asymptotically equal to the relative mass of [a, b) in

[Ergodiciy [0,1) (i.e. the time mean equals to the space mean).

Some
applications|
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m A sequence (x,) in R is said to be uniformly distributed
[iroduction] mod 1 (u.d) if for every a < b € [0, 1) the limit

N

I:l lim 4 > X[ap)(Xn) exists and is equal to b — a.
N—oo ™™ p—4 '

D m Informally, the time that (x,) "spends in [a, b)” is

asymptotically equal to the relative mass of [a, b) in
[Ergodicity [0,1) (i.e. the time mean equals to the space mean).

m Remark: For an ergodic T on [0, 1) and for almost all
x € [0,1) is the sequence { T"(x)} uniformly distributed.
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m A sequence (x,) in R is said to be uniformly distributed
[eroduction] mod 1 (u.d) if for every a < b € [0, 1) the limit

N

l:‘ lim 4 > X[ap)(Xn) exists and is equal to b — a.
N—oo ™™ p—4 '

D m Informally, the time that (x,) "spends in [a, b)” is

asymptotically equal to the relative mass of [a, b) in
[Ergodicity [0,1) (i.e. the time mean equals to the space mean).

m Remark: For an ergodic T on [0, 1) and for almost all
x € [0,1) is the sequence { T"(x)} uniformly distributed.

m Example: The sequence {na} is u.d. mod 1 if and only
if a is irrational.
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Ladislav m The importance of u.d. sequences follows from the
MK following statement. A sequence (x,) is u.d. mod 1 if

[eroducTion! and only if

]
’
D /f ) ox = lim > f({xa})
0 n=1

holds for all continuous functions f: [0,1) — R
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Ladislav ® The importance of u.d. sequences follows from the
MK following statement. A sequence (xp) is u.d. mod 1 if

[Eeduction and only if

1
’
D /f ) ox = lim > f({xa})
0 n=1
[Ergodicity]

holds for all continuous functions f: [0,1) — R

m The right-hand term allows to compute integrals with an
arbitrary precision by simple arithmetic operations.
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Ladislav ® The importance of u.d. sequences follows from the
MK following statement. A sequence (xp) is u.d. mod 1 if

[Eeduction and only if

1
’
D /f ) ox = lim > f({xa})
0 n=1
[Ergodicity]

holds for all continuous functions f: [0,1) — R

m The right-hand term allows to compute integrals with an
arbitrary precision by simple arithmetic operations.

m Analogously are the u.d. mod 1 sequences defined in
RY and are used for evaluation of multidimensional
integrals (Method Quasi Monte Carlo).
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e m Szemerédi’s theorem is a generalization of the famous

Van der Waerden'’s theorem (1927), one of the

e — fundamental result of Ramsey theory, and it is a

I:l milestone of combinatorial mathematics. It proves that
if the set of positive integers is partitioned into finitely

D many subsets, then at least one of them contains
arbitrary long arithmetic progression. In 1936 Turan

[Ergodicity] and Erdés conjectured that an arbitrary long arithmetic

progression exists in any set of positive integers with
positive density.
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into Ergodic| Il Szemerédi’s Theorem

Theor

e m Szemerédi’s theorem is a generalization of the famous
Van der Waerden'’s theorem (1927), one of the
e — fundamental result of Ramsey theory, and it is a
D milestone of combinatorial mathematics. It proves that
if the set of positive integers is partitioned into finitely
D many subsets, then at least one of them contains
arbitrary long arithmetic progression. In 1936 Turan
Ergodicity] and Erdos conjectured that an arbitrary long arithmetic
progression exists in any set of positive integers with
positive density.
m Szemerédi (1974) Let k be a positive integer and ¢ > 0.
Then there exists a positive integer N = N(k, J), such
that every subset of the set {1,2,..., N} of size at least
dN contains an arithmetic progression of length k.
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Szemerédi’s Theorem

[Eeduction

I:l m The original proof by Szemerédi was very intricate and
long. In 1977 Furstenberg used the ergodic theory to

D prove the theorem in much more simple and
inspirational way. Furstenberg’s techniques have been

[Ergodicity] extended to prove many natural generalizations of the

theorem which do not follow from Szemerédi’ approach.



