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Summary

An important role in fuzzy logic and fuzzy control is played by linguistic descriptions,

i.e. finite sets of IF-THEN rules. These rules often include so-called evaluating

linguistic expressions – natural language expressions which characterize a position

on an ordered scale, usually on a real interval. Examples of evaluating linguistic

expressions are small, more or less medium, approximately 20 etc. Given a linguistic

description of a process, situation, environment etc., and an observation, i.e. a value

measured in some concrete situation, the task is to determine the conclusion by

some plausible method.

This thesis proposes a methodology for dealing with the above-described situa-

tion and studies its properties. The basis for it is fuzzy logic in a narrow sense with

evaluated syntax [27]. IF-THEN rules are understood as linguistically expressed

logical implications. We consistently distinguished three levels of study – linguistic,

syntactic and semantic. The meaning of evaluating linguistic expression is charac-

terized on syntactic level by its intension and on semantic level by a class of its

extensions.

First we investigate properties that a formal theory aimed at the characterization

of evaluating linguistic expressions should have. We call the theory which fulfills

these properties the theory of evaluating expressions. Further we use theories of

evaluating expressions for the determination of the formal theory which characterizes

the meaning of a linguistic description, called the theory of linguistic description.

The central part of our thesis is a study of fuzzy logic deduction. It uses the theory of

linguistic description and another theory describing an observation for determination

of conclusion by means of formal proving in clearly defined logic. First we prove

some general properties of fuzzy logic deduction and then we study one important

aspect of the work with linguistic descriptions, so-called inconsistencies. Last part

of our thesis is devoted to a situation in which an observation is given as a crisp

number.

Keywords: Logical deduction, intension, linguistic description, IF-THEN rules,

fuzzy logic.
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Anotace

Důležitou roli ve fuzzy logice a fuzzy regulaci hraj́ı jazykové popisy, tj. konečné

množiny JESTLIŽE-PAK pravidel. V mnoha př́ıpadech tyto pravidla obsahuj́ı

tzv. evaluačńı jazykové výrazy – výrazy přirozeného jazyka charakterizuj́ıćı pozici

na uspořádané škále, obvykle na intervalu reálných č́ısel. Př́ıklady evaluačńıch

jazykových výraz̊u jsou malý, v́ıce méně středńı, přibližně 20 apod. Máme-li zadán

jazykový popis nějakého procesu, situace, prostřed́ı apod. a pozorováńı, tedy hod-

notu naměřenou v nějaké konkrétńı situaci, je naš́ım úkolem určit závěr pomoćı

nějaké vědecky podložené metody.

Tato disertace navrhuje metodologii popisuj́ıćı tuto situaci a studuje jej́ı vlast-

nosti. Základem pro tuto metodologii je fuzzy logika v užš́ım smyslu s ohodnocenou

syntax́ı [27]. JESTLIŽE-PAK pravidla jsou chápána jako jazykově vyjádřené logické

implikace. Důsledně rozlǐsujeme tři úrovně práce s jazykovými výrazy – jazykovou,

syntaktickou a sémantickou. Význam evaluačńıho jazykového výrazu je vyjádřen

jeho intenźı na syntaktické úrovni a tř́ıdou jeho extenźı na úrovni sémantické.

Nejprve jsou zkoumány podmı́nky, které muśı splňovat formálńı teorie zaměřená

na charakterizaci evaluačńıch jazykových výraz̊u. Teorii splňuj́ıćı tyto podmı́nky

nazýváme teoríı evaluačńıch výraz̊u. Teorie evaluačńıch výraz̊u jsou dále použity

k sestrojeńı formálńı teorie charakterizuj́ıćı význam jazykového popisu, tzv. teorie

jazykového popisu. Ústředńı část́ı této disertace je studium fuzzy logické dedukce.

Zde je použita teorie jazykového popisu spolu s daľśı teoríı popisuj́ıćı pozorováńı

k určeńı závěru pomoćı formálńıho dokazováńı v jednoznačně definované logice.

Nejprve jsou ukázány obecné vlastnosti fuzzy logické dedukce, dále pak studujeme

jeden význačný aspekt práce s jazykovými popisy, tzv. nekonzistence v jazykových

popisech. Závěrečná část disertace je věnována fuzzy logické dedukci s pozorováńım

ve formě reálného č́ısla.

Kĺıčová slova: Logická dedukce, intenze, jazykový popis, JESTLIŽE-PAK pravidla,

fuzzy logika.
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Preface

Fuzzy logic is an important tool for the modeling of vagueness. The importance of

vagueness and its transmission and propagation in human thinking and everyday

human communication is indisputable. Fuzzy logic offers powerful and transparent

methodology which allows to describe and model vague phenomena. The applica-

tions of fuzzy logic in control, decision making and other areas are numerous and

successful. However, from the emergence of fuzzy logic and fuzzy set theory in

the 1960’s up to the 1990’s objections often occurred reproaching that fuzzy logic

lacked solid mathematical foundations. These objections lost ground at the end of

the 1990’s when the important books [13], [27] and some others appeared. How-

ever, there are still areas in mathematical foundations of fuzzy logic that have to be

investigated.

The aim of this thesis is to propose and investigate mathematical model of the

meaning of evaluating linguistic expressions, i.e. linguistic expressions which charac-

terize a position on an ordered scale. Further, the structure and meaning of linguistic

descriptions, i.e. finite sets of IF-THEN rules are investigated. These meanings are

described separately on syntactic and semantic levels. The concepts introduced and

results obtained are then used in the central part of this thesis, namely in the in-

vestigation of fuzzy logic deduction. The deduction is performed on syntactic level

as a formal proving in some formal theory. An important concept of inconsistency

of linguistic description is discussed and its two definitions are proposed. Finally,

fuzzy logic deduction with crisp observations, which is important in applications of

fuzzy logic, is also investigated.

The methodology and results obtained in this thesis are, or will be, used in the

software system LFLC 2000 developed in our Institute for Research and Applications

of Fuzzy Modeling. LFLC 2000 is a software system which allows to design, test

and apply linguistic descriptions. It proved itself to be useful also in practical

applications.
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8



Table of Contents

Summary 5

Anotace 6

Preface 7

Table of Contents 9

List of Figures 12

List of Symbols 13

1 Introduction 15

2 Current State of Research 21

2.1 Novák’s approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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Chapter 1

Introduction

This thesis is a study of one approach to approximate reasoning over a set of IF-

THEN rules called fuzzy logic deduction. The novelty of our approach lies in the fact

that the inference is performed on syntactic level as a formal proving in a formal

logical system. This is a substantial difference in comparison with the classical

method, namely the compositional rule of inference (see [35, 13]), which is defined

on the semantic level.

Fuzzy logic has been, from its boom in 1980’s till now, one of the most widely used

methodologies for dealing with the phenomenon of indeterminacy. Its applications

are numerous, mainly in the fields of control and optimization, but also in other

areas, such as clustering, pattern recognition, expert systems, economy, psychology

etc.

The phenomenon which could be most successfully modeled by means of fuzzy

logic is called vagueness. It is one of the facets of the above-mentioned indeterminacy

(another is uncertainty, that emerges due to lack of knowledge about the occurrence

of some event). The vagueness occurs in the process of grouping together objects

which have some property φ (e.g. tallness). Quite often is such a grouping imprecise,

there exist borderline elements, i.e. elements which have the property φ only to some

extent. There are various approaches trying to model this phenomenon, inside or

outside of classical logic (see e.g. [15]). One of the important properties of vagueness,

which we will often use in the following, is its continuity. It means that for similar

objects should also the extent in which they have the property φ be similar.

In a great part of applications of fuzzy logic, so called IF-THEN rules are used.

They have the form IF X is A THEN Y is B where X,Y are linguistic variables and
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A,B are linguistic expressions. Most widely used are so-called evaluating linguistic

expressions, which express the position on some ordered scale, most often on an

interval of real numbers. However, in practice there are usually more than one lin-

guistic variables on the left side of IF-THEN rule. IF-THEN rules are then grouped

into (finite) set, called rulebase (we will call it linguistic description). This set of

IF-THEN rules is a natural way to catch human knowledge about some process,

situation etc. Then, given some observation (in the form of real number, interval

of real numbers, linguistic expression, fuzzy set etc.), we need to determine a con-

clusion. If the rulebase is comprehensible to humans, then the conclusion should

correspond with human intuition - should be similar to the conclusion carried out

by humans.

There was a lot of discussions in the literature about the suitability of fuzzy logic

for modeling of the phenomenon of vagueness and of the theoretical background of

fuzzy logic and, namely, of fuzzy control. In recent years a lot of progress in this field

has been done (as the most important contributions let us name books [14, 27, 11],

see also Chapter 2). However, there is still a lot of open problems and not-fully-

understood areas. Our thesis tries to contribute to this area of research.

We can distinguish two approaches in the general theory of fuzzy IF-THEN

rules. The first one, called fuzzy approximation (see [30, 31]) uses linguistic form

of the IF-THEN rules as a motivation for finding special formulas called disjunctive

(DNF) and conjunctive (CNF) normal forms. The goal is to approximate a function

described by IF-THEN rules in some model with prescribed accuracy.

The second possibility is to take the set of IF-THEN rules as the set of genuine

linguistic expressions, find their logical interpretation and work with this interpre-

tation inside some formal logical theory. This approach is based on fuzzy logic in

narrow sense with evaluated syntax. This thesis focuses on the second approach.

We will show the possible interpretation of linguistic description and the way how

logical deduction based on it can be performed.

To be able to perform this task, we should first study the modeling of the meaning

of linguistic expressions occurring in these IF-THEN rules. We restrict ourselves to

so-called simple evaluating linguistic expressions (such as medium, more or less

small, extremely big etc.). This class of expressions is most widely used in practice.

We then use the same methodology for modeling of the meaning of one IF-THEN

rule and sets of them.

We will always carefully distinguish three levels on which we are working, namely
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linguistic (e.g linguistic expressions such as small), syntactic (e.g. intensions of these

expressions, formal theories etc.) and semantic (extensions of linguistic expressions

in some possible world). We will focus our attention mainly on the syntactic level,

because in the inclusion of this level lies the novelty of our approach. Moreover, all

results obtained in syntactic level are automatically (due to the correctness of fuzzy

predicate logic) valid in all possible worlds.

First, in Chapter 2, we review some approaches to the study of IF-THEN rules

and deduction over sets of them. We briefly describe the approaches of Hájek, Novák

and Vojtáš.

In Chapter 3 we introduce necessary preliminaries. Besides the material con-

cerning predicate first-order fuzzy logic, we will also add linguistic preliminaries and

review some other notions used in further chapters (namely tolerance relations and

real unimodal functions of one variable).

In Chapter 4 we start to study formal theories for the modeling of so-called

evaluating linguistic expressions. We call such theories theories of evaluating ex-

pressions. We will not try to determine one (“unique”, “best”) theory, we rather

postulate several axioms every such a theory should obey. The basis for our study

is first-order fuzzy logic in a narrow sense with evaluated syntax [27].

On the syntactic level, the meaning of an evaluating expression is characterized

by its intension. We assign to evaluating expression A a formula A(x) with one free

variable. The intension of A is then the set of evaluated formulas

Int(A) = A〈x〉 =
{

α̃A(t)
/
Ax[t]

∣∣∣ t ∈ M, α̃A(t) ∈ L
}

(1.1)

where M is a set of closed terms, L is a set of truth values and α̃A(t) are syntactic

evaluations of instances of formula A(x). Syntactic evaluations could be obtained

as provability degrees of the respective instances of A(x) in some theory [21]. To

every considered simple evaluating expression Ai we add a predicate symbol Gi to

our formal language. Instances of atomic formulas Gi,x[t] together with their syntac-

tic evaluations α̃Gi
(t) form an essential part of the theory of evaluating expressions

denoted by T ev (the theory should also include some technical axioms which assure

correct behavior of equality predicate etc.). All simple evaluating linguistic expres-

sions are treated uniformly, i.e. we are not considering any structure over the set of

them (e.g. linguistic hedges). But, if there is some theory where hedges are taken

into account (like in e.g. [21]), it can be translated into our system and we can

study its properties. This means that our level of study is lower, but at the same

time more general than in [21].
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We will prove that theories of evaluating expressions indeed exist (Lemma 4.2).

On the semantic level, the meaning of an evaluating expression is modeled by its

extension – satisfaction set of formula A(x) in a model V of a theory T ev:

ExtV(A) =
{
V(A(v/x))

/
v
∣∣∣ v ∈ V

}

where V is a support of the structure V . Models of T ev are also called possible

worlds. Then we will study special class of models of such theories, so-called canon-

ical possible worlds (Section 4.2). These structures have a property that truth values

of instances of formulas Ax[t] from (1.1) coincide with syntactic evaluations of these

instances. If such a structure does not exist for some theory of evaluating expres-

sions, then the effort of its forming would be futile, because we never attain a proper

correspondence between syntactic and semantic levels. Theorem 4.7 will show that

under some conditions, which are usually fulfilled, such structures exist.

A well-known property of the relationship between syntax and semantics in (not

only) fuzzy logic is that the truth value of a formula A in some model D denoted by

D(A) is, in general, greater than or equal to its provability degree. The equality of

these two quantities is attained for complete theories. Therefore, it is possible that

the theory T ev mentioned above can have a model D? in which all truth degrees for

all instances of atomic formulas Gi,x[t] have value 1 and on that account they are

in D? undistinguishable. We propose (in Section 4.3) to restrict the range of these

truth values by means of an addition of axioms of the form {β̃Gi
(t)

/¬¬¬Gi,x[t]}, where

it should hold that α̃Gi
(t) ⊗ β̃Gi

(t) = 0. We call such theories extended theories

of evaluating expressions T evx. We will again define a structure (called extended

possible world) which plays similar role as the canonical possible world above. We

will prove that such structures exist (Theorem 4.13) and show some properties of

these models. At the end of Chapter 4 there is a short section concerning theories

of evaluating expressions with fuzzy equality.

In the following Chapter 5 we study linguistic descriptions, i.e. sets of IF-THEN

rules. We again start on linguistic level, then we proceed to syntactic (Section 5.2)

and semantic (Section 5.3) levels. On syntactic level we form an intension of one IF-

THEN rule R〈x,y〉. From these intensions we form a theory of linguistic description

TI . On semantic level, we define a canonical possible world for the theory TI and

show that it always exists (Theorem 5.6).

Chapter 6 “Fuzzy logic deduction” is the central part of our thesis. We will

introduce (in Section 6.1) its so-called basic schema. The deduction is performed on

syntactic level and the conclusion is obtained in the form of closed instances of atomic

18



formulas By[s] and their respective provability degrees α̃′B(s) in the theory TD. This

theory is formed as a union of the theory TI introduced in the previous chapter,

and of a theory T ′ representing an observation. Theorem 6.5 (proved already in

[27]), Theorem 6.1) shows how these provability degrees can be computed. We

then show some general properties of our fuzzy logic deduction (Theorems 6.6, 6.9

and Corollary 6.10). It is interesting that these results show that our fuzzy logic

deduction satisfies the conditions imposed by C. Cornelis and E. E. Kerre in [4] on

general inference procedures.

When we postulate our basic schema of fuzzy logic deduction, we are able to

investigate its properties from several viewpoints. In our thesis, we focus on the

description of so-called inconsistencies in linguistic descriptions. By inconsistency

we understand the situation when there are identical (or similar) antecedents and

different consequents present in linguistic description. First, in Section 6.2 we take

a negation of the standard formula defining the condition which a relation should

fulfil to be a function and rewrite it into our formalism, using fuzzy equality. This

notion of inconsistency is called ≈-inconsistency.

Then, in Section 6.3 we present another approach. We use a notion of unimodal

function and say that some theory TD is u-inconsistent if the function α̃′B(s) men-

tioned above is not unimodal (more precisely, we should consider the real function

γ′B associated to α̃′B). In this way we can describe this type of inconsistency for one

observation. Then we generalize this notion to be able to describe inconsistency for

all sensible observations. This more general notion is called u?-inconsistency. The

dual notion is u?-consistency. We will show necessary and sufficient conditions for

this type of consistency of linguistic description in Theorem 6.22.

Finally, in Chapter 7 we apply the methodology and results of previous chapter

to the situation, when a crisp number measured in some possible world is taken as an

observation. In particular, we study a case when one IF-THEN rule is taken and the

deduction is performed by means of this most suitable rule. To this purpose we in-

troduce an operation Suit, which selects the most suitable linguistic expression, and,

consequently, also the most suitable IF-THEN rule for the given observation. We

also introduce special defuzzification method DEEs (defuzzification of evaluating

expressions) and study some of its properties, namely its (dis)continuity.

Then we can investigate a real function LD which describes the overall behavior

of the algorithm of fuzzy logic deduction with crisp observations. We conclude that

this function is piece-wise continuous. This result is then explained and discussed.
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Author’s contribution

Here I summarize my contribution in this thesis.

1. In Chapter 3: the definition of unimodal function and its properties (Sec-

tion 3.4.2).

2. All definitions and results in Chapter 4.

3. The definition of theory TI in Section 5.2 and the definition of canonical pos-

sible world there and relevant results.

4. In Chapter 6: a formalization of a basic schema of fuzzy logic deduction and

theorems in Section 6.1 (with exception of Theorem 6.5), concepts and re-

sults concerning two approaches to inconsistencies of linguistic descriptions

(Sections 6.2 and 6.3).

5. In Chapter 7: a formalization of the operation Suit (Section 7.2), a formal-

ization and results concerning the defuzzification operation DEEs and the

overall behavior of fuzzy logic deduction with crisp observations (Sections 7.3

and 7.4).

Results included in this thesis have not been published yet. Several definitions and

results from Chapters 4, 5 and 6 were included in submitted paper [10] and accepted

paper [9] (where a part of the content of Chapter 7 in a preliminary form is included).
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Chapter 2

Current State of Research

In this section we summarize several approaches to the approximate inference and

analysis of IF-THEN rules in logical setting. From our point of view, the most

important sources are books [27], Chapter 6 of which is most inspiring for our ap-

proach, further, book [13], where in Chapter 7 “On Approximate Inference” there

is described approach and properties of approximate inference in ÃLukasiewicz pred-

icate logic with classical (non-evaluated) syntax. Another sources are papers [3, 34]

and book [11].

Let us first review the traditional formulation of Zadeh’s compositional rule of

inference [35, 13], which served as a basis of the study and applications of fuzzy

IF-THEN rules. Let DX and DY be nonempty sets. Then:

From ‘X is A’ and ‘(X,Y ) is R’ infer ‘Y is B’ if for all v ∈ DY ,

rB(v) = sup
u∈DX

(rA(u) ? rR(u, v)) (2.1)

where ? is a continuous t-norm, rA ⊂∼ DX and rB ⊂∼ DY are fuzzy sets and

rR ⊂∼ DX ×DY

is a binary fuzzy relation.

2.1 Novák’s approach

Here we present only main ideas, a more detailed treatment will be included in the

foregoing sections. The novelty of his approach lies in the fact that, unlikely as in

the classical compositional rule of inference, the main portion of inference process is
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performed on syntactic level. The inference is, in his approach, the formal proving

in exactly defined formal system. Also, the stress is put on the analysis of the

meaning of linguistic expressions. He introduced the notions of intension, extension

and possible world, well-known from the field of philosophical logic and introduced

originally by Rudolf Carnap.

Here, intension is defined on syntactic level. A formal model of intension is so-

called multiformula, i.e. a fuzzy set of instances of evaluated formulas. Extension is

an interpretation of intension in some specific structure (possible world). A linguistic

expression has one intension and a class of extensions, one in every possible world.

This approach supposes the existence of a sufficiently rich set of closed terms

in the formal language. These terms are understood as some prototypical formal

objects and they are substituted to formulas assigned to linguistic expressions. In-

tensions can be also considered as some prototypical interpretations, which restrict

(from below) truth functions of extensions.

2.2 Hájek’s approach

Hájek studies IF-THEN rules and approximate inference in BL∀, i.e. basic predicate

logic. The main difference between Novák and Hájek approach lies in the fact that

Hájek incorporates in the language I only one object constant for each sort, which

is in a model interpreted as an actual value of the variables X and Y (called variates

there). The expression ‘X is A’ is then translated into predicate logic as an atomic

formula A(X). An IF-THEN rule ‘IF X is A THEN Y is B’ may be interpreted as

A(X)⇒⇒⇒ B(Y ). Hence, the language I further contains unary predicate symbols A

and B, and a binary predicate symbol R. Let D be a structure for the language I.

The compositional rule of inference is expressed by the condition that formula

Comp := (∀y)(B(y)⇔⇔⇔ (∃x)(A(x)&R(x, y))

is 1-true in the model D. Then two particular cases of the formula Comp are

studied. First, for Zadeh’s Generalized modus ponens (where the relation R from

(2.1) is defined as rR(u, v) = rA(u) → rB(v), and → is the residuum of t-norm ?)

CompMP := (∀y)(B?(y)⇔⇔⇔ (∃x)(A?(x)&(A(x)⇒⇒⇒B(y))))

and it is showed that BL∀ proves

(CompMP &A?(X)&(A(X)⇒⇒⇒B(Y )))⇒⇒⇒B?(Y ). (2.2)
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Second, generalized conjunctive rule, where the relation R from (2.1) is defined as

rR(u, v) = rA(u)&rB(v):

CompCR := (∀y)(B?(y)⇔⇔⇔ (∃x)(A?(x)&A(x)&B(y)))

and it is showed that BL∀ proves

(CompCR &A?(X)&(A(X)&B(Y )))⇒⇒⇒B?(Y ) (2.3)

In the second part (Chapter 7.3) are X and Y also unary predicates and the

assertion ‘X is Ai’ is in the syntactic level translated into formula

(∀x)(X(x)⇒⇒⇒ A(x))

(or briefly X ⊆ A). This corresponds to a situation when actual values of variables

are given not as crisp numbers, but only vaguely (as fuzzy sets). Then, an alternative

composition for generalized modus ponens is the formula

CompMPA := (∀y)(B??(y)⇔⇔⇔ ((∀x)(A?(x)⇒⇒⇒ A(x))⇒⇒⇒B(y))).

Then BL∀ proves

CompMPA &((X ⊆ A?)&((X ⊆ A)⇒⇒⇒ (Y ⊆ B)))⇒⇒⇒ (Y ⊆ B??). (2.4)

Formulas (2.2), (2.3) and (2.4) can be visualized as deduction rules, for example

formula (2.2) as
CompMP , A?(X), A(X)⇒⇒⇒B(Y )

B?(Y )

which can be read as: If CompMP , A?(X) and A(X)⇒⇒⇒ B(Y ) are 1-true in a given

structure D, then B?(Y ) is 1-true in D.

This approach is the extensional one, because the meanings of linguistic expres-

sions are modeled only on the semantic level. However, it also shows some general

properties of inference valid in all models.

2.3 IF-THEN rules as fuzzy logic programs

Vojtáš [34] treats IF-THEN rules in the framework of fuzzy logic programming

without negation. In his system he uses various truth functions for conjunction,

disjunction and implication; and also aggregation operations. He introduces a notion
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of fuzzy theory as a partial mapping assigning to formulas rational numbers from

(0, 1]. Then, many valued modus ponens is introduced by a schema

(B, x), (B⇒⇒⇒ A, y)

A,mp⇒⇒⇒(x, y)

where x, y are axiomatically assigned truth values of formulas B and B⇒⇒⇒A, respec-

tively, and mp⇒⇒⇒ is a function calculating truth value of the answer A. This function

has to be a truth function of a conjunction (but it need not to be a truth function

of conjunctions present in the language). Then the semantics is defined and the

completeness of this system is showed.

Gerla in his book [11] studies fuzzy logic mainly from the point of view of fuzzy

closure operators. In Chapter 10 “On Approximate Inference” he transforms a set

of IF-THEN rules to a fuzzy program.

24



Chapter 3

Preliminaries

3.1 Logical preliminaries

The formal system we are working in is fuzzy logic in a narrow sense with evaluated

syntax (FLn). Main source here is the book [27], Chapter 4. We recall here the

main points of this formal system, for the details we refer to the above-mentioned

book.

3.1.1 The structure of truth values

The two most important algebraic structures for our system of fuzzy logic, used as

algebras of truth values, are residuated lattices and MV-algebras.

Definition 3.1

A residuated lattice is an algebra

L = 〈L,∨,∧,⊗,→,0,1〉

such that

(i) 〈L,∨,∧,0,1〉 is a lattice with the ordering defined using the operations ∨,∧,

and 0,1 are its least and greatest elements, respectively,

(ii) 〈L,⊗,1〉 is a commutative monoid, i.e. ⊗ is commutative and associative

operation with the identity a⊗ 1 = a,

(iii) it holds that

a⊗ b ≤ c iff a ≤ b → c
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i.e. the operation → is a residuation operation with respect to ⊗.

It holds that the operation → is antitonic in the first and isotonic in the second

variable.

Definition 3.2

An MV-algebra is an algebra

L = 〈L,⊗,⊕,¬,0,1〉

in which the following identities are valid:

a⊕ b = b⊕ a, a⊗ b = b⊗ a,

a⊕ (b⊕ c) = (a⊕ b)⊕ c, a⊗ (b⊗ c) = (a⊗ b)⊗ c,

a⊕ 0 = a, a⊗ 1 = a,

a⊕ 1 = 1, a⊗ 0 = 0,

a⊕ ¬a = 1, a⊗ ¬a = 0,

¬(a⊕ b) = ¬a⊗ ¬b, ¬(a⊗ b) = ¬a⊕ ¬b,

a = ¬¬a, ¬0 = 1,

¬(¬a⊕ b)⊕ b = ¬(¬b⊕ a)⊕ a.

Lattice operations in an MV-algebra can be introduced as follows:

a ∨ b = ¬(¬a⊕ b)⊕ b, a ∧ b = ¬(¬a ∨ ¬b).

Residuation in an MV-algebra can be defined as a → b = ¬a⊕b. It holds that every

MV-algebra is a residuated lattice, and that a residuated lattice is an MV-algebra

iff

(a → b) → b = a ∨ b.

The fuzzy logic in a narrow sense with evaluated syntax is based on ÃLukasiewicz

MV-algebra L of truth values:

L = 〈L,⊗,⊕,¬,0,1〉

where the set of truth values is L = [0, 1], with standard ordering and ÃLukasiewicz

operations ⊗, ⊕ and ¬, defined as follows:

a⊗ b = max(a + b− 1, 0), (3.1)
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a⊕ b = min(a + b, 1), (3.2)

and

¬a = 1− a (3.3)

for a, b ∈ L. Residuation in ÃLukasiewicz MV-algebra is given by

a → b = max(1− a + b, 0). (3.4)

The following simple lemma will be used in Chapter 6.

Lemma 3.3

Let L be ÃLukasiewicz MV-algebra, a, b ∈ L. If b < a then ¬b⊗ a > 0.

proof: ¬b⊗ a = (1− b + a− 1) ∨ 0 = (a− b) ∨ 0. If b < a then b− a > 0. 2

3.1.2 Language and syntax of FLn

The language J of FLn consists of the following:

(i) Countable set of object variables x1, x2, . . . .

(ii) Set of object constants ui, i ∈ I.

(iii) Finite or countable set of function symbols f, g, . . . together with their arities.

(iv) Nonempty finite or countable set of predicate symbols P, Q, . . . together with

their arities.

(v) Logical constants {a | a ∈ L}.
(vi) Symbols ⇒⇒⇒ and ∀ for implication and universal quantifier, respectively.

(vii) Auxiliary symbols (brackets etc.).

Other standard (fuzzy) logical connectives ¬¬¬, ∧∧∧, &, ∨∨∨, ∇ and ⇔⇔⇔ and existential

quantifier ∃ are introduced in usual way. For definitions of terms and formulas see

[27], Section 4.3. The set of all well-formed formulas of language J is denoted by

FJ . The set of inference rules and fuzzy set of axioms is also assumed to be identical

with that one of [27], Section 4.3.

Let A(x1, . . . , xn) be a formula and t1, . . . , tn be terms substitutable into A for

the variables x1, . . . , xn, respectively. By Ax1,...,xn [t1, . . . , tn] we denote an instance

of A in which all the free occurrences of the variables x1, . . . , xn are replaced by the

respective terms t1, . . . , tn.
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3.1.3 Semantics of FLn

The semantics is defined by generalization of the classical semantics of predicate

logic. A structure for a language J is

V = 〈V, fV , . . . , PV , . . . , uV , . . .〉 (3.5)

where V is a nonempty set, fV : V n −→ V are n-ary functions on V assigned to

function symbols f ∈ J of arity n, PV ⊂∼ V m are m-ary fuzzy relations on V assigned

to predicate symbols P ∈ J of arity m and uV ∈ V are designated elements assigned

to object constants u ∈ J . If the concrete symbols fV , PV , uV , . . . are unimportant

for the explanation then we will simplify (3.5) only to V = 〈V, . . .〉. When we

are dealing with a particular structure D, we extend the language J to language

J(D) = J ∪ {d | d ∈ D} in such a way that if d ∈ D then d ∈ M is a constant

denoting it.

Interpretation of a closed term t ∈ M in a structure V is understood as a mapping

denoted by V
V : M −→ V

t 7−→ V(t)

which is defined as follows:

V(ui) = ui, ui ∈ J, ui ∈ V,

V(d) = d, d ∈ V,

V(f(t1, . . . , tn)) = fV(V(t1), . . . ,V(tn)).

Interpretation of closed formulas is a (partial) mapping denoted also by V :

V : FJ −→ L
A 7−→ V(A).

Let t1, . . . , tn be closed terms. Then

V(a) = a, a ∈ L,

V(P (t1, . . . , tn)) = PV(V(t1), . . . ,V(tn)),

V(A⇒⇒⇒B) = V(A) → V(B),

V((∀x)A) =
∧
{V(Ax[v]) | v ∈ V }.
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Interpretation of derived connectives ¬¬¬, ∧∧∧, &, ∨∨∨, ∇ and⇔⇔⇔ and of existential quan-

tifier ∃ is as follows:

V(¬¬¬A) = 1− V(A),

V(A∧∧∧B) = V(A) ∧ V(B),

V(A&B) = V(A)⊗ V(B),

V(A∨∨∨B) = V(A) ∨ V(B),

V(A∇B) = V(A)⊕ V(B),

V(A⇔⇔⇔B) = V(A) ↔ V(B),

V((∃x)A) =
∨
{V(Ax[v]) | v ∈ V }

where the operation ↔ is defined by a ↔ b = 1− |a− b|.
To complete the definition of the mapping V , we have to define it for general

(open) formulas. Let us denote by FV (A) the set of variables from J which includes

all free variables of the formula A. For interpretation of a general formula A in the

structure V we need an evaluation of its free variables e : FV (A) −→ V . A formula

A(x1, . . . , xn) is satisfied in V in the degree a by the evaluation e, e(x1) = v1,

e(x2) = v2, . . . , e(xn) = vn, (denoted by Ve(A) = a), if

V(Ax1,...,xn [v1, . . . ,vn]) = a. (3.6)

A formula A(x1, . . . , xn) is true in V in the degree a (denoted by V(A) = a) if

a =
∧
{Ve(A) | e is an evaluation}.

In the sequel we will usually consider the following class of theories: with un-

countable languages, where the set of closed terms MJ has the cardinality of con-

tinuum. Structures V in which we interpret these theories will be defined in such a

way that its support has the same cardinality, usually the real interval [a, b]. Con-

sequently, there is a bijection between MJ and the support of V and, if we equip

the set MJ with appropriate operations, the before-mentioned bijection is an iso-

morphism (in the sense of isomorphisms of ordered abelian fields). We denote this

isomorphism by sV : MJ −→ V . Then it is not necessary to extend the language

J into J(V), because for every element v ∈ V there already exists (unique) term v

(its abstract name).

With the help of the mapping sV we can define the interpretation of a general

formula A(x1, . . . , xn) in a structure V with an evaluation e, e(x1) = v1, e(x2) =
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= v2, . . . , e(xn) = vn, denoted by Ve(A) = a, by formula formally identical to (3.6)

V(Ax1,...,xn [v1, . . . ,vn]) = a (3.7)

where v1, . . . ,vn ∈ J and it holds that vi = s−1
V (vi), i = 1, . . . , n.

3.1.4 Many-sorted fuzzy predicate logic

To distinguish objects of various kinds in the analysis of fuzzy logic deduction,

we employ many-sorted language. The main purpose is to divide objects which

belong to antecedent and consequent parts of fuzzy IF-THEN rules. Definition of

the language J from Subsection 3.1.2 is modified in the following way: there is a

nonempty finite set Y of sorts, for every sort ι there is an infinite set of variables of

the sort ι. Each nonempty finite sequence of sorts 〈ι1, . . . , ιn〉 is a type. Then there

is a nonempty set of predicate symbols P , Q, each having a type, set of function

symbols f , g also having types, and sets of constant symbols uι. The other symbols

are the same as in Subsection 3.1.2. Terms and formulas are defined in the same

way as in fuzzy predicate logic with the exception that we have terms of various

sorts.

Structures for many-sorted language are defined as follows:

Definition 3.4

A structure for the language J of many-sorted fuzzy predicate logic is

V = 〈{Vι | ι ∈ Y}, PV , . . . , fV , . . . , uV , . . .〉

where Vι are nonempty sets. If P is a predicate symbol of type 〈ι1, . . . , ιn〉 then it

is assigned a fuzzy relation PV ⊂∼ Vι1 × · · ·Vιn . If f is a function symbol of type

〈ι1, . . . , ιn, ιn+1〉 then it is assigned a (standard) function fV : Vι1×· · ·Vιn −→ Vιn+1 .

Finally, if uι is a constant symbol then it is assigned an element uV ∈ Vι.

3.1.5 Fuzzy theories, provability degrees, completeness

A fuzzy theory T is a fuzzy set of formulas T ⊂∼ FJ given by the triple

T = 〈LAx, SAx, R〉

where LAx ⊂∼ FJ is a fuzzy set of logical axioms, SAx ⊂∼ FJ is a fuzzy set of special

axioms and R is a set of inference rules which includes the rules modus ponens
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(rMP ), generalization (rG) and logical constant introduction (rLC). In the following

we suppose that SAx and R are the same as in [27], Section 4.3.1. If T is a fuzzy

theory then its language is denoted by J(T ).

We will usually define a fuzzy theory only by the fuzzy set of its special axioms,

i.e. we write

T = {a/
A | . . .} (3.8)

understanding that a > 0 in (3.8) and A is a special axiom of T .

We say that a structure V is a model of the fuzzy theory T and write V |= T if

SAx(A) ≤ V(A) holds for every formula A ∈ FJ(T ).

By generalization of the classical definition of proof, it is possible to define eval-

uated proof, see [27], Definition 4.4, page 99. Given a fuzzy theory T and a formula

A, we denote (some) evaluated proof of A by wA and its value by Val(wA). The con-

cept of provability degree of a formula A is expressed by means of notation T `a A,

which means that A is provable in the theory T in the degree a,

a =
∨
{Val(wA) | wA is a proof of A} .

If a = 1 then we write T ` A instead of T `1 A.

A fuzzy theory T is inconsistent if there is a formula A and proofs wA and w¬¬¬A

of A and ¬¬¬A, respectively, such that

Val(wA)⊗ Val(w¬¬¬A) > 0.

It is consistent in the opposite case.

Truth degree of a formula A in a theory T is expressed by means of notation

T |=a A. It means that A is true in T in the degree a,

a =
∧
{V(A) | V |= T} .

Let us stress that the provability degree coincides with the truth due to the com-

pleteness theorem.

Theorem 3.5 (Completeness)

T `a A iff T |=a A

holds for every formula A ∈ FJ(T ) and every consistent fuzzy theory T .
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3.1.6 Independence of formulas

The notion of a set of independent formulas formalizes the intuitive idea of a collec-

tion of “different” formulas, e.g. atomic formulas with different predicate symbols.

Definition 3.6

(i) Two formulas A and B are independent if no variant or instance of one is a

subformula of the other one.

(ii) Let F0 ⊂ FJ be a set of evaluated formulas, which fulfills the following condi-

tions:

1. If a
/
A, b

/
B ∈ F0 then A, B are independent.

2. To each A there is at most one a > 0 such that a
/
A ∈ F0.

3. If A is a logical axiom of FLn then a
/
A ∈ F0 implies a = LAx(A).

We will call F0 the set of independent evaluated formulas. If formulas A(x),

B(y) are independent, then also their respective instances are independent.

Lemma 3.7

Let F0 be a set of independent evaluated formulas. Let T = {a/
A | a

/
A ∈ F0} be

consistent. Then there is a model V |= T such that

V(A) = a (3.9)

holds for all {a/
A} ∈ F0.

Remark 3.8 (i) For the proof see [27], page 243.

(ii) The requirement of consistency of the theory T is necessary. For example,

{1/A&¬¬¬A} is a set of independent formulas (with the cardinality equal to 1),

whose corresponding theory T is evidently inconsistent.

(iii) This lemma plays an important role in the study of fuzzy logic deduction (Sec-

tion 6). In general, models with property (3.9) may not exist. Nevertheless, a

model with similar property can exist also in the case when the set of special

axioms of the theory T is not a set of independent evaluated formulas, as is

shown by the following Lemma, proved in [24]. Note that by truth valuation

we mean a mapping which assigns truth degrees to formulas in a structure in

the sense of [27], Definitions 4.16 and 4.17, page 118.
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Lemma 3.9

Let T be a consistent fuzzy theory and S a set of closed atomic formulas such

that T `a A, a > 0, for every A ∈ S. Let the fuzzy set of special axioms of the

theory T fulfil for every formula B and every truth valuation W : FJ(T ) −→ L the

following condition: if A is an atomic subformula of B and SAx(A) ≤ W(A) then

SAx(B) ≤ W(B). Then there is a model W |= T such that

W(A) = a

for every A ∈ S.

Remark 3.10 Consider for example a theory T = {a/
A, b

/
B,1

/
A ∨∨∨ B}, 0 < a,

b < 1. Then, as it is shown in [24], the structure V , in which V(A) = a, V(B) = b

holds, is not a model of T .

3.1.7 Isomorphism of models in fuzzy logic

The following definition is a generalization of Definition 4.32 from [27], page 169.

We will employ it in Section 4.3.

Definition 3.11

Let H be a subset of a set of predicate symbols P of the language J . We say that

two structures V1 and V2 are H-isomorphic in the degree c, V1
∼=H

c V2 if there is a

bijection g : V1 −→ V2 such that the following hold for all v1, . . . , vn ∈ V1:

(i) for each couple of functions fV1 in V1 and fV2 in V2 assigned to function symbol

f ∈ J ,

g(fV1(v1, . . . , vn)) = fV2(g(v1), . . . , g(vn)).

(ii) It holds that

c =
∧

P∈H

∧
v1,...,vn∈V1

(PV1(v1, . . . , vn) ↔ PV2(g(v1), . . . , g(vn))).

(iii) For each couple of constants u in V1 and v in V2 assigned to a constant symbol

u in J ,

g(u) = v.

If H = P , we say that structures V1 and V2 are isomorphic in the degree c. If c = 1,

then V1 and V2 are isomorphic.
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3.1.8 Theories with fuzzy equality

Fuzzy theory with fuzzy equality T contains in its language binary predicate ≈
which should fulfil the following axioms (cf. [23]):

(E1) 1
/
(x ≈ x).

(E2) There are m1, . . . mn ≥ 1 such that for every n-ary function symbol f

1
/
((x1 ≈ y1)

m1 ⇒⇒⇒ (. . .⇒⇒⇒ ((xn ≈ yn)mn⇒⇒⇒
⇒⇒⇒ (f(x1, . . . , xn) ≈ f(y1, . . . , yn)) . . .).

(E3) There are m1, . . . mn ≥ 1 such that for every n-ary predicate symbol P

1
/
((x1 ≈ y1)

m1 ⇒⇒⇒ (. . .⇒⇒⇒ ((xn ≈ yn)mn⇒⇒⇒
⇒⇒⇒ (P (x1, . . . , xn)⇒⇒⇒ P (y1, . . . , yn)) . . .).

Usually the numbers m1, . . . , mn are supposed to be equal to 1. It is also possible to

restrict the validity of axioms (E2) and (E3) to only some of function and predicate

symbols of the language in concern. It is also possible to have several different fuzzy

equalities present in our language at the same time. It can be shown that fuzzy

equality has the usually required properties of symmetry and transitivity. A special

case of fuzzy equality is the crisp one, denoted by =, which also fulfills the crispness

property T ` (x = y)∨∨∨¬¬¬(x = y). It follows that

T ` (∀x)(∀y)((x = y)⇒⇒⇒ (x ≈ y)). (3.10)

3.2 Linguistic preliminaries

3.2.1 Linguistic predications

Throughout this thesis, we denote linguistic expressions by the slanted typeface. A

general surface structure of fuzzy IF-THEN rule is

IF 〈noun〉1 is A THEN 〈noun〉2 is B. (3.11)

It is a conditional statement characterizing relation between linguistic expressions

of the form

〈noun〉 is A. (3.12)
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We will call expressions (3.12) linguistic predications.

Examples of such predications are temperature is quite high, angle of the wheel

is negative very big, (braking) force is more or less small, etc. The structure of (3.12)

is quite general since it is possible to transform a great deal of more complicated

expressions into it. For example, the former predications can be obtained from turn

the wheel very much to the left, or brake but not too much. Note that the latter

possibility — transformation of commands into predications — has opened the door

to the applications of fuzzy logic in control.

For the purpose of modeling using fuzzy logic, we are not usually interested in the

objects denoted by nouns occurring in the linguistic predications. In practice, they

are replaced by numbers. Therefore, we replace 〈noun〉 in (3.11) by some variable

X,Y, . . ., etc. Consequently, the general surface structure of fuzzy IF-THEN rule

considered further is

IF X is A THEN Y is B. (3.13)

3.2.2 Evaluating linguistic expressions

A special class of the expressions occurring in the linguistic predications, which de-

serves our attention, are evaluating linguistic expressions (cf. [27, 21]). These are

special natural language expressions, which characterize sizes, distances, etc. In gen-

eral, they characterize a position on an ordered scale. Among them, we distinguish

atomic evaluating expressions which include any of the adjectives small, medium, or

big(and possibly other adjectives of the same kind, such as cold, hot, etc.), or fuzzy

quantity approximately z. The latter is a linguistic expression characterizing some

quantity z from an ordered set.

Atomic evaluating expressions usually form pairs of antonyms, i.e. the pairs

〈nominal adjective〉 — 〈antonym〉.

Of course, there are a lot of pairs of antonyms, for example young — old, ugly —

nice, stupid — clever, etc. When completed by the middle term, such as medium,

average, etc., they form the so-called basic linguistic trichotomy. Let us stress that

the basic linguistic trichotomy “small, medium, big” should be taken as canonical,

which represents a lot of other corresponding trichotomies, such as “short, average,

long”, “deep, medium deep, shallow”, etc.
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Simple evaluating expressions are expressions of the form

〈linguistic hedge〉〈atomic evaluating expression〉.
Examples of simple evaluating expressions are very small, more or less medium,

roughly big, about twenty five, approximately z, etc. Linguistic hedges are special

adjectives modifying the meaning of adjectives before which they stand. In general,

we speak about linguistic hedges with narrowing effect (very, significantly, etc.) and

those with widening effect (more or less, roughly, etc.).

If A in (3.12) is an evaluating expression then (3.12) is called evaluating linguis-

tic predication. If A is simple then (3.12) is called simple evaluating predication.

Examples of simple evaluating predications are, e.g., temperature is very high (here

high is taken instead of big), pressure is roughly small, income is roughly three

million, etc.

Various linguistic expressions can be connected by the connectives AND and

OR, thus forming compound linguistic expressions

C := A 〈connective〉 B. (3.14)

If A, B are evaluating linguistic expressions (or predications) then (3.14) is corre-

spondingly called compound evaluating linguistic expression (or predication).

All the above discussed expressions of natural language (evaluating expressions,

predications, etc.) form a part S̃ of natural language, which is formalized using the

means of fuzzy logic. Besides others, we must introduce the concepts of intension,

extension and possible world. Let us stress here that we do not pretend that the

formalism used in the subsequent sections enables us to model natural language

semantics as a whole. We better say that our formalism is powerful enough to model

such its part, which covers at least evaluating expressions, evaluating predications

and simple conditional sentences formed from them. Hence, when speaking about a

linguistic expression, we will usually have in mind some of the expressions from the

above-considered set S̃ in the sequel.

3.3 Meaning of linguistic expressions

3.3.1 Intensions and extensions

A linguistic expression may in general be understood as a name of some property.

In the linguistic theory, we speak about its intension (instead of property named by
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it). Furthermore, we have to consider a possible world (cf. [20, 33]), which can be

informally understood as “a particular state of affairs”. For us, the possible world

is a set of objects, which may carry the properties in concern. Hence, the intension

of the linguistic expression determines in each possible world its extension, i.e. a

grouping of objects having the given property. Since there can exist infinite number

of possible worlds, one intension may lead to a class of extensions.

We will formalize these concepts using the means of predicate FLn with evaluated

syntax. The level of formal syntax is identified with the syntax of FLn and the

semantic level is identified with the semantics of FLn. In the sequel, we suppose

some fixed predicate language J . By FJ we denote the set of well-formed formulas

and by M the set of all closed terms of J (we will further suppose that M contains

at least two elements).

To define the mathematical model of the intension of a linguistic expression

A ∈ S̃, we start by assigning some formula A(x) ∈ FJ to A. However, this is not

sufficient since this does not grasp inherent vagueness of the property represented

by A. This can be accomplished in FLn using the concept of evaluated formula.

Namely, if A(x) is a formula with one free variable then the evaluated formula

a
/
Ax[t] means that some object represented by the term t has the property A in

the degree at least a ∈ L. This renders the hint for formalization of intensions of

linguistic expressions given in Definition 3.12 below.

3.3.2 Possible worlds

The extension is characterized on the semantic level, which is identified with the

semantics of FLn. Hence, the concept of possible world is understood as a special

structure V for J

V = 〈V, PV , . . .〉.
We will usually suppose that all fuzzy relations assigned to predicate symbols of J in

the possible world V have continuous membership function. Moreover, some further

assumptions on V can be made, for example the unimodality of some membership

functions, specific topological structure defined on the support V , etc. When dealing

with evaluating linguistic expressions, V is assumed to be a linearly ordered interval

V = [lv, rv].

Therefore, in the sequel we make the following convention: for a given theory T ,

we say that V is a model of T if V |= T . We say that V is a possible world for T if
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V |= T and the support of V is a real interval.

3.3.3 Meaning of evaluating expressions

Definition 3.12

Let A ∈ S̃ be a natural language expression and let it be assigned a formula A(x).

(i) The intension of A is a set of evaluated formulas (also called multiformula)

Int(A) = A〈x〉 =
{

at
/
Ax[t]

∣∣ t ∈ M, at ∈ L
}

. (3.15)

(ii) The extension of A in the possible world V is the satisfaction fuzzy set

ExtV(A) =
{
V(Ax[v])

/
v
∣∣∣ v ∈ V

}
. (3.16)

(iii) The meaning of A is the couple

Mean(A) = 〈Int(A),Ext(A)〉

where Ext(A) = {ExtV(A) | V is a possible world} is a class of all its exten-

sions.

3.4 Other preliminaries

3.4.1 Tolerance relations

Definition 3.13

(i) A binary relation in a set is called tolerance if it is reflexive and symmetric.

(ii) Let R be a tolerance relation in the set X. A set A ⊆ X is called a block of R

if 〈x, y〉 ∈ R holds for all x, y ∈ A. A block A of R is called a maximal block

if it is maximal wrt. set inclusion, i.e. if there is no block B of R such that

A ⊂ B. The set of all maximal blocks of a tolerance relation R in X denoted

by X/R is called factor set of X by R.

The following lemma will be used in the proof of Theorem 6.22, Section 6.3.

Lemma 3.14

Let A and B be sets and f : A −→ B a function. Let RA and RB be tolerance

relations on A and B, respectively, such that for all x, y ∈ A

if 〈x, y〉 ∈ RA then 〈f(x), f(y)〉 ∈ RB (3.17)
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holds true. Then the following holds:

If A is a block of RA then f(A) is a block of RB.

proof: We have to show that for any b1, b2 ∈ f(A) it holds that 〈b1, b2〉 ∈ RB.

For any b1, b2 ∈ f(A) there are a1, a2 ∈ A such that f(a1) = b1, f(a2) = b2. Because

A is a block of RA, 〈a1, a2〉 ∈ RA. By (3.17), 〈f(a1), f(a2)〉 = 〈b1, b2〉 ∈ RB. 2

3.4.2 Unimodality

The notion of unimodal real function will be important for our study of modeling

of meaning of evaluating linguistic expressions, and especially in the investigation

of inconsistencies in linguistic descriptions in Section 6.3.

Definition 3.15 (Unimodality)

Let [ai, bi] ⊂ R, i = 1, 2 be real intervals, f a continuous function from [a1, b1] to

[a2, b2], let M = supy∈[a1,b1] f(y). The function f is called unimodal, if there are

c1, c2, d1, d2 ∈ [a1, b1], d1 ≤ c1 ≤ c2 ≤ d2 such that f(x) = M for x ∈ [c1, c2],

restriction of f to [d1, c1] is strictly increasing and to [c2, d2] is strictly decreasing,

and restrictions of f to [a1, d1] and [d2, b1] are constant functions (see Figure 3.1).

The set of all unimodal functions from [a1, b1] to [a2, b2] is denoted by Cu.

a1

b2

b1

a2

M

c1 c2d1 d2

Figure 3.1: Example of unimodal function.
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Lemma 3.16

Let {f i | i ∈ J} be a finite family of unimodal functions from [a1, b1] to [a2, b2]. If

∩i∈J [ci
1, c

i
2] 6= ∅ holds, then the function f(x) =

∨
i∈J f i(x) is also unimodal.

proof: Let M j = supx∈[a1,b1] f
j(x). The assumptions imply that there exists

w ∈ [a1, a2] such that f(w) = M j for all j ∈ J . It follows that the restrictions of

f j to [a1, w] and to [w, a2] are non-decreasing and non-increasing, respectively. It

holds that if {gi | i ∈ I} is a family of non-decreasing (non-increasing) functions,

then the function g(x) =
∨

i∈I gi(x) is non-decreasing (non-increasing). Hence,

the restrictions of f to [a1, w] and [w, a2] are non-decreasing and non-increasing,

respectively. It follows that f =
∨

i∈J f j is unimodal. 2

Remark 3.17 (i) We can distinguish three types of unimodal functions, which

in the literature are usually denoted by Z, S and Π (see Figure 3.2 and

Definition 3.18) where S denotes non-decreasing unimodal functions, Z non-

increasing unimodal functions, and Π functions which could be divided to

non-decreasing and non-increasing parts. We can introduce a relation uni on

the set Cu of all unimodal functions. Two functions f1 and f2 are in relation

uni if they possess the same type of unimodality (one of Z, S, Π). It is easy

to see that the relation uni is an equivalence.

(ii) There is also another classification of unimodal functions, which will be used in

Chapter 6. Due to this classification, two unimodal functions are in the same

class if the intervals in which they attain its maximal values have nonempty

intersection.

Definition 3.18

(i) Unimodal function f is of type

1. Z if a1 = c1 = d1 and c2 6= b1.

2. S if b1 = c2 = d2 and c1 6= a1.

3. Π otherwise.

(ii) Two unimodal functions f 1 and f 2 are in relation uni iff they both possess the

same type of unimodality (one of Z, S or Π).

(iii) Two unimodal functions f 1, f 2 : [a1, b1] −→ [a2, b2] are in relation unim iff

there exists x0 ∈ [a1, b1] such that f 1(x0) =
∨

x∈[a1,b1] f
1(x) and f 2(x0) =

=
∨

x∈[a1,b1] f
2(x).
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a1

b2

b1

a2

Z Π S

Figure 3.2: Three types of unimodal functions.

Lemma 3.19

(i) Any unimodal function f has just one type of unimodality.

(ii) The relation uni is an equivalence relation.

(iii) The relation unim is reflexive and symmetric.

proof: Immediate. 2

Remark 3.20 It is easy to see that the relation unim is not, in general, a transitive

one. Hence, it is a tolerance relation (see Section 3.4.1 and [32]). It follows that the

maximal blocks of the relation unim (i.e. maximal subsets U of Cu such that for all

fi, fj ∈ U fi unim fj ) induced by this relation are not disjoint, in general. Note that

if there is a family of unimodal functions {fi | i ∈ I}, where I is some index set, and

for all i, j ∈ I it holds that fi unim fj, then Lemma 3.16 applies to this family and

the function
∨

i∈J fi is an unimodal one. We will use this fact in Chapter 6. The

next lemma shows a condition under which both relations uni and unim coincide.

Lemma 3.21

Let U = {f i | i ∈ I}, U ⊆ Cu be a family of unimodal functions,

f i : [a1, b1] −→ [a2, b2]

for all i ∈ I. Denote by M fi the value supx∈[a1,b1] f
i(x). Let the following conditions

hold:
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(i) There exist x0 ∈ [a1, b1] and M ∈ [a2, b2] such that for all functions

{f j | j ∈ J} of type Π from U , J ⊆ I, it holds that f j(x0) = M fj = M .

(ii)

(f i unim f j) implies (f i uni f j)

for all i, j ∈ I.

Then the relations uni and unim coincide.

proof: We have to show that

(f i uni f j) implies (f i unim f j) (3.18)

For two unimodal functions f1 and f2 of type Z or S, (3.18) follows from the fact

that there is always x0 = a1 (or x0 = b1) such that f1(x0) = f2(x0) = M1 = M2.

For two unimodal functions of type Π, the existence of such x0 follows directly from

assumption (i). 2

The following lemma will be used in the proof of Theorem 6.22, Section 6.3.

Lemma 3.22

Let f 1 and f 2 be two unimodal functions from [a1, b1] to [a2, b2] satisfying

(i)
∨

x∈[a1,b1] f
1(x) =

∨
x∈[a1,b1] f

2(x),

(ii) f 1 and f 2 are not in the relation unim.

Then a function f(x) = f 1(x) ∨ f 2(x) is not unimodal.

proof: Denote by M the value M =
∨

x∈[a1,b1] f
1(x) =

∨
x∈[a1,b1] f

2(x). Suppose

that f 1(x1) = f 2(x2) = M . Because f 1 and f 2 are not in the relation unim, we

know that either x1 < x2 or x1 > x2. Suppose x1 < x2. Then it follows from the

continuity of functions f 1 and f 2 that there exists x0 such that x1 < x0 < x2 and

f 1(x0) < M as well as f 2(x0) < M . It follows that f(x0) = f 1(x0) ∨ f 2(x0) < M .

Because f(x1) = f(x2) = M , it follows that the function f(x) = f 1(x) ∨ f 2(x) is

not unimodal. The case x1 > x2 can be proved similarly. 2

Remark 3.23 In the following text we will need to extend the notion of unimodal

functions in such a way that it includes also (non-continuous) intervals, i.e. functions

f(x) =

{
e1, x ∈ [c1, c2],

e2 otherwise
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where e1 > e2. If c1 = c2, then this interval degenerates to a single point. Definitions

of the relations uni and unim are identical for this wider class of unimodal functions

and it can be demonstrated that all lemmas in this section also hold, so we will not

explicitly distinguish between these two classes in further explanation.
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Chapter 4

Theories for Modeling of the

Meaning of Evaluating Linguistic

Expressions

Let us remind that in the following, we say that a structure V is a model of the

theory T if it holds that SAxT (A) ≤ V(A) for all A ∈ FJ(T ). We call a structure V
a possible world for the theory T if it is a model of T and its support is a real in-

terval [vl, vr] (or, in case of many-sorted languages, intervals [vl1 , vr1 ], . . . , [vln , vrn ]).

Moreover, membership functions – interpretations of predicate symbols from J(T )

are continuous with respect to the standard metric on reals.

4.1 Definition of theory T ev

In this section we state several natural requirements which a logical theory aimed

at a characterization of the meaning of linguistic expressions should fulfil. We are

not going to define one (“unique”, “best”) theory, but postulate several axioms

which all such theories should obey. We work on a lower level of abstraction than in

[21]. We suppose that the members of the set S of simple evaluating expressions are

translated into our formal system by means of unary predicate symbols, i.e. we have

no counterpart of linguistic hedges in our language. However, even if we consider

also some formalization of hedges (by unary connectives), it is possible to transform

it into the system presented here, and to study its properties (e.g. if the proposed

interpretation of linguistic hedges on syntactic level is done in such a way that it
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guarantees correct behavior of the overall formal system with respect to deduction)

and to compare it with other ones.

We denote a fuzzy theory aimed at a characterization of simple evaluating ex-

pressions by T ev and its first-order language by J(T ev). The (finite) nonempty set

of simple evaluating linguistic expressions is denoted by S. The corresponding set

of unary predicate symbols in the language J(T ev) is denoted by G. We denote by

m : S −→ G a bijection between S and G which assigns to every simple evaluating

expression A ∈ S the unary predicate m(A) ∈ G. The set of all closed terms of

J(T ev) is denoted by M . In Definition 3.12, an intension of linguistic expression has

been generally defined as a set of (instances of) evaluated formulas. In the following,

we use provability degrees in certain formal theory T as the evaluations of instances

of formulas.

The intension of simple evaluating expression A ∈ S in a theory T is then

Int(A) = A =
{

α̃G(t)
/
Gx[t] | G = m(A), t ∈ M, T `α̃G(t) Gx[t]

}
(4.1)

where α̃G : M −→ L is a function called an intensional mapping. Note that

α̃G(t) depends also on the theory T we are working in. Because G is a set of unary

predicate symbols, for every nonempty subset {Gi | i ∈ I} ⊆ G holds that the

set
{

α̃Gi
(t)

/
Gi,x[t] | i ∈ I, t ∈ M

}
is a set of independent evaluated formulas in the

sense of Definition 3.6.

Definition 4.1

The fuzzy theory T ev with the set of unary predicate symbols G, G ⊂ J(T ev) is

called a theory of evaluating expressions if it fulfills the following conditions:

1. The language J (T ev) contains a set of constants large enough for the repre-

sentation of real numbers, e.g. let the set of constant symbols M (which is

simultaneously also the set of closed terms, provided that there are no function

symbols in J(T ev) be M =
{
t(z) | z ∈ [0, 1]

}
.

2. For every formula G(x), G ∈ G, there exist closed terms t1, t2 ∈ M such that

T ev ` Gx[t1] and T ev `0 Gx[t2].

3. Let γG : [0, 1] −→ [0, 1] be functions adjoined to functions α̃G by putting

γG(z) = v iff α̃G

(
t(z)

)
= v iff T ev `v Gx

[
t(z)

]
. (4.2)

The functions γG are continuous with respect to standard topology on R, dif-

ferentiable (with the exception of at most finitely many points) and unimodal

(see Definition 3.15).
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4. For all G,G′ ∈ G, if γG = γG′ then G = G′.

5. For every t ∈ M there is at least one G ∈ G such that T ev `c Gx[t] with c > 0.

6.

T ev ` t(z1) 6= t(z2) iff z1 6= z2.

7.

T ev ` t(z1) ≤ t(z2) iff z1 ≤ z2

in the standard ordering on [0, 1]. Further, the following two axioms which

ensure the existence of endpoints of linear ordering must be introduced:

(i) (∃x)(∀y)(x ≤ y),

(ii) (∃x′)(∀y)(y ≤ x′)

and crispness of ≤:

(∀x)(∀y)(x ≤ y)∨∨∨¬¬¬(x ≤ y) (4.3)

and =:

(∀x)(∀y)(x = y)∨∨∨¬¬¬(x = y). (4.4)

Lemma 4.2

There exists a consistent theory T ? which fulfills the requirements of Definition 4.1.

proof: Let the language of T ? be J(T ?) = 〈≤, G1, G2, {t(z) | z ∈ [0, 1]}〉 where

≤ is binary predicate symbol, G1 and G2 are unary predicate symbols. Let the set

of special axioms of the theory T ? be

SAxT ? =
{

α̃G1(t)
/
G1,x[t] | t ∈ M

}
∪

{
α̃G2(t)

/
G2,x[t] | t ∈ M

}
∪

∪ {
1
/
t(z1) < t(z2) | z1 < z2, z1, z2 ∈ [0, 1]

} ∪ {
1
/
(∃x)(∀y)(x ≤ y)

}

∪ {
1
/
(∃x′)(∀y)(y ≤ x′)

} ∪ {
1
/
(∀x)(∀y)(x ≤ y)∨∨∨¬¬¬(x ≤ y)

}

∪ {
1
/
(∀x)(∀y)(x = y)∨∨∨¬¬¬(x = y)

}
(4.5)

where t(z1) < t(z2) is an abbreviation for
(
t(z1) ≤ t(z2)

)
&

(
t(z1) 6= t(z2)

)
. Let the

functions α̃G1 and α̃G2 be

α̃G1

(
t(z)

)
= (1− 4

3
z) ∨ 0, α̃G2

(
t(z)

)
= (−1

3
+

4

3
z) ∨ 0.

Let us define a structure M = 〈[0, 1],≤, Ĝ1, Ĝ2〉 where ≤ is the standard ordering

of real numbers, Ĝ1, Ĝ2 are unary fuzzy relations defined by Ĝ1(x) = α̃G1

(
t(x)

)
and
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Ĝ2(x) = α̃G2

(
t(x)

)
. The interpretation of constant symbols from J(T ?) is defined

by M (
t(z)

)
= z, z ∈ [0, 1]. It is easy to see that M is a model of T ?, hence T ? is

consistent.

We show that T ? fulfills the requirements of Definition 4.1. Item 1 of Defini-

tion 4.1 is fulfilled due to the definition of J(T ?), for item 2 consider terms t(0) and

t(1) for G1: T ? ` G1,x

[
t(0)

]
because there is a special axiom of the form 1

/
G1,x

[
t(0)

]

in SAxT ? . Because M (
G1,x

[
t(1)

])
= 0, it follows that T ? `0 G1,x

[
t(1)

]
. Analo-

gously, T ? ` G2,x

[
t(1)

]
and T ? `0 G2,x

[
t(0)

]
. Items 3, 4, 6 and 7 are straightfor-

ward, for item 5 consider the set M1 =
{
t(z) | z ∈ [0, 0.6]

}
, for which it holds that

T ? `ct G1,x[t], t ∈ M1, ct > 0, and analogously M2 =
{
t(z) | z ∈ [0.4, 1]

}
, for which

it holds that T ? `ct G2,x[t], t ∈ M2, ct > 0. It follows that for all t ∈ M , T ? `ct Gx[t]

for some G ∈ G and with ct > 0. 2

Remark 4.3 (i) In the previous definition we index the members of the set M of

closed terms either by subscripts (e.g. t1, t2) where subscripts mean the usual

indexing via some fixed index set, or by superscripts (e.g. t(z), z ∈ [0, 1]), by

which we denote (unique) closed term corresponding to the real number z. We

will keep this notation throughout the rest of the thesis.

(ii) Item 2 of the previous definition articulates the requirement that the properties

expressed by simple evaluating expressions should be completely valid for some

objects and completely invalid for the other ones. Item 3 expresses the fact

that vagueness cannot change abruptly (it is continuous). Item 4 requires that

the adjoined functions γG should be pairwise different. The reason is that

the predicate symbols G are formalizations of different evaluating linguistic

expressions and it is counterintuitive to assign the same meaning to different

expressions. Item 5 states that every abstract object t(z) corresponding to the

real number z from [0, 1] has some property in a non-zero degree, i.e. that the

set S of simple evaluating expressions is rich enough in the sense that there are

no “gaps” for which no properties are described by the theory T ev. Finally,

Item 7 ensures us that the set M of closed terms is linearly ordered in the

same way as interval [0, 1] and this ordering has endpoints.

(iii) The intensional mappings of the atomic formulas G(x) ∈ G can be computed

inside some other theory, e.g. the theory of evaluating syntagms TEV described

in [21]. Formulas which correspond to simple evaluating expressions are there

composed from predicate symbol for horizon L, members of a set of unary
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connectives ¢¢¢α representing linguistic hedges, and function symbol η for order-

-reversing automorphism. It means that these formulas are not independent,

in general.

(iv) The intended semantics of the theory T ev is as follows: the support of such a

structure is a real interval, predicate symbols G ∈ G are interpreted as unary

fuzzy relations (fuzzy subsets) of D. Object constants t(z) are interpreted by

real numbers z ∈ D in such a way that if z1 < z2 then D (
t(z1)

)
< D (

t(z2)
)
.

(v) We require in Item 3 that functions γG(z), z ∈ [0, 1] have to be unimodal.

Because unimodal functions could be divided to several categories by means

of the relations uni and unim (see Remark 3.17), we can define relations uniT
ev

and uniT
ev

m on the set S〈x〉 of intensions of simple evaluating expressions (for

formal definitions see Definition 4.4). Two intensions A1,〈x〉 and A2,〈x〉 are in

relation uniT
ev

iff for the functions γAi
associated to their intensional mappings

α̃Ai
hold that γA1 uni γA2 , and similarly is defined the relation uniT

ev

m . Note

that these relations are dependent on the assignment of intentions Ai,〈x〉 to

evaluating linguistic expressions Ai ∈ S and consequently on theory T ev. It is

easy to see that the relations uniT
ev

and uniT
ev

m are equivalence and tolerance

relations, respectively. Therefore, the relation uniT
ev

induce a partition on the

set S〈x〉. In accordance with the discussion presented in Section 3.2, we prefer

to use three atomic evaluating expressions small, medium and big in such a way

that their intensional mappings belong to classes Z, Π and S, respectively. In

this case the intensions A〈x〉 ∈ S〈x〉 of simple evaluating expressions are divided

by relations uniT
ev

and uniT
ev

m into three disjoint subsets and both relations

coincide (due to Lemma 3.21). We can also include into the definition of the

theory T ev the requirement, that if two linguistic expressions A1 and A2 have

the same atomic expression, then their respective intensions A1,〈x〉 and A2,〈x〉
should be in the relation uniT

ev

m .

Definition 4.4

Denote by S〈x〉 a set of intensions of simple evaluating linguistic expressions (with

respect to a given theory T ev), i.e.

S〈x〉 =
{
A〈x〉 | A = m(A) and A ∈ S}

where A〈x〉 = {α̃A(t)
/
Ax[t] | t ∈ M}. A relation uniT

ev ⊆ S〈x〉 × S〈x〉 is defined by

means of the intensional mappings α̃A:

(A1,〈x〉 uniT
ev

A2,〈x〉) iff (γA1 uni γA2)
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where the functions γAi
, i = 1, 2 are defined by (4.2) and the relation uni is defined

in Definition 3.18. Analogously is defined a relation uniT
ev

m ⊆ S〈x〉 × S〈x〉:

(A1,〈x〉 uniT
ev

m A2,〈x〉) iff (γA1 unim γA2).

Lemma 4.5

For any theory of evaluating expressions T ev it holds that:

(i) The relation uniT
ev

is an equivalence relation.

(ii) The relation uniT
ev

m is a tolerance relation.

proof: Item 3 of Definition 4.1 requires that the functions α̃A should be unimodal

for any theory of linguistic description T ev. The claims then follow from Definition

3.18 of relations uni and unim. 2

4.2 Canonical possible worlds

Definition 4.6

A canonical possible world VC of the theory of evaluating expressions T ev is a model

VC = 〈[0, 1], . . .〉 of T ev such that VC

(
t(z)

)
= z for z ∈ [0, 1], for which the following

property holds for all G ∈ G and t ∈ M :

VC(Gx[t]) = α̃G(t). (4.6)

The question of existence of such a canonical possible world is addressed by the

following theorem.

Theorem 4.7

Let a theory T fulfil the conditions of Definition 4.1. Suppose that the fuzzy set of

special axioms of the theory T has the following property (C): For every formula B,

every atomic formula Gx[t], G ∈ G, t ∈ M and every truth valuationW : FJ(T ) −→ L

it holds that: If Gx[t] is a subformula of B and

SAx(Gx[t]) ≤ W(Gx[t])

then SAx(B) ≤ W(B). Then there exists canonical possible world VC |= T in the

sense of Definition 4.6.
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proof: Due to item 2 of Definition 4.1, the theory T is consistent (because there

exists some formula with provability degree equal to 0), hence it has a model. From

item 6 of Definition 4.1 and Löwenheim-Skolem Theorem (cf. Theorem 4.35, [27])

it follows that there exists a model U of T of cardinality of continuum. From Item 7

of Definition 4.1 follows that the support of U is linearly ordered and this ordering

has endpoints.

Consider a structure V with the support V = [0, 1] and an order-preserving

bijection g : U −→ V . Let the interpretation of constants in V be defined by

V(t) = g(U(t)), of function symbols by V(f(t1, . . . , tn)) = g(U(f(t1, . . . , tn))) and

interpretation of predicate symbols by V(P (t1, . . . , tn)) = U(P (t1, . . . , tn)). It follows

that V is a model of T .

Now we can construct a structure VC from V which differs only in the evalua-

tions of Gx[t] defined by VC(Gx[t]) = α̃G(t). It is possible because Gx[t] are closed

instances of atomic predicate formulas. We show that VC is a model of T . If B

contains no subformula of the form Gx[t] then VC(B) = V(B) ≥ SAx(B). Other-

wise, SAx(B) ≤ VC(B) by assumption (C). It follows that VC is a canonical possible

world for T . 2

Remark 4.8 A theory T which fulfills property (C) will be called simple. For simple

theories of evaluating expressions, canonical possible worlds always exist. The exis-

tence of canonical possible worlds is important, because it guarantees the existence of

possible worlds where membership functions of fuzzy sets, which are interpretations

of predicate symbols G ∈ G, have the properties required in Definition 4.1.

4.3 Extended theories

Canonical possible worlds from Definition 4.6 can be understood as models in which

truth functions mimic the behavior of intensional mappings of predicate symbols

G ∈ G from the theory T ev. In the following we define a wider class of models

in which the interpretations of predicate symbols G ∈ G behave “similarly” as in

the canonical possible world V , but these interpretations are restricted also from

above. To this purpose we extend (some fixed) fuzzy theory T ev by axioms on

negations of (instances of) predicate symbols G ∈ G and we also require continuity

and unimodality of membership functions of their interpretations in appropriate

models.
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Definition 4.9

An extended theory of evaluating expressions T evx arises from the theory T ev by

expanding it by axioms
{

β̃G(t)
/¬¬¬Gx[t] | G ∈ G, t ∈ M

}
(4.7)

where β̃G(t) : M −→ L and

α̃G(t)⊗ β̃G(t) = 0 (4.8)

holds for all t ∈ M .

Remark 4.10 (i) The requirement (4.8) is equivalent to β̃G(t) ≤ ¬α̃G(t) for all

t ∈ M and also to α̃G(t) ≤ ¬β̃G(t) for all t ∈ M .

(ii) We can unify the notation by denoting both sets of evaluated formulas (i.e.

instances of formulas Ax[t] and ¬¬¬Ax[t]) by one symbol Ae, i.e.

Ae :=
{

α̃A(t)
/
Ax[t] | t ∈ M

}
∪

{
β̃A(t)

/¬¬¬Ax[t] | t ∈ M
}

, (4.9)

provided that (4.8) holds for all t ∈ M .

(iii) The values ¬α̃G(t) are consistency thresholds for the formulas Gx[t] in the

sense of Definition 1 from [26]. There is also some relation to the concept of

intuitionistic fuzzy sets introduced by K. Atanasov.

Lemma 4.11

If T ev is simple (see Remark 4.8), then T evx is consistent and T evx `d ¬¬¬Gx[t] where

d = β̃G(t), for all G ∈ G and t ∈ T .

proof: The canonical possible world VC of T ev from Definition 4.6 is also a

model of T evx, because VC(¬¬¬Gx[t]) = ¬VC(Gx[t]) = ¬α̃G(t) ≥ β̃G(t) = SAx(¬¬¬Gx[t])

holds. Therefore, T evx is consistent. For the second part of lemma, it is sufficient

to construct such a model U for which U(¬¬¬Gx[t]) = β̃G(t), which can be done by

the same technique as in the proof of Theorem 4.7. The claim then follows from the

Completeness Theorem. 2

Definition 4.12

An extended possible world of T evx is a model VE of the extended theory of evaluating

expressions such that its support is a closed interval [a, b] ⊂ R, interpretation of

closed terms is VE

(
t(z)

)
= a + (b − a)z, z ∈ [0, 1], t(z) ∈ M and interpretations of

predicate symbols G ∈ G are continuous and unimodal functions GVE
: [a, b] −→ L.
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Theorem 4.13

If there exists the canonical possible world VC of T ev then there exists also the

extended possible world VE of T evx and

α̃G(t) ≤ VE(Gx[t]) ≤ ¬β̃G(t) (4.10)

holds for all G ∈ G and all t ∈ M .

proof: The canonical possible world VC of T ev is also a model of the extended

theory T evx (see the proof of Lemma 4.11).

For any structure U such that U |= T evx, U(Gx[t]) ≥ SAx(Gx[t]) = α̃G(t). Let us

prove the inequality VE(Gx[t]) ≤ ¬β̃G(t). Suppose that U(Gx[t]) > ¬β̃G(t). Then

U(¬¬¬Gx[t]) = ¬U(Gx[t]) < β̃G(t) = SAx(¬¬¬Gx[t]), hence U is not a model of T evx – a

contradiction. 2

Lemma 4.14

Let T evx be an extended theory of evaluating expressions such that for all G ∈ G
and all t ∈ M , β̃G(t) = ¬α̃G(t). Then all extended possible worlds VE of T evx are

G-isomorphic (see Definition 3.11) with the canonical possible world VC .

proof: It is easy to see that
(
β̃G(t) = ¬α̃G(t)

)
implies

(
α̃G(t) = ¬β̃G(t)

)
. (4.11)

From (4.6) we obtain that VC(Gx[t]) = α̃G(t) and from (4.10) and (4.11) it follows

that α̃G(t) = VE(Gx[t]), i.e. VC(Gx[t]) = VE(Gx[t]). Let g : VC −→ VE be defined

by g(z) = a + (b− a)z. This is a bijection between VC = [0, 1] and VE = [a, b] ⊂ R.

Now we show that GVC
(z) = GVE

(g(z)).

GVC
(z) = VC

(
Gx

[
t(z)

])
= α̃G

(
t(z)

)
= VE

(
Gx

[
t(z)

])
= GVE

(a+(b−a)z) = GVE
(g(z)).

Consequently, VC and VE are G-isomorphic. 2

As a generalization of this result for general extended theories we obtain the

following

Theorem 4.15

Let T evx be an extended theory of evaluating expressions. Then two extended pos-

sible worlds VE1, VE2 of T evx are G-isomorphic in the degree greater than or equal

to

c = 1−
∨
G∈G

∨
t∈M

(
¬β̃G

(
t(z)

)− α̃G

(
t(z)

))
. (4.12)
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proof: Let VEi = [ai, bi], i = 1, 2. We have to show that there exists a func-

tion g, g : VE1 −→ VE2 such that (i) g is a bijection between VE1 and VE2, (ii)

g
(VE1

(
t(z)

))
= VE2

(
t(z)

)
for all z ∈ [0, 1] and (iii) (G1

i (y) ↔ G2
i (g(y))) ≥ c, where

Gj
i = VEj(Gi), Gi ∈ G, j = 1, 2 and y ∈ VE1.

Let g be defined as the linear transformation of VE1 to VE2, i.e. for y ∈ VE1 let

g(y) = a2 +
b2 − a2

b1 − a1

(y − a1).

Then (i) is fulfilled, (ii)

g
(VE1

(
t(z)

))
= g(a1 + (b1 − a1)z) = a2 + (b2 − a2)z = VE2

(
t(z)

)
.

(iii) Let y ∈ VE1, y = VE1(t) for some t ∈ M and let Gi ∈ G. Then from Theorem

4.13 it follows that

(G1
i (y) ↔ G2

i (g(y))) = 1− |G1
i (y)−G2

i (g(y))| ≥ 1− (¬β̃Gi
(t)− α̃Gi

(t)),

because g(y) = VE2(t). The claim follows from the fact that we considered general

y ∈ VE1 and Gi ∈ G, and that there is a bijection between the set of closed terms

M and the set VE1. 2

Hence, if we put β̃G(t) = ¬α̃G(t) for all G ∈ G and t ∈ M , then all possible worlds

with the support [a, b] and natural interpretation of object constants t(z), z ∈ [0, 1]

are G-isomorphic with the canonical possible world VC . It means that possible worlds

of such a theory behave in the same way as models of complete theories with respect

to atomic formulas of the form Gx[t] – their provability degrees copy the structure

of truth values, i.e. if T evx `α̃G1
(t) G1,x[t] and T evx `α̃G2

(t) G2,x[t] then

T evx `c(t) G1,x[t]&¯G2,x[t]

where c(t) = α̃G1(t) ¯ α̃G2(t). Here &¯ is a propositional connective and ¯ is its

semantic interpretation. This situation is convenient. However, it also seems to be

too restrictive – all possible worlds are isomorphic and there is no freedom in choice

of the interpretations of extensions of simple evaluating expressions.

Now we prove (with a use of the Completeness Theorem) a lemma about lower

bounds for provability degrees of propositional formulas in extended theories. In the

sequel we use (A 6⇔6⇔6⇔B) as an abbreviation for ¬¬¬(A⇔⇔⇔B).

Lemma 4.16

Let T be a consistent fuzzy theory, A and B closed formulas, T `d1 A, T `d2 B,

T `e1 ¬¬¬A and T `e2 ¬¬¬B, and it holds that e1 ≤ ¬d1 and e2 ≤ ¬d2, then
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(i)

T `d A⇒⇒⇒B, where d ≥ ¬e1 → d2, (4.13)

(ii)

T `d A⇔⇔⇔B, where d ≥ (¬e1 → d2) ∧ (¬e2 → d1), (4.14)

(iii)

T `d A 6⇔6⇔6⇔B, where d ≥ ((d1 ⊗ e2) ∨ (d2 ⊗ e1)), (4.15)

(iv)

T `d A&B, where d1 ⊗ d2 ≤ d ≤ ¬e1 ⊗ ¬e2, (4.16)

(v)

T `d A∧∧∧B, where d = d1 ∧ d2, (4.17)

(vi)

T `d A∨∨∨B, where d1 ∨ d2 ≤ d ≤ ¬e1 ∨ ¬e2. (4.18)

proof:

(i) We use Completeness Theorem: T `d A⇒⇒⇒B implies

d =
∧
D
{D(A⇒⇒⇒B) | D |= T} =

∧
D
{D(A) → D(B) | D |= T} ≥

≥
∨
D
{D(A) | D |= T} →

∧
D
{D(B) | D |= T} = ¬e1 → d2

where we have used the fact that the operation → is antitonic in the first and

isotonic in the second variable.

(ii) A⇔⇔⇔ B := (A⇒⇒⇒ B)∧∧∧ (B⇒⇒⇒ A). By the same consideration as in the previous

item, T `d A⇔⇔⇔B implies

d =
∧
D
{D(A⇔⇔⇔B) | D |= T} =

∧
D
{D(A) ↔ D(B) | D |= T} =

=
∧
D
{(D(A) → D(B)) ∧ (D(B) → D(A)) | D |= T} =

=
∧
D
{(D(A) → D(B)) | D |= T} ∧

∧
D
{(D(B) → D(A)) | D |= T} ≥

≥ (¬e1 → d2) ∧ (¬e2 → d1).
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(iii)

d =
∧
D
{D(A 6⇔6⇔6⇔B) | D |= T} =

∧
D
{(D(¬¬¬(A⇔⇔⇔B)) | D |= T} =

=
∧
D
{1−D(A⇔⇔⇔B) | D |= T} =

∧
D
{1− (D(A) ↔ D(B)) | D |= T} =

= 1−
∨
D
{D(A) ↔ D(B) | D |= T} = 1−

∨
D
{1− |D(A)−D(B)| | D |= T} =

=
∧
D
{|D(A)−D(B)| | D |= T}.

It can be easily seen that the expression on the last line attains minimal value

at the point
(∧

D
{D(A) | D |= T} −

∨
D
{D(B) | D |= T}

)
∨

∨
(∧

D
{D(B) | D |= T} −

∨
D
{D(A) | D |= T}

)
∨ 0.

And this expression is equal to

((d1 − ¬e2) ∨ (d2 − ¬e1)) ∨ 0

which could be written, using the definition of ÃLukasiewicz conjunction, as

((d1 ⊗ e2) ∨ (d2 ⊗ e1)).

(iv) The fact that d1 ⊗ d2 ≤ d has been proved in the item (b) of Theorem 10 of

[27]. Suppose that d > ¬e1 ⊗ ¬e2. By the completeness, d =
∧
D

(D(A&B)) =

=
∧
D

(D(A) ⊗ D(B)). But D(A) ≤ ¬e1 and D(B) ≤ ¬e2, so D(A) ⊗ D(B) ≤
≤ ¬e1 ⊗ ¬e2, hence

∧
D

(D(A)⊗D(B)) ≤ ¬e1 ⊗ ¬e2, which contradicts

d > ¬e1 ⊗ ¬e2.

(v) Coincides with item (d) of Theorem 10 of [27].

(vi) Analogous to the proof of item (iii).

2

Remark 4.17 Lemma 4.16 shows that in extended theories we can use the addi-

tional information provided by axioms of the form
{

β̃G(t)
/¬¬¬Gx[t] | G ∈ G, t ∈ M

}
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for sharper determination of the bounds of provability degrees for formulas of type

G1,x[t]&¯G2,x[t]. For example, the lower bound for the provability degree d of for-

mula A⇒⇒⇒ B in a theory T , provided that we have T `d1 A and T `d2 B, is d ≥ d2

(compare with formula (4.13)).

4.4 Theories T ev and T evx with fuzzy equality

When we use theories T ev or extended theories T evx it is advantageous to allow

also the possibility to express similarity among objects. Therefore we extend the

language J(T ev) (or J(T evx)) by fuzzy equality predicate ≈ (see Section 3.1.8).

Definition 4.18

A theory of evaluating expressions T ev
≈ is called a theory of evaluating expressions

with fuzzy equality if its language contains the fuzzy equality predicate ≈ and the

set of its special axioms SAx(T ev
≈ ) includes the axiom schemata (E1), (E2) and (E3)

from Section 3.1.8 with the exponents m1, . . . , mn equal to 1.

Lemma 4.19

Let t1, t2 ∈ M . Denote by c the value

c =
∨
D
{D(t1 ≈ t2) | D |= T ev

≈ }.

Then

T ev
≈ `¬c t1 6≈ t2.

proof: From the Completeness Theorem (cf. Theorem 3.5) it follows that

T ev
≈ `d t1 6≈ t2,

where

d =
∧
D
{D(t1 6≈ t2) | D |= T ev

≈ } =
∧
D
{¬D(t1 ≈ t2) | D |= T ev

≈ } =

=
∧
D
{1−D(t1 ≈ t2) | D |= T ev

≈ } = 1−
∨
D
{D(t1 ≈ t2) | D |= T ev

≈ } =

= ¬
∨
D
{D(t1 ≈ t2) | D |= T ev

≈ } = ¬c.

2
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Chapter 5

Linguistic Descriptions

This section presents the treatment of linguistic descriptions on linguistic, syntactic

and semantic levels.

5.1 Linguistic level

On the linguistic level, a linguistic description is a set of linguistic expressions of

the form “IF A THEN B”, where A and B are evaluating linguistic predications (cf.

Section 3.2.1).

Definition 5.1

A linguistic description in FLb is a finite set LDI = {RI
1,RI

2, . . . ,RI
r} of conditional

clauses

RI
i := IF Ai THEN Bi, i = 1, 2, . . . , r (5.1)

where Ai, Bi are evaluating predications. If all evaluating predications Ai, Bi are

simple (cf. Section 3.2.2) then also the linguistic description LDI is called simple.

Remark 5.2 (i) By An(Ri) we denote the antecedent part of the rule Ri, i.e.

An(Ri) = Ai, and, similarly for the succedent part, Succ(Ri) = Bi. An(LDI)

denotes the set of all antecedents and Succ(LDI) the set of all consequents

of the linguistic description LDI , i.e. An(LDI) = {Ai | i = 1, 2, . . . , r} and

Succ(LDI) = {Bi | i = 1, 2, . . . , r}.
(ii) It is possible to consider also IF-THEN rules which include negations too, e.g.

RIn1
i := IF Ai THEN NOT Bi, (5.2)
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RIn2
i := IF NOT Ai THEN Bi, (5.3)

RIn3
i := IF NOT Ai THEN NOT Bi. (5.4)

5.2 Level of syntax

The intensions of individual conditional clauses RI
i are determined by the theories of

evaluating expressions T ev
1 and T ev

2 for antecedent and consequent parts of IF-THEN

rules, respectively. The theories T ev
1 and T ev

2 could be identical, but it is usually

advantageous to use different theories for antecedents and for consequents. The

language in which the intension of IF-THEN rule is written down is the two-sorted

first-order language

J(TI) = 〈G1,G2,
{
t(z) | z ∈ [0, 1]

}
,
{
s(z) | z ∈ [0, 1]

}
, . . .〉

where Gi, i = 1, 2 is the set of atomic predicate symbols for sort i, discussed in

the Section 4.1. The set of all closed terms of the sort i are denoted by Mi. The

intension of one IF-THEN rule is constructed from the intensions of its antecedent

part

Ai,〈x〉 =
{

α̃Ai
(t)

/
Ai,x[t] | t ∈ M1

}
(5.5)

and its succedent part

Bi,〈y〉 =
{

α̃Bi
(s)

/
Bi,y[s] | s ∈ M2

}
(5.6)

in the following way:

Ri,〈x,y〉 = Ai,〈x〉⇒⇒⇒Bi,〈y〉 =

=
{

α̃Ai⇒⇒⇒Bi
(t, s)

/
Ai,x[t]⇒⇒⇒Bi,y[s] | t ∈ M1, s ∈ M2, Ai ∈ G1, Bi ∈ G2

}
.

(5.7)

In the sequent by Ai, Bi we denote the formulas from (5.5) and (5.6) respectively, i.e.

the formulas the instances of which are used in construction of the intension of i-th

IF-THEN rule in the linguistic description LDI . The syntactic evaluations α̃Ai⇒⇒⇒Bi

should by constructed by means of syntactic evaluations of Ai and Bi, respectively.

This means that

¬β̃Ai
(t) → α̃Bi

(s) ≤ α̃Ai⇒⇒⇒Bi
(t, s) ≤ α̃Ai

(t) → ¬β̃Bi
(s) (5.8)

58



should hold (in case that T ev
1 or T ev

2 are not extended theories of evaluating expres-

sions, β̃A(t) are equal to 0.) It can be easily shown that the inequality

¬β̃Ai
(t) → α̃Bi

(s) ≤ α̃Ai
(t) → ¬β̃Bi

(s)

from (5.8) always holds, provided that α̃Ai
(t) ≤ ¬β̃Ai

(t) and α̃Bi
(s) ≤ ¬β̃Bi

(s),

which follows from Definition 4.9.

Remark 5.3 The question which arises now is how to determine the intensional

mapping α̃Ai⇒⇒⇒Bi
(t, s). The most natural possibility, which is also in accordance

with Frege principle of compositionality (saying that the intension of a compound

expression is a function of intensions of its parts), is to put

α̃Ai⇒⇒⇒Bi
(t, s) = α̃Ai

(t) → α̃Bi
(s). (5.9)

Intension of the conditional clause IF A THEN B is defined in this way in [27],

Definition 6.10, p. 238. However, it is not necessary to suppose this in the proof of

Theorem 6.5 of this thesis.

A linguistic description LDI naturally leads to the theory of linguistic description

TI in the language J(TI) if we construct its fuzzy set of special axioms from the

intensions Ri,〈x,y〉, i.e. we put

TI =
{
Ri,〈x,y〉 | i = 1, 2, . . . , r

}
. (5.10)

Remark 5.4 If we work with extended theories of evaluating expressions T evx (see

Section 4.3), and there are IF-THEN rules (given by expert or extracted by some

algorithm) which include negations, then it is possible (and advantageous) to ex-

tend also the theory TI by corresponding axioms. Let us denote by Ā〈x〉, B̄〈y〉 the

multiformulas

Ā〈x〉 =
{

β̃A(t)
/¬¬¬Ax[t] | t ∈ M1

}
, (5.11)

B̄〈y〉 =
{

β̃B(s)
/¬¬¬By[s] | s ∈ M2

}
, (5.12)

respectively, i.e. the intensional mapping of multiformula Ā〈x〉 is the mapping β̃A(t)

from Definition 4.9. If there are IF-THEN rules

RI
j := IF Aj THEN NOT Bj, j ∈ 1, 2, . . . , r, (5.13)

RI
k := IF NOT Ak THEN NOT Bk, k ∈ 1, 2, . . . , r, (5.14)
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RI
l := IF NOT Al THEN Bl, l ∈ 1, 2, . . . , r, (5.15)

then we can construct the multiformulas Aj,〈x〉⇒⇒⇒ B̄j,〈y〉, Āk,〈x〉⇒⇒⇒ B̄k,〈y〉 and

Āl,〈x〉⇒⇒⇒Bl,〈y〉, respectively, with their intensional mappings computed via the com-

positionality principle, i.e.

Ai,〈x〉⇒⇒⇒ B̄i,〈y〉 =
{

α̃Ai
(t) → β̃Bi

(s)
/
Ai,x[t]⇒⇒⇒¬¬¬Bi,y[s] | t ∈ M1, s ∈ M2

}
, (5.16)

Āi,〈x〉⇒⇒⇒ B̄i,〈y〉 =
{

β̃Ai
(t) → β̃Bi

(s)
/¬¬¬Ai,x[t]⇒⇒⇒¬¬¬Bi,y[s] | t ∈ M1, s ∈ M2

}
, (5.17)

Āi,〈x〉⇒⇒⇒Bi,〈y〉 =
{

β̃Ai
(t) → α̃Bi

(s)
/¬¬¬Ai,x[t]⇒⇒⇒Bi,y[s] | t ∈ M1, s ∈ M2

}
. (5.18)

We will denote this theory by TE
I ; note that if the original theories T ev are not

extended ones, we put β̃Ai
(t) = 0 for all i = 1, . . . , r and t ∈ M1 and, similarly,

β̃Bi
(s) = 0 for all i = 1, . . . , r and s ∈ M2.

Then, we put

TE
I = {Ai,〈x〉⇒⇒⇒Bi,〈y〉,Ai,〈x〉⇒⇒⇒ B̄i,〈y〉, Āi,〈x〉⇒⇒⇒ B̄i,〈y〉, Āi,〈x〉⇒⇒⇒Bi,〈y〉}. (5.19)

Remark 5.5 (i) Let us consider the following form of IF-THEN rule (5.2), namely

RI
j := IF A THEN NOT B

where B is a simple evaluating predication. Then, the interval of admissible

syntactic evaluations of a formula Ax[t]⇒⇒⇒¬¬¬By[s] is

¬β̃A(t) → β̃B(s) ≤ α̃A⇒⇒⇒¬¬¬B(t, s) ≤ α̃A(t) → ¬α̃B(s). (5.20)

(ii) In the sequel we will need to work with antecedent and consequent parts of

the linguistic description LDI on the level of syntax. The following theories

are introduced:

TA
I = {Int(An(Ri)) | i = 1, 2, . . . , r} = {Ai | i = 1, 2, . . . , r} (5.21)

and

T S
I = {Int(Succ(Ri)) | i = 1, 2, . . . , r} = {Bi | i = 1, 2, . . . , r}. (5.22)

For extended theories in the sense of Definition 4.9 the theories TA
I and T S

I

are also extended by the axioms {β̃Ai
(t)

/¬¬¬Ai,x[t] | t ∈ M1, i ∈ 1, 2, . . . , r} and

{β̃Bi
(s)

/¬¬¬Bi,y[s] | s ∈ M2}, respectively.
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5.3 Level of semantics

On the semantic level, given a possible world

V = 〈〈V1, V2〉, {Ai | i ∈ {1, . . . , r}}, {Bi | i ∈ {1, . . . , r}}, . . .〉

where Ai, Bi are fuzzy sets – interpretations of atomic predicate symbols Ai ∈ G1,

Bi ∈ G2, each fuzzy IF-THEN rule Ri ∈ LDI is assigned an extension in V :

ExtV(Ri) =
{
V(Ai,x[u]⇒⇒⇒Bi,y[v])

/〈u, v〉
∣∣∣ 〈u, v〉 ∈ V1 × V2

}
. (5.23)

Note that the extension of the rule Ri is a fuzzy relation ExtV(Ri) = R ⊂∼ V1 × V2.

Theorem 5.6

Let LDI be a linguistic description and (5.9) hold. Then the theory TI is consistent

and there exists possible world

W = 〈〈W1, W2〉, {Ai | i ∈ {1, . . . , r}}, {Bi | i ∈ {1, . . . , r}}, . . .〉

such that

W(Ai,x[t]⇒⇒⇒Bi,y[s]) = α̃Ai⇒⇒⇒Bi
(t, s).

proof: Let us construct the model W : define Wj = [0, 1], j = 1, 2 and

Ai(x) = α̃Ai

(
t(x)

)
for x = W (

t(x)
)
, t(x) ∈ M1 and x ∈ [0, 1]. Analogously,

Bi(y) = α̃Bi

(
s(y)

)
for y = W (

s(y)
)
, s(y) ∈ M2 and y ∈ [0, 1]. Then

W(Ai,x[t]⇒⇒⇒Bi,y[s]) = W(Ai,x[t]) →W(Bi,y[s]) = Ai(W(t)) → Bi(W(s)) =

= α̃Ai
(t) → α̃Bi

(s) = α̃Ai⇒⇒⇒Bi
(t, s).

It follows that W |= TI and, therefore, TI is a consistent theory. 2

Possible worlds isomorphic to the possible worldW from the proof of Theorem 5.6

will be called canonical possible worlds for TI .
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Chapter 6

Fuzzy Logic Deduction

In this chapter we present basic scheme of fuzzy logic deduction and analyze the

concept of inconsistency of linguistic description. We present two different defini-

tions of inconsistency. Let us stress that this inconsistency is not considered in the

strict logical sense, but rather from the point of view of applications of a linguistic

description in concern.

6.1 Basic scheme

The basic scheme of fuzzy logic deduction is the following: We have at our disposal

the fuzzy theory TI (5.10) composed of implications and a fuzzy theory T ′ which

represents an observation. From these theories we form a theory TD = TI ∪ T ′. The

theory TI expresses the relationship between antecedent and succedent variables.

The problem (addressed in Chapter 7) is how an observation u′ measured in some

possible world V can be transformed into its logical counterpart T ′. The general

form of T ′ is

T ′ =
{
A′

i,〈x〉 | i ∈ I
}

(6.1)

where I ⊆ {1, 2, . . . , r} and

A′
i,〈x〉 =

{
α̃′Ai

(t)
/
Ai,x[t] | Ai = m(Ai)

}
. (6.2)

Definition 6.1

Let a theory TD = TI ∪ T ′ be consistent. Then the conclusion is defined by

B′ = {B′
i,〈y〉 | i ∈ K} (6.3)
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where

B′
i,〈y〉 =

{
α̃′Bi

(s)
/
Bi,y[s] | s ∈ M2

}
, (6.4)

and α̃′Bi
(s) = c iff TD `c Bi,y[s].

Generally, a theory T ′ can contain several intensions A′
i, and then also the conclusion

B′ is composed of several parts.

Remark 6.2 (i) Note that formulas Ai,x[t] appear in the intensions of antecedent

part of individual IF-THEN rules in the theory TI and also in the intensions

(6.2). But, their syntactic evaluations, i.e. the functions α̃Ai
(t) and α̃′Ai

(t) can

be (and usually are) different.

(ii) Index sets I and K are not identical, in general. They have the same cardi-

nality in case there do not exist two IF-THEN rules with identical antecedent

and different succedent parts in the linguistic description LDI . Otherwise, if

the theory TI contains intensions

Ri,〈x,y〉 = Ai,〈x〉⇒⇒⇒Bi,〈y〉

and

Rj,〈x,y〉 = Aj,〈x〉⇒⇒⇒Bj,〈y〉

where Ai = Aj and Bi 6= Bj and

T ′ =
{
A′

i,〈x〉
}

=
{

α̃′Ai
(t)

/
Ai,x[t] | t ∈ M1

}

which means that I = {i}, then both intensions Ri,〈x,y〉 and Rj,〈x,y〉 are used

in deduction and the conclusion B′ will be

B′ = {B′
i,〈y〉 | i ∈ K}

where K = {i, j} 6= I. Of course, linguistic descriptions with such rules are

in some sense incorrect or “inconsistent”, we will study such descriptions and

problems connected with them in Section 6.2.

(iii) Formula (6.2) also means that we can use only intensions contained in some

of antecedent parts of IF-THEN rules in a linguistic description LDI , when

we are translating the observation (obtained on semantic level) into the level

of formal syntax. Hence, even if there is some linguistic expression A ∈ S
and corresponding unary predicate A = m(A) ∈ G which would be best for

the description of the observation, it could not be used unless there is a rule

Ri := IF X IS A THEN Y IS B in LDI .

63



(iv) Note that our basic scheme implies that the following basic principle of (logi-

cal) deduction is kept: The deduction is performed only when there is enough

evidence for doing it. This means in our case that the deduction gives some

result only if there is the same formula Ai in the intension of some rule Ri

from LDI , and in A′
i,〈x〉. If it is not the case (for example consider IF-THEN

rules with antecedents A1 = small and A2 = big, and the observation is e.g.

about 0.5 ) then it happens that the conclusion B′ is empty.

The theory T ′ usually represents a single observation. The observation can be

a crisp number or linguistic expression, which expresses precisely or vaguely the

position on an ordered scale. Therefore, the theory T ′ cannot be completely arbitrary

and should fulfil some requirements. We can distinguish two situations — the index

set I has cardinality equal to one, which means that the observation is translated into

one multiformula. This is possible in situations when there is one rule Ri in LDI

whose antecedent fits the observation better than antecedents of other IF-THEN

rules. If there is no such rule, then it is necessary to use several rules {Ri | i ∈ I},
but the theory T ′ should still reflect the fact that it represents single observation.

We will formulate this requirement in the following definition.

Definition 6.3

We say that a theory

T ′ =
{
A′

i,〈x〉 | i ∈ I
}

represents a single observation, if

1. all functions α̃′Ai
are identical, i.e. α̃′Ai1

= α̃′Ai2
= · · · = α̃′Ain

= α̃′ where

i1, i2, . . . , in ∈ I.

2. The function γ adjoined to the function α̃′ in the same way as in formula (4.2)

is either

(a) continuous, unimodal and there are z1, z2 ∈ [0, 1] such that γ(z1) = 1 and

γ(z2) = 0, or

(b) γ(z) = 1 for z ∈ [zl, zr] and γ(z) = 0 otherwise.

Remark 6.4 Let us explain the intuition behind the previous definition. The de-

grees α̃′Ai
(t) express the truth of the proposition “Object named t characterizes

the observed quantity.” Therefore it should not depend on the (atomic) formula Ai

(Item 1 of the definition.)
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If we accept the principle saying that the vagueness can change only continuously,

then it is natural to require that the function γ adjoined to functions α̃′Ai
should

be continuous. If it would not be unimodal, then it can hardly represent single

observation, having e.g. two local maxima. We should also exclude too non-specific

representations like α̃′(t) = 1 for all t, which are, strictly speaking, unimodal, but

do not characterize any value. On the other hand, there is a natural non-continuous

characterization of a single value, namely singleton or interval (Item 2b).

The fact that the following theorem holds is crucial for the applicability of fuzzy

logic deduction. It enables us to compute intensional mappings α̃′Bi
of the conclusion.

It is also in accordance with the classical formula obtained on the level of semantics

by standard manipulations with fuzzy relations.

Theorem 6.5

Let LDI be a simple linguistic description and the theory TD = TI∪T ′ be constructed

as above. Then it is consistent and the conclusion is B′ = {B′
i,〈y〉 | i ∈ K} where

the intensions B′
i are

B′
i,〈y〉 =

{
α̃′Bi

(s)
/
Bi,y[s] | s ∈ M2, Bi = m(Bi), i ∈ K

}
(6.5)

where

α̃′Bi
(s) =

∨
t∈M1

(
α̃′Ai

(t)⊗ α̃Ai⇒⇒⇒Bi
(t, s)

)
, (6.6)

and all α̃′Bi
(s) in B′

i, i ∈ K are maximal.

proof: Analogous theorem, which differs only in notation, was proved as Theo-

rem 6.1 in [27], page 249. 2

Theorem 6.6

Let LDI be a linguistic description. Let the theory T ′
1 have the form

T ′
1 = {α̃′1,Aj

(t)
/
Aj,x[t] | t ∈ M1}

and the theory T ′
2 have the form T ′

2 = {α̃′2,Aj
(t)

/
Aj,x[t] | t ∈ M1} and let

α̃′1,Aj
(t) ≤ α̃′2,Aj

(t)

hold for all t ∈ M1. Then it holds for the conclusions B′
1,〈y〉 and B′

2,〈y〉, obtained from

the theories TD1 = TI ∪ T ′
1 and TD2 = TI ∪ T ′

2, respectively, that α̃′1,Bj
(s) ≤ α̃′2,Bj

(s)

for all s ∈ M2.
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proof: The intensional mapping of the conclusion α̃′i,Bj
(s), i ∈ {1, 2}, is, due to

Theorem 6.5, α̃′i,Bj
(s) =

∨
t∈M1

(
α̃′i,Aj

(t)⊗ α̃Aj⇒⇒⇒Bj
(t, s)

)
. If we denote the interior of

round brackets by a′i,j(t, s), i.e. a′i,j(t, s) = α̃′i,Aj
(t)⊗ α̃Aj⇒⇒⇒Bj

(t, s), then it holds that

α̃′i,Bj
(s) =

∨
t∈M1

a′i,j(t, s). From the assumptions we can deduce that for all t ∈ M1

and all s ∈ M2, a′1,j(t, s) ≤ a′2,j(t, s) (because α̃Aj⇒⇒⇒Bj
(t, s) remains the same). Then

the claim follows from the isotonicity of the operation⊗ and properties of supremum.

2

Remark 6.7 Theorem 6.6 can be generalized for theories of the form

T ′
1 =

{{α̃′1,Ai

/
Ai,x[t] | t ∈ M1} | i ∈ I

}

and

T ′
2 =

{{α̃′2,Ai

/
Ai,x[t] | t ∈ M1} | i ∈ I

}

if it holds that α̃′1,Ai
(t) ≤ α̃′2,Ai

(t) for all i ∈ I and all t ∈ M1.

Lemma 6.8

Let LDI be a simple linguistic description and let the intensions Ai,〈x〉⇒⇒⇒ Bi,〈y〉,

i = 1, 2, . . . , r be constructed by means of (5.9). Let the theory T ′ have the form

T ′ = {α̃′Aj
(t)

/
Aj,x[t] | t ∈ M1} for some j ∈ 1, . . . , r and let there is some t0 ∈ M1

such that α̃′Aj
(t0) = α̃Aj

(t0) = 1 holds. Then for the conclusion B′
〈y〉 holds that

B′
〈y〉 =

{
B′

j,〈y〉
}

and α̃′Bj
(s) ≥ α̃Bj

(s) for all s ∈ M2.

proof: In Theorem 6.5 it has been shown that

α̃′Bj
(s) =

∨
t∈M1

(
α̃′Aj

(t)⊗ α̃Aj⇒⇒⇒Bj
(t, s)

)
,

and if the intensional mapping α̃Aj⇒⇒⇒Bj
is computed by means of (5.9), we can rewrite

it to

α̃′Bj
(s) =

∨
t∈M1

(
α̃′Aj

(t)⊗ (
α̃Aj

(t) → α̃Bj
(s)

))
.

For t = t0 the expression inside the supremum has the value

α̃′Aj
(t0)⊗

(
α̃Aj

(t0) → α̃Bj
(s)

)
= α̃Aj

(t0) → α̃Bj
(s)

and because α̃Aj
(t0) = 1, it holds that

α̃Aj
(t0) → α̃Bj

(s) ≥ α̃Bj
(s)

which follows from properties of the operation →. The claim then follows from the

fact that
∨

i∈I ai ≥ aj for any j ∈ I and any index set I. 2
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Theorem 6.9

Let LDI be a simple linguistic description and let the intensions Ai,〈x〉⇒⇒⇒ Bi,〈y〉,

i = 1, 2, . . . , r be constructed by means of (5.9). Let the theory T ′ have the form

T ′ = {α̃′Aj
(t)

/
Aj,x[t] | t ∈ M1} for some j ∈ 1, . . . , r, and let

(i) α̃′Aj
(t) ≤ α̃Aj

(t) for all t ∈ M1,

(ii) there is t0 ∈ M1 such that α̃′Aj
(t0) = α̃Aj

(t0) = 1.

hold. Then it holds for the conclusion B′
〈y〉 that B′

〈y〉 =
{
B′

j,〈y〉
}

and α̃′Bj
(s) = α̃Bj

(s)

for all s ∈ M2, and, consequently, B′
j,〈x〉 = Bj,〈x〉.

proof: Due to Theorem 6.5 (see also the proof of Lemma 6.8),

α̃′Bj
(s) =

∨
t∈M1

(
α̃′Aj

(t)⊗ (
α̃Aj

(t) → α̃Bj
(s)

))
.

If t = t0, then the expression inside the supremum on the righthand side of previous

equation is equal to

α̃′Aj
(t0)⊗

(
α̃Aj

(t0) → α̃Bj
(s)

)
, (6.7)

and, because α̃′Aj
(t0) = α̃Aj

(t0) = 1, it is equal to 1 → α̃Bj
(s) = α̃Bj

(s). Otherwise,

for an arbitrary t? ∈ M1, is the expression equal to

α̃′Aj
(t?)⊗ (

α̃Aj
(t?) → α̃Bj

(s)
)
.

From properties of operations ⊗ and → (see e.g. [27], Lemma 2.5 (c), page 26) we

know that

α̃Aj
(t?)⊗ (

α̃Aj
(t?) → α̃Bj

(s)
) ≤ α̃Bj

(s).

Hence, due to assumption (i) (which assures that α̃′Aj
(t?) ≤ α̃Aj

(t?) in (6.7)), iso-

tonicity of the operation ⊗ and properties of supremum, we deduce that

α̃′Bj
(s) = α̃Bj

(s)

for all s ∈ M2, which is the same as B′
j,〈x〉 = Bj,〈x〉. 2

Corollary 6.10

Let LDI be a simple linguistic description and let the intensions Ai,〈x〉⇒⇒⇒ Bi,〈y〉,

i = 1, 2, . . . , r be constructed by means of (5.9). Let the theory T ′ have the form

T ′ = Aj,〈x〉 for some j ∈ 1, . . . , r. Then α̃′Bj
(s) = α̃Bj

(s) holds for all s ∈ M2, and,

consequently,

B′
〈y〉 =

{
B′

j,〈x〉
}

=
{
Bj,〈x〉

}
. (6.8)

67



proof: The theory T ′ fulfills the assumptions of Theorem 6.9, hence (6.8) holds.

2

Remark 6.11 (i) Previous Corollary 6.10 says that if the theory T ′ contains only

one intension Aj,〈x〉 which is identical with the antecedent of one of IF-THEN

rules, then the conclusion is identical with the succedent of this IF-THEN rule.

Theorem 6.9 shows that the result of fuzzy logic deduction is identical for quite

wide class of intensions for which the conditions (i) and (ii) hold. It means that

fuzzy logic deduction is not sensitive to the changes of the intensional mapping

α̃′Bj
provided that this mapping satisfies above-mentioned conditions.

(ii) The results in this section, i.e. Lemma 6.8, Theorem 6.6, Corollary 6.10 and

Theorem 6.9 correspond to conditions A.1 to A.4, respectively, from [4]. These

conditions are there imposed on general inference procedures.

6.2 Inconsistencies in linguistic description

We have shown in Theorem 5.6 that the theory TI of a linguistic description LDI

is consistent. It is a natural result, because it is not possible to derive a contradic-

tion from implications only. However, there are some linguistic descriptions which

behave “inconsistently.” By this is meant that for some observation there are de-

rived conclusions, whose interpretations are at the same time “small” and “big”. A

typical example of “inconsistent” linguistic description is

R1 := IF X is medium THEN Y is big ,

R2 := IF X is medium THEN Y is small,

· · ·

Here, if the observation is A′ = medium, we cannot decide between rules R1

and R2 and we should use both rules and, consequently, deduce that Y is big and

Y is small at the same time. If we understand Y as the (precisely of imprecisely

known) value of some variable, then there is a contradiction in the fact, that Y is

at the same time “small” and “big”. However, if we do not suppose some structure

of the set G of predicate symbols, which serve as intensions of simple linguistic

expressions, then there is no contradiction in the standard sense. The reason is that
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all predicate symbols G ∈ G are on the same level, there are no relationships such

as ‘small is a negation (in a logical sense) of big.” Moreover, we can also understand

‘Y is big ’ and ‘Y is small’ as statements about the properties of individuals of the set

M2 of closed terms and then there is no contradiction in the fact that big numbers

are big and small numbers are small.

To characterize this type of inconsistency of the theory TD = T ′∪TI , we propose

to capture the fact that Y is a variable and therefore cannot have more than one

value at a given time, (or, for one observation) by the provability of some formulas.

We use fuzzy equality predicate ≈ to express this property. Let us denote by T≈
D

the fuzzy theory

T≈
D = TD ∪ T≈

2 (6.9)

where

T≈
2 = {d(s1, s2)

/
s1 6≈ s2 | s1, s2 ∈ M2} (6.10)

where s1 6≈ s2 is an abbreviation for ¬¬¬(s1 ≈ s2) and d(s1, s2) is a provability degree

of formula s1 6≈ s2 in some theory T2, i.e. d(s1, s2) = d iff T2 `d s1 6≈ s2, and T2

is some subtheory of the theory of evaluating expressions T evx
2≈ , i.e. the extended

theory of evaluating expressions with fuzzy equality (see Section 3.1.8 and also

Remark 6.13).

Definition 6.12

The theory T≈
D = TI ∪ T≈

2 is ≈-inconsistent in the degree κ if for some theory T ′

which represents a single observation (see Definition 6.3) the theory T≈
D ∪T ′ proves

T≈
D ∪ T ′ `κ (∃y1)(∃y2) (y1 6≈ y2) & B1(y1) & B2(y2) (6.11)

for some B1, B2 ∈ G. If κ = 1 then T≈
D is called ≈-inconsistent.

Remark 6.13 (i) The previous definition is motivated by the classical require-

ment which a relation has to fulfil in order to be a function:

(∀x)(∀y)(∀z) (y = f(x) & z = f(x))⇒⇒⇒ (y = z).

Negation of this formula is logically equivalent to

(∃x)(∃y)(∃z) (y = f(x) & z = f(x) & z 6= y). (6.12)

Because B1(y1) and B2(y2) from (6.11) express a value of variable Y for some

single observation characterized by the theory T ′, formula (6.11) expresses in

our formalism the same property as formula (6.12) in the classical case.
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(ii) Let us stress that the above-defined notion of ≈-inconsistency is dependent on

the intensional mappings α̃G of predicate symbols G ∈ G. This is the reason

why we defined the inconsistency of theory T≈
D and not the inconsistency of

the linguistic description LDI . If we include into the theory T≈
2 axioms of

the form d(s1, s2)
/
s1 6≈ s2 with degrees d(s1, s2) computed from the whole

theory T evx, i.e. the theory which describes the intensions of the whole set

S of simple evaluating expressions, then the definition of ≈-inconsistency can

become too sensitive. It means that T≈
D can prove that x 6≈ y for x and y which

are “close” to each other (in standard metric on [0,1]) but are distinguished

by some predicate Bi ∈ G in the sense that

T evx ` Bi(x) 6⇔6⇔6⇔Bi(y) (6.13)

and, consequently, T≈
D ` x 6≈ y. To be able to prove formulas such as (6.13),

we have to work with the extended theory of evaluating expressions. Then, it

is possible to use Lemma 4.16(iii), which allows us to estimate lower bounds of

the provability degrees for formulas (6.13), x 6≈ y and, consequently, (6.11). As

a possible solution we can use some subtheory T2 of T evx, i.e. a theory which

includes axioms of the form (4.1) and (4.7) for some subset {Sk | k ∈ K} of the

set S. The structure of the set of evaluating linguistic expression (see Subsec-

tion 3.2.2) can give us a clue which predicate symbols should be chosen. We

can choose e.g. predicates which model atomic evaluating expressions small,

medium and big or predicates which model some wider evaluating expressions

for every subset of evaluating expressions with the same atomic one, such as

roughly small, roughly medium and roughly big.

Lemma 6.14

If there are closed terms s1 and s2 ∈ M2 such that TD ` Bi,y[s1] and TD ` Bj,y[s2]

and

T2 ` Bk,y[s1] 6⇔6⇔6⇔Bk,y[s2] (6.14)

for some i, j ∈ 1, 2, . . . , r and some k ∈ K, then the theory T≈
D is ≈-inconsistent.

proof: Formula

(s1 ≈ s2)⇒⇒⇒ (Bk,y[s1]⇔⇔⇔Bk,y[s2])

is an instance of fuzzy equality axiom (E3), i.e.

T2 ` (s1 ≈ s2)⇒⇒⇒ (Bk,y[s1]⇔⇔⇔Bk,y[s2]).
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Consequently,

T2 ` (Bk,y[s1] 6⇔6⇔6⇔Bk,y[s2])⇒⇒⇒ (s1 6≈ s2).

Then from (6.14) and Modus Ponens follows that T2 ` (s1 6≈ s2). From the definition

of the theory T≈
D (see (6.9) and (6.10)) it follows that also T≈

D ` (s1 6≈ s2). This and

other assumptions imply that (6.11) holds. 2

Theorem 6.15

Let LDI be a simple linguistic description which includes rules Rj and Rk such that

Rj := IF A THEN Bj and Rk := IF A THEN Bk. Let the theories of evaluating

expressions T evx
1 and T evx

2 are such that the theory T≈
D = TD ∪ T2 (6.9), where T ′

has the form T ′ = {α̃′A(t)
/
Ax[t] | t ∈ M1} and it holds that there is some t0 ∈ M1

such that α̃′A(t0) = α̃A(t0) = 1, proves for some s1, s2 ∈ M2 that T≈
D ` Bj,y[s1],

T≈
D ` Bk,y[s2], and

T2 ` (∃y)(Bj(y) 6⇔6⇔6⇔Bk(y)) (6.15)

where T2 ⊂∼ T evx
2≈ . Then the theory T≈

D is ≈-inconsistent.

proof: We have to show that from (6.15) it follows that there exist closed terms

sa and sb from M2 such that T2 ` sa 6≈ sb (and, consequently, T≈
D ` sa 6≈ sb) and in

the same time that T≈
D ` Bj,y[sa] and T≈

D ` Bk,y[sb].

From (6.15) and the Completeness Theorem it follows that for some s ∈ M2

either a) T2 ` Bj,y[s] and T2 ` ¬¬¬Bk,y[s], or b) T2 ` ¬¬¬Bj,y[s] and T2 ` Bk,y[s].

Suppose a). Then for some sa, sb ∈ M2 either a1) T2 ` Bj,y[sa], T2 ` Bk,y[sb] and

T2 ` sa ≤ s, T2 ` s < sb, or a2) T2 ` Bj,y[sa], T2 ` Bk,y[sb] and T2 ` s ≤ sa,

T2 ` sb < s. Suppose a1). From assumptions a) and a1) it also follows that

T2 ` Bk,y[sb] 6⇔6⇔6⇔Bk,y[s],

and, due to provable inequalities sa ≤ s, s < sb and unimodality of functions α̃Bk

and β̃Bk
, also

T2 ` Bk,y[sa] 6⇔6⇔6⇔Bk,y[sb]

(see Figure 6.1, for the sake of simplicity we depict the associated functions γBj
and

γBk
to functions α̃Bj

and α̃Bk
, respectively). By the same consideration as in the

proof of Lemma 6.14 we show that T2 ` sa 6≈ sb. From the definition of theory T≈
D

it follows that also T≈
D ` (sa 6≈ sb). Because T2 ` Bj,y[sa], T2 ` Bk,y[sb], it holds

that α̃Bj
(sa) = α̃Bk

(sb) = 1. The assumptions of Lemma 6.8 are fulfilled, hence we

deduce that also α̃′Bj
(sa) = α̃′Bk

(sb) = 1. Hence, we have shown that T≈
D ` Bj,y[sa],
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Figure 6.1: Situation a1) from the proof of Theorem 6.15.

T≈
D ` Bk,y[sb] and T≈

D ` sa 6≈ sb, and it follows (using the fact that Ax[t]⇒⇒⇒ (∃x)A(x)

is provable in fuzzy predicate calculus and the Completeness Theorem) that

T≈
D ` (∃y1)(∃y2) (y1 6≈ y2)&Bj(y1)&Bk(y2),

i.e. the theory T≈
D is ≈-inconsistent. The cases b) and a2) can be proved analogously.

2

6.3 Alternative approach to inconsistency of lin-

guistic descriptions

In this section we present an alternative approach to a definition of inconsistency

of linguistic descriptions. The main idea can be described as follows: The linguistic

description LDI is inconsistent if it is possible to deduce for two objects s1 and s3

from M2 that they describe the result of inference in a high degree, and at the same

time, to deduce for an object s2 lying between s1 and s3 that it describes the result

of inference in a low degree.

Definition 6.16

We say that the theory TD (see (6.1)) is u-inconsistent in the degree τ if

TD `a Bi,y[s1], TD `b Bj,y[s2], TD `c Bk,y[s3], (6.16)

T ev
2 ` (s1 ≤ s2)&(s2 ≤ s3),
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and

τ =
∨
{a⊗ ¬b⊗ c | i, j, k ∈ K, s1, s2, s3 ∈ M2}. (6.17)

If τ = 0, we call the theory TD u-consistent and if τ = 1, we call the theory TD

u-inconsistent.

Now we prove an auxiliary lemma.

Lemma 6.17

Let f : R −→ [0, 1] be a continuous function such that there exists x0 ∈ R such that

f(x0) = 1. f is unimodal iff for all a, b, c ∈ R such that a ≤ b ≤ c,

f(a)⊗ ¬f(b)⊗ f(c) = 0. (6.18)

holds.

proof:

(i) First we show that (6.18) holds for non-increasing and non-decreasing func-

tions. Let f be non-decreasing. Then, f(a) ≤ f(b). It follows that

¬f(b) ≤ ¬f(a). (6.19)

In every residuated lattice it holds that f(a) ⊗ ¬f(a) = 0. The claim then

follows from (6.19) and isotonicity of the operation ⊗. If f is non-increasing,

then f(c) ≤ f(b). The rest is analogous.

For a general unimodal function f (see Definition 3.15) it always holds that

if a ≤ b ≤ c, then either f(b) ≥ f(a) or f(b) ≥ f(c). The rest is obvious.

(ii) If f is not unimodal then there exist a, b, c ∈ R such that a ≤ b ≤ c,

f(b) < f(a), f(b) < f(c). From the assumptions follows that we can choose a

and c such that either f(a) = 1 or f(c) = 1 (or both). Suppose that f(a) = 1.

Then we have to show that ¬f(b) ⊗ f(c) > 0. But this follows from Lemma

3.3. If f(c) = 1 and f(a) < 1, then again above-mentioned Lemma implies

that ¬f(b)⊗ f(a) > 0.

2

According to the discussion presented in Section 6.2, we interpret the value of

the function α̃′B(s) from intensions of conclusion B′ not as a degree, in which the

object s ∈ M2 have the property B, but as a degree in which the object with the
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name s describes the vaguely characterized value of the conclusion. Therefore, it is

possible to consider a function α̃? : M2 −→ [0, 1],

α̃?(s) =
∨
i∈K

α̃′Bi
(s)

where α̃′Bi
(s) are defined by (6.6). The value of the function α̃?(s) expresses the

maximal degree in which we can deduce (from the theory TD) for the object named

by s that it describes the result of the deduction. This is important in case that

the index set K in the conclusion B′ = {B′
i | i ∈ K} has cardinality greater than 1.

A high value α̃?(s) then means that it was deduced from some IF-THEN rule Ri

in LDI that the object named by s describes the result of deduction with a high

plausibility.

With respect to the previous discussion and ideas, we are able to formulate the

following theorem.

Theorem 6.18

Let a linguistic description LDI be simple, TD = T ′ ∪ TI ,

T ′ = A′
〈x〉 = {α̃′A(t)

/
Ax[t] | t ∈ M1} (6.20)

and there is just one intension Ri,〈x,y〉 = Ai,〈x〉⇒⇒⇒ Bi,〈y〉 in TI such that Ai = A

(formula A is from (6.20)). Moreover, this intension is constructed from the inten-

sions of Ai,〈x〉 and Bi,〈y〉 by means of formula (5.9) and there is t0 ∈ M1 such that

α̃A(t0) = α̃′A(t0) = 1. Then TD is u-consistent.

proof: Denote by B the formula Bi. It follows from the assumptions that the

conclusion will be

B′
〈y〉 = {α̃′B(s)

/
By[s] | s ∈ M2}.

We have to show that the function γ′B : [0, 1] −→ [0, 1] associated to α̃′B by means

of

γ′B(z) = w iff α̃′B
(
s(z)

)
= w iff TD `w By

[
s(z)

]
, z ∈ [0, 1] (6.21)

is unimodal, and there is z? ∈ [0, 1] such that γ′B(z?) = 1. Then, due to Lemma 6.17,

TD would be u-consistent.

From Theorem 6.5 and using the assumption that the intension of

Ai,〈x〉⇒⇒⇒Bi,〈y〉
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is constructed by means of (5.9) it follows that the function γ′B(z) has the following

form:

γ′B(z) =
∨

v∈[0,1]

(γ′A(v)⊗ (γA(v) → γB(z)))

where the functions γ′A, γA and γB, all from [0, 1] to [0, 1], are associated to functions

α̃′A, α̃A and α̃B, respectively, in the same way as in (6.21).

Let us define a function γ′B,v(z) : [0, 1] −→ [0, 1] by

γ′B,v(z) := γ′A(v)⊗ (γA(v) → γB(z)), v ∈ [0, 1]. (6.22)

Then it holds that

γ′B =
∨

v∈[0,1]

γ′B,v.

Now we have to show that the functions γ′B,v are unimodal and that there is z? ∈ [0, 1]

such that γ′B,v(z
?) = M v for all v ∈ [0, 1], where M v = supz∈[0,1] γ

′
B,v(z). The

functions γA and γB from formula (6.22) are continuous and unimodal due to

Definition 4.1. For a fixed v ∈ [0, 1] we can rewrite (6.22) as

γ′B,v(z) = C ⊗ (D → γB(z)) (6.23)

where C = γ′A(v) and D = γA(v). Due to Definition 4.1 there is z0 ∈ [0, 1] such

that γB(z0) = 1. The function D → γB(z) is unimodal and has a value 1 in the

point z0. Hence, the function γ′B,v(z) = C ⊗ (D → γB(z)) is also unimodal and has

the value C in the point z0, and this value is maximal. The unimodality of γ′B then

follows from Lemma 3.16. From the assumptions it follows that there is x0 such

that γA(x0) = γ′A(x0) = 1. Hence, γ′B,x0
(z0) = γ′B(z0) = 1. From it and Lemma 6.17

it follows that

{γ′B(z1)⊗ ¬γ′B(z2)⊗ γ′B(z3) | z1 ≤ z2 ≤ z3, z1, z2, z3 ∈ [0, 1]} = 0.

Because the values of the function γ′B(z) are provability degrees of formulas By

[
s(z)

]

in the theory TD, it follows that the value τ from (6.17) is equal to 0, hence TD is

u-consistent. 2

Remark 6.19 Now we can generalize the notion of u-inconsistent theory by con-

sidering some class T ′ of theories T ′ representing a single observation (see Defini-

tion 6.3) and arrive at the notion of u-consistent (or u-inconsistent) linguistic de-

scription. However, we have to consider the linguistic descriptions on syntactic, not
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linguistic level, because only on syntactic level there are the intensional mappings

α̃Ai⇒⇒⇒Bi
assigned to linguistic expressions of the form ‘IF Ai THEN Bi.’ Therefore,

the fact whether the linguistic description LDI is, or is not u-consistent, depends

also on the theories T ev
1 and T ev

2 (or T evx
1 and T evx

2 ) and on the way how intensional

mappings α̃Ai⇒⇒⇒Bi
are constructed by means of them. Consequently, we will in the

sequel speak about the consistency of the theory TI .

Definition 6.20

We say that a theory of linguistic description TI is u?-inconsistent in the degree τ ?

if

τ ? =
∨
{τT ′ | TD = TI ∪ T ′ is u-inconsistent in the degree τT ′ , T ′ ∈ T ′}. (6.24)

If τ ? = 0, we say that theory TI is u?-consistent.

Remark 6.21 We cannot consider here all possible theories T ′ representing a single

observation, because in this case it is still possible to construct a theory T ′ in such

a way that all rules in linguistic description LDI would be used and, consequently,

even reasonable theories TI will be u?-inconsistent. As a reasonable class T ′ we use

the class which includes all theories
{
A′

i,〈x〉 | i ∈ I
}

with intensions (6.2), for which

the intensions Ai,〈x〉 have the same type of unimodality (described by the relation

uniT
ev

m , see Definition 4.4) for all i ∈ I. Formally, T ′ =
{
A′

i,〈x〉 | i ∈ I
}
∈ T ′ iff

(
Ai,〈x〉 uniT

ev
1

m Aj,〈x〉
)

for all i, j ∈ I (6.25)

and (
Ai,〈x〉 uniT

ev
1

m A′
i,〈x〉

)
for all i ∈ I (6.26)

where T ev
1 is the theory of evaluating expressions used for modeling of the meanings

of evaluating expressions in the antecedent part of IF-THEN rules (see Section 5.2).

Moreover, the functions α̃′Ai
, i ∈ I should be such that there is ti ∈ M1 such that

α̃′Ai
(ti) = 1. Formula (6.25) means that the intensions

{
Ai,〈x〉 | i ∈ I

}
form a block

of the set S〈x〉 of intensions of simple evaluating expressions with respect to the

tolerance relation uni
T ev
1

m . On the linguistic level, this requirement means that in

the theory T ′ there could be intensions of simple evaluating expressions with the

same atomic expression (e.g. small) and possibly various linguistic hedges. Formula

(6.26) expresses the requirement that observations should have the same type of

unimodality as the corresponding intensions on the antecedent part of IF-THEN

rules. For example, if there is a rule IF X is A THEN Y is B and A = small, then
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the intensional mapping of A′ should have the same type of unimodality as the

intension of A = small. This is the articulation of a well known condition used

elsewhere in the theory of approximate reasoning: the observation needs not be

the same as the antecedent, but on the other hand, they are not supposed to be

completely different.

Theorem 6.22

Let LDI be a simple linguistic description, T ′ ∈ T ′ and the intensions of IF-THEN

rules Ai,〈x〉⇒⇒⇒Bi,〈y〉 are constructed by means of (5.9). The theory TI is u?-consistent

iff the theories of evaluating expressions T ev
1 and T ev

2 are such that

if (Ai,〈x〉 uniT
ev
1

m Aj,〈x〉) then (Bi,〈y〉 uniT
ev
2

m Bj,〈y〉) (6.27)

holds for all i, j ∈ 1, 2, . . . , r.

proof: (⇐) Let us denote by I the index set I = {j | A′
j,〈x〉 ∈ T ′}. From

Lemma 3.14 and (6.27) it follows that the set {Bj,〈y〉 | j ∈ I} is a block of the

set S〈y〉 of intensions with respect to the tolerance relation uni
T ev
2

m . Hence, for all

i, j ∈ I it holds that Bi,〈y〉 uni
T ev
2

m Bj,〈y〉. Consider again the functions γA, γ′A, γB, γ′B
associated to functions α̃A, α̃′A, α̃B, α̃′B, respectively, in the same way as in (6.21).

Due to the definition of the relation uni
T ev
2

m , the set ∪j∈I{y ∈ [0, 1] | γBj
(y) = 1}

is nonempty, i.e. there exists y′ ∈ [0, 1] such that γBj
(y′) = 1 for all j ∈ I. Now

we have to show that, if all assumptions are fulfilled, all functions γ′Bj
, j ∈ I, are

unimodal and there exists y0 ∈ [0, 1] such that γ′Bj
(y0) = 1 for all j ∈ I. Because

for all j ∈ I, Aj,〈x〉 uni
T ev
1

m A′
j,〈x〉, and we know that there are xj0 ∈ [0, 1], j0 ∈ I

such that γ′Aj
(xj0) = γAj

(xj0) = 1 (this follows from the definition of T ′) we can use

Lemma 6.8, and deduce that indeed γ′Bj
(y′) = 1 for all j ∈ I. The unimodality of

functions γ′Bj
, j ∈ I is proved in the same way as in the proof of Theorem 6.18, and,

because we considered arbitrary T ′ ∈ T ′, it follows that the theory TI is u?-consistent

(see the last sentence of the proof of Theorem 6.18).

(⇒) Suppose that (6.27) does not hold. Then it holds for some i0, j0 ∈ I that

Ai0,〈x〉 uniT
ev
1

m Aj0,〈x〉 (6.28)

and in the same time

¬¬¬ (
Bi0,〈y〉 uniT

ev
2

m Bj0,〈y〉
)
. (6.29)

Now we form a theory T ′
0 = Ai0,〈x〉 ∪ Aj0,〈x〉. Due to (6.28), T ′

0 ∈ T ′. Due to

Theorem 6.9 it holds that if Ai,〈x〉 = A′
i,〈x〉 then Bi,〈y〉 = B′

i,〈y〉. Hence,

B′
〈y〉 = {Bi0,〈y〉} ∪ {Bj0,〈y〉}.
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From Lemma 3.22 it follows that a function
∨

i∈{i0,j0} α̃′Bi
is not a unimodal one,

and therefore, the value τ ? from (6.24) is greater than 0 and the theory TI is not

u?-consistent. 2

As an easy consequence we add the following corrolary, saying that if (the in-

tensions of) the antecedents have different types of unimodality, then the theory TI

assigned to a linguistic description LDI is u?-consistent.

Corollary 6.23

Let the assumptions are the same as in Theorem 6.22. Let for all i, j ∈ 1, 2, . . . r it

holds that

(Ai,〈x〉 uniT
ev
1

m Aj,〈x〉) implies i = j. (6.30)

Then the theory TI is u?-consistent.

proof: It follows from the assumption (6.30) that (6.27) holds. Then the claim

follows from Theorem 6.22. 2
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Chapter 7

An Application — Deduction with

Crisp Observations

In this chapter we apply results of the previous chapters, especially Chapter 6, to a

particular, but very frequent situation, in which the observation (in some possible

world) is a crisp number. Hence, the support of the theory T ′, understood as a

fuzzy set of axioms, have cardinality equal to 1. The problem then does not lay so

much in the computation of the conclusion B′
i, but more in the determination of the

theory T ′ = {1/Ai,x[t0]} – which formula Ai should we choose? We assume in this

chapter that there is given a simple linguistic description LDI and the corresponding

theory TI . Further, a possible world W = 〈〈W1,W2〉, . . .〉 is given, without a loss of

generality we put W1 = W2 = [0, 1]. We also suppose that W is canonical possible

world for TI (see Section 5.3).

The theory T ′ now has the following form:

T ′ =
{
1
/
Ai,x[to] | Ai = m(Ai), i ∈ {1, . . . , r}} (7.1)

where Ai is the antecedent of the i-th IF-THEN rule Ri and t0 ∈ M1 is the term

which corresponds to the crisp observation u0 in a possible world W1. First, we

investigate the properties of fuzzy logic deduction in the situation when the theory T ′

has the form (7.1). Then we turn our attention to the problem of the determination

of formula Ai, given a crisp number u0 ∈ W1.
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7.1 General properties

Lemma 7.1

Let LDI be a simple linguistic description and let the intensions Ai,〈x〉⇒⇒⇒ Bi,〈y〉,

i = 1, 2, . . . , r be constructed by means of (5.9). Let the theory T ′ have the form

(7.1). Then it holds for the conclusion B′
〈y〉 that B′

〈y〉 =
{
B′

i,〈y〉
}

and α̃′Bi
(s) ≥ α̃Bi

(s)

for all s ∈ M2. If α̃Ai
(t0) = 1, then α̃′Bi

(s) = α̃Bi
(s) for all s ∈ M2.

proof: If α̃Ai
(t0) = 1 then the claim follows directly from Theorem 6.9. Other-

wise, we can express α̃′Bi
(s) for the particular s ∈ M2 as (see Theorem 6.5)

α̃′B(s) =
∨

t∈M1

(
α̃′Ai

(t)⊗ α̃Ai⇒⇒⇒Bi
(t, s)

)
= α̃Ai

(t0) → α̃Bi
(s), (7.2)

because α̃Ai⇒⇒⇒Bi
(t, s) = α̃Ai

(t) → α̃Bi
(s) and α̃′Ai

(t) = 0 for t 6= t0. Consequently,

α̃′Bi
(s) = (1− α̃Ai

(t0) + α̃Bi
(s)) ∧ 1 = 1 ∧ (C + α̃Bi

(s))

where C = 1 − α̃Ai
(t0). It follows that α̃′Bi

(s) is always greater than or equal to

α̃Bi
(s). 2

Remark 7.2 (i) It is also possible to consider theories of the form

T ′ =
{
at0

/
Ai,x[to] | Ai = m(Ai), t0 ∈ M1

}

with at0 < 1. We can use the value of at0 less than 1 in situations when our

confidence that the term t0 indeed represents the observation is not absolute.

However, because the resulting function α̃′Bi
is

α̃′Bi
(s) = at0 ⊗ (α̃Ai

(t0) → α̃Bi
(s)),

i.e. it is the same as for at0 = 1, only multiplied by at0 , this technique is not

suitable.

(ii) The theory T ′ can also have the form T ′ =
{
A′

i,〈x〉 | i ∈ I
}

with α̃′Ai
(t) = 1

for t = t0 and α̃′Ai
(t) = 0 otherwise. This is in accordance with our definition

of the theory representing a single observation (Definition 6.3). The conclu-

sion has the form
{
B′

i,〈x〉 | i ∈ K
}

where B′
i,〈x〉 =

{
α̃′Bi

(s)
/
Bi,y[s] | s ∈ M2

}
.

Again, by the same technique as in Lemma 7.1 we can prove that for all i ∈ K

it holds that α̃′Bi
(s) ≥ α̃Bi

(s). However, we prefer to represent an observation

by the theory T ′ of the form (7.1), i.e. to choose only one simple evaluating

80



expression Ai from the expressions occurring in the antecedents of the linguis-

tic description LDI , because we usually need a crisp conclusion as a result of

fuzzy logic deduction.

Lemma 7.3

Let LDI be a simple linguistic description and let the intensions Ai,〈x〉⇒⇒⇒ Bi,〈y〉,

i = 1, 2, . . . , r be constructed by means of (5.9). Let the theory T ′ be of the form

(7.1). Then the function γ′Bi
: W2 −→ [0, 1] adjoined to function α̃′Bi

(s) by means

of

γ′Bi
(z) = c iff α̃′Bi

(
s(z)

)
= c, z ∈ [0, 1]

where α̃′Bi
is defined by (7.2), is continuous and unimodal.

proof: The continuity follows from the fact that both γAi
(x) and γBi

(y) ad-

joined to functions α̃Ai
(t), Ai = m(Ai) and α̃Bi

(s), Bi = m(Bi), respectively, are

continuous, and the operation → is also continuous.

Unimodality : due to the condition 3 from Definition 4.1 the function γBi
(y) is uni-

modal. We can express γ′Bi
(y) for particular x ∈ W1 as

γ′Bi
(y) = γAi

(x) → γBi
(y) = (1− γAi

(x) + γBi
(y)) ∧ 1 = 1 ∧ (C + γBi

(y))

where C = 1 − γAi
(x). This means that increasing parts of γBi

remain increasing

(or constant) in γ′Bi
, decreasing parts of γBi

remain decreasing (or constant) in γ′Bi
,

no new local extreme can occur and the maximum of γBi
is preserved in γ′Bi

. Hence,

the function γ′Bi
is unimodal. 2

Lemma 7.4

Let LDI be a simple linguistic description and let the intensions Ai,〈x〉⇒⇒⇒ Bi,〈y〉,

i = 1, 2, . . . , r be constructed by means of (5.9). Let the theory T ′ be of the form

T ′
z =

{
1
/
Ai,x

[
t(z)

]}
, where z ∈ W1. Then the mapping Γ : 〈W1, | |〉 −→ 〈[0, 1]W2 , d〉

which assigns to every z ∈ W1 a function γ′Bi
(by means of the theory T ′

z, see also

Lemma 7.3) is continuous (d is a metric d(γ1, γ2) = supy∈W2
|γ1(y)− γ2(y)|).

proof: The claim is a straightforward consequence of the continuity of functions

γAi
and γBi

as well as the operation → used in the computation of the function γ′Bi
.

2
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7.2 The operation Suit

As it has been mentioned above, we have to choose the most suitable expression

among evaluating expressions occurring in the antecedents of IF-THEN rules in

the linguistic description LDI , which corresponds to the term t0. Informally, this

means that in every possible world the element assigned to t0 intuitively corresponds

to the meaning of this most suitable expression; for example, if t0 is assigned the

expression big then every interpretation v of t0 in every possible world is intuitively

indeed “big”.

The algorithm which selects the predicate symbol G ∈ G (and, consequently,

also the simple evaluating expression A ∈ S, A = m−1(G)) given an observation u0

in some possible world W is described as follows.

We suppose some structure of the set G of atomic predicate symbols which model

the meanings of linguistic evaluating expressions. This structure is motivated by a

linguistic intuition (see Section 3.2) — that there are several atomic evaluating

expressions (adjectives like small, big etc.). Their meaning can be modified by

linguistic hedges (see e.g. [16]) – the adverbs very, more or less etc. Then the set

of simple evaluating expressions is divided into several groups with the same atomic

expression, and these groups are totally ordered by an order relation characterizing

a sharpness of the hedges. We have already met this structure when we introduced

the relation uniT
ev

m on the set of intensions of evaluating linguistic expressions (see

Section 4.1). If the intensions A1,〈x〉 and A2,〈x〉 of simple evaluating expressions

A1,A2 ∈ S are in relation uniT
ev

m , we can suppose that A1 and A2 have the same

atomic expression and differ in linguistic hedge only. (We cannot be sure, but for

reasonable theories T ev it should hold).

The sharpness characterizes the degree of precision imposed by a hedge on an

atomic expression, e.g. if we know that something is very small, we have more

information than if we know that it is small (because the former implies the latter,

but not vice versa – at least in the inclusive interpretation of hedges, see [16]).

Similarly, to be more or less small is less specific than to be small. We express this

by means of the sharpness relation: the linguistic expression A1 is sharper than A2

if it is more specific in the sense explained above.

Therefore we suppose the following structure of the set G of atomic predicate

symbols: G =
⋃

i∈P Gi and it holds that if i 6= j then Gi ∩ Gj = ∅. The sets Gi,

i ∈ P correspond to the sets of simple evaluating expressions with the same atomic
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evaluating expression. Further, Gi = {Gi,σ | σ ∈ Qi} and there is a total order

relation on the set Qi: σ1 < σ2 iff m−1(Gi,σ1) is sharper than m−1(Gi,σ2), i.e. iff the

simple evaluating expression A corresponding to Gi,σ1 is sharper than the simple

evaluating expression A′ corresponding to Gi,σ2 . It is possible that the cardinalities

of the sets Qi, i ∈ P are not equal, i.e. that there is a various number of hedges

used for the individual atomic expressions. This is the case e.g. in our software

system LFLC, where we are using nine simple evaluating expressions with the atomic

expressions small and big, but only five with the atomic expression medium.

We further suppose some fixed total order relation ≺, defined on the index set P ,

given to us apriori from outside. This relation will be used for a determination of a

predicate symbol G to be chosen in a situation where there are several candidates

with the same sharpness for the most suitable formula G and a given term t. This

situation can occur e.g. when the interpretation of t lies between small and medium.

Then it may happen that the most suitable expression could be e.g. more or less

small or more or less medium. Hence we have to decide between two expressions

with the identical hedge. Of course, it is possible to define only one total ordering

(called also “sharpness”) on the set G which unify these two order relations, but

then the intuition behind the notion of sharpness can be lost.

Let us define an operation p : FJ(T ) −→ L for the given threshold c0 ∈ (0, 1] by

pT,c0(A) =

{
c, T `c A and c ≤ c0,

c0, T `c A and c > c0.

Definition 7.5

Let us denote the maximal value of the operation p on some subset G̃ ⊆ G for the

given term t ∈ M by mt, i.e.

mt = max
G∈G̃

{pT,c0(Gx[t])}.

The most suitable linguistic expression operation Suit : M −→ G̃ for the given

theory T and the threshold c0 ∈ (0, 1] is defined by the following formula:

Suitc0
G̃ (t0) =





mini∈P{Gi,σ0 | σ0 = min{σ | pT,c0(Gi,σ,x[t0]) = mt0 , Gi,σ ∈ G̃}}
if mt0 > 0

undefined if mt0 = 0.

(7.3)

The first minimum in formula (7.3) is taken with respect to the ordering ≺
discussed above.
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The next theorem shows that if the theory T is the theory of evaluating expres-

sions in the sense of Definition 4.1, then the result of the operation Suit is always

defined, provided that G̃ = G.

Theorem 7.6

Let a theory T ev fulfills the conditions of Definition 4.1 and c0 ∈ (0, 1]. Then to

every t ∈ M there is G ∈ G such that

Suitc0
G (t) = G.

proof: Condition 5 from Definition 4.1 says that for every t ∈ M there is at

least one G ∈ G such that T ev `c Gx[t] with c > 0, which means that also mt > 0.

It follows that there always exists some Gi,σ such that pT ev ,c0(Gi,σ,x[t]) = mt and

therefore the set

Sc0
G (t0) = {Gi,σ0 | σ0 = min{σ | pT,c0(Gi,σ,x[t0]) = mt0 , Gi,σ ∈ G}} (7.4)

is nonempty for every t ∈ T and have the property that if Gi,σ ∈ Sc0
G (t0) and

Gj,β ∈ Sc0
G (t0) then i 6= j. Because ≺ is total order, the set {i | i ∈ P, Gi,σ ∈ Sc0

G (t0)}
has unique minimum with respect to ≺, and the claim follows. 2

Remark 7.7 The meaning of the threshold c0 appearing in the definition of the Suit

operation is the following: all the provability degrees with respect to the theory T ,

which are greater than c0, are regarded as maximal, and therefore they are considered

as possible candidates for the result of the Suit operation. This is necessary e.g. in

situations when there are for some t ∈ M two (or more) predicate symbols G1 = Gi,σj

and G2 = Gi,σk
from G, i ∈ P , σj < σk with high values of α̃Gi

(t) and also

α̃G1(t) ≤ α̃G2(t)

for all t ∈ M. This correspond to the so-called inclusive interpretation of linguistic

hedges [16]. Then it is unsatisfactory to prefer small to very small in the situation

when α̃G2(t) is 1 and α̃G1(t) is, say, 0.99, G1 = m(very small) and G2 = m(small).

The threshold c0 allows us to adjust the behavior of fuzzy logic deduction in such

situations.

In the following we denote by An a set of all atomic predicate symbols Gi,σ –

meanings of simple evaluating expressions appearing in the antecedents of IF-THEN

rules from a linguistic description LDI , i.e.

An = {m(An(Ri)) | i = 1, . . . , r}. (7.5)
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Theorem 7.8

Let a simple linguistic description LDI be given. Then Suitc0
An(t) is total function iff

the set An defined by (7.5) has the following property (P): For every t ∈ M1 there

exists G ∈ An such that α̃G(t) > 0.

proof: Suppose that P holds. Then the set Sc0
An(t) defined by (7.4) is nonempty

and the set {i | i ∈ P, Gi,σ ∈ Sc0
An(t0)} has unique minimum with respect to ≺

for every t ∈ M1 and therefore, Suitc0
An(t) is total function. Vice-versa, if P does

not hold, then there exists some t0 ∈ M1 such that α̃G(t0) = 0 for all G ∈ An. It

follows that mt0 = 0 and, according to (7.3), Suitc0
An(t0) is not defined for this t0 and

Suitc0
An(t) is not total function. 2

7.3 The algorithm of fuzzy logic deduction with

crisp observations

Now, the operation Suit is used in the algorithm of fuzzy logic deduction. In the

sequel, we suppose that linguistic descriptions do not include IF-THEN rules with

identical antecedents and different consequents. The reason is that the operation

Suit then can force us to choose more than one rule.

For an observation u′ ∈ W1 we find the corresponding closed term t0 ∈ M1 such

that W(t0) = u′. We assume that there are enough terms in M1 so that t0 always

exists. We suppose that there are some theories of evaluating expressions T ev
1 and

T ev
2 at our disposal. Last, we choose a threshold c0 ∈ (0, 1]. Then we find atomic

predicate symbol Gi ∈ An, Suitc0
An(t0) = Gi, if the result of Suitc0

An(t0) is defined.

This means that the i-th IF-THEN rule ‘IF Ai THEN Bi’ is selected to perform the

inference. The situation in which the result of Suitc0
An(t0) is undefined corresponds

to the situation in which we have no relevant information for the decision about the

result of inference. Then also the result of fuzzy logic deduction for such a u′ ∈ W1

is left undefined.

Now we form the theory TD = T ′ ∪ TI where T ′ is defined by (7.1). Next, we

derive the conclusion B′ defined by formula (6.5). In this special case, when only

one IF-THEN rule is used, (6.5) has the form

B′
i =

{
α̃′Bi

(s)
/
Bi,y[s] | s ∈ M2, Bi = m(Bi)

}
(7.6)
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where

α̃′Bi
(s) = α̃Ai⇒⇒⇒Bi

(t0, s) = α̃Ai
(t0) → α̃Bi

(s), (7.7)

and Ai = m(Ai), provided that the intension of IF-THEN rule Ri is determined by

(5.9).

Then the extension of linguistic expression B′i with the intension B′
i in the pos-

sible world W is found,

ExtW B′i =
{
W(B′

i,y[w])
/
w

∣∣∣w ∈ W2

}
.

We can assign linguistic expression B′i to B′
i by means of some linguistic approxima-

tion algorithm [5]. The last step is to find v′ ∈ W2, v′ = DEF(ExtW B′i).
The defuzzification operation is defined on the semantic level: for a possible

world W , it is an operation DEF : (LW − {∅}) −→ W which to any nonempty

fuzzy set A ⊂∼ W assigns element DEF(A) ∈ W such that A(DEF(A)) > 0 ([27],

p. 214, see also [19]). The problem of logically well-founded defuzzification method

is one of directions of our further research. Currently we are using defuzzification

method DEEs (Defuzzification of Evaluating Expressions) which is a combination

of the well known defuzzification methods LOM (Last of Maxima), MOM (Mean of

Maxima) and FOM (First of Maxima). It takes the right edge of the kernel, center

of gravity, or the left edge of the kernel for unimodal functions of type Z, Π and S,

respectively (see Definition 7.9).

Definition 7.9

Denote by K the set of all continuous functions from [a, b] to [0, 1]. The DEEs

defuzzification method is defined as follows: Let A ∈ K be unimodal function (cf.

Definition 3.15, M = supx∈[a,b] A(x)). Then

(i) if A(a) = M and A(b) < M then DEEs(A) = c2,

(ii) if A(b) = M and A(a) < M then DEEs(A) = c1,

(iii) if A(b) < M and A(a) < M then DEEs(A) = c1+c2
2

,

otherwise it is defined as a center of gravity of A, i.e. DEEs(A) =
∫
[a,b] A(x)x dx∫
[a,b] A(x) dx

.

Lemma 7.10

The DEEs defuzzification method is not continuous wrt. topology induced by the

metrics

d(A,B) = sup
x∈[a,b]

|A(x)−B(x)|

where A,B ∈ K.
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proof: It is well known [18] that a mapping f : X1 −→ X2 where (X1, ρ1),

(X2, ρ2) are metric spaces, is continuous in x0 ∈ X1 iff for every ε > 0 there is δ > 0

such that for every x ∈ X1, if ρ1(x0, x) < δ then ρ2(f(x0), f(x)) < ε. Without a loss

of generality, we put [a, b] = [0, 1], i.e. let K be the set of all continuous functions

from [0, 1] to [0, 1]. We denote by 〈a1, c2, d2〉 (0 < a1 < c2 < d2 ≤ 1) a piecewise

linear function given by (see Figure 7.1):

〈a1, c2, d2〉(x) =





1− a1 + x x ∈ [0, a1],

1 x ∈ [a1, c2],

1− x−c2
d2−c2

x ∈ [c2, d2],

0 x ∈ [d2, 1].

We show that DEEs is not continuous in a point A0 defined as

1

a1

1− a1

c2 d20 1

Figure 7.1: The function 〈a1, c2, d2〉 from the proof of Lemma 7.10.

A0(x) =





1 x ∈ [0, c2],

1− x−c2
d2−c2

x ∈ [c2, d2],

0 x ∈ [d2, 1].

Let 0 < ε < c2/4. It holds that DEEs(A0) = c2. Then there is no δ > 0 such that

for every A ∈ K, if d(A0, A) < δ then |DEEs(A0) − DEEs(A)| < ε. Indeed, for

any δ > 0 there is 0 < ζ < δ, ζ < c2
2

and for the function 〈ζ, c2, d2〉 it holds that

d(〈ζ, c2, d2〉, A0) = supx∈[a,b] |〈ζ, c2, d2〉(x)−A0(x)| = ζ < δ, but DEEs(〈ζ, c2, d2〉) =

= c2+ζ
2

and |DEEs(A0)− c2+ζ
2
| = |c2 − c2+ζ

2
| = c2−ζ

2
> ε (because ζ < c2

2
). 2
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Remark 7.11 Despite this result, the defuzzification method DDEs behaves con-

tinuously, if we restrict the set of considered functions to such functions, which can

occur as a result of fuzzy logic deduction with crisp observations.

Definition 7.12

A continuous unimodal function f : [a, b] −→ [0, 1] is called proper unimodal if

(i) there is x1 ∈ [a, b] such that f(x1) = 1.

(ii) If f is of type S or Z, then there exists x0 ∈ [a, b] such that f(x0) = 0.

(iii) If f is of type Π, then there exist x01, x02 ∈ [a, b] such that x01 < x1 < x02 and

f(x01) = f(x02) = 0.

Theorem 7.13

Let f0 : [a, b] −→ [0, 1] is proper unimodal . Denote by Uf0 ⊂ K the set

Uf0 = {f0 ⊕ fC | C ∈ [0, 1)} (7.8)

where fC(x) = C for all x ∈ [a, b] and ⊕ is ÃLukasiewicz t-conorm. (sum of functions

is defined pointwise). Then the function DDEs : Uf0 −→ [a, b] is continuous wrt.

metric d.

proof: It is easy to see that the mapping d is a metric on the set Uf0 . Note

that the definition of Uf0 and the requirement that C < 1 in (7.8) assure us that all

functions in Uf0 are of the same type of unimodality and the set Uf0 is totally ordered

by relation≤ defined pointwise. Let us denote by f+C, f ∈ Uf0 , C ∈ [0, 1] a function

f⊕fC if f⊕fC ∈ Uf0 , otherwise let f+C be the function (f0⊕f1)(x) = f0(x)⊕1 = f1.

Similarly, let f − C be a function f ′ such that f ′ ⊕ fC = f . If such a function does

not exist, let f − C be f0. It holds that d(f, f + C) ≤ C and d(f, f − C) ≤ C.

Due to the definition of DEEs method (Definition 7.9), which takes into account

only right edge of the kernel, left edge of the kernel or both for unimodal functions of

types Z, S, Π, respectively, it is sufficient to prove only the following: The functions

c1, c2 : Uf0 −→ [a, b] which assign to functions from Uf0 the left and the right edge

of the kernel, respectively, are continuous wrt. metric d. Note that if f1 ≤ f2 then

c1(f1) ≥ c1(f2) and c2(f1) ≤ c2(f2).

Let f0 be of type Z or Π. Let us check the function c2. We have to show that

for all f ′ ∈ Uf0 , for any ε > 0 there is δ > 0 such that for all f ∈ Uf0 ,

d(f, f ′) < δ implies |c2(f)− c2(f
′)| < ε. (7.9)

For ε > 0, choose δ such that δ < M , where
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g−f0

f ′

g+

c2(f0) c2(f
′)

ε

c2(g
−) c2(g

+)

¾ -

?

6

M

a b

1

0 ¾ -ε

Figure 7.2: Continuity of DEEs defuzzification method.

(i) M = 1− f0(c2(f0) + ε) if c2(f
′) + ε ≤ b,

(ii) M = 1− f ′(b), if c2(f
′) + ε > b.

We show that (7.9) holds. We have M > 0, because c2(f0) is right edge of kernel,

hence (i) f0(c2(f0) + ε) < 1, or (ii) 1− f ′(b) < 1.

Consider a situation when c2(f
′)+ε ≤ b and ε < c2(f

′)−c2(f0). For a function g+,

for which it holds that d(f ′, g+) = M and g+ > f ′, it holds that c2(g
+) = c2(f

′) + ε.

Similarly, for a function g−, for which it holds that d(f ′, g−) = M and g− < f ′, it

holds that c2(g
−) = c2(f

′)− ε (see Figure 7.2, for the sake of simplicity, the function

f0 is piecewise linear, but the situation is the same for a general continuous and

unimodal function). Hence, for all δ < M and for all functions f ∈ Uf0 such that

g− < f < g+ condition (7.9) holds.

If c2(f
′) + ε > b or ε > c2(f

′) − c2(f0), then the range of functions, for which

d(f, f ′) < δ holds, is restricted (because it is limited by the greatest and the smallest

elements of the set Uf0 , respectively), and (7.9) holds again. It follows that the

function c2 is continuous for functions f0 of type Z or Π. The proof for the functions

f0 of types Π or S proceeds in the same way. Hence, both functions c1 and c2 are

continuous with respect to the metric d. The continuity of DEEs defuzzification

method for functions f0 of types Z and S is immediate. For functions f0 of type Π,

the continuity follows from the continuity of the function which defines the result of

DEEs method in this case (namely DEEs(f) = (c1(f) + c2(f))/2).

2
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Remark 7.14 The continuity of DEEs defuzzification could be violated if f0 is not

proper unimodal or if we allow C = 1 in (7.8). In such situations it is possible that

the type of unimodality changes for some functions from Uf0 . Consequently, the

formula for the computation of DEEs(f) (see Definition 7.9) changes, too.

7.4 The behavior of fuzzy logic deduction with

crisp observations

Generally speaking, the behavior of fuzzy logic deduction with crisp observations

depends on several factors, namely:

1. concrete settings of functions α̃G,

2. the value of the threshold c0,

3. the defuzzification method DEF.

We can study the behavior of fuzzy logic deduction by examining the function LD,

LD : W1 −→ W2, which assigns the conclusion v′ ∈ W2 to a given observation

u′ ∈ W1. It follows from Theorem 7.8 that if the linguistic description LDI is

such that it fulfills the property (P), Suitc0
An(t) is total function, which means that

for every observation there is one IF-THEN rule selected and, consequently, the

conclusion B′ is defined and therefore also LD is total function.

Because only one IF-THEN rule from the linguistic description is selected for

the given observation u′ ∈ W1, the function LD is only piece-wise continuous.

Lemma 7.15

Let the linguistic description LDI contain one IF-THEN rule, i.e.

LDI = {IF A THEN B}.
Let the function α̃B is proper unimodal. Then the function LD : W ? −→ W2, where

the set W ? ⊆ W1 is defined as W ? = {x | x ∈ W1, α̃A

(
t(x)

)
> 0}, is continuous wrt.

standard metric.

proof: From the definition of operation Suit (Definition 7.5) and of the algorithm

of fuzzy logic deduction with crisp observations (Section 7.3) it follows that the

function LD can be depicted by the following scheme:

x ∈ W1
(1)7→ t(x) ∈ M1

(2)7→ α̃′B ∈ [0, 1]M2
(3)7→ B′ ∈ Uf0

(4)7→ DEEs(x) ∈ W2. (7.10)
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Hence, the mapping LD is continuous if the mappings (1), (2), (3), (4) from (7.10)

are continuous (provided that the continuity is considered with respect to the same

metrics “in” and “out” in the spaces M1, [0, 1]M2 and Uf0). We had not introduced

M1 and [0, 1]M2 as metric spaces, but we can consider adjoined metric spaces [0, 1]

and [0, 1][0,1] (the space of functions γB first introduced in Definition 4.1). The space

Uf0 was defined by (7.8). The function f0 is put equal to the function γB adjoined

to α̃B. The continuity of mappings (1) and (3) is straightforward. The continuity of

the mapping (2) was shown in Lemma 7.4. We can see from the proof of Lemma 7.3

that the space obtained after step (3) in (7.10) is indeed UγB
. The continuity of the

mapping (4) was proved in Theorem 7.13. 2

Theorem 7.16

Let a linguistic description LDI with the associated theory T ev
1 fulfilling the property

(P) (see Theorem 7.8) be given, such that the functions γBi
adjoined to functions

α̃Bi
, i = 1, . . . , r are proper unimodal. Further, let a canonical possible world W ,

W = 〈〈W1,W2〉, . . .〉 be given. Then the function LD defined above is piecewise

continuous (i.e. it has finitely many discontinuities of the first type).

proof: We showed in Theorem 7.8 that the function Suitc0
An : M −→ An is total

function. It easily follows that also the function LD : W1 −→ W2 is total. We can

divide the domain of the function LD in several parts in such a way that in every

part is used only one IF-THEN rule Ri (selected by means of the operation Suitc0
An).

As was shown in previous Lemma 7.15, for one IF-THEN rule Ri, i = 1, . . . , r is

the function LD a continuous one. Because every linguistic description can contain

only finite number of IF-THEN rules, we can deduce that the overall function LD

is piece-wise continuous, and the number of the discontinuities is finite. 2

However, the previous result, i.e. the non-continuity of function LD is not nec-

essarily a major drawback. In decision-type problems, for example, we are not

looking for continuity, but for the well-defined behavior in every possible situation.

Consider, e.g. the linguistic description

R1 := IF X is small THEN Y is big ,

R2 := IF X is very small THEN Y is small,

· · ·

If we interpret X as “distance to an obstacle” and Y as “angle of a steering wheel”,

then it can be dangerous to use for small observations more than one rule, because
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it can result in “medium” conclusion and crash with the obstacle. This can be

amended by a special defuzzification method adapted to such situations, or by a

special shape of functions α̃Bi
. However, we are convinced that such a well-defined

behavior conforms with the way of human reasoning and so, we prefer to find a

transparent inference mechanism.

The generalization of results in this section for the (in practice much more im-

portant) situation where there are several antecedent variables X1, . . . , Xn and IF-

THEN rules have the form

RI
i := IF Ai,1 AND . . . AND Ai,n THEN Bi, i = 1, 2, . . . , r

can be done in the straightforward way and is omitted in this thesis.

In the future research, we will study the behavior of fuzzy logic deduction in

more details, we will concentrate on its modifications which allow the function LD

to be continuous and study also approximation capabilities of it. Another field of

study, which can be well formulated using our formalism, is fuzzy logic deduction

with linguistically expressed observations.
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Chapter 8

Conclusion

We presented in this thesis the methodology which describes the meaning of evalu-

ating linguistic expressions on syntactic level (as an intension) by means of formal

fuzzy theory. By means of such theories for antecedent and consequent parts of

IF-THEN rules we constructed the intension of IF-THEN rule and treated a set of

IF-THEN rules (i.e. a linguistic description) again as a formal theory. Then we used

this in the central part of our thesis – the formalization of fuzzy logic deduction. We

added another formal theory describing an observation and obtain the conclusion

as a fuzzy set of instances of atomic formulas in first-order fuzzy logic. We proved

some properties and discussed one important notion, namely inconsistencies in lin-

guistic descriptions. Finally, as an application of the results of previous chapters,

we studied fuzzy logic deduction with crisp observations.

It was not possible to cover in this thesis all directions of research which our

methodology offers. Among open problems, which we will pursue in the future, we

name the study of the properties of fuzzy logic deduction over linguistic descriptions,

where the meanings of evaluating linguistic expressions are modeled by extended

theories of evaluating expressions (Section 4.3). The properties of the deduction

for linguistic descriptions with negated evaluating expressions (e.g. IF X is small

THEN Y is NOT big) is also worth of study. We would like also study more care-

fully the notion of possible world and model-theoretic properties of models of theories

of evaluating expressions. Finally, our main future interest will lie in the study of

our formal system enriched by generalized quantifiers (e.g. many).

The methodology and results have their counterparts in algorithms implemented
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in software system LFLC (Linguistic Fuzzy Logic Controller) [6] developed in In-

stitute for Research and Applications of Fuzzy Modeling at University of Ostrava.

It uses the algorithm of fuzzy logic deduction with crisp observation from Chap-

ter 7. The structure of the set of simple evaluating expressions is the following:

there are three atomic evaluating expressions small, medium and big and linguistic

hedges (with decreasing sharpness) extremely, highly, very, more or less, roughly,

quite roughly, very roughly interpreted inclusively, i.e. if x is very small then x

is small as well. However, users can also use their own linguistic expressions and

fuzzy numbers in their linguistic descriptions. The defuzzification method DEEs

from Section 7.3 is also implemented. It proved itself the most suitable method

for fuzzy logic deduction among the known defuzzification methods, provided that

evaluating linguistic expressions are used. LFLC, of course, also implements fuzzy

approximation methods mentioned in Introduction.

The LFLC system and fuzzy logic deduction implemented in it proved themselves

useful in practical applications (see [25]). Fuzzy logic deduction has been also used

in methods for learning linguistic descriptions from data [2, 7, 8].
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• Dvořák, A., Novák, V.: On the Extraction of Linguistic Knowledge in Databases

Using Fuzzy Logic. In: Larsen, H. L. et al. (Eds.) Flexible Query Answering

Systems. Recent Advances. Heidelberg, Physica-Verlag, 2000, pp. 445–454.

95
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