
UNIVERSITY OF OSTRAVA

DOCTORAL THESIS

2014 MGR. PAVEL VLAŠÁNEK



UNIVERSITY OF OSTRAVA

FACULTY OF SCIENCE

DEPARTMENT OF INFORMATICS AND COMPUTERS

Inpainting method based on the
F-transform

Doctoral thesis

Author: Mgr. Pavel Vlašánek

Supervisor: Prof. Irina Perfiljeva, CSc.

2014



OSTRAVSKÁ UNIVERZITA V OSTRAVĚ

PŘÍRODOVĚDECKÁ FAKULTA

KATEDRA INFORMATIKY A POČÍTAČŮ

Doplnění chybějících dat v
obrazu využitím F-transformace

Disertační práce

Autor práce: Mgr. Pavel Vlašánek

Vedoucí práce: Prof. Irina Perfiljeva, CSc.

2014



First of all, I would like to express my huge thanks to my supervisor, Prof. Irina
Perfiljeva, CSc. for her comments, suggestions, motivation and patience. It would
be nearly impossible for me to write my dissertation and progress our research
without this kind of valuable mentoring. Thank you. I would also like to thank
my girlfriend Renata for support and tolerance over the hours, days, and years of
studying, researching, writing, and programming. Last but not least I would like
to thank for all opportunities for publications, travels, meeting interesting people,
discussions with colleagues, etc. I think that these points are crucial for successful
progressing in science research.



Já, níže podepsaný student, tímto čestně prohlašuji, že text mnou odevzdané zá-
věrečné práce v písemné podobě i na CD nosiči je totožný s textem závěrečné práce
vloženým v databázi DIPL2.

Prohlašuji, že předložená práce je mým p̊uvodním autorským dílem, které jsem
vypracoval samostatně. Veškerou literaturu a další zdroje, z nichž jsem při zpraco-
vání čerpal, v práci řádně cituji a jsou uvedeny v seznamu použité literatury.

V Ostravě dne 30. 5. 2014 . . . . . . . . . . . . . . . . . . . . . .
podpis



RESUME

We propose a new image inpainting technique which uses approximation proper-
ties of the fuzzy (F-)transform. The proposed technique is based on the inverse
F-transform and combines it with an original image on an undamaged or missing
area. We present two algorithms of the F-transform based reconstruction: one-step
and multi-step. We demonstrate how these algorithms cope with various damage
and compare it with interpolation and advanced inpainting techniques. We show
various application in addition to inpainting, such as resampling, filtering, or de-
noising. Experimental results are based on testing on various sets of grayscale and
color images.

Key Words: F-transform, image reconstruction, approximation, interpolation,
inpainting

ANOTACE

Navrhujeme novou techniku doplnění chybějících dat v obrazu založenou na aprox-
imaci použitím F-transformace. Technika využívá inverzní F-transformaci, jejíž
výstup kombinuje s původním obrázkem. V disertační práci je naše metoda rozve-
dena do dvou algoritmů: jednokrokového a vícekrokového. Rekonstrukce s využitím
F-transformace je porovnána s interpolací a běžně používanými metodami inpaintingu.
Využití F-transformace je také demonstrováno pro další oblasti, jako je vzorkování,
filtrování nebo odstranění šumu. Výsledky jsou založeny na testování množství
různých barevných obrázků i obrázků v odstínech šedi.

Klíčová slova: F-transformace, rekonstrukce obrazu, aproximace, interpolace,
inpainting



Contents

1 Introduction 8

2 Defining the issues and basic concepts 9
2.1 Image reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Commonly used techniques 15
3.1 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Regular grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Irregular grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Patch-based and sparse representation methods . . . . . . . . 25
3.2.2 PDEs and variational methods . . . . . . . . . . . . . . . . . . 27
3.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Motivation and objectives of the dissertation 33
4.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Formulation of the problem and motivation . . . . . . . . . . . . . . 33
4.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 F-transform 35
5.1 Fuzzy partition with Ruspini condition . . . . . . . . . . . . . . . . . 35
5.2 Discrete F-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 2D reconstruction - one-step . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 2D reconstruction - multi-step . . . . . . . . . . . . . . . . . . . . . . 39

5.4.1 Error diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Edge preserving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 Image upsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.7 Image Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.8 Noise reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Optimal settings of F-transform parameters 51
6.1 Basic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.1 Various types of basic functions . . . . . . . . . . . . . . . . . 51
6.1.2 Radius selection . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Generating of suitable basic function . . . . . . . . . . . . . . . . . . 55
6.3 Usage of the one-step/multi-step F-transform method . . . . . . . . . 56

7 Implementation and experiments 60
7.1 Inpainting techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2 Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3 1D reconstruction using the F-transform . . . . . . . . . . . . . . . . 60
7.4 2D reconstruction using the F-transform . . . . . . . . . . . . . . . . 65

7.4.1 One-step reconstruction . . . . . . . . . . . . . . . . . . . . . 67
7.4.2 Multi-step reconstruction . . . . . . . . . . . . . . . . . . . . . 68

6



7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.5.1 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Conclusion 81

9 Further Development 83

7



1 Introduction

Image inpainting is a process of filling in unknown or damaged areas. It is a technique
of modifying an image and making it as close to an undamaged one as possible.
Traditionally it refers to practice of professional artist. Restoration of the art is
commonly a time-consuming and highly professional affair. Digital restoration tries
to simulate this practice and fix digital images in a similar way. Among many
fields in image reconstruction, we distinguish processes such as image inpainting,
image denoising, or image resampling for example. These categories are not strictly
separated.

The process of digital image inpainting and also restoration started with the
selection of the damaged area in the damaged image. These areas can be very
varied and thus it is necessary to select them manually. In digital image inpainting,
we use an image with the same size as the damaged one called mask. The mask
image can be considered as another layer on top of the damaged image. Black pixels
in the mask are used as a marker of a damaged or unknown area in the damaged
image.

The known solutions of the reconstruction problem are based on the interpo-
lation technique [38, 21]. In many cases, interpolation function contains unknown
parameters that can be found as a solution of large systems of linear equations.
Therefore, the complexity of this approach is rather high. We propose to solve the
problem of reconstruction with the help of an approximation technique. This means
that we will be looking for an approximating image that is close to a given one and
at the same time does not contain what we recognize as damage. The following are
practical examples where the problem of reconstruction or inpainting is successfully
applied: erasing time stamp from a photography, erasing cracks from a fresco, or
erasing anything we want from a digitalized image.

We propose to reconstruct a damaged image with help of a fuzzy technique,
namely the F-transform. In the last ten years, the theory of F-transforms has
been intensively developed in many directions [8, 28, 25, 7, 27, 24, 33, 34]. In image
processing, it has successful applications in image compression and reduction, image
fusion, edge detection, noise removing, etc. [23, 8, 39, 26, 29]. F-transform can
approximate the original function with an arbitrary precision [23] and thus it can
be chosen as an appropriate technique.

8



2 Defining the issues and basic concepts

Let us explain terms used in the dissertation.

Bit Basic unit of information. A bit can have only one from two values, where the
most common interpretations of these values are 0 and 1.

Byte Unit of information that consists of eight bits.

Color Derives from the spectrum of light. We will use a combination of the eight
bit color channels, R as red, G as green, and B as blue. This method of color
definition is called an RGB model. Every channel of the RGB model contains the
amount of the specified color from the scale b0, 255c. The brightest red color is
(255, 0, 0), the brightest blue is (0, 0, 255), or darker purple (100, 0, 100).

Alpha channel Additional information for the pixel color. The alpha channel
contains the level of transparency from the scale b0, 255c where 0 stands for full
transparency and 255 stands for full opacity.

Intensity Intensity u(i, j) is related to a grayscale image, where u(i, j) ∈ b0, 255c
where 0 stands for black and 255 stands for white. Every pixel in a grayscale image
has one channel with shades of grey instead of amount of color.

Pixel The smallest part of the image, one point in the raster. Every pixel has
coordinates (i, j) and color/intensity.

Transformation from a color pixel to a grayscale pixel is as follows

u(i, j) = 0.299uR(i, j) + 0.587uG(i, j) + 0.114uB(i, j),

where (i, j) stands for x and y coordinates of the pixel, uR, uG, uB are red, green
and blue channels from the input color image. In the dissertation, we will use
notation u(i, j) for intensity of the (i, j) pixel. The algorithm extensions for color
images consist in threefold application, one per color channel.

1D/2D Abbreviations for the function of one variable (1D) f(x), respectively
function of two variables (2D) f(x, y).

Image Two dimensional discrete function represented as a matrix. An image is
composed of pixels where colors/intensities of every pixel form the matrix elements.

Binary image An image composed of pixels, where all pixels can have one out of
two intensities. Most common is 0 for black and 1 for white.

Lena The image of the Lena Söderberg in Fig. 1 commonly used as etalon in
computer graphic.

9



Figure 1: Lena Söderberg.

Convolution Operation producing a function from two input functions. The first
function is image u and the second is kernel g. Two dimensional discrete forms are
as follows

(u ∗ g)(i, j) =
k∑

d=−k

k∑
e=−k

u(i− d, j − e) · g(d, e),

where k stands for the size of the kernel.

Fuzzy logic Generalizes common Boolean logic and appends the values between
true and false. Fuzzy logic will be used as a tool to process vague object character-
istic.

Damage We distinguish four types of damage: noise, holes, scratches and text in
the dissertation. It can be seen in Fig. 2.

(a) Noise (b) Holes (c) Scratches (d) Text

Figure 2: Different damage types.

Noise damage in Fig. 2a corresponds to the noisy image, holes damage in Fig. 2b
corresponds to bigger gaps which have to be filled in, scratches damage in Fig. 2c
corresponds to cracks, folds, scribbles, and text damage in Fig. 2d corresponds to
unwanted text in the image.

Damaged image An input image intended for inpainting or reconstruction. The
damaged or incomplete image includes original information and also damaged or
unknown areas.

10



Undamaged image The original image without damaged or unknown pixels.

Mask A binary image of the same size as the damaged image. Pixels of the
first color indicate the damaged area and pixels of the second color indicate the
undamaged area. A partially damaged image u is a discrete function that is defined
on domain P = {(i, j) | i = 1, 2, . . . ,M ; j = 1, 2, . . . , N} and is damaged on domain
Ω. The characteristic function of Ω is mask mΩ.

RMSD Root Mean Square Deviation, also RMSE1 is a criterion used for com-
parison of the original and reconstructed image. It works as follows

RMSE =

√∑M
i=1

∑N
j=1(uo(i, j)− û(i, j))2

M ·N
,

where û(i, j) stands for the intensity of the reconstructed pixel, uo(i, j) is the
intensity of the original pixel, M is the width of the image, and N its height.

SSIM Structural SIMilarity. An advanced criterion taking on also natural per-
ception features of the human eye [45].

SSIM(w1, w2) =
(2µw1µw2 + C1)(2σw1w2 + C2)

(µ2
w1 + µ2

w2 + C1)(σ2
w1 + σ2

w2 + C2)
,

where Ci = (KiL)2, L is a dynamic range2, K1 = 0.01 and K2 = 0.03 are
constants recommended by authors and w1, w2 stands for various windows of the
image.

Anisotropic diffusion A technique for reducing image noise without removing
significant parts of the image such as edges.

2.1 Image reconstruction

Image reconstruction has many interpretations. For instance, a damaged valuable
painting can be restored by a skilled professional artist. In that case, we are talking
about image restoration. Look at Fig. 3.

Another meaning is filling in gaps called image inpainting. These gaps can occur
due to object removing from the image, which is shown in Fig. 4. Manual inpainting
commonly consists in using tools like clone stamp or healing3.

Resampling may also be considered as an image reconstruction problem. Upsam-
pling after resizing is in Fig. 5a, 5b and downsampling after resizing is in Fig. 5c, 5d.

In general, we have a damaged or incomplete image, see Fig. 3a. We can also say
that we want to erase something from the image, see Fig. 4a. A demonstration of
the inpainting and erasing an object without some artifacts is shown in Fig. 3b, 4b.
In the dissertation, we propose a new technique of the image reconstruction which

1Root Mean Square Error
2255 for 8 bit channel.
3Available or partially available in GIMP, Photoshop, Paint.NET etc.

11



(a) Before restoration (b) After restoration

Figure 3: Restoration of the painting. Figure taken from Wikipedia (http://en.
wikipedia.org/wiki/Painting_restoration).

(a) Before inpainting (b) After inpainting

Figure 4: Inpainting of the image processed manually by clone stamp.

is able to reconstruct images, inpaint images, etc. Inputs for our algorithm are a
damaged image and a mask. An example of a damaged image and a mask of the
corresponding damaged area (inputs) can be seen in Fig. 6.

The reconstruction process is illustrated in Fig. 7. We see the input image, mask,
and reconstructed image after application of the proposed F-transform technique.
We use the term image reconstruction mainly in the image inpainting meaning in
the dissertation.

2.2 Notation

Notation in Tab. 1, 2 will be used in the dissertation. Fig. 8 shows basic terms used
in image inpainting.

12

http://en.wikipedia.org/wiki/Painting_restoration
http://en.wikipedia.org/wiki/Painting_restoration


(a) (b)

(c) (d)

Figure 5: Image resampling processed hand to hand with image resizing.

(a) Original (b) Mask

Figure 6: Mask derived from the damage.

(a) Input damaged image (b) Mask (c) Reconstructed output

Figure 7: Reconstruction process.

13



Entity Notation
undamaged image uo
input image u
mask mΩ

undamaged region Φ
damaged region Ω
inner boundary of the damaged region δΩ

outer boundary of the damaged region Ω̃
interpolated/approximated image û
reconstructed/inpainted image ur

image in the iterative process uz

pixel in the δΩ S
pixel in the Φ O

Table 1: Image related notation.

Entity Notation
basic functions in x direction Ak
basic functions in y direction Bl

radius of the basic function h

Table 2: Basic functions related notation.

Figure 8: Basic terms.

14



3 Commonly used techniques

There are many methods for filling in unknown pixels or replacing damaged pixels.
For instance, based on interpolation and/or inpainting. This section is divided into
two subsections describing them. The first one called Interpolation describes algo-
rithms based on the interpolation among undamaged (known) points. The second
subsection called Inpainting describes advanced techniques commonly used in re-
construction of the damaged area with usage of the undamaged (known) area. In
the next section, approximation methods are explained.

3.1 Interpolation

Interpolation extends the domain of a partial function and keeps the input points
unchanged on the domain. Interpolation is deeply investigated and there are many
available sources, for example [49, 17, 1, 36]. Computation is demonstrated on an
example in Fig. 9.

Figure 9: Input points.

The plain coordinates of the red points are as follows

[5, 2]; [10, 10]; [12, 5]; [16, 8]

In order to find an interpolation polynomial of the 3rd degree, we have to solve
the system of the following equations

y0 =a0 + a1x0 + a2x
2
0 + a3x

3
0,

y1 =a0 + a1x1 + a2x
2
1 + a3x

3
1,

y2 =a0 + a1x2 + a2x
2
2 + a3x

3
2,

y3 =a0 + a1x3 + a2x
2
3 + a3x

3
3,

where yi, xi stands for y and x coordinates of the point i. The solution leads to

y = −96.7792 + 33.9582x− 3.3529x2 + 0.1025x3.

Fig. 10 shows the desired interpolation by the polynomial of degree three.

15



Figure 10: Interpolation by the polynomial of degree three.

Interpolation techniques are commonly used for image resampling in a regu-
lar grid. Two interpolation methods commonly used in image resampling nearest
neighbor and bilinear will be extended for the simple usage in an irregular grid.

3.1.1 Regular grid

Image resampling [2] is a common task in a regular grid. In the dissertation, we are
using resampling for computation of the unknown pixels of the image after resizing.
Situation before upsamling is in Fig.11.

(a) Input (b) Resized

Figure 11: Situation before upsamling where ”?” marks unknown pixels.

If we want to upsample an image two times, there is a given pattern of the known
pixels, see Fig. 11b. Interpolation is commonly described with help of the kernel
functions. We present 1D ones because of better illustration. These must be used
twice for a 2D one for the x and one for y direction. A demonstration of the linear
interpolation is shown in Fig. 12.

A description of the nearest neighbor, bilinear and bicubic interpolation, follows
with a demonstration of the resampling from 4× 4 image to 512× 512 image.

Nearest neighbor The color/intensity of the unknown pixels is determined as
follows

û(i, j) = u(Qop),

where Qop is the nearest known pixel with respect to the pixel at position (i, j).

16



(a) Input function (b) Convolution kernel (c) Result

Figure 12: Convolution of the discrete function with the linear kernel.

Because we want to minimize the complexity of this technique, we will ignore diag-
onal directions.

The convolution kernel is as follows

W (x) =

{
1 if 0 ≤ |x| < 1

2
,

0 if 1
2
≤ |x|.

A visualization is provided in Fig. 13a and an upscaled and upsampled 4 × 4
image is in Fig. 13b.

(a) Kernel function (b) Upsampled

Figure 13: Rectangular kernel and image upsampled by the nearest neighbor inter-
polation.

Bilinear interpolation Let us assume that we have four given pixels Q00 =
(i0, j0), Q01 = (i0, j1), Q10 = (i1, j0), Q11 = (i1, j1). Moreover, i0 ≤ i ≤ i1 and
j0 ≤ j ≤ j1.

û(i, j) = 1
(i1−i0)(j1−j0)

( u(Q00)(i1 − i)(j1 − j)+
u(Q10)(i− i0)(j1 − j)+
u(Q01)(i1 − i)(j − j0)+
u(Q11)(i− i0)(j − j0)).

The 1D convolution kernel is as follows

W (x) =

{
1− |x| if 0 ≤ |x| < 1,

0 if 1 ≤ |x|.

A visualization is provided in Fig. 14a and an upsampled image is in Fig. 14b.

17



(a) Kernel function (b) Upsampled

Figure 14: Triangular kernel and image upsampled by the bilinear interpolation.

Bicubic interpolation The bicubic interpolation is as follows

û(i, j) =
3∑
i=0

3∑
j=0

aijx
iyj,

where 16 coefficients aij have to be determined. The 1D kernel is defined as
follows

W (x) =


(a+ 2)|x|3 − (a+ 3)|x|2 + 1 if |x| ≤ 1,

a|x|3 − 5a|x|2 + 8a|x| − 4a if 1 < |x| < 2,

0 otherwise.

where a = −0.5. The visualization is provided in Fig. 15a and an upsampled
image is in Fig. 15b.

(a) Kernel function (b) Upsampled

Figure 15: Cubic kernel and image upsampled by the bicubic interpolation.

3.1.2 Irregular grid

We extend the nearest neighbor and bilinear interpolation techniques for usage in
an irregular grid. The difference shown is in Fig. 11b and Fig. 16. The image of
Lena with damaged areas in Fig. 17 will be used as a demonstration.

Nearest neighbor Let us assume that we want to compute the intensity of the
unknown pixel marked as A in Fig. 16. First, we will find the nearest two known
pixels Q(i, z0) and Q(t0, j) in the vertical and horizontal direction, where

18



Figure 16: General irregular grid of the known and the unknown pixels.

Figure 17: The damaged image of the Lena.

z0 = arg min
z

(|A(i, j)−Q(i, z)|),

t0 = arg min
t

(|A(i, j)−Q(t, j)|).

Then, the nearest known pixel Q(i∗, j∗) is chosen as follows

Q(i∗, j∗) =

{
Q(i, z0) if |j − z0| ≤ |i− t0|,
Q(t0, j) otherwise.

The result of the Fig. 17 reconstruction is in Fig. 18. A different implementation
of the nearest neighbour leads to a Voronoi diagram. Let us randomly distribute
the known points (seeds) as shown in Fig. 19. The Voronoi diagram splits the area
for the biggest possible cells as shown in Fig. 20. Every cell is defined by a seed
specified beforehand and a region consisting of all points closer to that seed than to
any other.

Bilinear interpolation In an irregular grid, we compute the linear interpolation
for all unknown rows and columns. That is, for every unknown pixel, two values
are available, one in each direction. The sum of these two intensities divided by 2 is
used as the new intensity value of the unknown pixel. For our example in Fig. 16,
we compute the linear interpolation for the row with pixel A as follows

19



Figure 18: Damaged Lena from Fig. 17 after nearest neighbour interpolation of the
damaged parts.

Figure 19: Randomly distributed points.

(a) Auxiliary lines (b) Voronoi diagram

Figure 20: Voronoi diagram of the randomly distributed points.

vr(i, j) = vr(i− 1, j) +
Ri − Li

u(R)− u(L)
; vr(Li, Lj) = u(L),

and for the column as

vc(i, j) = vc(i, j − 1) +
Dj − Uj

u(D)− u(U)
; vc(Ui, Uj) = u(U),

where the subscript i or j stands for the x or y coordinate of the point.

20



The results of the these two interpolation directions are shown in Fig. 21 for the
sample image Fig. 17. The whole reconstructed image of Lena is in Fig. 22.

(a) Linear interpolation of the
columns

(b) Linear interpolation of the
rows

Figure 21: Two parts of the bilinear interpolation applied on Fig. 17.

Figure 22: Damaged Lena from Fig. 17 after bilinear interpolation of the damaged
parts.

Radial basis function interpolation This technique can be used in a regular
and/or in an irregular grid without changes. Usage in an irregular grid is more
common, therefore the technique is described in this subsection.

The radial basis functions (RBF) are a useful tool for image reconstruction. We
have to choose a circular function φ which is symmetric around the center (id, jd).
There are two different RBF methods basic and extended.

The basic RBF computation is defined as

u(i, j) =
n∑
d=1

λdφ(r), (1)

Aλ = u, (2)

21



where r is
√

(i− id)2 + (j − jd)2 and (2) is a linear form of (1). We consider (1)
at undamaged points (i, j) where points (id, jd) are taken from the undamaged area
as well. We can say that from the geometrical point of view we identify centers of
the RBF with an undamaged pixel in order to use all of them to compute λ.

Thus, (1) leads to a system of linear equations (2) where λ is the vector of
unknowns λ1, . . . , λn, u is the vector at left-hand sides.

The extended RBF computation is as follows

∣∣∣∣ A F
F T 0

∣∣∣∣ ∣∣∣∣ λγ
∣∣∣∣ =

∣∣∣∣ u0
∣∣∣∣ , (3)

where A, λ, u are taken from (2), γ is the vector of unknown coefficients of a
polynomial function [48], e.g., γ0+γ1x+γ2y and F is the matrix of the x, y coefficients
from that polynomial function. The solution of (3) contains the solution λ of (2).
We extend the applicability of equation (1) to the damaged area and consider a new
function

û(i, j) =
n∑
d=1

λdφ(r),

where the point (i, j) belongs to the whole area (damaged and undamaged) and
λi are the components of the solution λ. To conclude, û is the reconstructed image
with the help of the radial basis function φ.

An example in Fig. 17 is reconstructed in Fig. 23. The commonly used RBF are
shown in Tab. 3 and illustrated in Fig. 24.

Figure 23: Image of the Lena Fig. 17 reconstructed by RBF interpolation.

We demonstrate the RBF method on a set of the input points. The plain coor-
dinates are as follows

[0, 5]; [2, 9]; [4, 3]; [7, 5]; [8, 1]; [10, 8].

The interpolation with usage of various RBF is shown in Fig. 25. The technique
of the RBF has been investigated by the author and will be visually compared with
the F-transform on the same set of the input points in section 7. More information on
RBF and RBF based image reconstruction can be found in [38, 47, 3, 13]. Author’s
contribution is in [44].

22



Type Formula
gauss e−(εr)2

linear r
quadratic r2

cubic r3

log r2 log r

mq
√

1 + (εr)2

Table 3: Commonly used RBF where usually ε = 0.25.

Figure 24: Demonstration of the various RBF.

Figure 25: Demostration of 1D interpolation of various RBF.

3.2 Inpainting

Inpainting is a technique of modifying images into an undetectable form. The goals
are restoration of the damaged image but also object removing from the image. The
inpainting techniques are more sophisticated than the common interpolation. These

23



techniques attempt to replicate the techniques from the professional restorators or
to use complex models. For example, models inspired in physics.

The modification of images in an undetectable form is documented in Renais-
sance. Bertalmio et al. [5] describes inpainting work by a professional artist as
follows:

1. the global picture determines how to fill in the gap, the purpose of inpainting
being to restore the unity of the work;

2. the structure of the area surrounding Ω is continued into the gap, contour lines
are drawn via the prolongation of those arriving at Ω̃;

3. the different regions inside Ω, as defined by the contour lines, are filled with
color, matching those of Ω̃;

4. the small details are painted (e.g. little white spots on an otherwise uniformly
blue sky): in other words, “texture” is added.

The digital image inpainting can be described as follows. Let u0(i, j) : [1,M ]×
[1, N ]→ R with [1,M ]× [1, N ] ⊂ N×N be a discrete image. The digital inpainting
process iteratively restores damaged areas by the following images uz(i, j) : [1,M ]×
[1, N ]× N→ R where u0(i, j) = u0(i, j) and limz→∞ u

z(i, j) = ur(i, j). The general
algorithm can be described as follows

uz+1(i, j) = uz(i, j) + ∆tuzt (i, j),∀(i, j) ∈ Ω,

where z stands for the iteration step, (i, j) are the pixel coordinates, ∆t is the
rate of improvement and uzt (i, j) stands for the update of the image uz(i, j). The
uzt (i, j) step is computed by Lz(i, j), which is color/intensity propagated from the
Ω̃ to the δΩ in the direction N z(i, j) as is shown in Fig. 26.

Figure 26: Filling of the Ω (figure taken from [5]).

This means that we must have

unt (i, j) = δLz(i, j) ·N z(i, j),

where δLz(i, j) is the measure of the change in Lz(i, j). The propagation of the
color/intensity must be smooth. We can use discrete Laplacian as follows

Lz(i, j) =
∂2uz(i, j)

∂x2
+
∂2uz(i, j)

∂y2
.

24



Then we compute the change δLz(i, j) along N . For that we must define N
direction. One possibility is to define N as the normal vector from Ω̃. This method
does not consider previous isophote direction as shown in Fig. 27.

Figure 27: The normal vector application (figure taken from [5]).

It seems that a better solution is to preserve directions of the isophotes going
through Ω̃ do Ω. The gradient vector 5uz(i, j) gives the direction of the biggest
spatial change. Therefore, the smallest spatial change (5uz(i, j))⊥ is orthogonal
to 5uz(i, j). The vector (5uz(i, j))⊥ gives the isophote directions. We take into
consideration that N varies from iteration to iteration continuously.

N z(i, j) = (5uz(i, j))⊥.

The digital image inpainting can be roughly divided into two groups: patch-based
and sparse representation and partial differential equations (PDEs)/variational meth-
ods. This division is not exclusive as some methods use principles of both of them.
The following text shows some methods based on the main idea of the mentioned
groups.

3.2.1 Patch-based and sparse representation methods

Ω is filled-in recursively where every pixel S ∈ δΩ is replaced by pixel O ∈ Φ. We
must define square patch Ψ ∈ Φ. The patch Ψ(O) is centered in the pixel O so that
Ψ(O) is the neighborhood of the O. We must choose Ψ(S) which is the most similar
to Ψ(O) according to

S = arg min d(Ψ(S),Ψ(O)),

where d(Ψ(S),Ψ(O)) is the sum of square differences between Ψ(S) and Ψ(O)
defined as follows

d(Ψ1,Ψ2) =
M∑
i=1

N∑
j=1

|Ψ1(i, j)−Ψ2(i, j)|2.

This method is used in Efros and Leung [10]. The result of their technique is
shown in Fig. 28.

An improvement was given by Criminisi [6]. Firstly, the pixel-by-pixel way of
processing with respect to δΩ was replaced by a more sophisticated version. The
pixels have priority where these on the edges are processed before these on the flat
regions. The second improvement is copying the whole patches instead of single
pixels. A demonstration is in Fig. 29

25



Figure 28: Algorithm applied on the real image, where the black border is replaced
by the patches from the image itself (figure taken from [10]).

Figure 29: Removing large object from photography by Criminisi (figure taken
from [6]).

Elad et al. [11] extends patch-based idea for the sparse coefficients for geometry
and texture components of the image. Let u be the input image represented as a
vector RF ;F = M ·N where M stands for the width and N stands for the height.
The image is separated to two parts geometry and texture represented by matrices
Dg, Dt, where inpainting is done separately in each part. The matrices have sizes
F×kg and F×kt. If αg ∈ Rkg and αt ∈ Rkt are the geometry and texture coefficients,
then the image decomposition using the Dg and Dt dictionaries is as follows

u = Dgαg +Dtαt.

The decomposition of the image into geometry and texture representation is in
Fig 30. The sparse image representation is defined as follows

min
(αg ,αt):u=Dgαg+Dtαt

‖αg‖p + ‖αt‖p,

where p is the coefficient of the `-norm ‖α‖p = (
∑
‖α(q)‖p)1/p. Elad et al.

propose model

min
(αg ,αt)

‖αg‖1 + ‖αt‖1 + λ‖u−Dgαg −Dtαt‖2
2 + γTV (Dgαg),

26



Figure 30: Separated texture (bottom left) and geometry (bottom right) from pho-
tography by Elad et al. (figure taken from [11]

where TV stands for the total variation, p = 1 and λ, γ > 0. Adaptation for
image inpainting is following

min
(αg ,αt)

‖αg‖1 + ‖αt‖1 + λ‖C(u−Dgαg −Dtαt)‖2
2 + γTV (Dgαg),

where C stands for mΩ. The undamaged pixels are marked C = 1 and damaged
ones as C = 0. There are various assumptions to achieve this minimization problem
for image inpainting. Details are described in [11], a brief survey follows:

• an image can be modeled as sparse combination of atom images. These images
can be described by sparse composition of the two dictionaries one for the
texture and second for the geometry;

• sparsity can be handled by `1.

3.2.2 PDEs and variational methods

The principles mentioned before take existing parts of the image for filling in the
damaged area Ω. From a different point of view, we can determine pixels in the
damaged area by computation. The new values of pixels in Ω can be determined
by values of the pixels in the Ω̃. Ogden et al. [20] proposed pyramid-based graph-
ics techniques. The iterating convolution and subsampling are used for Gaussian
filtering building. Successive linear interpolation, downsampling and upsamling at

27



different levels of the Gaussian pyramids are used for filling in the damaged area Ω.
The result of this approach is in Fig. 31.

Figure 31: Inpainting by Ogden et al. (figure taken from [20]).

Another approach to inpainting was suggested by Masnou and Morel [19, 18]. It
uses the ability of the human visual system to complete partially hidden edges. The
ability of this restoring was studied particularly by Kanizsa [14]. He suggests that
this continuation is performed between T-junctions. These T-junctions are points
where edges forms the ”T” as it is shown in Fig. 32.

Figure 32: T-junctions (figure taken from [18]).

It seems that restored edges must be as straight and smooth as possible. Fig. 33
shows a situation where incomplete circles are restored by our perception (middle)
and where rectangles are restored (right) from the same input image (left).

Figure 33: Difference between partially hidden edges perception (figure taken
from [18]). Incomplete shapes (left) restored as circles (middle) or rectangles (right).

From the digital image processing point of view, we have to propagate isophotes
from Φ to Ω. The principle is to connect two T-junctions by a curve with the minimal

28



length and oscillation. Approximation of the Euler’s elastica is usually used for that
as follows ∫

(1 + κ2)ds,

where s stands for the arc length and κ denotes the curvature. Unfortunately,
this is not appropriate in cases where the intensity of the edges oscillates. Masnou
and Morel suggest to use domain Ω̃ slightly larger than Ω. The positive or negative
orientation is associated for all level lines going through Ω̃ based on the 5u along
the line. For all intensity levels q in Ω̃, the curve is defined as

(Lqd)d∈u(q),

The solution lies in finding an optional set of curves

(Γql )l∈J(q),

where J(q) = u(q)/2, connecting the T-junctions with same orientation, level,
and minimizing the energy

E =

∫ ∞
−∞

∑
l ∈ J(q)(

∫
Γql

(α + β|κ|p)ds+ ϕ),

where α, β are positive context dependent constants, ϕ denotes the sum of the
Γql and directions of the Γql and associated lines. Parameter p is the generalization
of the κ exponent in the Euler’s equation. The result of the [19] technique is in
Fig. 34.

Figure 34: Masnou image inpainting of the highly damaged image (figure taken
from [18]).

3.2.3 Summary

Most PDE/computational techniques are unable to restore texture properly. In
Fig. 35, a demonstration is shown. On the other hand, patch-based methods are not
able to restore images where good enough patches are not found. A demonstration
is provided in Fig. 36. There are methods combining both of these ideas. We can
mention [16, 9].

29



Figure 35: Image inpainting by Tschumperl used for erasing of the object from the
image é (figure taken from [37]).

Figure 36: Masnou image inpainting in case where there are not enough known
points to create proper patches. Figure taken from Survey (http://math.
univ-lyon1.fr/~masnou/fichiers/publications/survey.pdf).

The next part of this section describes two particular methods that will be used
later for comparison with the F-transform technique. The first particular inpaint-
ing technique is based on fast marching method. The second particular technique
is based on Navier-Stokes equations and it simulates techniques that are used by
professional restorators.

An image inpainting technique based on the fast marching method The
method [35] was published in 2004. The algorithm uses small neighborhood Bε(S)
where ε stands for the radius of the neighborhood where only undamaged pixels are
taken into consideration. We consider the first order approximation uO(S) as follows

uO(S) = u(O) +5u(O)(S −O),

where 5u(O) stands for the gradient of the undamaged pixel O. Then we com-
pute

u(S) =

∑
O∈Bε(S) w(S,O)[u(O) +5u(O)(S −O)]∑

O∈Bε(S) w(S,O)
,

where the weighting function w is as follows

w(S,O) = dir(S,O) · dst(S,O) · lev(S,O),

30

http://math.univ-lyon1.fr/~masnou/fichiers/publications/survey.pdf
http://math.univ-lyon1.fr/~masnou/fichiers/publications/survey.pdf


Where ”dir” stands for the directional component, ”dst” stands for the geometric
distance component and ”lev” stands for the level distance component. For the
details see paper [35].

The pixel S that is closest to the undamaged pixels O must be filled in first. It
requires a method for propagating pixels S ∈ δΩ to Ω according to their order of
their distance from the initial boundary δΩo. For this purpose Telea uses the fast
marching method (FMM). The FFM solves Eikonal equation

| 5 T | = 1 on Ω, with T = 0 on δΩ.

The result of Fig. 17 inpainting is shown in Fig. 37.

Figure 37: Image of the Lena Fig. 17 reconstructed by inpainting based on [35]

Navier-Stokes, fluid dynamics, and image and video inpainting The algo-
rithm [4] was published in 2001 and it is a derivation of [5]. The method propagates
isophotes from the Φ to δΩ with usage of the ideas from fluid dynamics. Image
intensity is taken as a stream function for a 2D incompressible flow. The relation
between image inpainting and fluid dynamics is described in Tab. 4.

Navier-Stokes Image inpainting
stream function Ψ image intensity u
fluid velocity v = (5Ψ)⊥ isophote direction v = (5u)⊥

vorticity ω = ∆Ψ smoothness ω = ∆u
fluid viscosity ν anisotropic diffusion ν

Table 4: Relation between Navier-Stokes equation and image inpainting (taken
from [4]).

The authors suggest to solve vorticity transport equation for ω

∂ω

∂t
+ v · 5ω = ν 5 ·(g(| 5 ω|)5 ω),

where g allows anisotropic diffusion. The image u is recovered by

v = (5u)⊥,

∆u = ω, u|Ω̃ = Φ.

31



The inpainting result of the example in Fig. 17 is shown in Fig. 38.

Figure 38: Fig. 17 reconstructed by inpainting based on [4]

32



4 Motivation and objectives of the dissertation

In this section problem, motivation and objectives of the dissertation are formulated.

4.1 State of the art

All known reconstruction techniques are based on extraction knowledge from the
undamaged parts of an image with its subsequent interpolation or extrapolation to
the damaged parts (with the purpose to replace them). Conventional techniques
are focused on characteristics that can be extracted from an image, i.e. intensities
of pixels, edges or flat areas, etc. All of these techniques use a classical (binary)
representation of local areas (windows) where image characteristics are observed.

4.2 Formulation of the problem and motivation

The problem of image reconstruction consists (a) in assuming that a damaged im-
age is given together with the information that allows to separate damaged and
undamaged pixels, and (b) in replacing the former by the latter.

Let us give the technical details below. In the problem of reconstruction, it is
assumed that the domain Φ of image u is a proper subset of available set of pixels
P , i.e. Φ ⊂ P , and that u is not defined (damaged) on the relative complement
Ω = P \ Φ. The goal is to extend u to the set P , i.e. to propose a method that
computes (reconstructs) values u(i, j) for all (i, j) ∈ Ω. In details, we want to
obtain a new image, say ur : P → {0, 1, . . . , 255} such that ur|P = u where ur|P is
the restriction of ur on P .

In mathematical literature, the problem of reconstruction is known as interpo-
lation or extrapolation, depending on whether (i, j) ∈ Ω is an ”internal” point of
P or not. In computer science literature, the problem of reconstruction is used to
be solved with the help of interpolation methods. For this purpose, a class of in-
terpolating functions is chosen a priori, e.g. bilinear, bicubic, RBF, etc. If ur is an
interpolating function, then it automatically fulfills the restriction ur|P = u.

In this contribution, we propose a new approach, that is based on utilizing ap-
proximating functions. Generally speaking, we propose to construct an extension
û : P → {0, 1, . . . , 255} such that the restriction û|P approximates u. Then the
reconstructed image ur is a combination of two functions û and u so that

ur(i, j) =

{
û(i, j) if (i, j) ∈ Ω,

u(i, j) otherwise.

Our motivation can be explained simply by noticing that a class of approxi-
mating functions includes that of interpolating functions. Therefore, working with
approximating functions we are less restricted and thus, have a wider choice of re-
constructing functions. There is the technique of fuzzy (F)-transforms that takes
local areas as areas with some additional structure. This structure is characterized
by fuzzy predicates that may express any information which is relevant for a prob-
lem. In image processing, this can be, for example, a distance from a certain point, a

33



relationship between points, color/intensity, texture, etc. The F-transform approach
creates the F-transform image of an object, to which a structure of a universe of
discourse is propagated. This technique proves to be effective in the problems like
image fusion, compression/reduction, edge detection etc.

In image reconstruction, we expect to utilize the following properties of the F-
transform:

• a compact representation of an object and its characteristics (derivatives or
partial derivatives) in a form of a sequence (matrix) of components;

• a possibility of easy processing where the F-transform representation is used
instead of a (complex) object;

• an approximate reconstruction of an object from its F-transform components.

The main advantage is fast running algorithms with similar or better results
than conventional ones.

4.3 Objectives

The objectives of the dissertation are as follows.

To elaborate the technique of image reconstruction on the basis of the F-
transform Investigation of the F-transform technique leads to several applications
in image processing. In the dissertation, we are focused on the extension of the
usability to the image reconstruction field.

To develop software tools for the F-transform based reconstruction so
that they are fast and easy to implement Tools must be developed for suc-
cessful demonstration of the possibilities and related research. Implementation is
not complicated. the algorithm is simple and easy to understand.

To analyze the influence of the F-transform parameters and to choose
their optimal values for the problem of reconstruction There are many pos-
sibilities for application of the F-transform and for the various parameter settings.
Optimal settings are described in the dissertation and demonstrated on examples.

To analyze a possibility of the F-transform in solving problems that are
closely related to reconstruction: upsamling, denoising or filtering, in-
painting Image inpainting is only one possibility for the F-transform method us-
age. We also investigate others, such as upsampling, denoising or filtering. The
extended application is described later in the dissertation.

To compare the proposed approach with conventional ones and to ana-
lyze where it is advantageous A comparison with commonly used techniques
is provided from the quality point of view. Commonly used techniques of both in-
painting and interpolation technique are used for comparison based on RMSE and
SSIM.

34



5 F-transform

Assume that we are given a partially damaged image where the damaged part is
separated from the undamaged one. Our purpose is to restore this image. By this we
mean that damaged pixels should be replaced by new ones, whose colors/intensities
(values) are computed from the values of the undamaged pixels. To solve this
problem we propose the F-transform technique [31, 41]. The technique takes the
damaged image u and the mask mΩ of the damaged part Ω as an input. The output
is the reconstruction image ur.

The F-transform is a technique putting a continuous/discrete function into a
correspondence with a finite vector of its F-transform components. In image pro-
cessing, where images are identified with intensity functions of two arguments, the
F-transform of the latter is given by a matrix of components. We recall the defini-
tion of the F-transform [23] and give it for a function of two variables defined on a
set of pixels P = {(i, j) | i = 1, 2, . . . ,M ; j = 1, 2, . . . , N}, respectively P = Ω ∪ Φ
where Ω stands for damaged area and Φ stands for undamaged area.

We propose two algorithms: one-step and multi-step [30]. They differ in the
reconstruction process where the one-step reconstructs the whole image in one it-
eration and the multi-step uses more iterations. The damaged area Ω is filled-in
at once in the one-step algorithm. In the multi-step algorithm, the boundaries δΩ
are computed in the first iteration. These computed pixels are partially used for
another iteration. It means that area δΩ iteratively changes. Details are described
in the following subsections.

5.1 Fuzzy partition with Ruspini condition

A fuzzy partition with the Ruspini condition (simply, Ruspini partition) was in-
troduced in [23]. The Ruspini condition implies normality of the respective fuzzy
partition, i.e. the partition-of-unity. It then leads to a simplified version of the
inverse F-transform. In later publications [33, 24], the Ruspini condition was weak-
ened to obtain an additional degree of freedom and a better approximation by the
inverse F-transform.

Let x1 < . . . < xm be fixed nodes within [a, b] so that x1 = a, xm = b and m ≥ 2.
We say that the fuzzy sets A1, . . . , Am, identified with their membership functions
defined on [a, b], establish a Ruspini partition of [a, b] if they fulfill the following
conditions for k = 1, . . . ,m:

1. Ak : [a, b]→ [0, 1], Ak(xk) = 1;

2. Ak(x) = 0 if x 6∈ (xk−1, xk+1), where for uniformity of notation, we set x0 = a
and xm+1 = b;

3. Ak(x) is continuous;

4. Ak(x), for k = 2, . . . ,m, strictly increases on [xk−1, xk] and Ak(x), for k =
1, . . . ,m− 1, strictly decreases on [xk, xk+1];

35



5. for all x ∈ [a, b],

m∑
k=1

Ak(x) = 1. (4)

The condition 4 is known as the Ruspini condition. The membership functions
A1, . . . , Am are called basic functions. A point x ∈ [a, b] is covered by basic function
Ak if Ak(x) > 0.

The shape of the basic functions is not predetermined and therefore it can be
chosen according to additional requirements (e.g. smoothness). Let us give exam-
ples of various fuzzy partitions with the Ruspini condition. In Fig. 39, two such
partitions with triangular and cosine basic functions are shown. The formulas given
below represent generic fuzzy partitions with the Ruspini condition and triangular
functions:

A1(x) =

{
1− (x−x1)

h1
if x ∈ [x1, x2],

0 otherwise,

Ak(x) =


(x−xk−1)

hk−1
if x ∈ [xk−1, xk],

1− (x−xk)
hk

if x ∈ [xk, xk+1],

0 otherwise,

Am(x) =

{
(x−xm−1)
hm−1

if x ∈ [xm−1, xm],

0 otherwise.

where k = 2, . . .m− 1 and hk = xk+1 − xk.

(a) Triangular (b) Cosine

Figure 39: Two partitions following Ruspini condition.

We say that a Ruspini partition of [a, b] is h-uniform if its nodes x1, . . . , xm,
where m ≥ 3, are h-equidistant, i.e., xk = a + h(k − 1), for k = 1, . . . ,m, where
h = (b− a)/(m− 1), and two additional properties are met:

6. Ak(xk − x) = Ak(xk + x), for all x ∈ [0, h], k = 2, . . . ,m− 1;

7. Ak(x) = Ak−1(x− h), for all k = 2, . . . ,m− 1 and x ∈ [xk, xk+1], and
Ak+1(x) = Ak(x− h), for all k = 2, . . . ,m− 1 and x ∈ [xk, xk+1].

An h-uniform fuzzy partition of [a, b] can be determined by the so-called gener-
ating function A0 : [−1, 1]→ [0, 1], which is assumed to be even4, continuous, have a

4The function A0 : [−1, 1]→ R is even if for all x ∈ [0, 1], A0(−x) = A0(x).

36



bell shape and fulfill A0(0) = 1. Basic functions Ak of an h-uniform fuzzy partition
with generating function A0 are shifted copies of A0 in the sense that

A1(x) =

{
A0

(
x−x1
h

)
if x ∈ [x1, x2],

0 otherwise,

and for k = 2, . . . ,m− 1,

Ak(x) =

{
A0

(
x−xk
h

)
if x ∈ [xk−1, xk+1],

0 otherwise,

Am(x) =

{
A0

(
x−xm
h

)
if x ∈ [xm−1, xm],

0 otherwise.

As an example, we notice that the function A0(x) = 1 − |x| is a generating
function for any h-uniform triangular partition. In the sequel, we will use h-uniform
fuzzy partitions only and refer to h as to a radius of partition.

5.2 Discrete F-transform

In this subsection, we introduce the F-transform of an image u that is considered as
a function u : [1,M ]× [1, N ]→ [0, 1] where M stands for image width and N stands
for image height. It is assumed that the image is grayscale and that it is defined at
points (pixels) that belong to the set P .

Let A1, . . . , Am and B1, . . . , Bn be basic functions, A1, . . . , Am : [1,M ] → [0, 1]
be fuzzy partition of [1,M ] and B1, . . . , Bn : [1, N ] → [0, 1] be fuzzy partition of
[1, N ]. Assume that the set of pixels P is sufficiently dense with respect to the
chosen partitions. This means that (∀k)(∃i ∈ [1,M ]) Ak(i) > 0, and (∀l)(∃j ∈
[1, N ]) Bl(j) > 0.

We say that the m × n-matrix of real numbers [Ukl] is called the (discrete)
F-transform of u with respect to {A1, . . . , Am} and {B1, . . . , Bn} if for all k =
1, . . . ,m, l = 1, . . . , n

Ukl =

∑N
j=1

∑M
i=1 u(pi, qj)Ak(pi)Bl(qj)∑N

j=1

∑M
i=1Ak(pi)Bl(qj)

. (5)

The elements Ukl are called components of the F-transform. The inverse F-
transform û : P → [0, 1] of the function u with respect to {A1, . . . , Am} and
{B1, . . . , Bn} is defined as follows

û(i, j) =
m∑
k=1

n∑
l=1

UklAk(i)Bl(j). (6)

The function û approximates the original function u on the whole domain P with
a given precision. Moreover, the following estimate was established in [22] for every

37



continuous function u on a domain P and its inverse F-transform û that is computed
with respect to h-uniform fuzzy partitions {A1, . . . , Am} of [1,M ] and {B1, . . . , Bn}
of [1, N ] :

max
t∈P
|û(t)− u(t)| ≤ Cω(h, u), (7)

where C is a constant, t = (i, j) and ω(h, u) is the modulus of continuity of
u on P .5 Formula 7 shows that the smaller is the value of h, the better is the
estimate of the difference between u and û. Both these facts give a justification of
the reconstruction methods described below.

1D Reconstruction The formula adjusted for 1D F-transform is as follows

Uk =

∑M
i=1 u(pi)Ak(pi)∑M

i=1Ak(pi)
, (8)

and for inverse F-transform as follows

û(pi) =
m∑
k=1

UkAk(pi). (9)

5.3 2D reconstruction - one-step

We remind that image u : P → [0, 255] is damaged (unknown) on subset Ω ⊂ P and
undamaged (known) on the complement Φ of Ω, i.e. Φ = P −Ω. The algorithm has
two input parameters: u (image) and mΩ (mask of Ω). In the one-step algorithm,
we select computation parameters at the input stage and then perform the recon-
struction in one computation cycle. The following text is an informal description
of an algorithm that takes u and m as inputs and computes the reconstruction ur

as a combination of the undamaged part of u with the inverse F-transform û of the
partially known image u.

The main requirement of the one-step algorithm is that a uniform fuzzy partition
A1, . . . , Am and B1, . . . , Bn of P fulfills the following property:

P. for every damaged pixel (i, j) ∈ Ω there are basic functions Ak and Bl and there
is pixel (i′, j′) ∈ Φ such that Ak(i) > 0, Ak(i′) > 0, Bl(j) > 0, Bl(j

′) > 0.

This means that every damaged pixel is covered by a combination of basic func-
tions so that this combination also covers at least one undamaged pixel. Property
P assures that the inverse F-transform û of image u replaces the non-defined value
of the intensity function u at every damaged pixel (i, j) ∈ Ω by the value of û(i, j)
that is computed using values of u at undamaged pixels (i′, j′) ∈ Φ. The (output)
reconstructed image ur is a combination of u and û:

5Generally, ω(h, f) = max|δ|≤hmaxx∈X |f(x+ δ)− f(x)|.

38



ur(i, j) =

{
û(i, j) if (i, j) ∈ Ω,

u(i, j) otherwise.

In Fig. 40 we show the graphical illustration of the above described algorithm.

(a) The damaged image (b) The reconstructed image

Figure 40: The damage caused by scratches from Fig.2c or manual painting removed
by one-step F-transform.

The result of the reconstruction for the example in Fig. 17 is in Fig. 41.

Figure 41: Lena from Fig. 17 after one-step F-transform approximation of the dam-
aged parts.

5.4 2D reconstruction - multi-step

The one-step reconstruction can be successively applied to those images that are
damaged on relatively small areas. In the above-given algorithm, we formalized this
condition demanding that every damaged pixel should be covered by a combination
of basic functions such that it covers at least one undamaged pixel (property P).
However, it does not always happen that a fuzzy partition with this property exists.
Therefore, we propose another algorithm which produces reconstruction as a result of
combining an undamaged part of an original image with several inverse F-transforms,
computed on a sequence of uniform fuzzy partitions with increasing radii. One step
from this sequence is called iteration.

39



The main idea of the multi-step algorithm is as follows: in the first step we apply
the F-transform with a fine partition (the smallest h) and reconstruct those damaged
pixels that fulfill property P. Then we recompute the damaged area Ω by deleting
the already reconstructed pixels and if Ω respectively mΩ is not empty, we repeat
the procedure with a bigger value of h. The multi-step reconstruction has better
quality than the one-step reconstruction. This follows from the estimate (7) that
shows that the smaller the value of a radius is, the closer the inverse F-transform
û to u within one iteration. In Fig. 42, we show a grayscale form of image Lena
from Fig. 1 damaged by the text from Fig. 2d and the multi-step reconstruction
by inverse F-transforms, computed on a sequence of uniform fuzzy partitions with
increasing radii h = 2, 3, 4 and triangular-shaped basic functions. The algorithm
stops at h = 4, because there are no damaged pixels left.

(a) The damaged im-
age

(b) h = 2 (c) h = 3 (d) h = 4

Figure 42: The text damage from Fig.2d removed by the multi-step F-transform
where different iterations are marked by h used in concrete one.

Reconstruction of Fig. 17 is in Fig. 43.

Figure 43: Lena from Fig. 17 after multi-step F-transform approximation of the
damaged parts.

5.4.1 Error diffusion

The computed values of the pixels are used in next iterations of the multi-step
algorithm for following computations. It means that difference (error) between
original and reconstructed color/intensity value uo(i, j) − û(i, j) is spread by an
avalanche effect from the origin to the rest of the reconstructed area. This error
diffusion depends on the type of damage.

40



Let us show an error diffusion on a 1D example shown in Fig. 44.

Figure 44: Example of 1D grayscale image.

Intensities of the used pixels are in the following vector

(100, 40, 30, 50, 80, 200).

We demonstrate the process of dithering. We have to change this vector to a
binary image ue with respect to threshold e as follows

ue(i) =

{
0 if uo(i) ≤ e,

255 if uo(i) > e.

The thresholded vector for e = 49 is as follows

(255, 0, 0, 255, 255, 255).

The outcome vector is illustrated in Fig. 45.

Figure 45: Thresholded 1D image.

The difference between the original image uo and the thresholded image ue is
significant. We can make a comparison based on the sums of components

so =
m∑
i=1

uo(i),

se =
m∑
i=1

ue(i),

where so stands for the sum of the original image intensities and se stands for
the sum of the thresholded image intensities. In our example

so = 500,

se = 1020.

Let us demonstrate an advanced method taking into consideration the error
between the thresholded pixels u′e(i) and the original pixels uo(i). The difference for
the first pixel is as follows

uo(1)− u′e(1) = −155.

41



This value is used for the second pixel as follows

uo(2) = uo(2) + (−155) = 40− 155 = −115.

The intensity of uo(2) is 0 after thresholding. We also process the second pixel
in the same way

uo(2)− u′e(2) = −115− 0 = −115,

uo(3) = uo(3) + (−115) = 30− 115 = −85.

The result of this method is

(255, 0, 0, 0, 0, 255),

as can be seen in Fig. 46. The sum of the intensities is as follows

so = 500,

s′e = 510,

where approach of the s′e to the so than the se to the so is visible.

Figure 46: Advanced method of the dithering.

One of the methods using this error diffusion is Floyd-Steinberg [12]. A compar-
ison is provided in Fig. 47.

(a) Thresholding (b) Floyd-Steinberg

Figure 47: The comparison between thresholding and Floyd-Steinberg processing.

Both images were dithered from 256 intensity levels to 2 intensity levels. Error
diffusion, where pixel intensity computed in the one step, is taken into consider-
ation for next iterations provides significantly better results. The error has to be
distributed equally to all directions. If we distribute the error only in one direction,

42



from left to right for example, then we obtain the error accumulated to the last
pixel, the rightest one. Error distribution in the F-transform is in Fig. 48, 49, 50,
51. Fig. 48 shows error diffusion with mask holes usage.

(a) Input (b) h = 2 (c) h = 3 (d) h = 4

(e) h = 5 (f) h = 6 (g) h = 7 (h) h = 8

(i) h = 9 (j) h = 10 (k) h = 11 (l) h = 12

Figure 48: Processing of the holes damage from Fig. 2b.

We can see that the error is not accumulated to one pixel or to one direction.
This is a natural property of the F-transform.

5.5 Edge preserving

Edges of the images are not naturally preserved in the F-transform method, see
Fig. 52. Edge preserving is the target of our ongoing research. The first results are
achieved with support of the Sobel operator. The 5× 5 kernel is used. For gradient
in x direction is used kernel as follows

Gx =


2 1 0 −1 −2
3 2 0 −2 −3
4 3 0 −3 −4
3 2 0 −2 −3
2 1 0 −1 −2

 ; Gy =


−2 −3 −4 −3 −2
−1 −2 −3 −2 −1
0 0 0 0 0
1 2 3 2 1
2 3 4 3 2

 .
As the first step, edges are detected in the input damaged image. The edge

pixels surrounding the damaged area Ω are determined. The neighborhood of the

43



(a) Input (b) h = 2 (c) h = 3

(d) h = 4 (e) h = 5

Figure 49: Processing of the noise damage from Fig. 2a.

(a) Input (b) h = 2 (c) h = 3

(d) h = 4 (e) h = 5

Figure 50: Processing of the scratches damage from Fig. 2c.

pixels is searched for another edge pixel E in the distance based on the used kernel
size, see Fig. 53.

The Sobel kernel is centered to pixel E and used for the edge slope a determi-
nation. Let us demonstrate this on an example. The lowest edge from Fig. 53b is
in detail in Fig. 54 with a marked area for application of the Sobel filter. The Sobel
filter is centered to the purple pixel (ip, jp) from Fig. 53b.

Edges consist of white pixels with intensity 255 and other pixels are black with
intensity 0. The kernels Gx, Gy have to be rotated by 180◦ to

44



(a) Input (b) h = 2

Figure 51: Processing of the text damage from Fig. 2d.

(a) Input image (b) Mask (c) Reconstructed image

Figure 52: Demonstration of the reconstruction in the case of clearly visible edges.

(a) Missing edges (b) Marked
pixels

(c) Reconstructed edges

Figure 53: Demonstration of the edge preserving. Colors in the middle figure de-
termine the following: yellow - pixel on the border of the Ω; purple - pixel in the
distance based on the used kernel size.

G′x =


−2 −1 0 1 2
−3 −2 0 2 3
−4 −3 0 3 4
−3 −2 0 2 3
−2 −1 0 1 2

 ; G′y =


2 3 4 3 2
1 2 3 2 1
0 0 0 0 0
−1 −2 −3 −2 −1
−2 −3 −4 −3 −2

 .

45



Figure 54: Detail of the processed image with applied area for Sobel mask.

It leads to following computation:

(us ∗G′x)(ip, jp) = (−2) · 0 + (−1) · 0 + 0 · 0 + 1 · 0 + 2 · 0
+ (−3) · 0 + (−2) · 0 + 0 · 0 + 2 · 255 + 3 · 255

+ (−4) · 0 + (−3) · 255 + 0 · 255 + 3 · 0 + 4 · 0
+ (−3) · 255 + (−2) · 0 + 0 · 0 + 2 · 0 + 3 · 0
+ (−2) · 0 + (−1) · 0 + 0 · 0 + 1 · 0 + 2 · 0
= −255,

where (us ∗G′x) stands for the gradient for x direction, us stands for the image u
with separated edges and G′x stands for the rotated Sobel kernel. The rotated kernel
by 90◦ is used for gradient determination in y direction. It leads to computation:

(us ∗G′y)(ip, jp) = 2 · 0 + 3 · 0 + 4 · 0 + 3 · 0 + 2 · 0
+ 1 · 0 + 2 · 0 + 3 · 0 + 2 · 255 + 1 · 255

+ 0 · 0 + 0 · 255 + 0 · 255 + 0 · 0 + 0 · 0
+ (−1) · 255 + (−2) · 0 + (−3) · 0 + (−2) · 0 + (−1) · 0
+ (−2) · 0 + (−3) · 0 + (−4) · 0 + (−3) · 0 + (−2) · 0
= 510.

The angle between the edge and axis x is determined as follows

β = arctan 2(−255, 510)
.
= −26.6 deg.

Slope a is determined as follows

a = tan(−26.6)
.
= −0.5.

The result of the same computation also for other detected border pixels is in
Fig. 53c.

5.6 Image upsampling

The image upsamling process determines unknown pixels after size increasing of the
input image as shown in Fig. 55. Techniques commonly used for that purpose are

46



based on interpolation, see section 3. Unknown pixels incurred as a consequence of
image resampling can be considered as damage [43]. In general, we have to compute
their values. The F-transform can be used for unknown pixels values determination.
Unknown pixels must be marked as a damaged area Ω by mask mΩ similar to that
in Fig. 56.

(a) Original (b) Increased size

Figure 55: Size increasing of an image.

(a) Mask (b) Detail of the mask

Figure 56: Mask of the unknown pixels for image upsamling after two times resizing.

In section 3, interpolation after upscaling from 4 × 4 to 512 × 512 is shown.
The same 4 × 4 images are also used for demonstration of the upsampling via the
one-step F-transform as shown in Fig. 58. There are more possibilities to handle
this task depending on the undamaged pixel positioning. Commonly used methods
place known pixel to the corner of each subarea or to the centre of each subarea as
shown in Fig. 57. The multi-step method is used in Fig. 57 and the one-step method
in Fig. 58.

5.7 Image Filtering

The F-transform can be also used for image filtering. Photography with a semi-
transparent sticker Ψa is shown in Fig. 59.

47



(a) Corner (b) Center

Figure 57: Different approaches for the known pixel preserving.

(a) h = 74 (b) h = 86 (c) h = 110 (d) h = 171

Figure 58: Image upsampling with usage of the one-step F-transform and various
radii of the basic functions.

(a) Photography (b) Sticker detail

Figure 59: Photography with semi-transparent sticker.

A similar distortion can be achieved by a convolution filter. The one-step F-
transform can be also used for that purpose. Fig. 60 is used as an example. There
is an output of the Gaussian filtering and the one-step F-transform in Fig. 61.

The images clearly show that the F-transform achieves similar results like com-
monly used approaches. The processing time of this 512 × 512 image in our F-
transform implementation and testing machine is under 80 ms. The radius of the
used basic function was h = 140. For implementation details, see section 7.

48



Figure 60: Part of the photography used in Fig. 61.

(a) Gaussian filter (b) One-step F-transform

Figure 61: Comparison of the area distortion achieved by Gaussian filtering and
one-step F-transform.

5.8 Noise reduction

The F-transform can be also used for removing noise from the image. This is called
image denoising. Noised Lena is in Fig. 62. Application of the one-step F-transform
with different radii is shown in Fig. 63. More detailed images are in Fig. 64.

Figure 62: Noised Lena.

Let us remark that this solution is appropriate if noise damage is not covered
by the mask. In a real situation, it is commonly very hard to mark damaged pixels

49



(a) h = 2 (b) h = 3 (c) h = 4

Figure 63: Illustration of denoising by F-transform using different basic functions
radii h.

(a) Input (b) h = 2 (c) h = 3 (d) h = 4

Figure 64: The detail of the Lena’s eye.

in that kind of distribution. In general, the one-step F-trasform can be used in the
case where mask definition is a very time consuming process.

50



6 Optimal settings of F-transform parameters

The section describes F-transform parameters and a variety of its settings. A great-
est emphasis is put on the basic functions.

6.1 Basic functions

The image reconstruction technique based on the F-transform uses clearly defined
basic functions. These functions have a strong impact on the quality of reconstruc-
tion. We can use a predefined shape and radius but we can also create a new one
from scratch.

6.1.1 Various types of basic functions

We use discrete basic functions Ak and Bl. A discrete basic function with respect
to the Ruspini condition builds on top of the template in Fig. 65.

Figure 65: Template for basic function definition.

You can see white squares in Fig. 65. This squares can be marked as parts of
the basic function. One mark per column. The mirrored part of the basic function
is then automatically computed, see Fig. 66. We choose y = 4 for the column a.
The value in column 10 is the same and thanks to the Ruspini condition, the values
in columns 5 and 7 are easily computable as

f(y5) = 1− f(ya),

f(y7) = 1− f(ya) = f(y5).

(a) a column (b) b column

Figure 66: Selection of the fourth pixel in a column and fifth pixel in b column.

51



Using the Ruspini condition, we can use copies of the basic function for covering
the whole range. The height of the template determines values f(y) on the y axis.
For better usability, we choose value 0 for the first row, 1 for the last one and twice
0.5 in the middle. Two basic functions with marked values can be seen in Fig. 67.

Figure 67: Basic function and shifted copy.

The part where basic functions are overlapping has its summation equal 1 in
each column. For better visualization serve black vertical lines.

In experiments, we choose a generating function A0 of a partition (with the
Ruspini condition) and create a corresponding partition by shifting A0. Because
we work with uniform partitions only, the generating functions are symmetrical.
Therefore, it is enough to choose their left parts. In experiments, we extend the
variety of basic functions by excluding condition 4 in the definition in section 5.1.
The F-transform based reconstructions with various basic functions were applied to
the images of Lena, cloth, drawing and nature (see Fig. 68) which has been damaged
by text from Fig. 2d.

We applied the multi-step reconstruction algorithm with radii from 2 to 6.
The following shapes of generating functions were used: ai, bi, ci, di (Fig. 69) and
ao, bo, co, do (Fig. 71). As a demonstration image, Lena image was used. In Tab. 5,
we show the values of the RMSE applied to the original (undamaged) and recon-
structed images.

The reconstruction was performed by the F-transforms with basic functions gen-
erated by ai, bi, ci, di (left nondecreasing) and ao, bo, co, do (oscillating). Symbols ”-”
in columns 5, 6 mean that all damaged pixels were reconstructed in the preceding
steps. Based on Tab. 5, we can state that 4 is the maximal value of the radius
of a basic function which solves the reconstruction problem for testing this kind of

(a) Lena (b) Cloth (c) Drawing (d) Nature

Figure 68: Images used for experiments.

52



(a) ai (b) bi

(c) ci (d) di

Figure 69: Nondecreasing basic functions and the corresponding inverse F-
transforms (detail of Lena’s eye).

(a) ad (b) bd (c) cd (d) dd

Figure 70: Nonincreasing basic functions application (detail of Lena’s eye). We
used the same basic functions as in a nondecreasing example in Fig. 69 but reversed
upside down.

damage. From Tab. 5, we conclude that:

• the best quality is achieved by the generated function bo, bi, ci, whose shape is
triangle or almost triangle;

• the worse quality is achieved by the generated function di;

• the quality of the reconstruction is robust with respect to small oscillations in
shapes of basic functions, compare the respective RMSE values of ai and ao, bi
and bo, ci and co, di and do.

We analyzed the influence of various types of basic functions on image recon-
struction using the F-transform. Based on the achieved results, we see that the
triangular-shaped basic functions are the best ones for the reconstruction problem.
The F-transform based reconstructions whose basic functions have small oscillations
bi,ci,bo produce visually better results than their counterparts. Related research is
published in [42].

53



(a) ao (b) bo

(c) co (d) do

Figure 71: Oscillating basic functions application (detail of Lena’s eye).

f/h 2 3 4 5 6 2 3 4 5 6

Lena Drawing
ai 49.98 5.59 4.75 - - 33.91 3.97 3.90 - -
bi 49.96 5.50 4.64 - - 33.90 3.92 3.84 - -
ci 49.97 5.51 4.65 - - 33.90 3.83 3.76 - -
di 62.99 32.71 6.66 6.66 6.66 42.47 21.98 4.82 4.82 4.82
ao 49.96 5.93 5.10 - - 33.90 4.43 4.37 - -
bo 49.96 5.47 4.60 - - 33.90 3.90 3.82 - -
co 49.98 5.64 4.80 - - 33.91 4.04 3.97 - -
do 49.98 5.59 4.75 - - 33.91 3.97 3.90 - -

Cloth Nature
ai 22.95 7.83 7.75 - - 56.37 7.60 6.96 - -
bi 22.90 7.76 7.68 - - 56.35 7.51 6.86 - -
ci 28.89 7.66 7.58 - - 56.35 7.39 6.72 - -
di 28.48 16.35 8.81 8.81 8.81 71.25 37.25 9.22 9.22 9.22
ao 22.89 8.12 8.04 - - 56.35 8.15 7.55 - -
bo 22.89 7.72 7.64 - - 56.35 7.46 6.80 - -
co 22.95 7.88 7.80 - - 56.37 7.67 7.03 - -
do 22.95 7.83 7.75 - - 56.37 7.61 6.96 - -

Table 5: The values of the RMSE from a comparison of the undamaged image and
reconstruction of the image damaged by text from Fig. 2d. The values are from
older currently undeveloped version of the reconstruction software.

6.1.2 Radius selection

Radius selection strongly depends on the target reconstruction. Fig. 72 shows an
example on a 1D discrete function. There are rows of an image presented as a

54



function, where the value on axis y stands for the intensity of the pixel in the position
declared by the value on axis x. A combination of the used radii is presented in
Fig. 73.

6.2 Generating of suitable basic function

Shapes of the basic functions can be nondecreasing, oscillating or nonincreasing.
Differences and influences on computation are described in [42]. We choose basic
functions with radius 2 in the first step of reconstruction and radius 4 in the second
step because of a fully sufficient usage on the input set of testing images. In this
work, we are focused on building the shape of a basic function step by step based
on the results provided by RMSE. We identified two ways of this process which will
be demonstrated on a template in Fig. 65 where max = 6:

Column by column Find the best value for current column and continue with
next column:

1. to choose radius h = 2;

2. to choose active column as c = ”a”;

3. to choose current row as y = 1;

4. based on that values to create a basic function;

5. to use the basic function for image reconstruction;

6. to compare reconstructed image with original undamaged one by RMSE;

7. if y = max then h = 4, c = ”b” and to go to step 3;

8. to change current row as y = y + 1;

9. to go to step 4.

Radius by radius Find the best value for current radius and continue with next
radius:

1. to choose current radius as h = 2;

2. to choose current column as c = ”a”;

3. to choose current row as y = 1;

4. based on that values to create a basic function;

5. to use the basic function for image reconstruction;

6. to compare reconstructed image with original undamaged by RMSE;

7. if y = max and h = 4 then c = ‘b‘ and to go to step 3;

8. if y = max then h = 4 and to go to step 3;

9. to choose current row as y = y + 1;

10. to go to step 4.

55



The first way column by column is computed in Tab. 6. You can see that for
column a there is the best RMSE value for y = 6. It means that we choose the sixth
row for column a. For next column b the best RMSE value is in row y = 5 for the
Lena and nature images and y = 4 for the drawing image. We choose basic function
with values y = 6 for column a and y = 5 for column b. This function is in Fig. 74.

y a b a b a b

Lena Drawing Nature
1 62.99 5.16 46.72 4.01 71.25 7.55
2 49.99 5.04 36.63 3.89 56.39 7.39
3 49.98 4.97 36.62 3.82 56.37 7.30
4 49.97 4.93 36.62 3.79 56.36 7.27
5 49.97 4.92 36.61 3.80 56.35 7.27
6 49.96 4.95 36.61 3.84 56.35 7.32

Table 6: Values of the RMSE from a comparison of the undamaged image and
reconstruction of the image damaged by text from Fig. 2d. Column by column
basic function creation.

The second way of basic function creation radius by radius is computed in Tab. 7.
The table reveals that the best value is y = 2 for a and y = 5 for column b. This
basic function is shown in Fig. 75.

As a result, we can say that the step-by-step process converges to an oscilating
or linear shape. For column-by-column way, the best solution is an oscillating basic
function. Value y = 6 for column a and y = 5 for column b provides RMSE values
4.92 for Lena, 3.80 for drawing and 7.27 for nature. Because of very close results
for drawing image between b = 4 and b = 5, we choose value b = 5 for all of them.
For radius-by-radius, the best linear function is with y = 2 for column a and y = 5
for column b. For Lena, the RMSE is equal to 4.78, for drawing is equal to 3.61 and
for nature is equal to 7.06. Related research is published in [40].

6.3 Usage of the one-step/multi-step F-transform method

We should distinguish between these methods based on their application. As shown
in section 5, there are various applications specific for the one-step and multi-step
method. We can say that the methods basically differ in the level of blurriness in
the output image, which can be also handled by radius of the used basic function.

In general, the one-step F-transform can be used for the following:

• inpainting of a small area;

• image denoinsing;

• image filtering.

The multi-step F-transform is usable for the following:

• inpainting of bigger gaps;

56



a / b 1 2 3 4 5 6

Lena
1 6.12 5.71 5.58 5.51 5.50 5.52
2 5.16 4.97 4.85 4.79 4.78 4.81
3 5.12 4.96 4.86 4.81 4.80 4.83
4 5.11 4.97 4.88 4.83 4.83 4.86
5 5.13 5.00 4.92 4.87 4.87 4.90
6 5.16 5.04 5.97 4.93 4.92 4.95

Drawing
1 4.93 4.32 4.21 4.16 4.15 4.19
2 3.93 3.76 3.65 3.61 3.61 3.65
3 3.91 3.76 3.67 3.63 3.64 3.68
4 3.92 3.79 3.71 3.67 3.68 3.72
5 3.96 3.83 3.76 3.73 3.73 3.77
6 4.01 3.89 3.82 3.80 3.80 3.84

Nature
1 8.50 7.68 7.45 7.33 7.30 7.33
2 7.63 7.33 7.16 7.07 7.06 7.10
3 7.53 7.30 7.15 7.09 7.09 7.13
4 7.50 7.30 7.18 7.13 7.14 7.19
5 7.51 7.34 7.23 7.19 7.20 7.25
6 7.55 7.39 7.30 7.27 7.27 7.32

Table 7: Values of the RMSE from a comparison of the undamaged image and
reconstruction of the image damaged by text from Fig. 2d. Radius by radius basic
function creation.

• image upsampling;

• image filtering.

This division is not strictly separated and the distinction between one-step/multi-
step depends on the desired output.

57



(a) h = 10

(b) h = 11

(c) h = 15

Figure 72: Different radii for the F-transform reconstruction applied on the same
set of input points.

58



Figure 73: Combination of the various reconstructions from Fig. 72.

(a) h = 2 (b) h = 4

Figure 74: Basic function for different radii by column by column

(a) h = 2 (b) h = 4

Figure 75: Basic function for different radii by radius by radius

59



7 Implementation and experiments

The whole solution is developed with Qt-framework, C++, and Python. The devel-
opment and testing was conducted on a computer

CPU: Intel(R) Core(TM)2 Duo CPU T9300 @ 2.50GHz
RAM: 2GB
OS: Windows 7 32b

7.1 Inpainting techniques

The inpainting techniques mentioned before An image inpainting technique based
on the fast marching method [35] and Navier-Stokes, fluid dynamics, and image and
video inpainting [4] were tested by implementation in the OpenCV framework. The
author used Python methods

cv2.inpaint(img,mask,3,cv2.INPAINT_TELEA)
cv2.inpaint(img,mask,3,cv2.INPAINT_NS)

where img is the input image, mask is the mask, 3 stands for the inpaint radius
and the last parameter determines the used algorithm.

7.2 Mask

A mask is an image with the same size as the damaged image. A mask is used to
distinguish between the damaged and undamaged parts and it is therefore necessary
to establish a binary distribution of the used pixel colors. We use png files, where
the distinctive value of each pixel is the alpha channel. A transparent pixel marks
the undamaged area and an opaque pixel marks the damaged area.

7.3 1D reconstruction using the F-transform

The first version of the software was aimed at the 1D reconstruction. A description
of the algorithm, screenshots and example of the computation follow. A screen of
the application is in Fig. 76. Fig. 77 shows the starting position. The two lines
below the graph illustrate the intensity of the input (top) and reconstructed (down)
pixels.

The user can define input points via left-click. Let us say that we want to add
two points to the opposite sides of the input area. One possibility is in Fig. 78.

Coordinates are as follows

”0” = [14, 6],

”1” = [63, 13],

where the first number stands for x position and y stands for the intensity value.
We can use the values in the F-transform formula 5 for the involved basic functions
A1, A2

60



Figure 76: Default screen of the 1D reconstruction application.

Figure 77: Default visualisation part of the application.

U1 =
6 · 0.6

0.6
= 6,

U2 =
6 · 0.4

0.4
= 6,

for the point with index 0 and basic functions A6, A7

U6 =
13 · 0.7

0.7
= 13,

61



Figure 78: Function with two input points reconstructed by F-transform and illus-
trated as 1D image.

U7 =
13 · 0.3

0.3
= 13,

for the point with index 1. There are no other known points, well all other com-
ponents are equal to zero. These results are visible in the window of the application
in Fig. 79.

Figure 79: Part of the computation for Fig. 78.

We compute an inverse F-transform formula 6 for the whole domain. Let us
show a computation of the point with coordinate x = 20

û(20) = U2 · 1 = 6.

Only one basic function A2 covers the pixel with a value greater than 0. It means
that only related fuzzy component U2 is used. Next computation will be shown on
pixel x = 11

û(11) = U1 · 0.9 + U2 · 0.1 = 6.

Let us proceed to implementation details because if we have a close look at point
x = 11, we can see intensity û = 5 in Fig. 80.

The influence of the basic function is computed as follows

62



Figure 80: Detail of the approximation from Fig. 78.

float a = (float)1 / (float)basic_function_center;

point->bf2.weight = a * x;
point->bf1.weight = 1 - point->fw2.weight;

where a stands for the slope, point is the processing pixel and bf1 respective bf2
stands for the concrete basic function. Every pixel is covered by exactly two basic
functions. Because of the Ruspini condition, we can compute only bf2.weight, and
bf1.weight is taken as complement to 1.

Because of the float nature of the data, the results will be as follows

point->bf2.weight 0.100000001
point->bf1.weight 0.899999976

instead of correct ones

bf2.weight = 0.1,

bf1.weight = 0.9,

which follows to y = 5.999... . There are three types of float to integer conver-
sion. Conversion floor rounds down, ceil rounds up and round with respect to 0.5.
The default is floor, and this is why we obtained 5. We can switch from floor to
round in the y computation. The result is in Fig. 81.

Computation of the fuzzy components proceeds from the basic functions point of
view. There is a numerator and a denominator in Uk where the numerator is com-
posed from basic function Ak and intensities of the related pixels. The denominator
includes basic function Ak only.

The algorithm is as follows:

1. to define known input points;

2. to attach two related basic functions for every input point;

3. to compute components for all basic functions;

4. to compute inverse F-transform;

63



Figure 81: Approximation with round used for y computation.

(a) h = 6

(b) h = 11

(c) h = 17

Figure 82: F-transform reconstruction of the same points from Fig. 25 with different
radii.

5. to produce output.

Fig. 82 shows the impact of different radii on the reconstruction.

64



This process is optimized in 2D usage and will be described below.

7.4 2D reconstruction using the F-transform

Let us demonstrate a 2D one-step F-transform reconstruction. A screen of the
application is in Fig. 83. Lena is selected as the default input image and the user
has to choose what kind of damage should be applied. After that, a radius has to
be selected and the user can immediately see the output of the reconstruction.

Figure 83: Default screen of the 2D reconstruction application.

In a 2D space, the image is divided by basic functions to rectangles. We use
the same radius for basic functions A and B. Fig. 84 represents an example of the
coverage. Let us show a concrete computation. The input is in Fig. 85.

Figure 84: Blue basic function stands for A0, B0, green for A1, B1 and red for A2, B2.

Let us establish fuzzy partition A0, A1 in x direction and B0, B1 in y direction
with a linear basic function. Every pixel is covered by 4 basic functions, 2 in each
direction. It leads to:

65



(a) Image (b) Intensities

Figure 85: Input image for 2D F-transform.

u(0, 0) :A0(0) = 1;A1(0) = 0

B0(0) = 1;B1(0) = 0

u(1, 0) :A0(1) = 0.5;A1(1) = 0.5

B0(0) = 1;B1(0) = 0

u(2, 0) :A0(2) = 0;A1(2) = 1

B0(0) = 1;B1(0) = 0

u(0, 1) :A0(0) = 1;A1(0) = 0

B0(1) = 0.5;B1(1) = 0.5

u(1, 1) :A0(1) = 0.5;A1(1) = 0.5

B0(1) = 0.5;B1(1) = 0.5

u(2, 1) :A0(2) = 0;A1(2) = 1

B0(1) = 0.5;B1(1) = 0.5

u(0, 2) :A0(0) = 1;A1(0) = 0

B0(2) = 0;B1(2) = 1

u(1, 2) :A0(1) = 0.5;A1(1) = 0.5

B0(2) = 0;B1(2) = 1

u(2, 2) :A0(2) = 0;A1(2) = 1

B0(2) = 0;B1(2) = 1

Four basic functions lead to four fuzzy components. A full computation of the
U00 will be shown.

U00 =
(100 · 0.5 · 1) + (20 · 0.5 · 0.5) + (10 · 0 · 0.5) + (50 · 1 · 0)

(0.5 · 1) + (0.5 · 0.5) + (0 · 0.5) + (1 · 0)
=

55

0.75
.

A computation of the other three basic functions will be shown in a shorter way.

U10 =
(100 · 0.5 · 1) + (20 · 0.5 · 0.5) + (10 · 1 · 0.5)

0.5 + (0.5 · 0.5) + 0.5
= 48,

U01 =
(20 · 0.5 · 0.5) + (50 · 1 · 1)

(0.5 · 0.5) + 1
= 44,

66



U11 =
(20 · 0.5 · 0.5) + (10 · 1 · 0.5)

(0.5 · 0.5) + (1 · 0.5)
=

10

0.75
.

The unknown points are determined as follows

û(0, 0) = (
55

0.75
· 1 · 1) + (48 · 0 · 1) + (44 · 1 · 0) + (

10

0.75
· 0 · 0)

.
= 73,

û(0, 1) = (
55

0.75
· 1 · 0.5) + (48 · 0 · 0.5) + (44 · 1 · 0.5) + (

10

0.75
· 0 · 0.5)

.
= 59,

û(1, 2) = (
55

0.75
· 0.5 · 0) + (48 · 0.5 · 0) + (44 · 0.5 · 1) + (

10

0.75
· 0.5 · 1)

.
= 29,

û(2, 0) = (
55

0.75
· 0 · 1) + (48 · 0 · 0) + (44 · 1 · 1) + (

10

0.75
· 1 · 0) = 44,

û(2, 2) = (
55

0.75
· 0 · 0) + (48 · 0 · 1) + (44 · 1 · 0) + (

10

0.75
· 1 · 1)

.
= 13,

which is shown in Fig. 86.

Figure 86: F-transform applied on the Fig. 85a.

We have just demonstrated how a one-step reconstruction works. Let us sum-
marize the algorithm and show weaknesses of this approach. These weaknesses are
a motivation for the multi-step approach.

7.4.1 One-step reconstruction

The algorithm is as follows:

1. to create a mask mΩ;

2. to choose fuzzy partition of an image domain according to the size of the
damaged part;

3. to compute the inverse F-transform û;

4. to determine a reconstructed image ur;

5. to produce output.

We have to determine the mask. The mask is used for a what-is-wrong definition,
where the first pixel color determines the damaged area and the second determines
the undamaged area. After that, the basic function shape must be selected where
the default is a triangle. The radius of the function starts on h = 2. With these
conditions, the first iteration is computed. The first iteration comes up like this:

67



1. to compute the inverse F-transform û;

2. to check if mask covers pixels which are not processed in the preceding step.

We will repeate this process until we find a radius which completely reconstructs
our image. Let us demonstrate this algorithm on a 1D example. The row of the
image has some damaged (unknown) pixels as shown in Fig. 87.

Figure 87: Row of the image with damaged (missing) part.

We can see red points illustrated in part Input image where the damaged ones are
marked by yellow color. Blue crosses mark the output after the inverse F-transform,
illustrated in part Output image. The scale of the y axis is transformed to pixel
intensity, where 0 stands for black and 30 stands for white. We can see that the
reconstruction marked by blue crosses converges to 0 in part covered by A2. This
is a problem because if we want to reconstruct a larger continuous area, the result
will be converged to 0. A solution may be to choose bigger radius h and this is
the idea of the one-step reconstruction. Its output will be very blurry because a
bigger radius of the used basic function correlates with more intensive blurring of
the reconstructed part. A better solution is to use only a part of the reconstructed
pixels. We can select only these before the reconstruction starts to converge to 0,
as shown in Fig. 88.

Now we must determine how to process the area covered by A2. We can demon-
strate what will happen if we also use the first pixel from the left, marked by green
in Fig. 89.

We can see that the reconstruction looks more natural than before. Even better
results can be achieved by the following multi-step algorithm where convergence to
0 is inhibited.

7.4.2 Multi-step reconstruction

We progress differently in that case. The algorithm is as follows:

1. to create a mask mΩ;

68



Figure 88: Row of the image with reconstructed part. You can see convergence to
0.

Figure 89: Row of the image with reconstructed part. One more point is used in
comparison with Fig. 88.

2. to choose radius h = 2;

3. to establish a h-uniform fuzzy partition A1, . . . , Am and B1, . . . , Bn of P ;

4. to compute the inverse F-transform û of the image u;

5. to compute the combined image ur;

6. to update the mask mΩ by deleting pixels whose reconstructed values are
strictly greater than zero;

7. if the mask is not identically equal to 0, then to update the radius h := h+ 1
and u = ur and go to step 3. Otherwise go to step 8;

8. print output.

69



The main difference lies in including the previous computed pixels to the recom-
puting of the new ones. It means that we use various radii of the basic functions,
as shown in Fig. 90, in more iterations.

Figure 90: Row of the image with reconstructed part. Bigger radius is used in
comparison with Fig. 88.

For automatic processing of many images without user interaction, a program in
Python has been developed.

import os
import subprocess

os.chdir("./images")

for files in os.listdir("."):
print ’processing ’ + files
subprocess.call([pCore, pInput, pMask])

where pCore is the path to the F-transform implementation, pInput is the path
to the folder containing damaged images and pMask is the path for the used mask.

Let us demonstrate how a multi-step reconstruction works for 2D image in
Fig. 91. Results for the various damages are in Fig. 92.

7.5 Results

We proposed to reconstruct a damaged image with the help of a fuzzy technique,
namely the F-transform. Two algorithms have been proposed: one-step and multi-
step. The one-step algorithm is based on the assumption that every damaged pixel
is covered by a combination of basic functions so that this combination also covers
at least one undamaged pixel. This assumption restricts applicability of the one-
step algorithm. The multi-step algorithm has no restrictions and effectively solves

70



Figure 91: Demonstration image.

the problem of reconstruction. Moreover, the multi-step reconstruction has better
quality than the one-step reconstruction.

We showed various experimental results on a set of 56 color images6 and damaged
by four typical types: noise, holes, scratches, text as is shown in Fig. 2. The
reconstruction was qualified by two measures: RMSE and SSIM. The F-transform
based reconstruction was compared with two traditionally applied methods of the
nearest neighbor and bilinear interpolation, and with two inpainting techniques [35]
and [4]. The obtained results show an absolute advantage of the F-transform over
interpolation methods for all considered types of damage. The advantage over [35]
and [4] techniques in the case of noise and holes damage and closeness to these
methods (being slightly behind) in the case of scratch and text damage. Moreover,
the comparison delineated the direction of the future research.

There are also results of the upsampling issue with attached time in Tab. 93. The
testing was processed with a set of 90 grayscale images7 with optimized algorithms
for upsampling after 2× resizing in the case of interpolations. The testing process
consists in applying the mask from Fig. 56a and reconstructing the marked points.
Processing time of the multi-step F-transform for various damage is in Tab. 94.

7.5.1 Images

For illustration we also append a set of demonstration images. All techniques in-
troduced above were tested on a set of 56 color images6 with damaged parts from
Fig. 2. In Fig. 95, 96, 97, 98 there are examples of four images from the testing set
damaged by masks shown in Fig. 2. There is a clear visible difference in smoothness
of the reconstructed parts. The principal features are: non-connected reconstruc-
tion by the nearest neighbor interpolation, long linear stripes in the case of bilinear
interpolation, and blurred connections in the case of F-transform.

From the quality of reconstruction point of view (measured by RMSE or SSIM)
we can say following:

6http://decsai.ugr.es/cvg/dbimagenes/c512.php
7http://decsai.ugr.es/cvg/dbimagenes/g512.php

71

http://decsai.ugr.es/cvg/dbimagenes/c512.php
http://decsai.ugr.es/cvg/dbimagenes/g512.php


(a) Holes (b) Reconstruction

(c) Scratches (d) Reconstruction

(e) Text (f) Reconstruction

(g) Noise (h) Reconstruction

Figure 92: Multi-step F-transform reconstruction for various damage types from
Fig. 2.

72



Mask: noise

SSIM
Stat Nearest Bilinear Telea Navier-Stokes FT-OS FT-MS
Min. 0.7071 0.7461 0.7864 0.7813 0.7555 0.7882
1st Qu. 0.8410 0.8662 0.8920 0.8928 0.8565 0.8972
Median 0.8854 0.9066 0.9334 0.9333 0.9002 0.9365
Mean 0.8796 0.8975 0.9226 0.9226 0.8921 0.9253
3rd Qu. 0.9312 0.9389 0.9618 0.9627 0.9387 0.9640
Max. 0.9763 0.9774 0.9912 0.9917 0.9837 0.9926

RMSE
Stat Nearest Bilinear Telea Navier-Stokes FT-OS FT-MS
Min. 10.95 9.364 8.749 8.744 9.796 8.337
1st Qu. 16.30 14.429 12.092 11.958 14.726 11.738
Median 21.68 19.046 16.055 15.913 19.673 15.435
Mean 22.37 19.625 16.928 17.012 19.607 16.615
3rd Qu. 26.41 22.932 20.155 20.363 22.939 20.005
Max. 40.32 34.206 32.533 33.231 33.938 32.761

Table 8: SSIM and RMSE values of the damage in Fig. 2a

Mask: holes

SSIM
Stat Nearest Bilinear Telea Navier-Stokes FT-OS FT-MS
Min. 0.8421 0.8585 0.8641 0.8570 0.8607 0.8674
1st Qu. 0.9061 0.9203 0.9290 0.9293 0.9240 0.9348
Median 0.9245 0.9382 0.9392 0.9372 0.9371 0.9451
Mean 0.9215 0.9349 0.9376 0.9372 0.9354 0.9428
3rd Qu. 0.9416 0.9481 0.9538 0.9507 0.9496 0.9573
Max. 0.9816 0.9802 0.9856 0.9848 0.9850 0.9862

RMSE
Stat Nearest Bilinear Telea Navier-Stokes FT-OS FT-MS
Min. 8.355 6.707 7.284 7.592 7.528 7.395
1st Qu. 15.010 13.248 13.255 13.342 13.087 12.610
Median 18.051 15.580 15.689 15.689 15.376 14.800
Mean 18.695 16.604 16.517 16.568 16.482 15.704
3rd Qu. 21.432 19.413 18.786 18.851 18.744 17.997
Max. 31.906 31.429 28.727 28.370 27.957 28.671

Table 9: SSIM and RMSE values of the damage in Fig. 2b

• the F-transform technique in all the tested cases gives us great and comparable
results where the largest difference is in damage in Fig. 2a;

• among interpolation methods, the bilinear interpolation shows better results
than the nearest neighbor in all types of damage.

73



Mask: scratches

SSIM
Stat Nearest Bilinear Telea Navier-Stokes FT-OS FT-MS
Min. 0.9597 0.9704 0.9739 0.9733 0.9718 0.9733
1st Qu. 0.9801 0.9859 0.9868 0.9870 0.9851 0.9864
Median 0.9882 0.9913 0.9915 0.9918 0.9887 0.9914
Mean 0.9863 0.9897 0.9906 0.9908 0.9886 0.9904
3rd Qu. 0.9927 0.9944 0.9949 0.9951 0.9939 0.9948
Max. 0.9990 0.9988 0.9994 0.9994 0.9990 0.9995

RMSE
Stat Nearest Bilinear Telea Navier-Stokes FT-OS FT-MS
Min. 3.010 3.184 2.417 2.414 3.133 2.266
1st Qu. 5.288 4.796 4.418 4.371 5.232 4.456
Median 6.966 6.276 6.052 5.920 6.885 6.118
Mean 7.392 6.419 6.086 6.037 6.727 6.163
3rd Qu. 8.670 7.600 7.139 7.087 7.826 7.174
Max. 14.880 12.460 11.751 11.867 12.125 11.849

Table 10: SSIM and RMSE values of the damage in Fig. 2c

Mask: text

SSIM
Stat Nearest Bilinear Telea Navier-Stokes FT-OS FT-MS
Min. 0.9545 0.9640 0.9689 0.9689 0.9652 0.9661
1st Qu. 0.9791 0.9822 0.9843 0.9850 0.9830 0.9837
Median 0.9874 0.9890 0.9908 0.9917 0.9899 0.9905
Mean 0.9850 0.9872 0.9888 0.9894 0.9877 0.9883
3rd Qu. 0.9933 0.9935 0.9948 0.9954 0.9945 0.9950
Max. 0.9986 0.9987 0.9992 0.9993 0.9991 0.9992

RMSE
Stat Nearest Bilinear Telea Navier-Stokes FT-OS FT-MS
Min. 3.603 3.494 2.835 2.630 2.854 2.731
1st Qu. 5.300 4.971 4.627 4.348 4.857 4.646
Median 7.096 6.794 6.062 5.808 6.453 6.117
Mean 7.656 7.097 6.566 6.357 6.872 6.682
3rd Qu. 9.228 8.508 7.956 7.675 8.241 8.224
Max. 15.736 13.701 12.771 12.883 13.315 13.329

Table 11: SSIM and RMSE values of the damage in Fig. 2d

From the processing time point of view, the F-transform is fully sufficient, where
the computational time depends on the type of damage between less than a sec-
ond and no more than 2.5 second. From the visual perception we can say that
the F-transform provides smooth and clear output in comparison with the above-
mentioned interpolations. To conclude, we say that the F-transform is the recom-

74



N
Stat SSIM RMSE Time
Min. 0.5896 0.00 93
1st Qu. 0.9034 11.46 109
Median 0.9522 14.94 109
Mean 0.9255 18.55 108
3rd Qu. 0.9716 23.40 109
Max. 1.0000 81.36 140

(a)

B
Stat SSIM RMSE Time
Min. 0.7018 3.159 109.0
1st Qu. 0.9489 7.744 109.0
Median 0.9764 10.284 125.0
Mean 0.9553 13.625 119.4
3rd Qu. 0.9868 18.066 125.0
Max. 0.9971 61.370 125.0

(b)

FT-OS
Stat SSIM RMSE Time
Min. 0.6836 3.176 157.0
1st Qu. 0.9152 7.867 157.0
Median 0.9694 11.924 157.0
Mean 0.9393 15.488 163.1
3rd Qu. 0.9865 22.255 173.0
Max. 0.9964 62.911 173.0

(c)

FT-MS
Stat SSIM RMSE Time
Min. 0.6897 3.176 141.0
1st Qu. 0.9462 7.823 157.0
Median 0.9751 10.535 157.0
Mean 0.9531 13.875 161.9
3rd Qu. 0.9865 18.596 172.0
Max. 0.9964 60.861 219.0

(d)

Figure 93: Processing time of various methods for image upsampling; a) stands for
the nearest neighbor interpolation, b) stands for bilinear interpolation, c) stands for
one-step F-transform and d) stands for multi-step F-transform.

mended solution for image reconstruction. The F-transform with linear basic func-
tions provides smooth output and achieves high quality. Moreover, the best result
in comparison with the mentioned interpolations is achieved in the case of damage
noise. Our future research will be focused on a comparison of the F-transform with
other interpolation techniques.

75



Holes

time (ms)
Stat N B FT
Min. 249.0 124.0 2138
1st Qu. 265.0 125.0 2184
Median 266.0 140.0 2200
Mean 271.7 134.0 2210
3rd Qu. 281.0 140.2 2231
Max. 297.0 156.0 2293

(a)

Scratches

time (ms)
Stat N B FT
Min. 124.0 124.0 842.0
1st Qu. 125.0 125.0 873.0
Median 140.0 125.0 874.0
Mean 133.4 130.8 879.2
3rd Qu. 140.0 140.0 889.0
Max. 156.0 156.0 920.0

(b)

Noise

time (ms)
Stat N B FT
Min. 218.0 156.0 827.0
1st Qu. 234.0 171.0 842.0
Median 249.0 172.0 850.5
Mean 244.3 172.1 852.7
3rd Qu. 250.0 172.0 858.0
Max. 266.0 187.0 905.0

(c)

Figure 94: Processing time of various method for image upsampling. ”N” stands
for the nearest neighbor interpolation, ”B” stands for bilinear interpolation, ”FT”
stands for multi-step F-transform.

76



Figure 95: Reconstruction of the image anhinga. The rows are from top to bottom
for masks holes, scratches, noise from Fig. 2. The technique used for reconstruction
is the same for column, where the first is the F-transform, the second is the bilinear
interpolation and the third is the nearest neighbor.

77



Figure 96: Reconstruction of the image athens. The rows are from top to bottom
for masks holes, scratches, noise from Fig. 2. The technique used for reconstruction
is the same for column, where the first is the F-transform, the second is the bilinear
interpolation and the third is the nearest neighbor.

78



Figure 97: Reconstruction of the image baboon. The rows are from top to bottom
for masks holes, scratches, noise from Fig. 2. The technique used for reconstruction
is the same for column, where the first is the F-transform, the second is the bilinear
interpolation and the third is the nearest neighbor.

79



Figure 98: Reconstruction of the image avion. The rows are from top to bottom for
masks holes, scratches, noise from Fig. 2. The technique used for reconstruction is
the same for column, where the first is the F-transform, the second is the bilinear
interpolation and the third is the nearest neighbor.

80



8 Conclusion

We have proposed a new technique of image reconstruction focused on image in-
painting. Our technique is based on a new fuzzy technique that is named the F-
transform. The undamaged neighbor of the damaged pixel is evaluated by a basic
function and used for computation of fuzzy components. These components are
used in the following step to determine damaged pixels. Let us recall the objectives.

To elaborate the technique of image reconstruction on the basis of the
F-transform We have proven that the F-transform approximation can be used in
image inpainting or image reconstruction process in general.

To develop software tools for the F-transform based reconstruction so
that they are fast and easy to implement Tools have been developed for a
1D and 2D F-transform application.

To analyze the influence of the F-transform parameters and to choose
their optimal values for the problem of reconstruction The influence of the
various settings of the F-transform parameters has been investigated and described.

To analyze a possibility of the F-transform in solving problems that are
closely related to reconstruction: upsamling, denoising or filtering, in-
painting Demonstration of these problems related to image reconstruction is de-
scribed and demonstrated in the dissertation. The solution is based on the F-
transform.

To compare the proposed approach with conventional ones and to analyze
where it is advantageous A comparison based on SSIM and RMSE is available
for big sets of various color and grayscales images.

Two algorithms are described one-step and multi-step. These two algorithms
have different usage based on the demanded output. In the dissertation some ex-
amples are shown. Let us recall it with a remark that all of them are applicable on
the grayscale and/or color images.

One-step One-step reconstruction based on the F-transform can be used for:

• inpainting of the small area,

• image denoising,

• image filtering.

Processing in that way consists in using the wide basic function for covering all
damaged area. Every basic function must cover at least one undamaged (known)
pixel.

81



Multi-step Multi-step reconstruction based on the F-transform determines the
result in more iterations. This is possible because of narrow basic functions. The
damaged area is reconstructed in smaller pieces, where the reconstructed pieces
from the preceding iterations are used for the following reconstruction iterations.
Its possible usage is as follows:

• inpainting of the bigger gaps;

• image upsampling;

• image filtering.

If some basic function does not cover at least one undamaged pixel, then this
function is excluded from the computation. It means that damaged area covered by
excluded basic functions will be reconstructed in some of the following iteration.

Implementation of the software was divided to more functional parts. The GUI
and core is developed in Qt framework. In the last version, the GUI is removed
because of automatization possibility. This automatization is provided by a Python
script which is able to run automatic processing of many images.

The F-transform is fully sufficient to be used in the field of image inpainting. We
have compared this solution with the interpolation, such as the nearest neighbor,
bilinear, and inpainting techniques. There is also a possibility to use it for other
image processing tasks, such as image resampling, denoising, or filtering. Our goal
was to establish a powerful technique for image reconstruction, which has been
satisfied.

82



9 Further Development

Current solutions of image reconstruction with usage of the F-transform covers only
still images. An extension for video reconstruction will be one of the targets of fur-
ther investigation. Examples of current solutions that are not based on F-transform
are in [15, 46, 32]. From the processing point of view, where image reconstruction is
a reconstruction of a 2D discrete function, video reconstruction is a reconstruction
of a 3D discrete function. The third dimension is reached by using more follow-
ing frames for one reconstruction iteration. Squares from 2D reconstruction are
replaced by cubes or blocks in 3D. Next important improvement may be advanced
edge preserving. We have tried only basic preserving based on the slope of the de-
tected edges. For advanced purpose, F 1 transform described in [26] may be used.
Determining the gradient is shown in Fig. 99.

(a) Lena (b) Gradient image

Figure 99: F 1 transform applied for gradient obtaining.

Attention will be focused on the damage characteristic research. Currently, the
mask definition process may be very time consuming and not bullet proof due to
human factor. It is possible that we can somehow determine which area is damaged
and which is not, at least partially, automatically.

83



References

[1] A. Amanatiadis and I. Andreadis. “A survey on evaluation methods for im-
age interpolation”. In: Measurement Science and Technology 20.10 (2009),
p. 104015.

[2] A. Amanatiadis and I. Andreadis. “Performance evaluation techniques for im-
age scaling algorithms”. In: Imaging Systems and Techniques, 2008. IST 2008.
IEEE International Workshop on. IEEE. 2008, pp. 114–118.

[3] B. Baxter. “The interpolation theory of radial basis functions”. In: arXiv
preprint arXiv:1006.2443 (2010).

[4] M. Bertalmio, A. L. Bertozzi, and G. Sapiro. “Navier-stokes, fluid dynamics,
and image and video inpainting”. In: Computer Vision and Pattern Recog-
nition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on. Vol. 1. IEEE. 2001, pp. I–355.

[5] M. Bertalmio et al. “Image inpainting”. In: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co. 2000, pp. 417–424.

[6] A. Criminisi, P. Pérez, and K. Toyama. “Region filling and object removal by
exemplar-based image inpainting”. In: Image Processing, IEEE Transactions
on 13.9 (2004), pp. 1200–1212.

[7] F. Di Martino, V. Loia, and S. Sessa. “A segmentation method for images
compressed by fuzzy transforms”. In: Fuzzy Sets and Systems 161.1 (2010),
pp. 56–74.

[8] F. Di Martino et al. “An image coding/decoding method based on direct and
inverse fuzzy transforms”. In: International Journal of Approximate Reasoning
48.1 (2008), pp. 110–131.

[9] I. Drori, D. Cohen-Or, and H. Yeshurun. “Fragment-based image completion”.
In: ACM Transactions on Graphics (TOG). Vol. 22. 3. ACM. 2003, pp. 303–
312.

[10] A. A. Efros and T. K. Leung. “Texture synthesis by non-parametric sampling”.
In: Computer Vision, 1999. The Proceedings of the Seventh IEEE International
Conference on. Vol. 2. IEEE. 1999, pp. 1033–1038.

[11] M. Elad et al. “Simultaneous cartoon and texture image inpainting using mor-
phological component analysis (MCA)”. In: Applied and Computational Har-
monic Analysis 19.3 (2005), pp. 340–358.

[12] R. W. Floyd and L. Steinberg. “An Adaptive Algorithm for Spatial Greyscale”.
In: Proceedings of the Society for Information Display 17.2 (1976), pp. 75–77.

[13] B. Fornberg et al. “Observations on the behavior of radial basis function ap-
proximations near boundaries”. In: Computers & Mathematics with Applica-
tions 43.3 (2002), pp. 473–490.

[14] G. Kanizsa and G. Kanizsa. Organization in vision: Essays on Gestalt percep-
tion. Praeger New York, 1979.

84



[15] A. C. Kokaram. Motion picture restoration: digital algorithms for artefact
suppression in degraded motion picture film and video. Springer-Verlag, 1998.

[16] N. Komodakis and G. Tziritas. “Image completion using efficient belief prop-
agation via priority scheduling and dynamic pruning”. In: Image Processing,
IEEE Transactions on 16.11 (2007), pp. 2649–2661.

[17] T. M. Lehmann, C. Gonner, and K. Spitzer. “Survey: Interpolation methods in
medical image processing”. In: Medical Imaging, IEEE Transactions on 18.11
(1999), pp. 1049–1075.

[18] S. Masnou. “Disocclusion: a variational approach using level lines”. In: Image
Processing, IEEE Transactions on 11.2 (2002), pp. 68–76.

[19] S. Masnou and J.-M. Morel. “Level lines based disocclusion”. In: Image Pro-
cessing, 1998. ICIP 98. Proceedings. 1998 International Conference on. IEEE.
1998, pp. 259–263.

[20] J. M. Ogden et al. “Pyramid-based computer graphics”. In: RCA Engineer
30.5 (1985), pp. 4–15.

[21] J. A. Parker, R. V. Kenyon, and D. Troxel. “Comparison of interpolating
methods for image resampling”. In: Medical Imaging, IEEE Transactions on
2.1 (1983), pp. 31–39.

[22] I. Perfilieva. “Fuzzy Transforms: A Challenge to Conventional Transforms”. In:
ed. by P. Hawkes. Vol. 147. Advances in Imaging and Electron Physics. Else-
vier, 2007, pp. 137–196. doi: http://dx.doi.org/10.1016/S1076-5670(07)
47002-1. url: http://www.sciencedirect.com/science/article/pii/
S1076567007470021.

[23] I. Perfilieva. “Fuzzy transforms: Theory and applications”. In: Fuzzy sets and
systems 157.8 (2006), pp. 993–1023.

[24] I. Perfilieva and M. Danková. “Towards F-transform of a Higher Degree.” In:
IFSA/EUSFLAT Conf. Citeseer. 2009, pp. 585–588.

[25] I. Perfilieva and B. De Baets. “Fuzzy transforms of monotone functions with
application to image compression”. In: Information Sciences 180.17 (2010),
pp. 3304–3315.

[26] I. Perfilieva, P. Hoďáková, and P. Hurtík. “F 1-transform edge detector inspired
by canny’s algorithm”. In: Advances on Computational Intelligence. Springer,
2012, pp. 230–239.

[27] I. Perfilieva and V. Kreinovich. “Fuzzy transforms of higher order approximate
derivatives: A theorem”. In: Fuzzy Sets and Systems 180.1 (2011), pp. 55–68.

[28] I. Perfilieva, V. Novák, and A. Dvořák. “Fuzzy transform in the analysis
of data”. In: International Journal of Approximate Reasoning 48.1 (2008),
pp. 36–46.

[29] I. Perfilieva and R. Valášek. “Fuzzy transforms in removing noise”. In: Com-
putational Intelligence, Theory and Applications. Springer, 2005, pp. 221–230.

[30] I. Perfilieva and P. Vlašánek. “Image Reconstruction by means of F-transform”.
In: Knowledge-Based Systems (2014). doi: 10.1016/j.knosys.2014.04.007.

85

http://dx.doi.org/http://dx.doi.org/10.1016/S1076-5670(07)47002-1
http://dx.doi.org/http://dx.doi.org/10.1016/S1076-5670(07)47002-1
http://www.sciencedirect.com/science/article/pii/S1076567007470021
http://www.sciencedirect.com/science/article/pii/S1076567007470021
http://dx.doi.org/10.1016/j.knosys.2014.04.007


[31] I. Perfilieva, P. Vlašánek, and M. Wrublová. “Fuzzy transform for image recon-
struction”. In: Uncertainty Modeling in Knowledge Engineering and Decision
Making. Singapore: World Scientific, 2012.

[32] T. Shiratori et al. “Video completion by motion field transfer”. In: Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on.
Vol. 1. IEEE. 2006, pp. 411–418.

[33] L. Stefanini. “F-transform with parametric generalized fuzzy partitions”. In:
Fuzzy Sets and Systems 180.1 (2011), pp. 98–120.

[34] M. Štěpnička et al. “A linguistic approach to time series modeling with the
help of F-transform”. In: Fuzzy sets and systems 180.1 (2011), pp. 164–184.

[35] A. Telea. “An image inpainting technique based on the fast marching method”.
In: Journal of graphics tools 9.1 (2004), pp. 23–34.

[36] P. Thévenaz, T. Blu, and M. Unser. “Interpolation revisited [medical images
application]”. In: Medical Imaging, IEEE Transactions on 19.7 (2000), pp. 739–
758.

[37] D. Tschumperlé. “Fast anisotropic smoothing of multi-valued images using
curvature-preserving PDE’s”. In: International Journal of Computer Vision
68.1 (2006), pp. 65–82.

[38] K. Uhlíř and V. Skala. “Radial basis function use for the restoration of dam-
aged images”. In: Computer Vision and Graphics. Ed. by K. Wojciechowski
et al. Vol. 32. Computational Imaging and Vision. Springer Netherlands, 2006,
pp. 839–844. isbn: 978-1-4020-4178-5. doi: 10.1007/1-4020-4179-9_122.
url: http://dx.doi.org/10.1007/1-4020-4179-9_122.

[39] M. Vajgl, I. Perfilieva, and P. Hod’áková. “Advanced F-transform-based image
fusion”. In: Advances in Fuzzy Systems 2012 (2012), p. 4.

[40] P. Vlašánek. “Generating Suitable Basic Functions Used in Image Reconstruc-
tion by F-Transform”. In: Advances in Fuzzy Systems 2013 (2013), pp. 1–6.

[41] P. Vlašánek and I. Perfilieva. “Image reconstruction with usage of the F-
Transform”. In: International Joint Conference CISIS’12-ICEUTE’12-SOCO’12
Special Sessions. Berlin: Springer, 2013, pp. 507–514.

[42] P. Vlašánek and I. Perfilieva. “Influence of various types of basic functions
on image reconstruction using F-transform”. In: European Society for Fuzzy
Logic and Technology. Atlantis Press, 2013, pp. 497–502.

[43] P. Vlašánek and I. Perfilieva. “Interpolation techniques versus F-transform in
application to image reconstruction”. In: IEEE World Congress On Compu-
tational intelligence. 2014.

[44] P. Vlašánek and A. Ronovský. “Using Radial-Basis Functions on Image Re-
construction”. In: WOFEX 2011. Ostrava: VŠB - TU Ostrava, 2011.

[45] Z. Wang et al. “Image quality assessment: from error visibility to structural
similarity”. In: Image Processing, IEEE Transactions on 13.4 (2004), pp. 600–
612.

86

http://dx.doi.org/10.1007/1-4020-4179-9_122
http://dx.doi.org/10.1007/1-4020-4179-9_122


[46] Y. Wexler, E. Shechtman, and M. Irani. “Space-time video completion”. In:
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of
the 2004 IEEE Computer Society Conference on. Vol. 1. IEEE. 2004, pp. I–
120.

[47] J. Zapletal, P. Vaněček, and V. Skala. “RBF-based image restoration utilising
auxiliary points”. In: Proceedings of the 2009 Computer Graphics Interna-
tional Conference. ACM. 2009, pp. 39–43.

[48] J. Zapletal, P. Vaněček, and V. Skala. “Influence of essential parameters on the
rbf based image reconstruction”. In: Proceedings of the 24th Spring Conference
on Computer Graphics. ACM. 2008, pp. 163–170.

[49] J. Žára et al. Moderní počítačová grafika. Computer press, 2005.

87



Author’s contributions

[30] I. Perfilieva and P. Vlašánek. “Image Reconstruction by means of F-transform”.
In: Knowledge-Based Systems (2014). doi: 10.1016/j.knosys.2014.04.007.

[31] I. Perfilieva, P. Vlašánek, and M. Wrublová. “Fuzzy transform for image recon-
struction”. In: Uncertainty Modeling in Knowledge Engineering and Decision
Making. Singapore: World Scientific, 2012.

[40] P. Vlašánek. “Generating Suitable Basic Functions Used in Image Reconstruc-
tion by F-Transform”. In: Advances in Fuzzy Systems 2013 (2013), pp. 1–6.

[41] P. Vlašánek and I. Perfilieva. “Image reconstruction with usage of the F-
Transform”. In: International Joint Conference CISIS’12-ICEUTE’12-SOCO’12
Special Sessions. Berlin: Springer, 2013, pp. 507–514.

[42] P. Vlašánek and I. Perfilieva. “Influence of various types of basic functions
on image reconstruction using F-transform”. In: European Society for Fuzzy
Logic and Technology. Atlantis Press, 2013, pp. 497–502.

[43] P. Vlašánek and I. Perfilieva. “Interpolation techniques versus F-transform in
application to image reconstruction”. In: IEEE World Congress On Compu-
tational intelligence. 2014.

[44] P. Vlašánek and A. Ronovský. “Using Radial-Basis Functions on Image Re-
construction”. In: WOFEX 2011. Ostrava: VŠB - TU Ostrava, 2011.

88

http://dx.doi.org/10.1016/j.knosys.2014.04.007

	1 Introduction
	2 Defining the issues and basic concepts
	2.1 Image reconstruction
	2.2 Notation

	3 Commonly used techniques
	3.1 Interpolation
	3.1.1 Regular grid
	3.1.2 Irregular grid

	3.2 Inpainting
	3.2.1 Patch-based and sparse representation methods
	3.2.2 PDEs and variational methods
	3.2.3 Summary


	4 Motivation and objectives of the dissertation
	4.1 State of the art
	4.2 Formulation of the problem and motivation
	4.3 Objectives

	5 F-transform
	5.1 Fuzzy partition with Ruspini condition
	5.2 Discrete F-transform
	5.3 2D reconstruction - one-step
	5.4 2D reconstruction - multi-step
	5.4.1 Error diffusion

	5.5 Edge preserving
	5.6 Image upsampling
	5.7 Image Filtering
	5.8 Noise reduction

	6 Optimal settings of F-transform parameters
	6.1 Basic functions
	6.1.1 Various types of basic functions
	6.1.2 Radius selection

	6.2 Generating of suitable basic function
	6.3 Usage of the one-step/multi-step F-transform method

	7 Implementation and experiments
	7.1 Inpainting techniques
	7.2 Mask
	7.3 1D reconstruction using the F-transform
	7.4 2D reconstruction using the F-transform
	7.4.1 One-step reconstruction
	7.4.2 Multi-step reconstruction

	7.5 Results
	7.5.1 Images


	8 Conclusion
	9 Further Development

