
Differential Evolution with Competitive Control-
parameter Setting

Problem Specification

The global optimization problem with box constraints is formed as follows:
For a given objective function f : D → R, D ⊂ Rd

the point x∗ is to be found such that x∗ = arg minx∈D f(x).
The point x∗ is called the global minimum, D is the search space defined as d−
dimensional box, D =

∏d
i=1[ai, bi], ai < bi, i = 1, 2, . . . , d.

The problem of the global optimization is hard and plenty of stochastic algo-
rithms were proposed for its solution, see e.g. [1], [5]. The authors of many
such stochastic algorithms claim the efficiency and the reliability of searching
for the global minimum. The reliability means that the point with minimal
function value found in the search process is sufficiently close to the global min-
imum point and the efficiency means that the algorithm finds a point sufficiently
close to the global minimum point at reasonable time. However, when we use
such algorithms, we face the problem of the setting their control parameters.
The efficiency and the reliability of many algorithms is strongly dependent on
the values of control parameters. Recommendations given by authors are often
vague or uncertain. A user is supposed to be able to change the parameter
values according to the results of trial-and-error preliminary experiments with
the search process. Such attempt is not acceptable in tasks, where the global
optimization is one step on the way to the solution of the user’s problem or
when the user has no experience in fine art of control parameter tuning. Adap-
tive robust algorithms reliable enough at reasonable time-consumption without
the necessity of fine tuning their input parameters have been studied in recent
years.

The differential evolution (DE) [6] has become one of the most popular algo-
rithms for the continuous global optimization problems in last decade years,
see [3]. But it is known that the efficiency of the search for the global mini-
mum is very sensitive to the setting of its control parameters. That is why the
self-adaptive DE was proposed and included into this library.

Description of Implemented Algorithms

The differential evolution (DE) works with two population P and Q of the same
size N . A new trial point y is composed of the current point xi of old population
and the point u obtained by using mutation. If f(y) < f(xi) the point y is
inserted into the new population Q instead of xi. After completion of the new
population Q the old population P is replaced by Q and the search continues
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until stopping condition is fulfilled. The DE algorithm can be written as follows:

1 generate P = (x1, x2, . . . , xN ); (N points in D)
2 repeat
3 for i := 1 to N do
4 compute a mutant vector u;
5 create y by the crossover of u and xi;
6 if f(y) < f(xi) then insert y into Q
7 else insert xi into Q
8 endif;
9 endfor;
10 P := Q;
11 until stopping condition;

There are several variants how to generate the mutant point u. One of the most
popular (called rand) generates the point u by adding the weighted difference
of two points

u = r1 + F (r2 − r3) , (1)

where r1, r2 and r3 are three distinct points taken randomly from P (not coin-
ciding with the current xi) and F > 0 is an input parameter. Another variant
called best generates the point u according to formula

u = xmin + F (r1 + r2 − r3 − r4) , (2)

where r1, r2, r3, r4 are four distinct points taken randomly from P (not coin-
ciding with the current xi), xmin is the point of P with minimal function value,
and F > 0 is an input parameter.

The elements yj , j = 1, 2. . . . , d of trial point y are built up by the crossover of
its parents xi and u using the following rule

yj =
{

uj if Uj ≤ C or j = l
xij if Uj > C and j 6= l ,

(3)

where l is a randomly chosen integer from {1, 2, . . . , d}, U1, U2, . . . , Ud are in-
dependent random variables uniformly distributed in [0, 1), and C ∈ [0, 1] is
an input parameter influencing the number of elements to be exchanged by
crossover. Eq. (3) ensures that at least one element of xi is changed even if
C = 0.

Several papers deal with the setting of control parameters for differential evo-
lution. Recent state of adaptive parameter control in differential evolution is
summarized by Liu and Lampinen [4] and Brest et al.[2].

The setting of the control parameters can be made adaptive trough the im-
plementation of a competition into the algorithm. This idea is similar to the
competition of local-search heuristics in evolutionary algorithm [7] or in con-
trolled random search [8]. The competitive control-parameters setting in DE
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is described in [9], where the numerical comparison with other stochastic algo-
rithms is also presented.

Let us have H settings (different values of F and C used in the statements
on line 4 and 5 of Algorithm 1) and choose among them at random with the
probability qh, h = 1, 2, . . . , H. The probabilities can be changed according to
the success rate of the setting in preceding steps of search process. The h-th
setting is successful if it generates such a trial point y that f(y) < f(xi). When
nh is the current number of the h-th setting successes, the probability qh can
be evaluated simply as the relative frequency

qh =
nh + n0∑H

j=1(nj + n0)
, (4)

where n0 > 0 is a constant. The setting of n0 ≥ 1 prevents a dramatic change
in qh by one random successful use of the h-th parameter setting. In order
to avoid the degeneration of process the current values of qh are reset to their
starting values (qh = 1/H) if any probability qh decreases bellow a given limit
δ > 0. The competition provides an self-adaptive mechanism of setting control
parameter appropriate to the problem actually solved.

Two most reliable variants of such competitive differential evolution are included
into this library. Three values of control parameter C were used in both variants,
namely C = 0, C = 0.5, and C = 1.

• DER9 – the mutant vector u is generated according to (1), nine settings
of control parameters are all the combinations of three F -values (F = 0.5,
F = 0.8, and F = 1) with three values of C given above,

• DEBR18 – 18 settings, aggregation of nine settings used in DER9 and
nine setting with the same values of and F and C, but the mutant vector
u is generated according to (2).

The search for the global minimum was stopped if fmax − fmin < my eps or
the number of objective function evaluations exceeds the input upper limit
max evals × d.

The algorithms were tested on six functions and three levels of the search space
dimension. The values of parameters controlling the stopping condition and the
competition of the settings used in all the test tasks [9] are also used as default
values. They are set up as follows:

• For stopping condition – my eps = 1E − 07, max evals =20000

• For competition control – n0 = 2, δ = 1/(5H)

• Population size – N = max(20, 2 d)

In the test tasks DEBR18 and DER9 outperformed standard DE significantly
both in the reliability of finding a solution sufficiently close to the global mini-
mum point and in the convergence rate. The reliability of DEBR18 was higher,
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but not significantly different from the reliability of DER9. DEBR18 worked
significantly faster in the case of the most time-consuming Rosenbrock function.
The proposed competitive setting of the control parameters F and C proved to
be an useful tool for self-adaptation of differential evolution, which can help to
solve the global optimization tasks without necessity of fine control parameter
tuning.
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