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Abstract:

This thesis shows capabilities of non-clausal resolution on general formulas of first–
order logic. The non-clausal resolution is presented both theoretically and practically by
designing algorithms and programming the application for non-clausal inference. The
application should be treated like an experimental tool and should not be used for serious
theorem proving process. The paper will focus on the explanation of the algorithms and
examples showing their usage. It extends common notions of general resolution and
resolution strategies.
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CZECH SUMMARY – SHRNUTÍ V ČEŠTINĚ

ŘEŠENÍ ÚLOH LOGIKOU PRVNÍHO ŘÁDU.

Teorie a praxe neklauzulární rezoluce.

Logika prvního řádu je dobře známá mezi matematiky a informatiky. Je to vhodná
formální reprezentace znalostí a teorémů. Ačkoliv je to populární a přímá cesta, problém
automatizovaného dokazování vět není až tak jednoduchý. Jestliže chcete využít sílu
logiky, je nutné provést velké množství úprav, než je možné aplikovat deduktivní
systém. Tyto úpravy ničí význam formulí a mohou produkovat vysoký počet klauzulí (v
případě klauzulární rezoluce). Ovšem tyto systémy mají významné výhody jako je
rychlost důkazu. Nicméně věřím, že z teoretického hlediska je velmi zajímavé pátrat po
deduktivním systému, který nevyžaduje destruktivní transformace formulí.

Logika prvního řádu pokrývá mnoho deduktivních systémů. Přes vysokou rozmanitost
těchto systémů, mají jednu hlavní slabinu. Jsou určeny pouze pro omezenou třídu
formulí. Byl jsem zklamán touto nevýhodou a hledal jsem nějaké řešení tohoto
problému. Na Internetu se nachází hodně spisů týkajících se rezoluce a mezi těmito spisy
jsem nalezl článek  "A theory of resolution" [Ba97], který představuje podrobný výčet
možností, jak provést rezoluci na skolemizovaných formulích. Tento článek jsem použil
hlavně jako zdroj inspirace pro další výzkum strategií pro potlačení explozivního nárůstu
množství rezolvent a rozšíření teorie pro existenciální proměnné.

Neoddělitelnou částí této práce je počítačová aplikace, který má ilustrovat představené
rezoluční techniky. Tato aplikace není odvozovacím systémem v plném slova smyslu,
ale spíše má podepírat teoreticky dosažené výsledky. Doufám, že to je spolu se
zmíněnými teoretickými rozšířeními malý příspěvek ke znalostem v automatizovaném
dokazování vět.

Druhá kapitola definuje některé obecné pojmy. Kapitola tři zavádí obecnou rezoluci a
demonstruje její použití na příkladech a také obsahuje některé modifikace a rozšíření
vylepšující standardní definice, jak převzaté, tak originální. Kapitola čtyři uvádí do
problému vysokého počtu generovaných rezolvent a navrhuje možná řešení
modifikovaná či vytvořená pro účely této práce. Pátá kapitola popisuje algoritmy a
datové struktury použité při vytváření aplikace. Pro tyto účely se užívá jazyka Pascal.
Jelikož zdrojové kódy přesahují 100 KB, jsou představeny pouze naprosto zásadní části.
Následující kapitola dává stručný přehled o možnostech aplikace nazvané Generalized
Resolution Deductive System (GERDS). Kapitola sedm přinese několik příkladů obecné
rezoluce, což je pravděpodobně nejvhodnější cesta k porozumění metodám a síle obecné
rezoluce.
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Hlavní zamýšlený přínos práce je rozšířit a objasnit dříve objevená zevšeobecnění
rezoluce. Měla by přinést zcela obecný deduktivní systém, který dokáže pracovat
s obecnými formulemi predikátové logiky, k čemuž potřebuje pouze charakteristiku
extended polarity, která nevyžaduje žádné transformace formulí, ale pouze výpočet
některých vlastností pro každou podformuli. Takový výpočet může být proveden během
konstrukce syntaktického stromu. Jestliže navíc nepožadujeme existenciální proměnné,
pak je rezoluce zcela jednoduchá a nevyžaduje ani to.

Rozhodl jsem se psát práci v angličtině, neboť doufám že to dělá tuto práci více
srozumitelnou a přístupnou širšímu okruhu čtenářů a proto je také prostá zbytečných
dlouhých vysvětlování a raději se zaměřuje na příklady.
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C h a p t e r  1

1 Introduction.

The first-order theory is well known among mathematicians and computer scientists.
It is a suitable formal representation for expressing knowledge and theorems. Although it
is very popular and clear way, the problem of automated theorem proving is not so
simple. If you want to enjoy the power of logic, you have to perform many
transformations, before you can use any deductive system. These transformations
destroy the meaning of the formula and may produce high amount of clauses (in case of
clausal resolution). Of course, it has decisive advantages such as the efficiency of the
proof. Nevertheless, I believe from the theoretical point of view it is a very interesting
investigation to search for a deductive system, which is free of the need of destructive
transformations.

First-order logic covers many deductive systems. In spite of high diversity of these
systems, they have one essential fault. They are determined to narrow class of formulas.
I was disappointed from this fault and I looked for some solution to this problem. There
was a lot of papers on the Internet concerning to resolution and among these papers I
found a technical report ”A theory of resolution” [Ba97], which presents detailed
exploration of the possibilities, how to perform deduction on skolemized formulas of
predicate logic. Though the paper describes far more than the base extension of
resolution rule, I used the paper mainly as a source of inspiration for further research of
strategies for suppressing the redundancy of an inference and handling existential
variables.

The inseparable part of this thesis is the computer application, which has to illustrate
presented resolution techniques. This application is not a full coverage of theoretically
proposed deductive system. It doesn’t perform exact unification of existential variables;
it handles only one-level existential formulas. I hope that it is together with the
mentioned theoretical extensions a small contribution to the knowledge in automated
theorem proving.

The second chapter introduces some common notions (first-order logic, rewrite
systems, deductive systems). Chapter three defines general resolution and brings some
examples, it also contains some modifications and extensions improving standard
definitions both undertaken and self-devised. Chapter four shows the problem of high
amount of resolvents generated during inference process and gives some common
solutions and consequence checking specially modified for the purposes of this thesis.
The fifth chapter describes application data structures and algorithms used for inference
process in detail. It uses the Pascal programming language to demonstrate algorithmical
solutions and Pascal comments to make the source code clearer. Since the source code
exceeds 100 KB, the chapter is as short as possible. The sixth chapter produces the
description of the computer application called GEneralized Resolution Deductive
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System (GERDS). GERDS supports my research in resolution techniques and it is not
user application in the right meaning. Of course one can use it, but must be aware of
bulks it contains. The sufficient and brief guide to the GERDS is given in this section.
The section seven will show some examples of general resolution, which is probably the
most suitable way to understand methods and power of general resolution.

The main intended contribution of the paper is to extend and illustrate previously
founded generalizations of deduction. It should bring the fully general deductive system,
which may process general formulas of predicate logic and the only actual need is the
notion of extended polarity, which do not require any transformation, but only counting
of some characteristics of every subformula. Such a counting can be performed during
the construction of the parse tree, that is the most suitable representation for computer
processing anyway. If we consider only non-existential formulas, then the resolution is
completely trivial and does not require anything special.

I decided to write the thesis in English, since I hope that it makes the paper more
understandable and therefore there is as few useless words as possible.
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C h a p t e r  2

2 Preliminaries.

2.1 First-Order Logic.

Before we start with the explanation of the general resolution, it is necessary to
introduce some common notations from first-order theory. It will be used the notation
close to logic programming. At first, it has to be shown the alphabet of the first-order
logic language. Brief and pregnant explanation can be found in [Kl67] , [Ri89] or
[No90]. It consists of:
- Variables: Character string starting with a capital letter or underscore; containing

alphanumeric character or underscore, e.g. My_First_Var, _trash1.
- Functors and predicates: Character string starting with a lower case letter e.g. sqrt,

is_a_Child. It is not actually needed to use a separate notion of the constant, because
they can be treated as functions without arguments.

- Logical connectives: ý - conjunction, ü - disjunction, ô - implication, ó -
equivalence, ¬ - negation.

- Logical constants: ç - false, ä - true. It is not used any special symbols in the source
set for logical constants in the application, but there is a flag indicating logical value
of the subformula in the result and it is represented by ç and ä too.

- Quantifiers: ÷ - universal and ö - existential.
- Special symbols: (, ) , and Ý, ß, <, >, =, á. The comparing characters have no

special handlers and serve as predicates for user usage.
The best way to define the language of the First-order logic is the introduction of the

grammar in Backus –Naur Form:
<Formula> ::= <Imp> { ó <Imp> }
<Imp> ::= <Dis> { ô <Dis> }
<Dis> ::= <Con> { ü <Con> }
<Con> ::= <Subformula> { ý <Subformula> }
<Subformula> ::= ¬ <Subformula> | <Quantifier section> <Subformula> | <Id Term>

| ‘[‘ <Formula> ‘]’ | <Atom> | <Id Term> <InfixPred> <Id Term>
<Quantifier section> ::=  <Quantifier character> <Variable> { , <Variable> }

{<Quantifier character> <Variable> { , <Variable> } }
<Id Term> ::= <Id Term2>  { <+/- operator> <Id Term2> }
<Id Term2> ::= <Id Base> { <*// operator> <Id Term2> }
<Id Base> ::= <Variable> | <Functor> | <StrLit> | <Number> | + <Number> | -

<Number> | ( <Id Term> )
<Functor> ::= <Lower case> {<Alphanumeric>} { ( <Id Term> { , <Id Term> } ) }
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<Variable> ::= <Upper case> {<Alphanumeric>}
<Number> ::= <Integer> {. <Integer>} { e <+/- operator> <Integer>}
<StrLit> ::= ” {<Alphanumeric>} ”
<InfixPred> ::= Ý | ß | < | > | = | á
<Quantifier character> ::= ÷ | ö
<+/- operator> ::= + | - , <*// operator> ::= * | /
<Lower case> ::= a | .. | z, <Upper case> ::= A | .. | Z | _
<Alphanumeric> ::= <Lower case> | <Upper case> |  <Numeric> , <Integer> ::=

<Numeric> { <Numeric> } , <Numeric> ::= 0 | .. | 9
 As you could see, the language is common. It is constructed of atoms connected by

logical connectives and incorporating quantifiers. Atoms are predicates (standard or
infix) and they are represented by id terms e.g. child(mary, john), where child is a
predicate name and mary and john are terms or X < 3. It is important to mention, that the
difference between id term and term (in logical meaning) may be a source of confusion.
Id term is the general conception of object that has a name and contains zero or more
arguments. That’s why id term refer to both predicate and term. However, there is not a
possibility to mistake the term for a predicate in a formula, because when we reach the
level of atom with id term, it is a predicate, and all the inferior levels must contain terms.
Logical constants are passed away, since they aren’t needful.

It fully satisfies the definition of the syntax, but now we must discuss some problems
related to it. The first problem results from the usage of existential variables. Non-
clausal resolution described on [Ba97] requires only ground cases of formulas i.e.
skolemized formulas with variables substituted by a term without variables. Although
the thesis extends these results to fully general formulas, the application is capable to
demonstrate it only on special cases. The fully unrestricted resolution demands some
restrictions to substitution of terms into variables. These notations are assumed to
express a substitution: E[E’] means that the expression E contains E’ as a subexpression
and E[E’’] denotes the result of replacing E’ by E’’ in E. The result of simultaneous
replacement of all occurrences of E’ by E’’ is denoted by E[E’/E’’] . They are also
considered partial substitutions – E[E’|E’’] represents replacing of one occurrence of E’
by E’’.

Because an unusual method of a substitution is given, there is not a problem with free
and bound variables. Every bounded variable is considered to be unique object and it
can’t be replaced by another variable with the same identifier e.g. ÷X a(X) ü ÷X b(X),
where we have two different X variables. Although it is simply solved, there still is the
question of substitution existential variables and terms containing them into universal
ones. It was found an solution, which will be discussed below, but for short it can
described as complete checking, if all the variables over its scope are assigned a value
e.g. We have ÷XöY p(X,Y)  and we can assign Y anywhere only if X has assigned a
value. When you examine it, you will find, that it is the right meaning of existential
variable. Existence of such Y is strictly depending on specific X.
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However, the main aspect of this thesis is lying on the resolution strategy, so one can
omit the problem of existence and localize to formulas with indiscriminated variables.

Now we briefly summarize the semantics of first-order logic. First it is introduced the
notion of Interpretation.

Interpretation M = <D, f1, .., fn, p1, .., pn>, where D is a non-empty set called universe,
fx represents functions, used in formulas, of the form f : Dp ô D and px represents
relations of predicates p ⊆ Dp . Further it is defined mapping e as variables evaluation
from the set of all variables into D. Value of term t in M with evaluation e – t[e] is:

1.   if t is variable X, then t[e] = e(X)
2.   if the term is of the form f(t1,..,tn), then t[e] = fI(t1[e],..,tn[e])
We define, that the formula F is true in M with evaluation e - M é F[e] as follows:

1. if F is a predicate of the form p(t1,..,tn), then M é F[e] iff (t1,..,tn) ∈ pM, pM is
appropriate relation from M.

2. if F is of the form ¬G then, M é F[e] iff M é G[e] doesn‘t hold.
3. if F is one of the form G ý H, G ü H, G ô H, G ó H, then M é F[e] depending on

the connective
          iff M é G[e] and M é H[e],
          iff M é G[e] or M é H[e], and so on for other connectives.

4. if F is of the form ÷X G, where G is a formula of the language, then M é F[e] iff for
every case m ∈ D : M é G[e[x/m]].

5. if F is of the form öX G, where G is a formula of the language, then M é F[e] iff
there is a case m ∈ D : M é G[e[x/m]].

Formula F is satisfiable in M, if for some e M é F[e] holds. F is satisfied (valid) in M -
M é F, if M é F[e] for every e. If the formula is satisfied in every interpretation, then it
is (logically) true.

2.2 Rewrite systems.

Next, the notion of rewrite systems is revised, which are well known for example from
the theory of formal languages. They will be used to describe rewriting of formulas in
simplification methods. It is defined Eσ, which represents applying the substitution σ to
formula E and it is called an instance of E. Eσ without variables is called ground
instance.

A rewrite system is a binary relation on formulas with metavariables, the elements,
which are called rewrite rules and written F ⇒ F’. Metavariables represents formulas
and that’s why complex formulas can be rewritten in the same way as atoms.
(Occasionally it is possible to consider two way rewrite rule F ⇔ F’, if a rewrite system
contains both F ⇒ F’ and F’ ⇒ F.) We denote by ⇒R the smallest rewrite relation that
contains all instances Fσ ⇒ F’σ of rule in R. F can be rewritten to F’ by R, if F ⇒R F’.

Here are some examples. Consider R containing De Morgan’s rules:
¬( A ý B) ⇒ (¬A ü ¬B) , ¬( A ü B) ⇒ (¬A ý ¬B) and  ¬¬A ⇒ A .
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Such a system allows us to rewrite every formula, containing only conjunctions,
disjunctions and negations, to the form, in which negation is put down to atoms.

For example:
¬ (a ý ¬(b ü c) ) ü ¬d ⇒ ( ¬ a ü ¬¬(b ü c)) ü ¬d ⇒ ( ¬ a ü (b ü c)) ü ¬d
So we can write that ¬ (a ý ¬(b ü c) ) ü ¬d ⇒R ( ¬ a ü (b ü c)) ü ¬d
Of course, it is only simplified definition, but there is no need to extend it.

2.3 Deductive systems and principles.

Let’s have a look to two deductive systems of first-order logic to see the advantages
and disadvantages of them. A detailed description of these systems can be found in
[Lu95] or [Ce81]. Deductive (Axiomatic) system consists of :
1. Language.
2. Axioms – source formulas (schemas) for inferring theorems.
3. Rules  - enabling to derive theorems from axioms.

Since it is a basic subject matter, it will not be described exact grammar of a system.
And by reason that we are interested in theorem proving from the set of special axioms,
we stay on discussing about the construction of formulas and inference rules.

First let’s stop with the Hilbert’s axiomatic system.
It has two allowed connectives – negation and implication. Although it is known that

negation and implication forms complete set of connectives i.e. every formula can be
rewritten to it, the lucidity of the proof is low. We can dispute about some special cases
such as Horn clauses: a1 ý .. ý an ô b. They are simply and clearly transformable into a1

ô( ..ô (an ô b)), but some simple cases with equivalence or negation in superior levels
like ¬(a ü b)  (⇒ ¬(¬a ô b)) have the meaning of the formula hardly recognizable. The
first transformation is quite close to Hilbert style: ” if a1  holds and ..  and an  holds then
b holds too” transforms to ”if a1 holds then if .. then if an hold then b holds too. The
second one is recondite ”it doesn’t hold a or b” (in the other words a doesn’t hold and b
doesn’t hold) transforms  to ” it doesn’t hold that if a doesn’t hold then b holds”. Please,
try to think about it and if the Hilbert representation seems clear to you, you have natural
turn in logic.

In the other hand the modus ponens rule looks smart, as we can understand it : ”if
holds the theorem of the form - if a then b and if a holds, then b must hold too.” The
axiom of specification ensures the possibility of  transformations of formulas into their
ground cases.

The second deductive system uses the best known principle, it is the resolution
deductive system with the resolution principle.  Language of the system accepts
formulas in conjunctive normal form. The resolution rule is notoriously known:

Consider two clauses of the form C1 ü l and C2 ü l’, where l and l’ are mutually
complementary. Then it can be deduced from the two above clauses the clause C1 ü C2 .
This type of a rule also has a reasonable sense. Let’s take the modus ponens rule and try
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to see it as a specialization of the resolution rule. A ô B could be rewritten to ¬A ü B
and that’s why the MP rule has the resolution form: ¬A ü B and A faces to B. The
resolution rule can be also considered in the implicative form and then it can viewed as
transitive rule A ü B , ¬B ü C ⇒ ¬A ô B , B ô C, which gives ¬A ô C that is A ü C. So
the complementary couple of atoms is redundant and can be omitted, if we construct new
implicative theorem. It consents to the clausal meaning. The two complementary atoms
in the conjunction have no gain, because there is no model depending only on these two
literals. So that’s why every model of  ( C1 ü l ) ý ( C2 ü l’ )  on C1 or C2 only. In the
other words ( C1 ü l ) and ( C2 ü l’ )  must be both true in such model, but then C1 must
be true if l is false or C2 must be true if l is true and no other case exists. This is a little
less clear explanation than an implicative form, I’m convinced.

When we considered these two systems, we didn’t speak about predicate logic
modifications of these systems deeply. It was a wilful omission. These extended versions
do not require a lot of effort to devise. It is the question of finding the right way to make
formulas ground and to handle existence. The first one is solved with unifiers (in
resolution based systems) or rules of specialization (in Hilbert system) and the second
one is solved by skolemization (transformation of existential variable to a new function
with superior variables as arguments) or implicitly by special functors (in Clausal Form
Logic).
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C h a p t e r  3

3 General Resolution.

3.1 Definitions and examples.

When we use refutational theorem proving, we deduce new formulas from given ones
and negated goal and search for a contradiction. The widely used inference rule is
resolution, originally introduced by Robinson. Now we present the results from [Ba97]
to show the power of general resolution that applies to general formulas. Because
hereinbefore we discussed that it is possible to stay on propositional case and then only
find suitable unification method to extend it, let’s start with propositional forms of rules
as presented in [Ba97].

For the purposes of mentioned article, there were introduced some notions. Inference
rule is an n-ary relation on expressions, where n Ý 1. The elements of such relation are
written as

E1 .. En-1
————

E

and called inferences. The expressions E1 .. En-1 are called premises, and E is the
conclusion, of the inference. An inference system is a collection of inference rules.

An inference is sound if the conclusion is a logical consequence of the premises, i.e.,
E1 .. En-1 é E . The following definition of resolution for formulas is sound.

Definition 0.1: General resolution.

F[G]  F‘[G]
—————————
F[G / ç] ü F’[G / ä]

It is the resolution on G and the conclusion of the inference is called resolvent of the
two premises. It is also called F the positive, F’ the negative premise, and G the resolved
subformula. As you see, the rule is highly general, since it allows resolving on whole
subformulas. Nevertheless, it will be used only resolution on atomic subformulas in this
thesis. The proof of the soundness of the rule is similar to clausal resolution rule proof.
Suppose the Interpretation I in which both premises are valid. In I, G is either true or
false. If G (¬G) is true in I, so is F[G / ä] (F[G / ç ]). From this point of view, it shows,
that the resolution rule is nothing more that assertion of the type: If we have two
formulas holding simultaneously and they contain the same formula, then we can deduce
that either the common subformula is true in this interpretation then the truthfulness is
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assured by the first formula or the second formula in the opposite case. Now we can
have a look to the question, how these facts influence the view of clausal resolution.

Consider following table showing various cases of resolution on the similar clauses.
Premise1 Premise2 Resolvent Simplified Comments

a ü b b ü c (a ü ç) ü (ä ü c) ä no sense
a ü ¬b b ü c (a ü ä) ü (ä ü c) ä redundant
a ü b ¬b ü c (a ü ç) ü (ç ü c) a ü c right resolution

a ü ¬b ¬b ü c (a ü ä) ü (ç ü c) ä no sense

As you see the order of premises is important! When you want to make a reasonable
resolvent you have to consider, which formula has to be taken as positive premise. In the
clausal case, it is trivial question, it is the atom without negation. As you find, the non-
clausal case will be also very simple.

Let’s have a look into an example of a non-clausal refutation.

Example 0.1

(1) a ý c ó b ý d   (axiom)

(2) a ý c   (axiom)

(3) ¬ [b ý d]   (axiom) – negated goal

(4) [a ý ç] ü [a ý ä]    (resolvent from (2),(2) on c) ⇒

       a

(5) [a ý ç] ü [a ý ä ó b ý d]  ((2),(1) on c) ⇒

 a ó b ý d

(6) ç ü [ä ó b ý d]  ((4),(5) on a) ⇒

 b ý d

(7) ç ý d ü ä ý d  ((6), (6) on a) ⇒

       d

(8) b ý ç ü b ý ä  ((6), (6) on b) ⇒

       b

(9) ç ü ¬ [ä ý d]   ((8),(6) on b) ⇒

¬ d

(10) ç ü ¬ä  ((7),(9) on d) ⇒ ç (refutation)

In the above example, you can see how simply it is to handle general formulas. Of
course, something of used manipulations was not discussed (how to select formulas
order to not produce redundant resolvents).  Simplification used above is also not an
essential need, but it was performed only for lucidity. It is eventual to retain the
resolvents unsimplified until it is completely empty of atoms and then to determine
logical value of the resolvent.
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There is an important case of  resolution called self-resolution describing resolution on
one formula.

Definition 0.2: General self-resolution.

F[G]
—————————

F[G / ç] ü F[G / ä]

This type of rule allows us to perform ”strange”, but in some cases efficient, way of
refutation the set of formulas as a whole formula. Again, consider the set from example
3.1.

Example 0.2

a ý c ó b ý d   (axiom)

a ý c   (axiom)

¬ [b ý d]   (axiom) – negated goal

Now we translate it to one formula:

(1) [a ý c ó b ý d]ý[a ý c]ý¬ [b ý d]

(2) [ç ý c ó b ý d]ý[ç ý c]ý¬ [b ý d] ü [ä ý c ó b ý d]ý[ä ý c]ý¬ [b ý d] (resolving

on a) ⇒

       [c ó b ý d]ý cý¬ [b ý d]

(3) [ç ó b ý d]ýç ý¬ [b ý d] ü [ä ó b ý d]ý ä ý¬ [b ý d]  (resolving on c) ⇒  [b ý

d]ý¬ [b ý d]

(4) [ç ý d]ý¬ [ç ý d] ü [ä ý d]ý¬ [ä ý d]   (resolving on b) ⇒

       dý¬ d

(5) çý¬ ç ü äý¬ ä (resolving on d) ⇒

      ç    (refutation)

This type of resolution has two advantages as you saw in the example. It leads to the
refutation quickly and without the need of deciding, if the resolvent will be redundant or
not. Unfortunately, the self-resolution is not suitable for huge formulas and non-
propositional instances.

3.2 Modifications.

The general resolution defined above is the base for refining other special cases. These
modified versions are used in the application, in order to attain the best solving time for
non-propositional cases. First modification resolves at one occurrence of the resolving
subformula in the negative premise.
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Definition 0.3: Partial General Resolution.

F[G]  F‘[G]
—————————
F[G / ç] ü F’[G | ä]

In the Partial resolution in the negative premise, all the resolved subformulas remain
with exception of one occurrence. Let’s consider an example generated automatically by
the GERDS application.

Example 0.3

Source formulas (axioms) :
F0 : ¬aý¬býcýdü¬aý¬bý¬cýd.
F1 (¬query) : ¬[¬aý¬b].
Deduction by partial resolution:
______________________________
R0 [F1&F0] : bü¬aý¬bý¬cýd. (resolves on a, but the second a from F0 retains

in R0)
R1 [R0&F0] : ¬aý¬cýdü¬aý¬bý¬cýd.
R2 [R1&F1] : b.
R3 [R2&F0] : ¬aý¬bý¬cýd.
[R3&R2] :  YES. (refutation)

In this example, you can see resolvents in simplified form and processed by factoring
rule. For the details about the results, see the section describing the programming of the
application.

Another modification resolves only one occurrence of the subformula G in both
premises.

Definition 0.4: Restricted General Resolution.

F[G]  F‘[G]
—————————
F[G | ç] ü F’[G | ä]

Example 0.4

Source formulas (axioms) :
F0 : ¬aý¬býcýdü¬aý¬bý¬cýd.
F1 (¬query) :  ¬[¬aý¬b].
______________________________
R0 [F1&F0] : bü¬aý¬bý¬cýd.
R1 [R0&F1] : b.
R2 [R1&F0] : ¬aý¬bý¬cýd.
R3 [R2&F1] : a.
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R4 [R3&F0] : ¬aý¬býcýd.
[R4&R3] :  YES.

Since the example is propositional, the next its general resolution deduction  is shorter.
F0 : ¬aý¬býcýdü¬aý¬bý¬cýd.
F1 (¬query) : ¬[¬aý¬b].
______________________________
R0 [F1&F0] : b.
[R0&F0] :  YES.

Are these refined rules sound? Consider the proof of the general resolution. Suppose
interpretation I, in which both premises are valid. Now if G is true in I, then F[G | ä] is
true in I, because substituted G has to be true in I, all other occurrences of G remains
unchanged and these occurrences still remains true in I and it is not significant how
many occurrences we substitute. Identically we can solve the contrary case (false). It can
be also understood as an simpler instance of general resolution.

3.3 Polarity-Based Restrictions.

When we apply the inference rule to some premises, it is a natural question, how the
resolvent arisen from them can influence the inference process. First, we have look in an
approach presented in [Ba97]. Since it is a simple way to avoid the combinatorial
explosion of resolvents, we will stop on it, though it is practically used another self-
devised technique. Initially the notion of polarity is given.

Definition 0.5: Polarity.

A subformula F’ in E[F’] is said to be positive (resp. negative) if E[F’/ä] (resp.
E[F’/ç) is a tautology. In that case F’ (resp. ¬F’) implies E.

For example, in a disjunction A ü B both A and B are positive, whereas in a
conjunction A ý B the two subformulas A and B are neither positive nor negative. A
subformula may occur both positively and negatively (e.g., A in A ü ¬A or A ó A), in
which case the formula is said to be a tautology. The determining whether an atom A is
positive or negative in E requires to check if E[A / ä] or E[A / ç]. It can be simply done
by these criteria:

Theorem 0.1: Polarity criteria.

1. F is a positive subformula of F.
2. If ¬G is a positive (resp. negative) subformula of F, then G is a negative (resp.

positive) subformula of F.
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3. If G ü H is a positive subformula of F, then G and H are both positive subformulas of
F.

4. If G ý H is a negative subformula of F, then G and H are both negative subformulas
of F.

5. If G ô H is a positive subformula of F, then G is a negative subformula and H is a
positive subformula of F.

6. If G ô ç is a negative subformula of F, then G is a positive subformula of F.

The proof of the theorem is trivial and it is established on the notoriously known sense
of logical connectives. Now it is possible to state two restrictions based on above.

Theorem 0.2: Redundancy of general resolution.

An inference by general resolution is redundant if the negative premise contains a
positive occurrence of the resolved atom or if the positive premise contains a negative
occurrence of the resolved atom.

Proof:  If the negative premise contains a positive occurrence of the resolved atom A,
then the resolvent appears as follows: F[A / ç] ü F’[A / ä] ⇒ F[A / ç] ü  ä ⇒ ä. If the
positive premise contains a negative occurrence of the resolved atom A, then the
resolvent appears as follows: F[A / ç] ü F’[A / ä] ⇒ ä ü F’[A / ç] ⇒ ä. In both these
instances resolvents degenerate to tautologies. In the refutational proof, such cases are
improductive, i.e. from these resolvents can’t be deduced false.

Theorem 0.3: Redundancy of general self-resolution.

An inference by general self-resolution is redundant if the resolved atom occurs
positively or negatively in the premise.

Proof:  If the premise contains a positive occurrence of the resolved atom A, then the
resolvent appears as follows: F[A / ç] ü F[A / ä] ⇒ F[A / ç] ü  ä ⇒ ä. If the premise
contains a negative occurrence of the resolved atom A, then the resolvent appears as
follows: F[A / ç] ü F[A / ä] ⇒ ä ü F[A / ç] ⇒ ä. In both these instances resolvents
degenerate to tautologies. In the refutational proof, such cases are improductive, i.e.
from these resolvents can’t be deduced false.

Example 0.5

Let’s consider two premises:
1. ¬A – A is negative.
2. A ý B – A is neither positive nor negative.

The resolvent of 1. and 2. is ¬ç ü [ä ý B] ⇒ ä.
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3.4 Extended Polarity.

As it was noticed above, it is important to decide which of the two premises to be
taken as positive. It has been developed a simple way to decide it during making of this
thesis. It is an extended notion of polarity, which is similar to definition of Murray
(1982), but the usage is different here.

Definition 0.6: Extended Polarity.

The subformula F is said to be positive (resp. negative) in E if after the transformation
of E to conjunction-normal form, where F is treated as an atom, F would not be negated
(would be negated).

It is clear, that every subformula has some polarity and if some of its superior
connectives is equivalence, then it is both positive and negative. Following theorem
gives algorithm for determination of polarity.

Theorem 0.4: Extended Polarity criteria.

1. F is a positive subformula of F.
2. If ¬G is a positive (resp. negative) subformula of F, then G is a negative (resp.

positive) subformula of F.
3. If G ü H is a positive (resp. negative) subformula of F, then G and H are both

positive (resp. negative) subformulas of F.
4. If G ý H is a positive (resp. negative) subformula of F, then G and H are both

positive (resp. negative) subformulas of F.
5. If G ô H is a positive (resp. negative) subformula of F, then G is a negative (resp.

positive) subformula and H is a positive (resp. negative)  subformula of F.
6. If G ó H is a subformula of F, then every subformula of G and H is  positive and

negative subformula of F.

Then it is possible to set the formula with positive polarity as the positive premise.
This solves the problem of wrong order of premises i.e. it avoids redundant resolvents.

Example 0.6

Source formulas (axioms) :
F0 : aüb.
F1 : ¬büc.
F2 (¬query) :  ¬[aüc].
______________________________
R0 [F2&F2] : ¬c.
R1 [F2&F1] : ¬b.
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R2 [F2&F0] : b.
R3 [F1&F2] : ¬b.
R4 [F1&F0] : cüa. ( c as negative premise)
R5 [F0&F2] : b.
R6 [F0&F1] : aüc. ( a as positive premise)
[R5&R3] :  YES.

R4 was created as resolvent of F1 and F0 where F1 was treated as a negative premise:
(¬ä ü c) ü (a ü ç).

3.5 Simplification.

In the above subsections, it was applied the obvious notion of  simplification for
formulas. Although it is the clear process, the rewrite rules, which are the sources for the
simplification, are stated here.

At the beginning, we mention the rules for eliminating logical constants from
conjunctions, disjunctions and negations:

A ý ç  ⇒  ç       ç ý A  ⇒  ç
A ý ä  ⇒  A       ä ý A  ⇒  A
A ü ç  ⇒  A       ç ü A  ⇒  A
A ü ä  ⇒  ä       ä ü A  ⇒  ä

¬ç  ⇒  ä       ¬ä  ⇒  ç

For other connectives, there are similar rules:
A ô ç  ⇒  ¬A       ç ô A  ⇒  ä
A ô ä  ⇒  ä       ä ô A  ⇒  A

A ó ç  ⇒  ¬A       ç ó A  ⇒  ¬A
A ó ä  ⇒  A       ä ó A  ⇒  A

Another important rule reducing the length of a formula is the factoring rule. The
clausal form of the rule could be presented as follows:

a1 ü  .. ü an ü a ü a
—————————

a1 ü  .. ü an ü a
where ax and a are arbitrary atoms and the order of the atoms is insignificant.
This rule can be used also in the general case (general formulas) as a partial

simplification technique.
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3.6 Lifting of Inferences.

The general resolution presented was based on the propositional calculus. The lifting
of resolution inferences to formulas with indiscriminated variables into universal and
existential ones follows below. For instance, general resolution.

F[G]  F‘[G]
—————————
F[G / ç] ü F’[G / ä]

is lifted to
F[G1,...,Gk]   F‘[G’1,...,G’n]

————————————
Fσ[G / ç] ü F’σ[G / ä]

where σ is the most general unifier (mgu) of the atoms G1,...,Gk , G’1,...,G’n , G = G1σ,
and in contrast with [Ba97] it is not supposed renaming of the variables for the purposes
of the application. We can suppose, that every variable occurring in a quantifier has its
own identifier (for example address), which is assigned to variable occurrence).
Technical details can be found in the section describing the programming of the
application.

For the second open problem it has been devised the extension of mgu. Basically, it
functions as follows:

Definition 0.7: Most general unifier.

1. When both the terms to unify are of the type string, number or functor without
parameters then they are unifiable iff its type is the same (e.g. string and string and
so on) and their identifiers match.

2. When one of the terms is a variable then it is unifiable with the second one iff
Variable Unification Restriction holds.

3. If  both the terms are of the type functor with arguments, then they are unifiable iff
all the arguments are unifiable by the same procedure from the point 1. ( The order
of unification to be mentioned with respect to unification of variables, so it tries to
unify the atom until it expands the mgu from the first ununified term.)

4. There is no other possibility to unify two terms, except that two object of unification
are the same physically (e.g. During the a self-resolution the occurrence of two
variables points to the same variable).

The following discrimination of existential and universal variables is needed for the
Variable Unification Restriction definition:

When we speak about existential and universal variables, it is related to its notion with
respect to the scope of the whole formula e.g. In öX÷Y p(X,Y) ô a(Z) Y variable to be
treated as an existential variable, because the p(X,Y) subformula has negative extended
polarity. It means, if we translate the formula into clausal form, Y would transform into
existential variable. We define the discrimination as follows.



17

The discrimination of variables:
Variable quantified by existential (resp. universal) quantifier is said to be globally

existential (resp. globally universal), if the extended polarity of the subformula, which
owns the quantifier (the quantifier prefixes it), is positive and it is said to be globally
universal (resp. globally existential), if the the extended polarity is negative. If the
polarity is both negative and positive, the variable is both globally existential and
universal.

Variable Unification Restriction holds if one of the conditions 1. and 2. is satisfied:
1. One of the terms is a globally universal variable and the second one does not contain

a globally existential variable. (non-existential case)
2. One of the terms is a globally universal variable, the second one contains a globally

existential variable, and every variable over the scope of the existential one has
assigned any value.

Remark: The above definition determines, that two globally existential variables can’t be
unified, that is clear.

Let’s have a look in an example of well-known facts:
It doesn’t hold ÷XöY p(X, Y) é öY÷X p(X,Y) and
it holds öY÷X p(X, Y) é ÷XöY p(X,Y).

( General Y for all X can’t be deduced from Y specific for X but contrary it holds. )

Example 0.7

Source formulas (axioms) :
F0 : ÷XöY p(X, Y).
F1 (¬query) : ÷YöX ¬p(X, Y).
______________________________
[F1&F1] :  çü ä.
[F0&F0] :  çü ä.

In this sample F0 and F1 can’t resolve, since  ÷XöY p(X, Y) and ÷YöX ¬p(X, Y) have
no unifier. It is impossible to substitute universal X from F0 with X from F1, because X
from F1 is existential and its superior variable Y is not assigned with a value. Counter-
example with variable Y is the same instance and it is not allowed to substitute anything
into an existential variable.

However, in the next example an unifier exists.

Example 0.8

Source formulas (axioms) :
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F0 : öY÷X p(X, Y).
F1 (¬query) :  öX÷Y ¬p(X, Y).
______________________________
[F1&F0] :  YES.
[F0&F1] :  YES.

Here the universal variable X from F0 could be assigned with existential Y because Y
in F1 has no superior variable. Then the universal Y from F1 can be substituted by
existential Y from F0 for the same reason.
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C h a p t e r  4

4 Resolution strategies.

4.1 Refutation.

As it has been written, the theorem proving method, which is used, is called
refutational proof. Firstly the goal is negated, it is added to the set of axioms and then
one searches for false formula using inference rules. Completeness of the refutational
resolution proof is almost done by the proof for clausal instance presented in [Lu95]. It
only should be replaced the conception of clauses by general formulas and consider the
proof of soundness of the general resolution rule.

In next sections, several types of resolution strategies are presented, which may avoid
generating huge amount of resolvents. In the beginning breadth-first and depth-first
search are recalled, then important characteristics of linear search, filtration strategy and
support-set strategy are summarized, in the end it is presented self-devised algorithm to
reduce redundancy. Very good source of information about these strategies can be found
in [Ma93].

4.2 State Space Search.

Breadth-first search lies in generating all resolvents, which are possible to generate
from the source set of formulas and they are called first-order resolvents. After it
continues resolution of  all the resolvents of the second order, which are resolved from at
least one premise of first-order resolvents and so on. We can see such proof here:

Example 0.1

Source formulas (axioms) :
F0 : [a(X)ýg(X)ôb(X)].
F1 : [b(X)ýg(X)ôc(X)].
F2 : a(a).
F3 : g(a).
F4 (¬query) :   ¬c(Y).
______________________________
R0 [F4&F1] : ¬[b(Y)ýg(Y)].
R1 [F3&F1] : [b(a)ôc(a)].
R2 [F3&F0] : [a(a)ôb(a)].
R3 [F2&F0] : [g(a)ôb(a)].
R4 [F1&F0] : [[g(X)ôc(X)]ü¬[a(X)ýg(X)]].
R5 [R4&F4] : [¬g(X)ü¬[a(X)ýg(X)]].
R6 [R4&F3] : [c(a)ü¬a(a)].
R7 [R3&F3] :  b(a).
R8 [R3&R1] : [¬g(a)üc(a)].
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R9 [R1&F4] :  ¬b(a).
R10 [R1&R7] :  c(a).
R11 [R0&R7] :  ¬g(a).
[R11&F3] :  YES.
Y = a.
[R10&F4] :  YES.
Y = a.
[R9&R7] :  YES.
Y = a.
R12 [R9&R2] :  ¬a(a).
[R7&R9] :  YES.
Y = a.
[R12&F2] :  YES.
Y = a.

Figure 4.1. shows how the resolvents were obtained. You can see that there are four
levels of resolvents.

Depth-first search generates resolvent from two premises of source set and then
applies resolution on the result and other formula (resolvent or axiom) and then
recursively until no resolvent can be generated. Then the algorithm returns to previous
level (performs backtracking) and continues with another possible resolvent. This type
of strategy is not complete i.e. it could stay in an infinite loop for inconsistent set and
then no refutation is found, but it can lead to a false formula quicker than with breadth-
first search. Next example is proved using linear strategy, which is an instance of depth-
first search.

Example 0.2

Source formulas (axioms) :
F0 : [a(X)ýg(X)ôb(X)].
F1 : [b(X)ýg(X)ôc(X)].
F2 : a(a).
F3 : g(a).
F4 (¬query) :   ¬c(Y).
________________________
R0 [F4&F1] : ¬[b(Y)ýg(Y)].
R1 [R0&F3] :  ¬b(a).
R2 [R1&F0] : ¬[a(a)ýg(a)].
R3 [R2&F3] :  ¬a(a).
[R3&F2] :  YES.
Y = a.
R4 [R2&F2] :  ¬g(a).
[R4&F3] :  YES.
Y = a.
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Figure 4.2. illustrate the simplicity of linear proof in comparison to previous example.

4.3 Common strategies.

Common strategies to reduce the set of resolvents include the wide-used  Linear
strategy. Example 4.2 was produced using this type of strategy. Linear strategy utilizes
last generated clause as one of the premises. Linear strategies preserve the sequence of a
proof. It is a base technique for logic programming. Other strategies  are primarily
intended for breadth-first search, but can be also invoked in depth-first search. Already
mentioned disadvantage implies from its incompleteness. In the application, we use two
different notions of linear search – linear, which generates resolvents only from goal and
modified linear search, which is not restricted only to goal.

The Support Set Strategy is simple, but also incomplete strategy. It rises from the fact
that there is an consistent subset in every source set of formulas. It is obvious that the
resolvents from this subset can’t lead to false formula. That’s why this strategy allows to
resolve such premises, from which one is the goal or its descendant. Let’s again have a
look in an example for the same set of formulas as above.

Example 0.3

R0 [F4&F1] : ¬[b(Y)ýg(Y)].
R1 [R0&F3] :  ¬b(a).
R2 [R0&F0] : [¬g(Y)ü¬[a(Y)ýg(Y)]].
R3 [R2&F3] :  ¬a(a).
R4 [R2&F2] :  ¬g(a).
[R4&F3] :  YES.
Y = a.
[R3&F2] :  YES.
Y = a.

Support set strategy in this example is far more efficient than the unoptimized search.

The filtration strategy is the next resolvent reducing method. Two premises A,B can
be resolved only if one of these conditions holds:
1. A or B is from the source set of formulas
2. A is a descendant of B or B is descendant of A.

( Descendant notion refers to the resolution tree.)
It is complete strategy, although it is not so efficient as last strategy.

Example 0.4

With filtration:
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Source formulas (axioms) :
F0 : aôbýg.
F1 : býgôc.
F2 (¬query) :  ¬[aôc].
__________________________
R0 [F2&F2] : ¬c.
R1 [F2&F1] : ¬[býg].
R2 [F2&F0] : býg.
R3 [F1&F0] : [gôc]ü¬a.
R4 [R3&F2] : ¬gü¬a.
R5 [R3&F0] : cü¬a.
R6 [R2&F1] : gôc.
R7 [R2&R6] : c.
[R7&F2] :  YES.

4.4 Check of consequence.

One of the most effective strategies is Check of consequence. It means the check if the
resolvent is not consequence of some source formula or resolvent. Then it is reasonable
to not include the resolvent into the set of resolvents, because if the refutation can be
deduced from it, then so it can be deduced from the older resolvent, which it imply of.
The clausal case is trivial. Consider these two clauses p(X,a) and p(b,a) ü r(Y). It is clear
that the second clause implies from the first. It has been devised an algorithm for the
non-clausal case based on self-resolution in this thesis. This algorithm highly reduces
solving time, as it was proved in the application. Before it was introduced into the
inference core, proofs were useless, due to their complexity. The method is relatively
slow, nevertheless the gain is high. If we want to express it simply: ”Everything is better
than to accept redundant resolvent”. Probably it is the best result of the thesis. The
foundations of the algorithm are described now and details will be given on the practical
sections of this thesis.

The idea is quite simple and can be expressed in the following definition and theorem.

Definition 0.1   Redundant formula by consequence.

Formula F is redundant by consequence if there is a formula G in the set of resolvents
or source formulas, where G ô F.

Theorem 0.1 Check of consequence.

Formula F is a consequence of G if it is continually performed self-resolution on the
formula ¬[G ô F] until it has logical value and this logical value is false.

Proof: We can refer to a proof of completeness of the refutational resolution. When we
have an inconsistent set of formulas, it is assured by the completeness that we reach a
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false formula . And since one formula forms a set and the self-resolution is a special case
of general resolution, we can say that if  ¬[G ô F] is inconsistent then we prove it by
self-resolution i.e. we prove that G ô F is a tautology.

Example 0.5

Consider the formula [a ü b] ý [¬b ü c] and we prove that [a ü c]  is a consequence of
it.
(1) ¬[[aüb]ý[¬büc]ôaüc]

(2) ¬[[ çüb]ý[¬büc]ô çüb]ü¬[[ äüb]ý[¬büc]ô äüb]  ⇒  ç

It was used the factoring rule for the simplification on the line (2).
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C h a p t e r  5

5 Algorithms and programming interface.

5.1 Programming tools.

It was exploited excellent development environment for the production of the
application performing theoretically presented manipulations in the previous chapters.
The Borland Delphi 2 with the Object Pascal language is thought as this tool offering
many objective extensions to standard Pascal. This language is utilized to present the
algorithms for the inference techniques. It is supposed that the reader has an essential
knowledge of Pascal. First we start with the data structures, the construction of parse
trees and then we focus to resolution methods. To get an introduction to Pascal language
see [Ji88] or electronic help of Delphi 2. There is a very good source of information
about data structures such as stack in [Be71].

5.2 Data structures.

The General resolution deductive system has the frame for every logic program,
which may contain source formulas and goals. It is divided to two windows – for the
program and for results of inference. Whole frame is represented by TEditForm class
and it encapsulates Editor for program and Output for results, both TMemo objects. We
omit these objects, since they have no meaning for inference process and they are only
visual components. We start with one member of TEditForm representing internally the
logic program. It is the TPLProgram class.

TPLProgram = class
  Owner : TEditForm;
  ListF : TList;  { List of source formulas and queries. }
  ListR : TList;  { List of resolvents. }
  MGUn1  : TList;  { Temporal store for unification results. }
  Err : ErrorType; { Temporal store for compilation error. }
  Localpos : Longint; { Position of an error. }
  Strategy : TObject; { Type of the resolution strategy. }
  constructor Create(ow : TEditForm);
  destructor Destroy; override;
  procedure Generate; { Generates set of compiled formulas. }
  procedure XComp(var infix : PChar; var F : TFALFormula);
    { Compilation core. }
  procedure ClearFormulas;
  procedure PrintFormulas;
  procedure ClearResolvents;
  procedure Consist; { Encapsulates consistency of the ListF checking. }
end;

Here is visible the structure of the class. Key objects are ListF and ListR. They contain
source formulas objects (resp. resolvents) represented by a parse tree of the class
TFALFormula.
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TFALFormula = class
   Cont : TSub; { Contents of the formula. }
   Owner : TPLProgram;
   Parent1 : TFALFormula;
   Parent2 : TFALFormula;
     { Parents of the formula in the meaning of resolution rule. }
   MF, ML : TAtom; { First and last atom. }
   Support : boolean;  { Indicator for the Support Set Strategy. }
   ...
end;

Cont stores a reference to a subformula of the class TSub.

TSub = class
    Neg : boolean;  { Flag of logical negation. }
    Ev : shortint;  { Indicator of the subformula logical value. }
    Pol : shortint; { Stores the polarity of the node. }
    L : TSub;
    R : TSub;         { Left and right subtree. }
    Ac : TObject;    { Parent object (logical connective). }
    Q : TQuant;     { Quantifier containing variables at this level. }
    ...
end;

TSub is the base class for other descendants – TCon, TDis, TImp, TEqv and TAtom.
They represent particular logical connectives. Every subformula has a reference to left
and right subformulas. Ev may have three values: -1 – false, 1 – true, 0 – subformula is
not evaluated. Ac stores pointer to the superior node ( the root of a formula points to
TFALFormula object). TAtom has special member indeed.

TAtom = class(TSub)
      Id : TId; { Identifier of a formula. }
      ...
end;

Id points to a Id term – predicate name. L and R inherited from the TSub object have
different function here. It points to the next atom object (in the infix notation) instead of
descendant logical object (TAtom has no logical descendant). TQuant class is a
descendant of TList class. It contains list of variables quantified in a quantifier or
additionally quantified free variables. TId has several descendants:

TVariable = class(TId)
  Id : TId; { Substitution of the variable by an expression. }
  Ex : char;  { Indicates quantification of a variable. }
  New : TVariable; { Temporal pointer used in copying of the variable. }
  NewId : TId; { Temporal pointer determining substitution. }
  Used : boolean; { Flag of variable usage in expressions. }
  UnSub : boolean; { Flag determining substitution. }
  Ap : Boolean; { Used during unification. }
  Master : TSub; { Master subformula of the variable. }
  Watch : TVariable; { Link to goal requested source variable. }
  Name : string; { Logical name of the variable.}
end;

TVariable is the class representing certain variable quantified with a quantifier or
quantified implicitly as a free variable. Id refers to a term substituted to the variable. Ex
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may obtain two values: cforall – constant of universal quantifier character ÷ or cexists –
existential character ö. New is used, when a new copy of a formula is created. It points
to newly created variable. NewId points to a term, which has to be substituted and from
this term is created a copy assigned later to New variable. Master refers to the
subformula, which quantifies the variable. Watch is the observing reference to the
variable from the goal of the logic program. It is created, in order to show the assignment
of  variables, which led to a contradiction. After direct compilation, all occurrences of a
variable in terms are not assigned to one object of the class TVariable, but to another
descendant of  TId – TVar. TVar consist of Name only and serves as temporal class,
before the TVariable is assigned to an occurrence.

Further TId descendants are: TStrLit, TReal, TInteger, TFunctor and TFunctora,
which represent string, real number, integer, functor with arguments and functor without
arguments.

Now let’s see into some illustrations of parse trees of  formulas.
Consider this simple formula:

Example 0.1

÷X p(X,30) ý öY r("string",Y) ô q(const,X).
Direct compilation:

The example of the object hierarchy of the parse tree shows, how the variables are
assigned to particular occurrences of them. After variable assignment there is a new
quantifier, which quantifies former free variable X. It was created in the root of the tree,
since free variables have global scope.

5.3 Parser.

Last subsection analyzed the data structures of formulas and indicated that the parse
tree plays the main role in the practical use of general resolution. The editor of the logic
program source is accessible as a null-terminated string and the main parsing procedure
TPLProgram.XComp uses this string.

procedure TPLProgram.XComp;
 begin
  ...
  StackInit;
  cpos := 0; dontcare := 0;Error := OK;Getchar;
  if (ch = '?')and(infix[cpos] = '-') then
  begin
   query := true;GetCharI; GetChar;
  end;
  if Error = OK then Eqv;  { Go to parser / generator. }
  ...
  if Error = endcomp then
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   begin
      Error := OK;sub := TSub(VPSStack^.Node);dispose(VPSStack);
      if query then F := TQuery.Create(self)
      else F := TFALFormula.Create(self);
      F.Cont := sub;sub.Ac := F;F.MF := FirstMol;F.ML := LastMol;
      F.PostComp;GetChar;
      if ch <> #0 then LocalPos := cpos-1 else LocalPos := cpos;
   end
  else
     begin
       if VPSStack <> nil then DestroyNode(VPSStack^.node);
      DisposeStack;LocalPos := cpos-inum-1;
     end;
 err := error;
 case error of
  ...
 end;
end;

Let’s specify particular steps of the algorithm. At the beginning there are some
initializations – StackInit initializes the stack, where objects as atoms and terms are
stored until they are assigned to their parent objects, parse variable has reference to logic
program string, LastMol and FirstMol are used for right assignment of first and last atom
of a formula after successful compilation. GetChar (resp. GetCharI ) gets into ch variable
one lexical element from the editor ignoring blank characters (resp. inclusive blank
chars). Then it decides if the formula is a goal. Then follows recursive parsing, which we
will discuss in detail hereinafter. At the end the procedure checks for errors during
compilation and if everything is right  then the root of the parse tree is extracted from the
stack and the appropriate TFALFormula structure is generated else the error message
occurs.

Let’s see the recursive parse algorithm (well explained in [Dv92]). Recursive parsing
lies on programming procedures exactly by the Backus-Naur form, where every non-
terminal has its own procedure and there is GetChar calling before a terminal and
particular procedure calling for a non-terminal inside the procedure. Iteration and branch
on condition are solved identically in BNF and algorithmical level. Of course, the
requirement of LL(k) language defined by BNF is required i.e. decision which case to
choose in a non-deterministic instance must be found by looking ahead k characters. In
this instance, the LL(1) language is presented in the second chapter.

procedure Eqv;
begin
 if Error = OK then
   begin
     Imp;
     while (ch = ceqv)and(error = OK) do
       begin
        Getchar;
        Imp;
        if error = OK then AssignSub(TEqv.Create);
       end;
   end;
end;
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 Here it is presented the procedure Eqv related to <Formula> non-terminal (expresses
equivalence level with the lowest priority). It dives to Imp non-terminal procedure first
and then continues zero or more times with the same non-terminal depending if some
equivalence character is found. Every such equivalence is created and it has assigned L
and R descendant by AssignSub procedure by the following way.

procedure AssignSub(Ob : TObject);   { Assigns formula its subtrees. }
begin
  Put(Ob);pom := Cut;
  TSub(pom^.node).R := TSub(VPSStack^.node);
  TSub(VPSStack^.node).Ac := pom^.node;
  garbage := Cut;dispose(garbage);
  TSub(pom^.node).L := TSub(VPSStack^.node);
  TSub(VPSStack^.node).Ac := pom^.node;
  garbage := Cut;dispose(garbage);SInsert(pom);
end;

Put procedure creates a stack object, which encapsulates every object’s life in the
stack and enables the logical object to be bounded in the stack with the succeeding
object. Then it pops from stack with Cut procedure and it is stored in the pom variable. It
is assigned the first object in the stack into the R pointer of pom object. Then the same is
done with the second object. They are simultaneously removed from the stack since they
are now elements of the parse tree. Resulting object is then put in the stack and waits
until it is attached to its superior node.

The procedure ICE related to <Subformula> fully demonstrates the recursive
character of such algorithm.

procedure ICE;
begin
if error = OK then
 begin
  case ch of
   cneg : begin
         Getchar; ICE;NegateF;
       end;
   cforall, cexists :
        begin
          Quant; ICE;
          if Error = OK then AssignQtoSub;
        end;
   'a'..'z', 'A'..'Z', '_', '0'..'9', '"', '(', '+', '-' :
       begin
         Atom;
       end;
    '[' : begin
         GetChar; Eqv;
         if (ch <> ']')and(error = OK) then Error := missbra;
         Getchar;
       end
   else if error = OK then Error := missexp;
   end;
 end;
end;
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The cneg case refers to a negated subformula and it recursively calls the same
procedure. The second case of quantifiers does the similar work.

The third case handles an occurrence of atom and it remains to solve the case of
subformula enclosed in brackets. It is obvious that the other parser procedures are
omitted, because they use the same principle.

5.4 Postprocessing.

There is still something undone after successful compilation. It is inevitable to assign
variables instead of TVar objects for every occurrence of a variable, it is also needed to
evaluate the extended polarity of nodes and it is useful to perform evaluation of
constants connected by infix operators. These operations are encapsulated in the next
procedure.

procedure TFALFormula.PostComp;
var TT1 : TAtom;
begin
  LastSub := nil;
  Dive('4', VarReAssign, [nil]); { Assignment of variables. }
  Dive('3', EvalBuilt, [nil]);  { Evaluation of infix operators. }
  Cont.EvalPol;
end;

Dive procedure has three arguments. It is the general procedure, which helps to
browse parse tree without the need to write the same code for different actions. The first
argument determines the manner of browsing inside the tree e.g. ‘3’ – postorder (first go
to subtrees and then performs a operation on the node, details in [Be71]). The second
argument sends a reference to the procedure, which does the actions. Last argument may
send some additional information in the form of variant array i.e. special item of Object
Pascal language, which allows to work with variable number of arguments of
changeable types. The executive procedure (second par.) must have this form:

TDoProc =
  function(o : TObject; var tp : char; argums : array of const) : TObject;
     { Template for functions used as executive procedures
       for the recursive browsing of the syntactical tree.(ST) }

It accepts reference o to the current object, the currently valid mode of browsing and
already mentioned variant arguments and it returns reference to an object, which will
replace the assignment of the current  node if the modification is needed.

Before we continue with the postprocessing, let’s have a look into an example of the
implementation of the Dive procedure:

function TSub.Dive;
var i : longint;
begin
  case tp of
  '1' :
    begin
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      Proc(self, tp, argums);
      if Q <> nil then  Q.Dive(tp, proc, argums);
      if L <> nil then  L.Dive(tp, proc, argums);
      if R <> nil then  R.Dive(tp, proc, argums);
    end;
  ...
    'r' :
    begin
      Result := TSub(ClassType.Create);
      Result.Neg := Neg; Result.Ev := Ev;Result.Pol := Pol;
      Result.Ac := Ancs; LastSub := Result;
      if Q <> nil then
      begin
        Result.Q := Q.Dive(tp, proc, argums);
        if Result.Q <> nil then
        with Result.Q do
        for i := 0 to Count-1 do
          TVariable(Items[i]).Master := Result;
      end;
      Ancs := Result; LastSub := Result;
      if L <> nil then Result.L := L.Dive(tp, proc, argums);
      Ancs := Result; LastSub := Result;
      if R <> nil then Result.R := R.Dive(tp, proc, argums);
      LastSub := Result;
      if Q <> nil then Q.Dive('q', proc, argums);
    end;
    ...
end;

Of course, a lot of code was cut short, but there still remains illustrative sample. The
‘1’ mode means preorder type of browsing i.e. First perform Proc (executive procedure)
on the node and then go recursively into descendant trees. The ‘r’ mode expresses the
action of copying the tree and as you see, the result variable assures the right assignment
of new object members.

If we return to the beginning of this subsection, we can continue with explanation of
the PostComp procedure.

{ Procedure for assignment of complex variable object for every occurrence of
  the variable. }
function VarReAssign(o1 : TObject; var tp : char; argums : array of const)
                                                                 : TObject;
var S1 : TSub; i : integer; O : TVariable;
begin
  Result := o1;
  if o1 is TSub then
  ...
  else if (o1 is TVar) then
  begin
  S1 := LastSub; O := nil;
  if S1.Q <> nil then
    with S1.Q do
    begin
      for i := 0 to Count-1 do      { Searches for right TVariable object. }
       if TVariable(Items[i]).Name = TVar(o1).Id
       then O:=TVariable(Items[i]);
    end;
    while not(S1.Ac is TFALFormula)and(O = nil) do
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    begin
      S1 := TSub(S1.Ac);
      if S1.Q <> nil then
      with S1.Q do
      begin
        for i := 0 to Count-1 do
          if TVariable(Items[i]).Name = TVar(o1).Id then
                                      O := TVariable(Items[i]);
      end;
    end;
    if O <> nil then
    begin
      o1.Free;
    end
    else
    begin
      if S1.Q = nil then S1.Q := TQuant.Create;
      O := TVariable.Create(TVar(o1));
      O.Ap := false;
      O.Master := S1;    { If not found, creates new variable on  }
      o1.Free;           {  the top level.                        }
      O.Ex := cforall;S1.Q.Add(O);
    end;
    Result := O;
  end;
end;

It is important factor, which subformula is the nearest superior node in this executive
procedure. It can be found from the LastSub variable. From this points it starts to search
for the nearest variable, which match the name of the occurrence. It continues to the
parent node and tries to match the name, but if it doesn’t succeed until the root is
reached, it creates a new variable and appends it into the root quantifier. It set up the
Master property of the variable, which points to the subformula, which includes the
quantifier encapsulating the variable.

  { Evaluates infix operators. }
function EvalBuilt(o : TObject; var tp : char; argums : array of const)
                                                              : TObject;
var r : extended; N0, N1 : TObject; fc : char;
begin
  Result := o;
  if o is TFunctor then
  begin
    if (TFunctor(o).Functor[1] in infixoper) then
    begin
     N0 := (TFunctor(o).Params.Items[0]);
     N1 := (TFunctor(o).Params.Items[1]);
     while N0 is TVariable do
        N0 := TVariable(N0).Id;
     while N1 is TVariable do
        N1 := TVariable(N1).Id;
     if (N0 is TNumber)and(N1 is TNumber) then
     begin
       try
       case TFunctor(o).Functor[1] of
       '+' : r := TNumber(N0).GetNumber +
              TNumber(N1).GetNumber;
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       '-' : r := TNumber(N0).GetNumber -
              TNumber(N1).GetNumber;
       '*' : r := TNumber(N0).GetNumber *
              TNumber(N1).GetNumber;
       '/' : r := TNumber(N0).GetNumber /
              TNumber(N1).GetNumber;
       end;
       except
         on EMathError do Exit;
       end;
       TFunctor(o).RFree;
       Result := TReal.CreateN(r);
     end;
    end;
  end;
end;

If the functor object is the current, it checks for infix operator and if both first and
second argument is a number. In that case the functor is replaced by the resulting
number object.

procedure TSub.EvalPol;
begin
  if Ac is TFALFormula then if Neg then Pol := -1 else Pol := 1
  else
  begin
    if ((Ac is TImp)and(TSub(Ac).L = self)) then Pol := -TSub(Ac).Pol
    else Pol := TSub(Ac).Pol;
    if Neg then Pol := -Pol;
  end;
  if (self is TEqv)or(self is TAtom) then Exit
  else { Equivalence causes zero priority. }
  begin
    if L <> nil then L.EvalPol;
    if R <> nil then R.EvalPol;
  end;
end;

The above procedure evaluates the (extended) polarity of the node. It utilizes the
criteria from theorem 3.4. The first line of the procedure checks if it is the root of the
parse tree and if so then it assigns polarity depending on the neg flag of the subformula.
Then it copies the polarity from the superior node or if it is an antecedent of an
implication, it copies the inverse value.

5.5 Theorem proving.

When one calls any type of proof of some source set of formulas with goals, the
Generate procedure of TPLProgram object is called.

procedure TPLProgram.Generate;
var p1, p2 : longint; temp : PChar; Form, Form2 : TFALFormula;
    t1, t2 : double; infstr : string;
begin
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  p1 := 0; p2 := 0; temp := PChar(Owner.UpdateCont);
  CurProg := self;ClearFormulas;
  ...
  while temp[0] <> #0  do         { Compiles until end is founded. }
  begin
    Application.ProcessMessages;if stopf then Exit;
    Form := nil;XComp(temp, Form);
    if Form <> nil then
    begin
      Form.Simplify;
      if Form is TQuery then
      begin
        TQuery(Form).EvalQuery;   { Evals if it is query. }
      end
        else ListF.Add(Form);     { Or adds to ListF. }
      p1 := LocalPos;temp := @(temp[p1]);p2 := p2+p1;
    end
    else begin
      Owner.Editor.SelStart := p2+LocalPos+1;
      ClearFormulas; temp := PChar('');
    end;
  end;
  ...
end;

The temp variable points to the editor’s text and it is passed through until no formula
is generated. It may raise both by reaching the end of logic program or by a parse error.
The XComp procedure returns the position directly after dot and blank characters
terminating last formula. Source formulas are added to ListF container. If the generated
formula is a query, then Generate calls its EvalQuery procedure, which is responsible for
the proof. After solution of a goal, next query can be solved or succeeding source
formulas may be compiled.

procedure TQuery.EvalQuery;
begin
  NegQ;Owner.ListF.Add(self);
  Support := true;
  Dive('v', nil, [nil]); { Marks variables requested by a query. }
  Owner.Consist;
  Owner.ListF.Remove(self);
  Free;
end;

At first the query is negated and it is added to ListF and its Support-set flag is set up.
Mode ‘v’ for Dive procedure cause setting the Watch property of every variable in the
goal to itself. It allows to all copies of a variable to sustain the reference to original query
variable and it can be printed out after successful refutation. The TPLProgram procedure
Consist includes several type of state-space search. Because it is a huge procedure, we
will show only its part presenting linear strategy and we will also follow with linear
strategy subprocedures.

procedure TPLProgram.Consist;
...
begin
  ...



34

{ Linear strategy. }
  if Strategy = Owner.Linear then
  begin
    rsv1 := 'F'+IntToStr(ListF.Count-1);
    TFALFormula(ListF.Items[ListF.Count-1]).AllPosRes4;
  end
  else
  ...
end;

Consist procedure calls AllPosRes procedure of the goal (last formula in the source
set). AllPosRes tries to perform resolution rule on every formula of the source set and
originated formulas. The procedure, which has to carry out the resolution of two
formulas, is from the family of TryToRes procedures. Its function lies on passing
through atoms of formulas and trying to find an unifier of them. If two atoms are
unifiable, it checks for polarity and selects positive atom as positive premise (by setting
up the premise flag). Then it calls Resolve procedure, which produces the resolvent. If
both the atoms have zero polarity, it is suitable to generate two resolvents (one with
positive premise of first formula and second with positive premise of second formula) or
to generate conjunction of such resolvents. The detail listing of TryToRes is
improductive due to its length. There is a lot of variations and optimizations indicated in
the theoretical sections. At first it inspect formulas eligibility for resolution (filtration,
support-set) and it may also generate more than one resolvent from a couple of formulas
(on different atoms). After resolution, the resolvent is simplified and it remits to check of
consequence (equivalence), if needed. When the resolvent is generated and it is not
redundant or logical value, the linear strategy continues and applies the AllPosRes to the
resolvent. Let’s see to Resolve procedure.

function TFALFormula.Resolve;
...
  if premise then tr1 := -1 else tr1 := 1;
  if T1.neg then T1.Ev := -tr1 else T1.Ev := tr1;
  if self <> X then if T2.neg then T2.Ev := tr1 else T2.Ev := -tr1;
  { Resolves two matching atoms}
  if (getAt)or(Owner.Owner.GreatCut1.Checked) then
  { In the case of optimization,
  it searches for all other possible matching atoms. }
  begin
    TT1 := T1;polar1 := false;
    if (TT1 <> nil) then
    begin
        TT2 := MF; rs := 0;
        while (TT2 <> nil) do
        begin
          rs := TT1.UnifySL(TT2);
          if rs = 0 then TT2 := TAtom(TT2.R)
          else
          begin
            if polar1 then TT2.Ev := -tr1 else TT2.Ev := tr1;
            if TT2.neg then TT2.Ev := -TT2.Ev;rs := 0;TT2 := TAtom(TT2.R);
          end;
        end;
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    end;
    if (self <> X)and
      ((getat)or(Owner.Owner.General.Checked)) then
    begin
        ...  { Identical code, but for the second formula }
    end;
  end;
  PrepareMgu;FL.Cont := F3; F3.Ac := FL;Ancs := F3; TN2 := T2;
  F1 := Cont.Dive('r', nil, [nil]);   { Makes a copy of the first formula
                                        with substituted variables. }
  Ancs := F3; TM1 := LastMol; TN2 := nil;
  if (self = X)   then
  begin
    invert := true;F2 := X.Cont.Dive('r', nil, [nil]);invert := false;
  end
  else F2 := X.Cont.Dive('r', nil, [nil]);
  ...
end;

First mentioned lines perform assignment of a logical value to resolved atoms. It
depends on premise flag, which indicate that the first formula – self has to be  treated as
the positive premise and the second formula X has to be regarded as the negative
premise. Of course, it is useless to evaluate the second atom, if self=X. Next it evaluates
all atoms from the positive premise, if the user requires it by checking off the General
cut (Partial resolution) item from the application menu. If the general cut item is checked
off, then all atoms from the second formula are evaluated and resolve procedure carries
on general resolution. Otherwise it evaluates only two atoms and this is an
implementation of restricted resolution. PrepareMgu assigns unifier substitution from the
temporal TList store named mgu1 into the appropriate variable NewId property. Then
new disjunction is created and copies of premises made by ‘r’ mode of the Dive
procedure are assigned as L and R references to this disjunction. There is also special
procedure for self-resolution called ResolveAWC.

5.6 Unification.

The key factor of lifting inferences to non-ground cases of formulas is the most
general unifier. The function responsible for unification is TAtom.UnifyS and
TAtom.UnifyId is its executive procedure, which unifies Id properties of two atoms.

function TId.UnifyId;
var varn : integer;
begin
  varn := mgu1.Count-1;
  repeat
    unres1 := 1;  { Tries to unify id terms until, it is clear that }
    unres := 1;   { no more changes are done.                       }
    varn := mgu1.count;
    Dive('5', IdUnif, [X]);
    if unres1 = 0 then unres := 0;
  until  (varn = mgu1.count)or(unres <> 0);
end;



36

The ground or non-existential instance is trivial and one pass is enough, but in the
existential case the order of arguments in functors is important. That’s why it tries to
unify two terms until any substitution is not realized or the unification is completely
impossible. What it means? The unres variable is set to zero, if two constant objects
can’t be unified, while unres1 is set zero even if some variable can’t be unified. So if a
variable was taken in a wrong order, we can still remain it ununified and wait for the
next pass, which will occur only if some other variable was unified and it has sense to
examine if the last unified variable could be unified under changed conditions. The dive
procedure serves also unification as the mode ‘5’ with IdUnif procedure.

function IdUnif(o : TObject; var tp : char; argums : array of const) : TObject;
...
begin
  Result := o;
  ...
  if (o is TFunctor) then
    ... { All arguments of a functor have to be unified.}
    else if (o is TFunctora) then
    begin
      if not((argums[0].VObject is TFunctora)and
        (TFunctora(argums[0].VObject).Functor = TFunctora(o).Functor))
        then unres := 0;
    end
    ...
    else if (o is TVariable) then
    begin
      begin
        if not(CurProg.Owner.Quant1.Checked)or(IsHigherObject(o, argums[0].VObject)) then
        begin
          mgu1.Add(o);mgu1.Add(argums[0].VObject); unres := 1;
        end
        else begin unres1 := 0; end;
      ...

Here it is presented the unification algorithm from section 3.6. The special attention is
given to variable unification. It depends on IsHigherObject. This function returns true, if
Variable Unification Restriction holds.

5.7 Simplification and Check of consequence.

In order to reduce the formula length, the simplification rules described above are
used. This is an implementation of these rules.

function FSimplifyH(o : TObject; var tp : char; argums : array of const)
                                                               : TObject;
...
begin
  if (TSub(o).L <> nil)and(TSub(o).R <> nil)
    and((TSub(o).L.Ev <> 0)or(TSub(o).R.Ev <> 0)) then
  begin
    inc(numSimX);x1 := TSub(o).L.Ev; x2 := TSub(o).R.Ev;
    if o is TCon then xa := Min(x1, x2)
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    else if o is TDis then xa := Max(x1, x2)
    else if o is TImp then xa := Max(-x1, x2)
    else if o is TEqv then xa := Min(Max(-x1, x2), Max(x1, -x2));
    if (xa <> 0) then
      begin
        TSub(o).L.RFree; TSub(o).L := nil;
        TSub(o).R.RFree; TSub(o).R := nil;TSub(o).Ev := xa;
        { The case, that leads to complete evaluation of a node
          e.g. (x and true) leads to x .}
      end
    else if (xa = 0) then
      begin
        negf := 0;
        if ((o is TImp)and(x2 = -1)) then negf := 1
        else  if ((o is TEqv)and((x1 = -1)or(x2 = -1))) then negf := 2;
        if x1 = 0 then o := TSub(o).L.SubstTo else o := TSub(o).R.SubstTo;
        if negf <> 0 then TSub(o).negate;
        { The case, that leads to a partial evaluation of a node.
          e.g. (x and false) leads to false .}
      end;
    if TSub(o).neg then TSub(o).Ev := -TSub(o).Ev;
  end;
  Result := o;
end;

At first it is evaluated the logical value of the subformula o depending on the
connective based on (only for these purposes) three values- false, unknown, true. Then it
is decided, whether the subformula will be completely removed or it will  be removed
only its descendant.

The decision about the redundancy implements the InsertToR procedure.
At first it stores the result of self-resolving on the examined formula. If a logical value

is obtained, check of consequence has no sense. Otherwise it performs the following
actions for every source formula and resolvent until the redundancy is proved. It creates
virtual formula with negated implication in the root, L reference is set up to source
formula/resolvent root and R reference is set up to the examined formula. It doesn’t
create any copy and after usage it is restored. It is performed self-resolution by
OptimizeX procedure until it has a logical value and if the value is false then the formula
is not added to the set of resolvents.
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C h a p t e r  6

6 Computer application.

6.1 General information.

As it has been noticed, the application, which should be able to demonstrate the
capabilities of general resolution, was produced. It is called GEneral Resolution
Deductive System and it is implemented on 32-bit Windows (95,98,NT) platform. If the
system is accompanying the thesis, you will probably find thesis.exe self-extracting file,
which can be executed and it creates Thesis directory with Program and Docs
directories. The Docs directory contains this paper and Program is consisted of
application source codes, executable file of the application, font and examples. The
program executable file has the name GERDS.exe. The user interface of GERDS is quite
simple. It is a MDI (Multiple document interface) application, which means that the user

has possibility to open more than one set of source formulas at once. As it was noticed in
the previous section, every independent frame has two parts – Editor for source formulas
and Output for results of inference. Here is an example of the frame.

The upper window - editor can accept source formulas of the form defined by the
BNF in the section 2. The lower window – output shows the results of the inference. It
may vary depending on the user demands. It shows the resolvents and their premise
numbers. Let’s have a look to detailed description of source set and results. You can
create new or open an existing frame by selecting command from the File menu as well
as other standard operations (Save, close, exit).
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You can use the Window menu to select particular window or reorganize the window
order. The Help menu gives you essential information about the program and keyboard
layout for special character.

6.2 Input and Output.

The editor (input) window accepts source formulas and goals by syntax of BNF from
the section 2.1. Source formulas end by dot and one or more blank character ( space,
return or other character with ASCII code between 1 and 32). The goal (query) is
introduced by ‘?-‘ string and may occur several times in the editor. Every goal is proved
using all preceding source formulas. Consider next example.

Example 0.1

a(X)ýg(X)ôb(X).
b(X)ýg(X)ôc(X).
a(a). ?-g(a).
g(a).
?-c(Y).
There are two goals here.

The result (output) window may contain a list of source formulas and goals (already
negated), sequence of resolvents, unsimplified forms of resolvents, list of resolvents and
some statistics. The items in the sequence of resolvents are of the form by this example:

Let’s see to an example of the result to the previous source set.

Example 0.2

Source formulas (axioms) :
F0 : [a(X)ýg(X)ôb(X)].
F1 : [b(X)ýg(X)ôc(X)].
F2 : a(a).
F3 (¬query) :  ¬g(a).
______________________________
Source formulas (axioms) :
F0 : [a(X)ýg(X)ôb(X)].
F1 : [b(X)ýg(X)ôc(X)].
F2 : a(a).
F3 : g(a).
F4 (¬query) :   ¬c(Y).
______________________________
R0 [F4&F1] : ¬[b(Y)ýg(Y)].
R1 [R0&F3] :  ¬b(a).
R2 [R1&F0] : ¬[a(a)ýg(a)].
R3 [R2&F3] :  ¬a(a).
[R3&F2] :  YES.
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Y = a.
R4 [R2&F2] :  ¬g(a).
[R4&F3] :  YES.
Y = a.
Solving time : 0.22 s.  Used memory : 52956 B.
The resolvent with YES means the false resolvent and Y = a represents the variable

assignment performed during refutation (a = constant). Notice that the first goal has no
solution, since g(a) follows after the goal.

In both windows you can choose Edit submenu from the application menu and
perform standard operations – select text, copy, cut, clear and paste selection, clear
output and select font.

Logical connectives can be added to the editor by holding Ctrl+Alt key and by
pressing appropriate key:

 Q - forall, W - exists, E - equivalence, I - implication,
 C - conjunction, D - disjunction, N - negation, F - not equal,
 L - less or equal, G - greater or equal.

6.3 Proof.

There are three additional menus for proving process. The Output menu defines
formatting characteristics of the output. It has following items, which can be checked
off:

Axioms – adds source set formulas with labels (goals are negated).
Progress – shows the sequence of the proof.
Sources – adds labels of premises.
Resolvents – summarizes generated resolvents.
Time, Memory – adds time consumed and memory currently used by the application.
Unsimplified – shows all resolvents in unsimplified form.
Statistics – shows statistics about the proving process.
The Prove theorem menu contains some specifications to a proof. The stop item

causes the break of an inference. The linear search, breadth-first search, modified linear
search starts the proving using appropriate strategy. Modified linear search utilizes
derivations not only from goal, but also from source set formulas. Last four items are
alternatively clickable in the panel below menu. One from further three radio items  is
selectable. It allows you to choose the proof without resolvent redundancy check, with
consequence check and equivalence check. Similar function belongs to next items:
without restriction strategy, filtration strategy or support-set strategy.

The Unification menu consists of  quantification – if checked off , the quantifiers are
significant else they have the same meaning of universality. Further great cut command
provides partial resolution and general cut provides general resolution else it is carried
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out the restricted resolution. Next three items determine, how many resolvents have to be
generated from two premises. Exit on first unused creates one resolvents of any type.
Exit on first match creates one resolvent, which doesn’t degrade to true or false or which
is not redundant. Exit on last match performs all possible resolution form two premises.
Last two items determine if one refutation or all refutations will be done.
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C h a p t e r  7

7 Examples.

At the end, let’s consider some interesting examples generated by GERDS. We start
with simple propositional examples. All examples were produced using Pentium 100
machine.

Example 0.1

Source formulas (axioms) :
F0 :  a(X). F1 :  b(X).
F2 (¬query) : ¬[a(X)ýb(X)].
______________________________
R0 [F2&F1] :  ¬a(X).
[R0&F0] :  YES.
R1 [F2&F0] :  ¬b(X).
[R1&F1] :  YES.

Example 0.2

Source formulas (axioms) :
F0 : aý¬b.
F1 : ¬aýb.
F2 (¬query) : ¬c.
At first, we use linear strategy, which doesn’t lead to a contradiction, because it starts

from goal and it is not provable only from combinations of the resolvents derived from
goal and source formulas. Nevertheless the set of source formulas is inconsistent, so
everything is provable, but we must use modified linear strategy (it uses source set
formulas as both premises) or breadth-first search.

R0 [F1&F1] : b.
[F1&F0] :  YES.
Of course, the refutation is obtainable by many other derivations.

Example 0.3

[aý¬b]ü[¬aýb].
?-¬aý¬b.
Solution to ?- ¬[¬aý¬b].
[F1&F1] : ¬[ äý¬b]ü¬[ çý¬b].
[F1&F0] : ¬[ äý¬b]ü äý¬bü çýb.
[F1&F0] : ¬[¬aý ä]üaý çü¬aý ä.
Here the solution doesn’t exist so we can suppose that the goal is not valid.
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Example 0.4

Source formulas (axioms) :
F0 : aý¬býcýdü¬aýbý¬cýd.
F1 (¬query) :  ¬[¬aý¬b].
______________________________
R0 [F1&F0] : bü¬býcýd.
R1 [F1&F0] : aü¬aý¬cýd.
R2 [F0&F0] : bý¬cýdü¬býcýd.
R3 [F0&F0] : ¬aý¬cýdüaýcýd.
R4 [F0&F0] : ¬aýbýdüaý¬býd.
R5 [F0&F0] : aý¬býcü¬aýbý¬c.
It is the next example of a goal, which is not provable.

Example 0.5

Source formulas (axioms) :
F0 : aôbýg. F1 : býgôc. F2 : býgôa. F3 : côbýg.
F4 (¬query) : ¬[aóc].
______________________________
R0 [F4&F3] : aübýg. R1 [R0&F4] : býgü¬c.
R2 [R1&F2] : ¬cü[gôa]. R3 [R2&F1] : [gôa]ü¬[býg].
R4 [R3&F4] : ¬gü¬[býg]ü¬c. R5 [R4&F3] : ¬bü¬c.
R6 [R5&F4] : ¬büa. R7 [R6&F3] : aü¬c.
R8 [R7&F4] : ¬c. R9 [R8&F4] : a.
R10 [R9&F0] : býg. R11 [R10&F1] : gôc.
R12 [R11&F4] : ¬gü¬a. R13 [R12&F0] : ¬a.
R14 [R13&F4] : c. [R14&R8] :  YES.
Solving time : 0.48 s.

Source formulas (axioms) :
F0 : aóbýg. F1 : býgóc. F2 (¬query) : ¬[aóc].
______________________________
R0 [F2&F1] : [¬aü¬[býg]]ý[aübýg]. 
R1 [R0&F2] : ¬[býg]üc.
R2 [R1&F0] : ¬gücü¬a. R3 [R2&F2] : ¬gü¬a.
R4 [R3&F2] : ¬güc. R5 [R4&F0] : cü¬a.
R6 [R5&F2] : ¬a. R7 [R6&F2] : c.
R8 [R7&F1] : býg. R9 [R8&F1] : góc.
R10 [R9&F2] : [güa]ý[¬gü¬a]. R11 [R10&F1] : aü[bóc].
R12 [R11&F1] : aü¬cü¬g. R13 [R12&F2] : ¬cü¬g.
R14 [R13&F2] : ¬güa. R15 [R14&F1] : aü¬c.
R16 [R15&F2] : ¬c. R17 [R16&F2] : a.
[R17&R6] :  YES.
Solving time : 0.54 s.

Last two inferences were an example of strongly non-clausal resolution. As stated, the
proof of aóc can be done both from implicative and equivalence based axioms.
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Example 0.6

F0 : [a(X)ýg(X)ôb(X)].
F1 : a(a).
F2 : g(c).
F3 (¬query) : ¬b(a).
______________________________
R0 [F3&F0] : ¬[a(a)ýg(a)].
R1 [R0&F1] :  ¬g(a).
Solving time : 0.06 s.
b(a) is not provable, because g(a) doesn’t hold. When we add it, the proof exists.

Source formulas (axioms) :
F0 : [a(X)ýg(X)ôb(X)]. F1 : a(a).
F2 : g(c). F3 : g(a).
F4 (¬query) : ¬b(a).
______________________________
R0 [F4&F0] : ¬[a(a)ýg(a)]. R1 [F3&F0] : [a(a)ôb(a)].
R2 [F2&F0] : [a(c)ôb(c)]. R3 [F1&F0] : [g(a)ôb(a)].
R4 [R3&F4] :  ¬g(a). R5 [R3&F3] :  b(a).
R6 [R1&F4] :  ¬a(a). [R6&F1] :  YES.
Solving time : 0.27 s.
There are interesting resolvents with implication, which show the lucidity of the proof

(in contrast with clausal resolution), in this breadth-first search proof above.

Example 0.7

Source formulas (axioms) :
F0 : [a(X)ýg(X)ôb(X)]. F1 : [b(X)ýg(X)ôc(X)].
F2 : a(a). F3 : g(a).
F4 (¬query) :  ¬c(Y).
______________________________
R0 [F4&F1] : ¬[b(Y)ýg(Y)]. R1 [F3&F1] : [b(a)ôc(a)].
R2 [F3&F0] : [a(a)ôb(a)]. R3 [F2&F0] : [g(a)ôb(a)].
R4 [F1&F0] : [[g(X)ôc(X)]ü¬[a(X)ýg(X)]].
R5 [R4&F4] : [¬g(X)ü¬[a(X)ýg(X)]]. R6 [R4&F3] : [c(a)ü¬a(a)].
R7 [R3&F3] :  b(a). R8 [R3&F1] : [¬g(a)üc(a)].
R9 [R3&R0] :  ¬g(a). R10 [R1&F4] :  ¬b(a).
R11 [R1&R7] :  c(a). 
[R11&F4] :  YES. Y = a.
[R10&R7] :  YES. Y = a.
R12 [R10&R2] :  ¬a(a).
[R9&F3] :  YES. Y = a.
[R7&R10] :  YES. Y = a.
[R12&F2] :  YES. Y = a.
Solving time : 1.72 s.
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This example is the first one with a goal requiring variables. There were five
possibilities to refute the source set.

Example 0.8

Source formulas (axioms) :
F0 : [a(X)ôa(X+1)]. F1 : a(0).
F2 (¬query) : ¬a(5).
______________________________
R0 [F1&F0] : a(1). R1 [R0&F0] : a(2).
R2 [R1&F0] : a(3). R3 [R2&F0] : a(4).
R4 [R3&F0] : a(5). [R4&F2] :  YES.
Solving time : 0.05 s.
This is a sample of the usage of infix operators.

Example 0.9

Source formulas (axioms) :
F0 : 1<2. F1 : 2<3.
F2 : 3<4. F3 : 4<5.
F4 : 5<6. F5 : [X<YýY<ZôX<Z].
F6 (¬query) : ¬1<5.
______________________________
R0 [F6&F5] : ¬[1<YýY<5]. R1 [R0&F3] :  ¬1<4.
R2 [R1&F5] : ¬[1<YýY<4]. R3 [R2&F2] :  ¬1<3.
R4 [R3&F5] : ¬[1<YýY<3]. R5 [R4&F1] :  ¬1<2.
[R5&F0] :  YES.
Solving time : 0.22 s.
This proof illustrates transitivity, which is well solved by the application.

Example 0.10

Source formulas (axioms) :
F0 : [a(X)ýg(Z)ôb(X)]. F1 : [b(X)ýg(Z)ôc(X)].
F2 : a(a). F3 : g(30).
F4 (¬query) : ¬[c(Y)üg(Y)üb(Y)].
______________________________
R0 [F4&F4] : ¬[g(Y)üb(Y)]. R1 [F4&F4] : ¬[c(Y)üb(Y)].
R2 [F4&F4] : ¬[c(Y)üg(Y)].
[F4&F3] :  YES. Y = 30.
[F3&F4] :  YES. Y = 30.
R3 [F3&F0] : [a(X)ôb(X)]. R4 [R3&F4] :  ¬a(X).
R5 [R3&F2] :  b(a).
[R2&F3] :  YES. Y = 30.
[R1&R5] :  YES. Y = a.
[R0&F3] :  YES. Y = 30.
[R0&R5] :  YES. Y = a.
[R5&F4] :  YES. Y = a.
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[R5&R1] :  YES. Y = a.
[R5&R0] :  YES. Y = a.
[R4&F2] :  YES. Y = a.
Solving time : 0.54 s.

Next example produces the Fibonacci sequence.

Example 0.11

Source formulas (axioms) :
F0 : [f(I, A) ý f(I+1, B) ô f(I+2, A+B)].
F1 : f(0, 1). F2 : f(1, 1).
F3 (¬query) :  ¬f(15, X).
______________________________
R0 [F2&F0] : [f(2, B)ôf(3, 1+B)]. R1 [F1&F0] : [f(1, B)ôf(2, 1+B)].
R2 [R1&F2] : f(2, 2). R3 [R0&R2] : f(3, 3).
R4 [R3&F0] : [f(4, B)ôf(5, 3+B)]. R5 [R2&F0] : [f(3, B)ôf(4, 2+B)].
R6 [R5&R3] : f(4, 5). R7 [R4&R6] : f(5, 8).
R8 [R7&F0] : [f(6, B)ôf(7, 8+B)]. R9 [R6&F0] : [f(5, B)ôf(6, 5+B)].
R10 [R9&R7] : f(6, 13). R11 [R8&R10] : f(7, 21).
R12 [R11&F0] : [f(8, B)ôf(9, 21+B)]. 
R13 [R10&F0] : [f(7, B)ôf(8, 13+B)].
R14 [R13&R11] : f(8, 34). R15 [R12&R14] : f(9, 55).
R16 [R15&F0] : [f(10, B)ôf(11, 55+B)].
R17 [R14&F0] : [f(9, B)ôf(10, 34+B)].
R18 [R17&R15] : f(10, 89). R19 [R16&R18] : f(11, 144).
R20 [R19&F0] : [f(12, B)ôf(13, 144+B)].
R21 [R18&F0] : [f(11, B)ôf(12, 89+B)].
R22 [R21&R19] : f(12, 233). R23 [R20&R22] : f(13, 377).
R24 [R23&F0] : [f(14, B)ôf(15, 377+B)].
R25 [R22&F0] : [f(13, B)ôf(14, 233+B)].
R26 [R25&R23] : f(14, 610). R27 [R24&R26] : f(15, 987).
[R27&F3] :  YES. X = 987.
Solving time : 1.29 s.
We found the fifteenth Fibonacci number, which is 987 (if zero number is 1).

Another known sequence may be produced using factorial function.
Source formulas (axioms) :
F0 : [f(X, Y)ôf(X+1, Y*(X+1))]. F1 : f(1, 1).
F2 (¬query) :  ¬f(10, Y).
______________________________
R0 [F1&F0] : f(2, 2). R1 [R0&F0] : f(3, 6).
R2 [R1&F0] : f(4, 24). R3 [R2&F0] : f(5, 120).
R4 [R3&F0] : f(6, 720). R5 [R4&F0] : f(7, 5040).
R6 [R5&F0] : f(8, 40320). R7 [R6&F0] : f(9, 362880).
R8 [R7&F0] : f(10, 3628800).
[R8&F2] :  YES. Y = 3628800.
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Now let’s have a look into simple quantified examples. As it was noticed, these simple
examples are workable by the application.

At first, consider several combinations of the base case, which illustrate the behaviour
of existential variables.

Example 0.12

F0: ÷XöY p(X,Y).
?-öY÷X p(X,Y). ?-öYöX p(X,Y). ?-÷XöY p(X,Y). ?-÷Y÷X p(X,Y).
Solution to #1.
Solution to #2.
[F1&F0] :  YES.
Solution to #3.
[F1&F0] :  YES.
Solution to #4.

Case 1 and 4 have no solution, since they do not imply from F0. The opposite case
follows.

öY÷X p(X,Y).
?-÷XöY p(X,Y). ?-öXöY p(X,Y). ?-÷X÷Y p(X,Y).
Solution to #1.
[F1&F0] :  YES.
Solution to #2.
[F1&F0] :  YES.
Solution to #3.

Here case 1 and 2 lead to refutation. If we change the axiom, this result is obvious.

öYöX p(X,Y).
?-÷XöY p(X,Y). ?-öXöY p(X,Y). ?-÷X÷Y p(X,Y).
Solution to #1.
Solution to #2.
[F1&F0] :  YES.
Solution to #3.

These examples show the simplest cases, but now let’s have a look into more
complicated instance, where it is needed to perform more than one pass to unify two
atoms.

Example 0.13

÷ZöY p(X,Y,Z). ?- ÷ZöY p(X,Y,Z).
[F1&F0] :  YES.
The unifying algorithm strikes on a problem, when it unifies these two atoms. It takes

X without problems, but when it tries to substitute universal Y (with respect to polarity!)
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from F1, the existential Y from F0 has one superior variable Z. Z is not substituted yet,
so we temporarily continue with next argument - Z variable. It can be substituted with
existential Z (which has no superior variable) and then the next pass follows. In this
pass, we are able to substitute Y, since Z is already substituted.

Next samples show instances similar to example 7.12.
÷ZöY p(X,Y,Z). ?- öY÷Z p(X,Y,Z).
Solution to #1.
and
öY÷Z p(X,Y,Z). ?- ÷ZöY p(X,Y,Z).
Solution to #1.
[F1&F0] :  YES.

Example 0.14

This example is an illustration of more complicated formulas with existential
variables.

÷X a(X) ô öX b(X). ÷X a(X).
?- b(a).
Solution to ¬b(a).

öX a(X)ô÷X b(X). a(a).
?- b(c).
Solution to ¬b(c).
R0 [F2&F0] : ÷X ¬a(X).
[R0&F1] :  YES.
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C h a p t e r  8

8 Conclusions.

The last chapter analyzed some examples, which were the best approach for reader to
understand the theoretical power of general resolution. Although the general resolution
is not efficient in comparison with clausal and Horn logic, it preserves the sequence of
the proof. Achieved solving times are controversial. It is obvious, that these times grow
quicker than for clauses. Even if we use some techniques of avoiding redundancy, the
efficiency is still low for the serious usage in knowledge representation. Nevertheless,
the proposed theoretical system may be a good source of training for persons interested
in deductive systems as well as in logic generally.

The existence handling methods are partially satisfied in the application, which is one
of the results of the thesis, and they were shown in examples as functional extensions of
ground general resolution. Also the check of consequence by self-resolution, which was
proposed by the thesis, is strong result making the proving by general resolution
applicable to machine-performed deduction and not only applicable for intuitive human-
performed proofs.

There are many further problems in theorem-proving and resolution techniques as its
main branch. That’s why the thesis may lead to continual research in theory of resolution
as well as in progressive sectors of logic (Fuzzy logic, Objective-oriented logics).
Though it will not continue directly, it is an excellent starting point for designing another
knowledge-based systems, which, I believe, will be the objective of my future work. It
lies mainly in programming the application. It wasn’t an easy job to design and realize
the GERDS and unfortunately, it is not so visible result as I imagined. The important
contribution of the thesis is to remind, that there are essential items in logic, that are not
emphasized in conventional studies, and it is interesting to deal with them.
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