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“If a man will begin with certainties,

he shall end in doubts;

but if he will be content to begin with doubts

he shall end in certainties.”

Francis Bacon
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Summary

The fuzzy set theory initiated by L.A. Zadeh provided mathematicians with an

appropriate tool for modelling the vagueness phenomenon and shed new light into

the control theory for engineers. Later, in 1985, T. Takagi and M. Sugeno invented a

particular fuzzy model which became very popular due to its approximation ability.

Finally, in the 1990’s, several studies aimed at approximation properties of the other

widely used fuzzy models.

Based on the historical development briefly recapitulated above, a new field

called fuzzy approximation focusing on approximation properties of fuzzy models

and development of new methods using fragments of the fuzzy set theory has been

established. Fuzzy transform (F-transform), a particular method belonging to this

field, is the main object of the study in this thesis.

Fuzzy transform has been proposed as a pilot fuzzy approximation technique with

the aim of being applied in up to now unusual application fields such as numerical

solution of differential equations, for example. On the other hand, such techniques,

including the fuzzy transform, are not excluded from the other techniques involved

in fuzzy systems. Vice-versa, if they are correctly built (i.e. if they respect rules

of law of fuzzy logics and the state of arts in fuzzy system), they provide us with

powerful tools for dealing with typical problems for implementations of fuzzy system.

The goal of this thesis is to investigate the fuzzy transform from the approxi-

mation point of view and to incorporate it in further numerical methods. In gen-

eral, we talk about numerical methods on the basis of fuzzy approximation models.

Moreover, the technique is studied in the context of other fuzzy models and finally

implemented in automatic control, a typical field for fuzzy approaches.

The structure of the work is as follows. Chapter 1 provides an introduction

to the study and a brief state of the art of the studied fields. Chapter 2 recalls

basic definitions and facts about the F-transform method and introduces new results

useful for further chapters. Chapter 3 focuses on an extension of the F-transform

for function with two or more variables and presents analogous results to those from

the one dimension. In Chapter 4, a possible application to numerical computation
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of partial differential equations is studied.

Chapter 5 is devoted to the so-called additive normal forms. It introduces a class

of additive normal forms stemming from the one defined in [59]. A representation

of the F-transform as a special case of the additive normal form, its extension to a

normal form with other possible operations and answering natural questions about

the relations between F-transform and other fuzzy approximation techniques is the

main aim of the chapter.

Chapter 6 introduces additive interpretations of fuzzy rule bases and aims at

their fuzzy interpolation properties. It presents a possible way how to identify

a rule base with the additive interpretation using the F-transform. Chapter 7 is

the application part of the Thesis which deals with a heuristic proposal for fuzzy

control stemming from additive normal forms and the F-transforms. This chapter

explicitly uses results from the previous chapters to demonstrate properties of the

proposed method. Good behaviour of a system controlled by the proposed method

is demonstrated on a real application: control of an autonomous robot.

Finally, Chapter 8 provides a neural network point of view to the F-transform

and presents experiments justifying this approach. The last chapter summarizes the

results from the thesis and briefly discusses them.

Keywords: Fuzzy transform, Approximation, Numerical methods, Partial differ-

ential equations, Normal forms, Fuzzy rule based systems.
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Anotace

Teorie fuzzy množin iniciována L.A. Zadehem poskytla matematik̊um vhodný

nástroj k modelováńı fenoménu vágnosti a inžnýr̊um vnesla nové světlo do teorie

ř́ızeńı (regulace). Později, v roce 1985, T. Takagi a M. Sugeno navrhli fuzzy model,

který se stal obĺıbený d́ıky svým aproximačńım možnostem. Konečně v 90-tých

letech se několik praćı zabývalo aproximačńımi možnostmi daľśıch obecně použ́ıvaných

fuzzy model̊u.

Na základě tohoto historického vývoje byly položeny základy nového oboru

zvaného fuzzy aproximace, který se zabývá aproximačńımi vlastnostmi fuzzy model̊u

a jejich rozvojem. Fuzzy transformace (F-transformace) jakožto konkrétńı zástupce

metod tohoto oboru je hlavńım objektem studia této práce.

Fuzzy transformace byla navržena jako pilotńı fuzzy aproximačńı technika s ćılem

být aplikována v dosud netradičńıch oblastech jako nař́ıklad numerciké řešeńı difer-

enciálńıch rovnic. Na druhou stranu, takové techniky nestoj́ı mimo ostatńı techniky

implementované ve fuzzy systémech. Naopak, pokud jsou korektně postaveny tj.

respektuj́ı pravidla a zákonitosti fuzzy logik a fuzzy systémů, poskytuj́ı nám mocné

nástroje pro práci s problémy typickými pro implementaci fuzzy systémů.

Ćılem této práce je výzkum fuzzy transformace z aproximačńıho hlediska a jej́ı

použit́ı v numerických metodách. Obecně pak mluv́ıme o numerických metodách

na základě fuzzy aproximačńıch model̊u. Dále je technika studována v kontextu

ostatńıch fuzzy model̊u a nakonec implementována v automatickém ř́ızeńı tj. oblasti

velmi typické pro fuzzy př́ıstupy.

Struktura práce je následuj́ıćı. Kapitola 1 je úvodem do studia a úvodem do

oblast́ı uvažovaných v práci. Kapitola 2 připomı́ná základńı definice a fakta o metodě

F-transformace a uvád́ı nové výsledky použité v daľśıch kapitolách. Kapitola 3

se zabývá rozš́ı̌reńım F-transformace na funkce dvou a v́ıce proměnných a uvád́ı

výsledky analogické jednodimenzionálńımu př́ıpadu. V kapitole 4 a je studována

možnost aplikace metody na numerický výpočet parciálńıch diferenciálńıch.

Kapitola 5 je věnována tzv. aditivńım normálńım formám. Představuje tř́ıdu

aditivńıch normálńıch forem motivovanou konkrétńım př́ıpadem publikovaným v
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[59]. Reprezentace F-transformace jako specielńıho př́ıpadu aditivńı normálńı formy,

jej́ı rozš́ı̌reńı pro daľśı operace a studium přirozených otázek o vztahu F-transformace

a daľśıch fuzzy aproximačńıch technik je hlavńım př́ınosem kapitoly.

Kapitola 6 představuje aditivńı interpretace báźı fuzzy pravidel a zaměřuje se na

jejich fuzzy interpolačńı vlastnosti. Možný zp̊usob identifikace báze s takovou inter-

pretaćı využ́ıvaj́ıćı F-transformaci je zde uveden také. Kapitola 7 je aplikačńı část́ı

práce, která pracuje s heuristickým návrhem pro fuzzy regulaci vycházej́ıćım z adi-

tivńıch normálńıch forem a F-transformace. Tato kapitola př́ımo použ́ıvá výsledky

předchoźıch kapitol a demonstruje vlastnosti navrhované metody. Dobré chováńı

procesu ř́ızeného navrhovanou metodou jsou demonstrovány na reálné aplikaci - na

ř́ızeńı autonomńıho robota.

Konečně, kapitola 8 uvád́ı př́ıstup k F-transformaci z pohledu neuronových śıt́ı.

Posledňi kapitola shrnuje výsledky práce.

Kĺıčová slova: Fuzzy transformace, Aproximace, Numerické metody, Parcilálńı

diferenciálńı rovnice, Normálńı formy, Systémy s báźı fuzzy pravidel.
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Preface

The fuzzy set theory provides us with tools for modelling meanings of linguistic

expressions and modelling imprecise rough and vague evaluations and deal with

them. The fuzzy logic is a special many-valued logic serving for the vagueness

phenomenon involvement. Sometimes, the notion fuzzy logic is understood much

wider and we then talk about so-called fuzzy logic in broader sense (FLb), while the

genuine many-valued logic is called fuzzy logic in narrow sense (FLn) [52].

Let us stress that imprecision is essential in real life and precise measurements

are only illusions caused by rounded values. Even in the case of the latest measuring

apparatuses we cannot achieve precision without being on the level of the micro-

world of molecules and atoms. We should also stress that besides the fact that

inaccuracies and imprecisions are unavoidable, human language and human way of

understanding always deal with this feature. Everyone who was trained to drive a

car was taught by sentences containing vague expressions such as: “turn to the left a

little” or “slow down gently”. One could hardly expect that teaching by instructions

such as: “turn the wheel to the right up to 24◦16′42′′ and slow down by pushing the

break pedal with strength of 12.681679234 N” would lead to a fast and successful

result.

The principle described on the driving example above is nicely formulated in the

so-called Principle of Incompatibility [79]:

As the complexity of a system increases, human ability to make precise

and relevant (meaningful) statements about its behaviour diminishes un-

til a threshold is reached beyond which the precision and the relevance

become mutually exclusive characteristics.

Moreover, we can find ancient roots of this idea already in the Socrates Para-

dox:
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The less we know, the more certain and precise we are in our explana-

tions; the more we know, the more we realize the limitations of being

certain and precise.

Therefore, the study of fuzziness of human knowledge - its sources, nature and

dynamics - is not motivated by an effort to reduce or eliminate it but to understand

its limitations and to learn how to deal with it.

This thesis is devoted to fuzzy approximation methods and their applications.

Particularly, it focuses on the fuzzy transform (F-transform) [58] technique and in-

vestigates it from the point of view of numerical mathematics of other fuzzy approx-

imation methods and neural networks. Furthermore, it aims at possible applications

of the technique.

I want to express my gratitude to my supervisor Prof. Irina Perfilieva for her

support, valuable comments and permanent encouragement which made it possible

to finish this thesis. Moreover, I would like to thank my boss Prof. Vilém Novák

for working conditions he created in the Institute for Research and Applications

of Fuzzy Modeling. Warm thanks goes to all my present and former colleagues

form the institute for making it a friendly and creative atmosphere. Especially, I

would highlight Martina Daňková for her co-operation and for the careful reading

of this thesis, Radek Valášek for a fruitful and long co-operation and finally Ondřej

Polakovič and Viktor Pavliska for their experimental and software support.

Ostrava, March 2007 Martin Šěpnička
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Chapter 1

Preliminaries

1.1 Introduction to Fuzzy Set Theory

Let us briefly recall the basic elements of the fuzzy set theory which development

has been initiated by L.A. Zadeh [80].

1.1.1 Fuzzy Sets

A classical (crisp) set, say A, is such a collection of objects from some domain

(universe), say D, that we are able to distinguish whether an arbitrary considered

object from D belongs to A or does not belong to A. Objects x belonging to A

are called elements of A, which is denoted by x ∈ A. Set A is a subset of the

domain which is denoted by A ⊆ D. Any classical set can be characterized by its

characteristic function χA : D → {0, 1}

χA(x) =

{

1, x ∈ A

0, x 6∈ A

Fuzzy sets allow the whole interval [0, 1] to be the range of their characteristic

functions which we call membership functions. We unify a fuzzy sets A with its

membership function χA and consider A : D → [0, 1] denoted by A ⊂∼ D. The

value A(x) for x ∈ D is called the membership degree of x to A. Immediately,

each classical set is a special case of a fuzzy set and therefore the fuzzy set do not

contradict classical sets but generalize them.

The definition of a fuzzy set allows us to model vague human language notions.

Especially, so called evaluating linguistic expressions (small, very big, more or less

19



medium, about five, etc.) [48, 50] can be successfully modelled by fuzzy sets, see

Fig. 1.2.

Definition 1 Let A ⊂∼ D. Then the support of A is the following set

Supp(A) = {x | x ∈ D, A(x) > 0}. (1.1.1)

Definition 2 Let A ⊂∼ D. Then the kernel of A is the following set

Ker(A) = {x | x ∈ D, A(x) = 1}. (1.1.2)

The support is a set of elements from a domain with a non-zero membership

degree to a given fuzzy set or a set of those elements od D which at least partially

belong to the fuzzy set. The kernel is a set of elements of D which fully belong to

the fuzzy set. A kernel can be an empty set while a support can be empty only in

the case of so called empty fuzzy set - a fuzzy set which contains all elements of D
with a zero membership degree.

Definition 3 Let A ⊂∼ D and α ∈ [0, 1]. Then the set

Aα = {x | x ∈ D, A(x) ≥ α} (1.1.3)

is called the α-level set (sometimes α-cut).

Immediately, we get that the kernel can be defined as Aα for α = 1.

Remark 1 Some authors also define α-level sets as follows

Aα = {x | x ∈ D, A(x) > α}.

In this case, the support can be defined as A0. Let us stress, that we will follow the

terminology from Definition 3 in the latter.

For α-level sets the following condition holds:

If α ≤ β then Aβ ⊆ Aα. (1.1.4)

The following representation theorem claims that a fuzzy set can be represented

by its α-level sets.

20



Theorem 1 Let A ⊂∼ D. For any element x ∈ D its membership degree to A can

be expressed as follows

A(x) =
∨

x∈Aα

α. (1.1.5)

Definition 4 A ⊂∼ D is called convex if for any x, y ∈ D and for any λ ∈ [0, 1] the

following formula holds

A(λx + (1 − λ)y) ≥ A(x) ∧ A(y). (1.1.6)

It means that if A is a convex fuzzy set then its α-level set is a convex set for

any α ∈ [0, 1].

A fuzzy number is a special kind of a fuzzy set on the universe of real numbers.

Definition 5 Let A ⊂∼ D and D ⊆ R. A is called fuzzy number if it is convex and

its kernel Ker(A) = {z0} where z0 ∈ D. To emphasize the kernel point we denote

the fuzzy number by Z0.

Remark 2 We should stress that the definition of a fuzzy number is not unique

throughout the literature. For instance, some authors also require symmetry of the

fuzzy set Z0 w.r.t. the node z0 ∈ R. On the other hand, there are several authors

who admit to have a wider but closed kernel (i.e. a real interval). Such fuzzy set

is often called “fuzzy interval” and the fuzzy number given by Definition 5 is then a

special case of a fuzzy interval.

1.1.2 T-norms

Original motivation for introducing the class of generalized multiplications known

as triangular norms (t-norms) was not logical. The main idea was to generalize

the concept of the triangular inequality. Since t-norms preserve the fundamental

properties of the crisp conjunction, they become to interesting for fuzzy logic as its

natural generalizations.

Definition 6 A binary operation ∗ : [0, 1]2 → [0, 1] is called triangular norm (t-

norm) if it fulfills commutativity, associativity, monotonicity, and the following
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boundary condition holds i.e. for all x, y, z ∈ [0, 1]:

x ∗ y = y ∗ x (commutativity),

x ∗ (y ∗ z) = (x ∗ y) ∗ z (associativity),

x ≤ y =⇒ x ∗ z ≤ y ∗ z (monotonicity),

x ∗ 1 = x (boundary condition).

Example 1 Below, we show the most known examples of continuous t-norms which

serve as natural interpretations of a generalized conjunction:

(1) Minimum t-norm x ∗ y = x ∧ y,

(2) Product t-norm x ⊙ y = x · y,

(3)  Lukasiewicz t-norm x ⊗ y = max(0, x + y − 1).

Another operation associated with the t-norm is called triangular conorm t-

conorm and it corresponds (due to its behavior) to a generalization of the classical

connective ’or’. It serves for also interpretation of unions of fuzzy sets.

Definition 7 A t-conorm is a binary operation ⊔ : [0, 1]2 → [0, 1] which has the

properties of commutativity, associativity and monotonicity (introduced in Defini-

tion 6) and fulfills the following boundary condition for all x ∈ [0, 1]:

0 ⊔ x = x.

A t-conorm dual to a given t-norm ∗ is given by

a ⊔ b = 1 − (1 − a) ∗ (1 − b).

Example 2 The most important t-conorms dual to the t-norms from Example 1

are:

(1) Maximum t-conorm (dual to minimum t-norm) x ⊔ y = x ∨ y,

(2) Product t-conorm (dual to product t-norm) x ⊔ y = x + y − x · y,

(3)  Lukasiewicz t-conorm (dual to  Lukasiewicz t-norm) x ⊕ y = min(1, x + y).

Let us stress that maximum is the least t-conorm i.e. x∨y ≤ x⊔y for all x, y ∈ [0, 1]

and for any t-conorm ⊔ (see [52]).

It follows from the definition of the t-norm that it is a monoidal operation on

[0, 1]. Furthermore, 〈[0, 1],∧,∨〉 is a complete lattice. Therefore, we can define the

residuation operation in the following form.
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Definition 8 Let ∗ be a t-norm. The residuation operation →∗: [0, 1]2 → [0, 1] is

defined by

x →∗ y =
∨

{z |x ∗ z ≤ y}. (1.1.7)

Lemma 1 Let ∗ be a left-continuous t-norm and →∗ its residuation. Then the

following properties hold for all x, y, z ∈ [0, 1]:

x ∗ y ≤ z ⇐⇒ y ≤ x →∗ z, (1.1.8)

x ≤ y =⇒ y →∗ z ≤ x →∗ z, (1.1.9)

x ≤ y =⇒ z →∗ x ≤ z →∗ y. (1.1.10)

The residuation operation serves as an operation representing the generalized

implication for fuzzy logics.

Moreover, we will use the following derived operations

xn = x ∗ . . . ∗ x
︸ ︷︷ ︸

n−times

,

x ↔∗ y = (x →∗ y) ∧ (y →∗ x).

In the sequel, we denote  Lukasiewicz operations t-norm, t-conorm and residua-

tion by ⊗, ⊕ and →⊗, respectively. It is worth to mention the following relation

between  Lukasiewicz t-conorm and residuation:

(1 − x) ⊕ y = x →⊗ y. (1.1.11)

Let us recall some basic classes of t-norms.

Definition 9 Let ∗ be a t-norm. Then ∗ is called

• Archimedean if

∀x, y ∈ (0, 1) ∃n ∈ N : xn < y, (1.1.12)

• nilpotent if

∀x ∈ (0, 1) ∃n ∈ N : xn = 0, (1.1.13)

• strict if it is continuous and

∀x, y, z ∈ [0, 1], x > 0, y < z : x ∗ y < x ∗ z, (1.1.14)
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• idempotent if

∀x ∈ [0, 1] : x ∗ x = x. (1.1.15)

Let us stress that if ∗ is a continuous strict t-norm then there exists a continuous

strictly increasing mapping g : [0, 1] → [0, 1] called multiplicative generator such

that

x ∗ y = g−1(g(x) · g(y)) x, y,∈ [0, 1]. (1.1.16)

1.1.3 Operations on Fuzzy Sets

Equality of fuzzy sets is defined as follows.

Definition 10 Let A,B ⊂∼ D. Then A = B if

A(x) = B(x) (1.1.17)

for all x ∈ D.

Definition 11 Let A,B ⊂∼ D. Then the union C = A ∪ B of these two fuzzy sets

is a fuzzy set C ⊂∼ D given as follows

C(x) = A(x) ∨ B(x). (1.1.18)

Definition 12 Let A,B ⊂∼ D. Then the intersection C = A∩B of these two fuzzy

sets is a fuzzy set C ⊂∼ D given as follows

C(x) = A(x) ∧ B(x). (1.1.19)

Besides original Definitions 11 and 12, the ⊔-union and ∗-intersection can be

defined by t-conorms and t-norms [38], respectively. Given a t-norm ∗ and a t-

conorm ⊔, the respective ∗-intersection C = A ∩∗ B is given by

C(x) = A(x) ∗ B(x) (1.1.20)

and the respective ⊔-union C = A ∪⊔ B is given by

C(x) = A(x) ⊔ B(x). (1.1.21)
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1.1.4 Fuzzy Relations

Definition 13 Let A ⊂∼ D and B ⊂∼ D′. Then their fuzzy Cartesian product A ×
B ⊂∼ D ×D′ is a fuzzy set with the following membership function

(A × B)(x, y) = A(x) ∧ B(y) (1.1.22)

for all x ∈ D and y ∈ D′.

In formula (1.1.22), there is the minimum operation used but any t-norm could

be used, in general [29, 48]. Then formula (1.1.22) is modified as follows

(A ×∗ B)(x, y) = A(x) ∗ B(y). (1.1.23)

For example, the product t-norm x ∗ y = x ⊙ y is very often used.

Definition 14 An n-ary fuzzy relation R is a fuzzy set on a Cartesian product

D1 × · · · × Dn of n universes.

The membership degree R(x1, . . . , xn) expresses the degree, in which the n-tuple

(x1, . . . , xn) is in the fuzzy relation R. Obviously, classical relation is only a special

type of fuzzy relation which maps the n-tuple either to 0 or to 1.

As well as in the classical mathematics, we can construct compositions of (fuzzy)

relations. Sometimes, we use the notion fuzzy relational products. Most of them are

motivated and studied in [3]. We will recall only two of them.

Definition 15 Let R ⊂∼ D × D′ and S ⊂∼ D′ × D′′ and let ∗ be a t-norm. The ◦∗
composition (also sup-∗ composition) R ◦∗ S ⊂∼ D × D′′ of these two binary fuzzy

relations is defined as follows

R ◦∗ S(x, z) =
∨

y∈D′

(R(x, y) ∗ S(y, z)), x ∈ D, z ∈ D′′. (1.1.24)

Definition 16 Let R ⊂∼ D × D′ and S ⊂∼ D′ × D′′ and let ∗ be a left-continuous

t-norm. The �∗ composition (also inf→∗ composition) R �∗ S ⊂∼ D × D′′ of these

two binary fuzzy relations is defined as follows

R �∗ S(x, z) =
∧

y∈D′

(R(x, y) →∗ S(y, z)), x ∈ D, z ∈ D′′ (1.1.25)

where →∗ is the residuation operation adjoint to the t-norm ∗.
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Remark 3 The �∗ composition which first appeared in [3] is sometimes called the

Bandler-Kohout subproduct.

Definitions of an image of a fuzzy sets under a fuzzy relation can be derived from

the previous compositions of fuzzy relations.

Definition 17 Let A ⊂∼ D, R ⊂∼ D × D′ and let ∗ be a t-norm. Then the direct

image of A under R, A ◦∗ R ⊂∼ D′, is given as follows

A ◦∗ R(y) =
∨

x∈D

(A(x) ∗ R(x, y)), y ∈ D′. (1.1.26)

Definition 18 Let A ⊂∼ D, R ⊂∼ D × D′ and let ∗ be a left-continuous t-norm.

Then the subdirect image of A under R, A �∗ R ⊂∼ D′, is given as follows

A �∗ R(y) =
∧

x∈D

(A(x) →∗ R(x, y)), y ∈ D′. (1.1.27)

Let us stress that the Definitions 17 and 18 are very important because they

constitute a mathematical basis for fuzzy inferences, see Section 1.2.

A special case arises when the fuzzy set A is a singleton i.e.

A(x) =

{

1, x = x′ ∈ D
0, x 6= x′

(1.1.28)

Then the computation of the image defined by (1.1.27) of such a fuzzy set is simpli-

fied as follows

B(y) = R(x′, y), y ∈ D′ (1.1.29)

no matter which composition is considered.

1.2 Fuzzy Modelling

Fuzzy modelling is a name for a very general field, say for methods of mathematical

modelling using of the fuzzy set theory and the fuzzy logic. It focuses, especially,

on the fuzzy rule based systems (FRB). These systems can be applied generally in

many real problems, including the most often cited fuzzy control, decision-making

and information retrieval.
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1.2.1 FRB System Architecture

FRB system is a system consisting of four main blocks (fuzzifier, fuzzy rule base,

inference engine, defuzzifier) typically of the structure displayed on Figure 1.1, see

e.g. [8].

Figure 1.1: Architecture of an FRB system.

Fuzzifier is a block preforming a mapping from D to the set of all fuzzy sets on D
(denoted by F(D)). This mapping is involved since the inference engine can formally

deal only with fuzzy inputs. The most usual one is a singleton fuzzifier which

assigns a singleton (1.1.28) to each crisp input x′ ∈ D. Besides typical fuzzy control

applications dealing only with measured crisp values, this block is not required in all

FRB systems. Especially in particular decision-making problems when input values

are hardly technically measurable, fuzzifiers are not implemented. Then only some

rough evaluations given in a human language and modelled by fuzzy sets can be

achieved.

Remark 4 In more-dimensional models, we often meet such situations, when some

inputs are connected to an inference engine directly and other are connected via

fuzzifiers. For instance, in medical screening we expect crisp values determining a

patient’s temperature and linguistic expressions describing his/her subjective pain.

Whole knowledge available in a given fuzzy rule base consisting of n fuzzy rules
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is contained in pairs of input-output fuzzy sets i.e. in (A1,F1), . . . , (An,Fn), telling

us that, for i = 1, ..., n, the fuzzy set Ai ⊂∼ D is assigned the fuzzy set Fi ⊂∼ D′ [78].

In general, there are two standard approaches to modelling a given fuzzy rule

base by an appropriate fuzzy relation. Let x ∈ D, y ∈ D′, let operation ∗ be a left-

continuous t-norm and finally, let →∗ be its adjoint residuation operation. Then the

first approach consists in a construction of a fuzzy relation R̂∗ ⊂∼ D × D′ given as

follows:

R̂∗(x, y) =
n∧

i=1

(Ai(x) →∗ Fi(y)) . (1.2.1)

As written in [20], “In the above view, each piece of information (fuzzy rule) is

viewed as a constraint. This view naturally leads to a conjunctive way of merging

the individual pieces of information since the more information, the more constraints

and the less possible values to satisfy them.”

This fact together with the fact that the minimum operation as well as other

t-norms is an appropriate interpretation of a conjunction (logical connective AND)

and residuation operations are appropriate interpretations of an implication [2, 18,

32, 52, 77] leads to a conclusion that R̂∗ is a proper model of the following fuzzy

rules
IF x is A1 THEN y is F1

. . .

AND

. . .

IF x is An THEN y is Fn

(1.2.2)

where Ai,Fi are linguistic expression [51, 81] represented by fuzzy sets Ai ⊂∼ D and

Fi ⊂∼ D′, respectively.

The second standard approach to modelling a fuzzy rule base, which was initiated

by a successful experimental application implemented by Mamdani and Assilian [42],

consists in a construction of a fuzzy relation Ř∗ ⊂∼ D ×D′ given as follows

Ř∗(x, y) =
n∨

i=1

(Ai(x) ∗ Fi(y)). (1.2.3)

Obviously, fuzzy relation (1.2.3) can be hardly considered as a model of fuzzy

rule base (1.2.2). As mentioned above, a t-norm operation is an appropriate in-

terpretation of a conjunction, not implication and neither the maximum operation

disjunctively aggregating all rules has anything common with the logical connective

“AND”.
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We again recall the work of Dubois, Prade and Ughetto [20]. “It seem that fuzzy

rules modelled by (1.2.3) are not viewed as constraints but are considered as pieces

of data. Then the maximum in (1.2.3) expresses accumulation of data”.

This fact together with a commonly known fact that the maximum operation

as well as other t-conorms are appropriate interpretations of a disjunction (logical

connective OR) [32, 52] leads to a conclusion that Ř∗ given by (1.2.3) is a proper

model of the following fuzzy rules

x is A1 AND y is F1

. . .

OR

. . .

x is An AND y is Fn.

(1.2.4)

It is worth mentioning that distinguishing between the conditional (IF-THEN)

form of fuzzy rules (1.2.2) and the Cartesian product (AND) form of fuzzy rules

(1.2.4) on a syntactical level is not very common but it can be found e.g. in

[11, 37, 49]. Usually only the form given by (1.2.2) is because of several (e.g. his-

torical reasons or equivalence of both form sin the classical case) considered and the

differences are taken into account only on a semantical level. But the differences can

play a crucial role for further implementations and therefore they should be kept in

mind. For more detailed study concerning both rule forms we refer to [32, 52, 37]

and to an exhaustive investigation in [19].

Besides a fuzzy rule base, (fuzzy) inference mechanism is an essential part of each

fuzzy rule based system depicted on Figure 1.1. It is a deduction rule determining

an output B ⊂∼ D′ based on an arbitrary input A ⊂∼ D. Particularly, it is defined

as an image of A under a fuzzy relation R ⊂∼ D × D′, which models a given fuzzy

rule base, see Section 1.1.

Defuzzifier is a block performing a mapping from the set of all fuzzy sets on D′

(denoted by F(D′)) to this domain D′. This mapping is called defuzzification and

it is especially required in automatized application such as fuzzy control when we

finally have to give a precise control action (i.e. a number) to a controlled plant.

This block can be replaced e.g. by a linguistic approximation block which finds the

closest fuzzy set from some predefined finite set of fuzzy sets from F(D′) to a fuzzy

output B ⊂∼ D′. Usually, the predefined finite set consists of fuzzy sets modelling

evaluating linguistic expressions with clear linguistic meanings and therefore the

final answer is the respective label of the closest fuzzy set - a word.

29



Let us mention some of the defuzzification methods. The Center of Gravity

(COG) method:

COG(B) =

∫

D′ y · B(y)dy
∫

D′ B(y)dy
(1.2.5)

which is usually in practice simplified by discrete sums applied instead of the inte-

grals.

Another useful defuzzification is the Mean of Maxima (MOM) method:

MOM(B) =
1

nmax

nmax∑

j=1

ymax
j (1.2.6)

where ymax
j = yj if B(yj) = max{B(y) | y ∈ D′}. It means that the method locates

an arithmetic mean of the set Y = {ymax
j | 1, . . . , nmax} of all elements of the support

Supp(B) with maximal membership degree. In the case of uncountable set Y , the

defuzzification is computed as an arithmetic mean of sup Y and inf Y .

Defuzzification First of Maxima (FOM) chooses the first element of Supp(B)

with maximal membership degree:

FOM(B) = inf Y (1.2.7)

and Defuzzification Last of Maxima (LOM) analogously chooses the last element of

Supp(B) with maximal membership degree:

LOM(B) = sup Y. (1.2.8)

Defuzzifications FOM and LOM are not usually directly implemented but their

significant importance is given by the fact that they are used in the construction

of the Defuzzification of Evaluating Expressions (DEE), see [48, 50]. This method

classifies the output fuzzy set B into three classes (small, medium, big), at first, and

then defuzzifies by FOM, MOM and LOM w.r.t. the fuzzy set class, respectively.

Results of the DEE defuzzification are depicted on Figure 1.2.

1.2.2 Fuzzy Modelling on the Basis of Fuzzy Interpolation

Besides typical fuzzy control implementations with crisp inputs, fuzzifiers and de-

fuzzifiers, we have to keep in mind also applications without fuzzifiers and with

direct fuzzy inputs as discussed above. An FRB defines a partial mapping from

F(D) to F(D′) such that it assigns Fi ⊂∼ D′ to Ai ⊂∼ D for any i = 1, . . . , n and
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Figure 1.2: Some fuzzy sets modelling evaluating linguistic expressions. Defuzzifi-
cation of evaluating linguistic expressions (DEE) is depicted on the domain.

the corresponding inference engine extends the mapping to a total one. To keep the

partial mapping defined by the given FRB even after the extension to a total map-

ping is an obvious requirement which leads to the fundamental fuzzy interpolation

condition:

Ai�∗R = Fi, i = 1, . . . , n (1.2.9)

where �∗ is an image determined by the inference mechanism and R ⊂∼ D × D′

is a fuzzy relation interpreting the FRB. Keeping condition (1.2.9) certifies good

behaviour of an FRB system from the interpolation point of view and therefore it

should be always kept in mind throughout an identification of a model when choosing

inference mechanism and an appropriate FRB interpretation.

Remark 5 Interpolation condition (1.2.9) leads to the so called systems of fuzzy

relation equation which have been studied by many authors, see [15, 30, 35]. Be-

sides the mentioned choices through the identification process they also answer the

solvability condition questions i.e. finding the conditions to antecedent fuzzy sets Ai

and consequent fuzzy sets Fi under which some interpolating extension exists.
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1.2.3 Takagi-Sugeno Rules

T. Takagi and M. Sugeno in [76] introduced rules with consequents being equal to

linear expressions:

IF x is Ai THEN y is ai + bix i = 1, . . . , n (1.2.10)

where ai, bi are real numbers.

Takagi-Sugeno FRB system explicitly works with crisp inputs and the inference

is performed according to the following formula

fA(x) =

∑n
i=1 Ai(x) · (ai + bix)
∑n

i=1 Ai(x)
(1.2.11)

which means that we get a real-valued function fA(x) which usually approximates

some dependency and no defuzzifier is required anymore.

Obviously, Takagi-Sugeno rules can be directly generalized to any real valued

function in the consequent parts of the rules. Usually, polynomials pn
i (x) of the n-th

order are considered. On the other hand, the inference function given by (1.2.11)

is due to the weighting influence of the antecedent fuzzy sets Ai already non-linear

even with linear consequents p1
i (x). Therefore polynomials up to the first order are

supposed to be enough.

1.3 Fuzzy Modelling on the Basis of Fuzzy Ap-

proximation

Fuzzy approximation is understood as a collection of techniques for an approxima-

tion of functional dependencies between variables by means of the fuzzy set theory

or fuzzy logic [9, 32, 52]. It is a quickly developing mathematical branch aiming

at approximation of some dependencies by means of the fuzzy set theory and the

fuzzy logic in broader sense. We can find its roots in the Takagi-Sugeno fuzzy rule

based systems [76] and in works aiming at approximation capabilities of fuzzy rule

based systems, see [6, 40]. Nowadays, there are two main approaches to the fuzzy

approximation.
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1.3.1 Normal Forms

The first particular approach relates to the so called normal forms [13, 56] consists in

an investigation of different interpretations of fuzzy IF-THEN rules. Typically, there

are two standard interpretations, namely disjunction of conjunctions and conjunc-

tion of implications [21, 46, 49]. A variety of interpretations of logical connectives

leads to different formalizations of fuzzy rules.

The crucial notion in the field of normal forms is the similarity relation sometimes

also called fuzzy equality which is a binary fuzzy relation naturally generalizing the

classical equality. Such a similarity relation is then a relation S ⊂∼ D × D which is

reflexive, symmetric and transitive w.r.t a given t-norm, for more details see Chapter

5.

Let us be given a fuzzy set F ⊂∼ D, a left-continuous t-norm ∗ and a similarity

relation S ⊂∼ D × D and let N ⊆ D. Then the disjunctive and the conjunctive

normal forms of F [59] are defined as follows

FDNF,∗(x) =
∨

c∈N

(S(c, x) ∗ F(c)) (1.3.1)

FCNF,∗(x) =
∧

c∈N

(S(x, c) →∗ F(c)), (1.3.2)

respectively.

These normal forms of F approximate the fuzzy set F and their approximation

abilities are studied. In the extreme case, when N = D the normal forms of F are

precisely equal to F. For details we again refer to Chapter 5.

A natural question, what is the reason to approximate a fuzzy set, can appear. A

fuzzy rule base is a rough description of some, usually functional, dependency. And

range D′ of each continuous function f on a compact domain D is a closed interval

which can be transformed by an appropriate mapping to [0, 1]. So, from f : D → D′

we obtain a fuzzy set F ⊂∼ D. Therefore by an approximation of fuzzy sets where we

can use operations serving as interpretations of logical connectives such as t-norms

and residuations we consequently approximate continuous functions.

1.3.2 Fuzzy Transform

The second approach uses the fuzzy set theory to approximate a given function by

another one preserving the feature of transparent interpretability. The main idea is
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to characterize output values w.r.t. local domains and then to aggregate them into

the global information. The fuzzy transform technique [54, 57, 58] follows this idea

and expresses a functional dependency as a linear combination of basic functions,

see Chapter 2. Note that a function produced by this technique may be treated as

a basis for singleton models e.g. Takagi-Sugeno models of the 0-th order .

1.4 Neural Networks

The neural network area is a field which investigates architectures of neurons (units)

and dendrites (connections). These architectures have been motivated by the neural

structure of a human brain as easily seen from the neuron structure, displayed on

Figure 1.3,

Figure 1.3: Neuron scheme.

One neuron, as a computational unit, deals with n ∈ N real inputs x1, . . . , xn

which are weighted by parameters w1, . . . , wn and a bias b1 ∈ R. There is a synaptical

operation ξ1 : R
(n+1)×R

n on the synapses of the dendrites and the unit which usually

computes the weighted sum inputs subtracted by the bias value b1:

ξ1(x1, . . . , xn, w1, . . . , wn, b1) =
n∑

i=1

wi · xi − b1 (1.4.1)
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so, the bias plays the role of a threshold. The real value computed according to

(1.4.1) is then an argument of activation function f1 : R → R which gives a final

output of the neuron. This output is either a final output from the network it is an

input to another neuron.

The main feature of the neural networks is their ability to learn which means to

tune their parameters to minimize some error function [26, 41, 66].

Methods from both soft computing areas - fuzzy approximation and neural net-

works - have been proven to be universal approximators and both preserve the

specific branch advantages (learning vs. interpretability). Therefore they merit a

comparison and a joint study, see Chapter 8.
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Chapter 2

Fuzzy Transform

This chapter overviews main definitions and ideas of the F-transform technique - a

concrete method of the fuzzy approximation of a continuous function. This technique

was firstly introduced by I. Perfilieva in [53] and then recalled with extending results,

developments and applications (see e.g. [54, 57, 58]).

2.1 Fuzzy Partition - Basic Functions

Let us denote the domain of all functions considered in this chapter by D = [a, b].

The domain is then partitioned by a fuzzy partition (see [62]) i.e. by fuzzy sets

Ai ⊂∼ D, i = 1, . . . , n which fulfil the following Ruspini [62] condition:

n∑

i=1

Ai(x) = 1, (2.1.1)

for all x ∈ D.

Basic functions defined in [53] are special fuzzy sets forming a fuzzy partition.

There are special assumptions required on the basic functions which yield appropri-

ate properties which can be very valuable in further numerical methods.

Definition 19 Let c0 = c1 < · · · < cn = cn+1 be fixed nodes within [a, b] such that
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c1 = a, cn = b and n ≥ 2. We say that fuzzy sets A1, . . . ,An are basic functions and

form a fuzzy partition of D if the following conditions hold true for each i = 1, . . . , n:

1. Ai : [a, b] → [0, 1], Ai(ci) = 1,

2. Ai(x) = 0 if x 6∈ (ci−1, ci+1);

3. Ai is continuous on D;

4. Ai strictly increases on [ci−1, ci] and strictly decreases on [ci, ci+1];

5.
∑n

i=1 Ai(x) = 1, for all x ∈ X.

If the nodes c1, . . . , cn are equidistant i.e. ci = a + h(i − 1), i = 1, . . . , n where

h = (b − a)/(n − 1) and the following two additional properties are met:

6 Ai(ci − x) = Ai(ci + x), for all x ∈ [0, h], i = 2, . . . , n − 1, n > 2,

7 Ai+1(x) = Ai(x − h), for all x ∈ [a + h, b], i = 2, . . . , n − 2, n > 2,

we call the fuzzy partition uniform and talk about uniform basic functionsindexuniform

basic functions.

Remark 6 In some cases, a general fuzzy partition works better than the uniform

one. This fact raises a question how to construct basic functions in general. This

can be done by some fuzzy clustering method (e.g. c-means [4]) when the basic

functions will be the resulting clusters. Such approach can be helpful but uniform

basic functions keep some nice and useful properties and therefore an approximation

of functions using uniform basic functions as well. But it is worth mentioning that

for main properties like a convergence this uniformity is not necessary. Since the

proofs are analogous they will be omitted and everything will be proved only for

uniform fuzzy partitions.
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For example, triangular shaped basic functions (see Fig. 2.1(a)) are given by

Ai(x) =







(x−ci−1)
ci−ci−1

x ∈ [ci−1, ci]
(ci+1−x)
ci+1−ci

x ∈ [ci, ci+1]

0 otherwise

(2.1.2)

where i = 0, . . . , n+1 and c0 = c1, cn+1 = cn, while sinusoidal shaped basic functions

(see Fig. 2.1(b)) are given by

Ai(x) =







1
2

(

cos
(

Π(x−ci)
(ci−ci−1)

)

+ 1
)

x ∈ [ci−1, ci]

1
2

(

cos
(

Π(x−ci)
(ci+1−ci)

)

+ 1
)

x ∈ [ci, ci+1]

0 otherwise

(2.1.3)

where i = 0, . . . , n + 1 and c0 = c1, cn+1 = cn.

First, let us recall the following lemma proved in [53] confirming that the definite

integral of a basic function from a uniform fuzzy partition does not depend on its

shape.

Lemma 2 Let a uniform fuzzy partition of D be given by basic functions A1, . . . ,An,

n ≥ 2. Then
b∫

a

A1(x)dx =

b∫

a

An(x)dx =
h

2
(2.1.4)

and for i = 2, . . . , n − 1
b∫

a

Ai(x)dx = h. (2.1.5)

Let us create a fuzzy partition which is weaker than the uniform one.

Definition 20 Let c0 = c1 < · · · < cn = cn+1 be fixed nodes within D such that

c1 = a, cn = b and n ≥ 2 and let fuzzy sets A1, . . . ,An are basic functions. Denote

hi = ci+1 − ci.We say that the basic functions determine a fuzzy partition with a

symmetry if the following condition

Ai(ci + x) = Ai+1(ci+1 − x), x ∈ [0, hi] (2.1.6)
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(a) Triangular shaped uniform fuzzy partition
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(b) Sinusoidal shaped uniform fuzzy partition
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0.4

0.6

0.8

1

(c) Triangular shaped non-uniform fuzzy parti-
tion with a symmetry

Figure 2.1: Graphic presentation of distinct fuzzy partitions.
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holds for i = 1, . . . , n − 1 then

Now, we prove that a fuzzy partition with a symmetry fulfils a similar property

to the one from Lemma 2.

Lemma 3 Let a fuzzy partition with a symmetry of D be given by basic functions

A1, . . . ,An ⊂∼ D, n > 2. Then

∫ b

a

Ai(x)dx =
(hi−1 + hi)

2
. (2.1.7)

proof: Let us express the value hi with help of integrals:

hi =

∫ ci+1

ci

1dx =

∫ ci+1

ci

(Ai(x) + Ai+1(x))dx =

∫ ci+1

ci

Ai(x)dx +

∫ ci+1

ci

Ai+1(x)dx.

(2.1.8)

From (2.1.6) we get

∫ ci+1

ci

Ai(x)dx =

∫ ci+1

ci

Ai+1(x)dx (2.1.9)

and by (2.1.8), both sides of equation (2.1.9) are equal to hi/2. Equation (2.1.7)

which proves the lemma. 2

It is easy to see that Lemma 3 generalizes Lemma 2 because conditions of uni-

formity of a fuzzy partition imply property (2.1.6) and obviously h0 = hn = 0. Let

us consider the right hand side of (2.1.6). Then due to properties of uniform fuzzy

partition we can write

Ai+1(ci+1 − x) = Ai(ci+1 − x − h) = Ai(ci − x) = Ai(ci + x)

which means that property (2.1.6) is fulfilled. Example is on Figure 2.1(c)
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2.2 Fuzzy Transform

2.2.1 Direct Fuzzy Transform

Definition 21 [53] Let a fuzzy partition of D be given by basic functions A1, . . . ,An ⊂∼
D, n > 2 and let f : D → R be an arbitrary function from C(D). The n-tuple of

real numbers [F1, . . . , Fn] given by

Fi =

∫ b

a
f(x)Ai(x)dx
∫ b

a
Ai(x)dx

, i = 1, . . . , n (2.2.1)

is the direct fuzzy transform (F-transform) of f with respect to the given fuzzy

partition. F1, . . . , Fn are the components of the F-transform of f .

By Lemma 2, the direct F-transform of a function f can be simplified in the case

of a uniform fuzzy partition as follows

F1 =
2

h

c2∫

c1

f(x)A1(x)dx (2.2.2)

Fn =
2

h

cn∫

cn−1

f(x)An(x)dx (2.2.3)

Fi =
1

h

ci+1∫

ci−1

f(x)Ai(x)dx, i = 2, . . . , n − 1. (2.2.4)

By Lemma 3, we can simplify in the case of a fuzzy partition with a symmetry the

F-transform as follows

Fi =
2

(hi−1 + hi)

∫ b

a

f(x)Ai(x)dx. (2.2.5)

If we are not given an analytical description of a function f , but we are provided

with function values at some nodes, say p1, . . . , pN , then the discrete F-transform

can be defined.
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Definition 22 [54] Let a fuzzy partition of D be given by basic functions A1, . . . ,An ⊂∼
D, n > 2 and let f : D → R be a function known at nodes p1, . . . , pN such that for

each i = 1, . . . , n, there exists k = 1, . . . , N : Ai(pk) > 0. The n-tuple of reals

[F1, . . . , Fn] given by

Fi =

∑N
k=1 f(pk)Ai(pk)
∑N

k=1 Ai(pk)
, i = 1, . . . , n (2.2.6)

is the discrete direct F-transform of f with respect to the given fuzzy partition.

Remark 7 Throughout the text, if possible, we will omit the word “discrete” and

use just the F-transform notion since from the context it is usually obvious whether

we mean the one given by (2.2.6) or the one given by(2.2.1).

Due to the usage of definite integrals in formula (2.2.1) and summations in

formula (2.2.6) the linearity of the direct F-transform is an expected property. It

can be formalized as follows.

Lemma 4 [54] Let a fuzzy partition of D be given by basic functions A1, . . . ,An ⊂∼
D, n > 2 and let f, g, h be continuous functions on D such that h = αf + βg where

α, β are real numbers. Then the following equality holds

[H1, . . . , Hn] = α[F1 . . . , Fn] + β[G1, . . . , Gn] (2.2.7)

where [H1, . . . , Hn], [F1, . . . , Fn] and [G1, . . . , Gn] are the F-transforms of h, f and g

with respect to the given fuzzy partition, respectively .

The following lemma has been firstly published in [53] and the proof can be

found in [54]. In fact, the lemma confirms the closeness of the components of the

direct F-transform to the precise values of a given function at nodes ci.
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Lemma 5 [53] Let a uniform fuzzy partition of D be given by basic functions

A1, . . . ,An ⊂∼ D, n > 2 and let f ∈ C(D) be a twice continuously differentiable

function on (a, b). Then for each i = 1, . . . , n

Fi = f(ci) + O(h2). (2.2.8)

Lemma 3 enables us to generalize Lemma 5.

Lemma 6 Let a fuzzy partition with a symmetry of D be given by basic functions

A1, . . . ,An ⊂∼ D, n > 2 and let f ∈ C(D) be a twice continuously differentiable

function on (a, b). Then for each i = 1, . . . , n

Fi = f(ci) + O(max(h2
i−1, h

2
i )). (2.2.9)

proof: The proof uses an analogous technique to the one used in the proof of

Lemma 5, see [54]. For arbitrary i = 2, . . . , n − 1:

Fi =
2

(hi−1 + hi)

(∫ ci

ci−1

f(x)Ai(x)dx +

∫ ci+1

ci

f(x)Ai(x)dx

)

=

2

(hi−1 + hi)

[
hi−1

2
(f(ci−1)Ai(ci−1) + f(ci)Ai(ci)) + O(h3

i−1)

]

+

2

(hi−1 + hi)

[
hi

2
(f(ci)Ai(ci) + f(ci+1)Ai(ci+1)) + O(h3

i )

]

=

hi−1

(hi−1 + hi)
f(ci) +

hi

(hi−1 + hi)
f(ci) + 2

O(h3
i−1) + O(h3

i )

(hi−1 + hi)
=

f(ci) +
O(h3

i−1 + h3
i )

(hi−1 + hi)

which equals to f(ci) + O(max(h2
i−1, h

2
i )).

For the two remaining cases we can write

F1 =
2

h1

(∫ c2

c1

f(x)A1(x)dx

)

=
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2

h1

[
h1

2
(f(c1)A1(c1) + f(c2)A1(c2)) + O(h3

1)

]

= f(c1) + O(h2
1) and

Fn =
2

hn

(∫ cn

cn−1

f(x)An(x)dx

)

=

2

hn

[
hn

2
(f(cn−1)An(cn−1) + f(cn)An(cn)) + O(h3

n−1)

]

=

f(cn) + O(h2
n−1)

which since h0 = c1 − c0 = a− a = 0 and hn = cn+1 − cn = b− b = 0 coincides with

formula (2.2.9). 2

Lemma 7 [53] Let a uniform fuzzy partition of D be given by basic functions

A1, . . . ,An ⊂∼ D, n > 2 and let f ∈ C(D) be a twice continuously differentiable

function on (a, b). Then for each i = 2, . . . , n − 1

∫ ci

a

f(x)dx = h

(
1

2
F1 + F2 + · · · + Fi−1 +

1

2
Fi

)

+ O(h2). (2.2.10)

Moreover, the integral
∫ b

a
f(x)dx can be computed precisely:

∫ b

a

f(x)dx = h

(
1

2
F1 + F2 + · · · + Fn−1 +

1

2
Fn

)

. (2.2.11)

Lemma 7 clarifies the relationship between the computation of definite integrals

and the F-transform. It shows how the F-transform can be used in numerical com-

putations. In practical situations, the F-transform components are computed ac-

cording to formula (2.2.6) of the discrete F-transform and formula (2.2.11) provides

us with a numerical integral of f . Due to Lemma 3, we can present the following

generalization valid eve for non-uniform fuzzy partitions.

Lemma 8 Let a fuzzy partition with a symmetry of D be given by basic functions

A1, . . . ,An ⊂∼ D, n > 2 and let f ∈ C(D) be a twice continuously differentiable
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function on (a, b). Then for each i = 2, . . . , n − 1

∫ ci

a

f(x)dx =

(
h1

2
F1 +

(h1 + h2)

2
F2 + · · · +

(hi−2 + hi−1)

2
Fi−1

hi−1

2
Fi

)

+ O(max(h2
i−1, h

2
i )).

(2.2.12)

Moreover, the integral
∫ b

a
f(x)dx can be computed precisely

∫ b

a

f(x)dx =
1

2

(
n−1∑

i=1

hiFi +
n∑

i=2

hi−1Fi

)

. (2.2.13)

proof:

∫ ci

a

f(x)dx =

∫ ci

a

f(x)
i∑

j=1

f(x)Aj(x)dx =

∫ c2

c1

f(x)A1(x)dx+

∫ c3

c1

f(x)A2(x)dx + · · · +

∫ ci

ci−2

f(x)Ai−1(x)dx +

∫ ci

ci−1

f(x)Ai(x)dx

which due to Lemma 3 and using trapezium formula equals to

h1

2
F1 +

(h1 + h2)

2
F2 + · · · +

(hi−2 + hi−1)

2
Fi−1

+
hi−1

2
(f(ci−1)Ai(ci−1) + f(ci)Ai(ci)) + O(h2

i−1) (2.2.14)

and because of Lemma 6 we get the proof of the first part of the lemma.

And analogously

∫ b

a

f(x)dx =

∫ b

a

f(x)
n∑

i=1

f(x)Ai(x)dx =
n∑

i=1

∫ b

a

f(x)Ai(x)dx =

h1

2
F1 +

(h1 + h2)

2
+ · · · +

(hn−2 + hn−1)

2
Fn−1 +

hn−1

2
Fn

which proves the second part.

2
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If we deal with an approximation of a function it is necessary to distinguish

the approximation among other possible ones. This is usually guaranteed by a

minimization of a certain criterion which defines a closeness of an original function

and its approximation in some natural sense.

In [54], there was the following criterion

Φ(Q1, . . . , Qn) =

∫ b

a

(
n∑

i=1

(f(x) − Qi)
2Ai(x)

)

dx (2.2.15)

proposed to measure the quality of a discrete approximation of a function. By direct

computation, one can check that the error function Φ : R
n → R

+ called piecewise

integral least square criterion[54] is minimized by the components of the F-transform

Fi defined by (2.2.6).

In the case of the discrete F-transform, the criterion is modified to the following

one

Φ(Q1, . . . , Qn) =
N∑

k=1

(
n∑

i=1

(f(pk) − Qi)
2Ai(pk)

)

. (2.2.16)

2.2.2 Inversion

The direct F-transform of an original function serves as its discrete representation

which can be e.g. successfully used in numerical computations. To bring the direct

F-transform back we use the inverse F-transform; see [53].

Definition 23 Let [F1, . . . , Fn] be the direct F-transform of f with respect to

A1, . . . ,An ⊂∼ D. Then the function

fF
n (x) =

n∑

i=1

FiAi(x), (2.2.17)

is called the inverse F-transform of f .
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Let us fix a fuzzy partition. Then the inverse F-transform is a mapping which

maps an n-tuple of reals to the space linn{Ai} of linear combinations of the basic

functions.

Lemma 9 [78] Let a fuzzy partition of D be given by basic functions A1, . . . ,An ⊂∼
D, n > 2. Then each function q ∈ linn{Ai} i.e. q(x) =

∑n
i=1 QiAi(x) is uniquely

determined by the n-tuple [Q1, . . . , Qn].

proof: By contrary, suppose that

n∑

i=1

QiAi(x) =
n∑

i=1

RiAi(x)

for Q1, . . . , Qn, R1, . . . , Rn ∈ R such that there exists i: Qi 6= Ri. For that index i,

Ai(ci) = 1, whence Aj(ci) = 0 for j 6= i. This implies Qi = Ri which contradicts

the assumption. 2

By Lemma 9, the space linn{Ai} is in a one-to-one correspondence with the set

of n-tuples of reals, that is, with the set R
n.

The inverse F-transform gives us a continuous function. A sequence of the inverse

F-transforms uniformly converges to the original function f . This fact has been

formulated and proved in the following theorem and its two corollaries, see [58].

Theorem 2 [58] Let f be a continuous functions on D. Then for any ε > 0 there

exists nε > 2 and a fuzzy partition A1, . . . ,Anε
of D such that for all x ∈ X

|f(x) − fF
nε

(x)| ≤ ε, (2.2.18)

where fF
nε

is the inverse F-transform of f with respect to the fuzzy partition A1, . . . ,Anε
.

Corollary 1 [58] Let f be any continuous function on D and {Ai}n be a sequence

of uniform fuzzy partitions of D, one for each n. Let {fF
n }n be the sequence of the
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inverse F-transforms, each with respect to a given fuzzy partition. Then for any

ε > 0 there exists nε > 2 such that for each n > nε and for all x ∈ D

|f(x) − fF
n (x)| ≤ ε. (2.2.19)

Corollary 2 [58] Let the assumptions of Corollary 1 be fulfilled. Then the sequence

of inverse F-transforms {fF
n }n uniformly converges to f .

The assumption of uniformity of fuzzy partitions in Corollary 1 can be avoided.

The crucial point is to require such fuzzy partitions that hi → 0 for n → ∞ and

i = 1, . . . n − 1.

The uniform convergence property is visually demonstrated on Figure 2.2.
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(a) Fuzzy partition composed of 10 sinusoidal
shaped basic functions

(b) Fuzzy partition composed of 10 triangular
shaped basic functions

(c) Fuzzy partition composed of 20 triangular
shaped basic functions

Figure 2.2: Function f(x) = sin(6x) (depicted by black color) on D = [0, 1] and its
inverse F-transform (depicted by blue color) w.r.t. a given uniform fuzzy partition
(depicted by grey color).
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Chapter 3

F-transform for Functions with

More Variables

In this chapter, we focus on an extension of the F-transform technique for functions

with more variables. This will be used in up-coming applications.

3.1 F-transform for Functions with Two Variables

First of all, we present an extension for functions with two variables [73], which is

the most visual case and allows us to present some figures.

3.1.1 Fuzzy Partition

We will consider a rectangle D2 = [a, b] × [c, d] as a common domain of all real-

valued functions in this section. The main idea consists in a construction of two

fuzzy partitions, one of [a, b] and one of [c, d].

Definition 24 [73] Let a fuzzy partition of [a, b] be given by basic functions A1, . . . ,An ⊂∼
[a, b], n > 2 and let a fuzzy partition of [c, d] be given by basic functions B1, . . . ,Bn ⊂∼
[c, d],m > 2. Then, the fuzzy partition of D2 is given by the fuzzy Cartesian prod-

uct {A1, . . . ,An}×⊙ {B1, . . . ,Bm} with respect to the product t-norm of these two
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fuzzy partitions. If both fuzzy partitions of particular axes are uniform (with a

symmetry) then, the the overall fuzzy partition is also uniform (with a symmetry).

Remark 8 Throughout the section, we will use the following notation. The nodes

of the fuzzy partition of [a, b] will be denoted by cx
0 = cx

1 < · · · < cx
n = cx

n+1 and the

nodes of the fuzzy partition of [c, d] will be denoted by cy
0 = cy

1 < · · · < cy
m = cy

m+1.

Furthermore, we denote hx
i = cx

i+1−cx
i , i = 0, . . . , n and hy

j = cy
j+1−cy

j , j = 0, . . . ,m

and analogously hx = (b − a)/(n − 1) and hy = (d − c)/(m − 1) in the case of a

uniform fuzzy partition.

Figure 3.1: Uniform fuzzy partition of D2 comprised from triangular shaped basic
functions on both axes.

Similarly to Lemma 2, we can state the following one confirming the indepen-

dence of double definite integral of product of two uniform basic functions on their

shapes.

Lemma 10 [73] Let a uniform fuzzy partition of D2 be given by {A1, . . . ,An} ×⊙

{B1, . . . ,Bm}. Then

∫ d

c

∫ b

a

A1(x)B1(y)dxdy =

∫ d

c

∫ b

a

A1(x)Bm(y)dxdy =
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Figure 3.2: Uniform fuzzy partition of D2 comprised from sinusoidal and triangular
shaped basic functions.

=

∫ d

c

∫ b

a

An(x)B1(y)dxdy =

∫ d

c

∫ b

a

An(x)Bm(y)dxdy =

=
hxhy

4

and for i = 2, . . . , n − 1 and j = 2, . . . ,m − 1

∫ d

c

∫ b

a

Ai(x)B1(y)dxdy =

∫ d

c

∫ b

a

Ai(x)Bm(y)dxdy =

=

∫ d

c

∫ b

a

A1(x)Bj(y)dxdy =

∫ d

c

∫ b

a

An(x)Bj(y)dxdy =

=
hxhy

2

and
∫ d

c

∫ b

a

Ai(x)Bj(y)dxdy = hxhy.

proof: By Lemma 2,

∫ d

c

∫ b

a

Ai(x)Bj(y)dxdy =

∫ d

c

Bj(y)

∫ b

a

Ai(x)dxdy =

∫ d

c

Bj(y)hxdy = hxhy,
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for i = 2, . . . , n − 1 and j = 2, . . . ,m − 1.

Analogously we have for i = 2, . . . , n − 1 and j = 2, . . . ,m − 1

∫ d

c

∫ b

a

A1(x)Bj(y)dxdy =
hxhy

2
,

∫ d

c

∫ b

a

Ai(x)B1(y)dxdy =
hxhy

2

as well as
∫ d

c

∫ b

a

An(x)Bj(y)dxdy =
hxhy

2
,

∫ d

c

∫ b

a

Ai(x)Bn(y)dxdy =
hxhy

2
.

Finally, for i ∈ {1, n} and j ∈ {1,m}
∫ d

c

∫ b

a

Ai(x)Bj(y)dxdy =
hxhy

4
.

2

This lemma will be shorten and generalized to a more-dimensional case in section

3.2.

Due to Lemma 3, we can formulate an analogous lemma even for fuzzy partitions

with a symmetry.

Lemma 11 Let a fuzzy partition with a symmetry of D2 be given by {A1, . . . ,An}×⊙

{B1, . . . ,Bm}. Then

∫ d

c

∫ b

a

Ai(x)Bj(y)dxdy =
(hx

i−1 + hx
i )(hy

j−1 + hy
j )

4
. (3.1.1)

proof: The proof is analogously to the proof of Lemma 10 and uses Lemma

3. Therefore the proof is omitted. 2
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3.1.2 Direct and Inverse F-transform

Analogously to the one-dimensional case, we introduce the direct F-transform as a

mapping from the space of continuous functions C(D2) to the space of real matrices

of n × m type.

Definition 25 [73] Let a fuzzy partition of D2 be given by {A1, . . . ,An}×⊙{B1, . . . ,Bm}

and let f ∈ C(D2). We say that a real matrix F 2[f ] = [Fij]n×m given by

Fij =

∫ d

c

∫ b

a
f(x, y)Ai(x)Bj(y)dxdy

∫ d

c

∫ b

a
Ai(x)Bj(y)dxdy

, i = 1, . . . , n, j = 1, . . . ,m (3.1.2)

is the F-transform of f with respect to the given fuzzy partition. The reals Fij are

the components of the F-transform of f .

By Lemma 10, we can write

F11 =
4

hxhy

∫ d

c

∫ b

a

f(x, y)A1(x)B1(y)dxdy,

F1m =
4

hxhy

∫ d

c

∫ b

a

f(x, y)A1(x)Bm(y)dxdy,

Fn1 =
4

hxhy

∫ d

c

∫ b

a

f(x, y)An(x)B1(y)dxdy,

Fnm =
4

hxhy

∫ d

c

∫ b

a

f(x, y)An(x)Bm(y)dxdy,

and for i = 2, ..., n − 1 and j = 2, ...,m − 1:

Fi1 =
2

hxhy

∫ d

c

∫ b

a

f(x, y)Ai(x)B1(y)dxdy,

Fim =
2

hxhy

∫ d

c

∫ b

a

f(x, y)Ai(x)Bm(y)dxdy,

F1j =
2

hxhy

∫ d

c

∫ b

a

f(x, y)A1(x)Bj(y)dxdy,

55



Fnj =
2

hxhy

∫ d

c

∫ b

a

f(x, y)An(x)Bj(y)dxdy,

Fij =
1

hxhy

∫ d

c

∫ b

a

f(x, y)Ai(x)Bj(y)dxdy,

In the case of a uniform fuzzy partition of D2.

By Lemma 11, for i = 1, ..., n and j = 1, ...,m we can write

Fij =
4

(hx
i−1 + hx

i )(hy
j−1 + hy

j )

∫ d

c

∫ b

a

f(x, y)Ai(x)Bj(y)dxdy

in the case of a fuzzy partition with a symmetry.

Now, let us present a lemma confirming that the components of the F-transform

of f ∈ C(D2) given by (3.1.2) are (similarly to the one-dimensional case, see Lemma

5 and Lemma 6) equal to precise values of f at the respective nodes of the fuzzy

partition up to a certain accuracy.

Lemma 12 Let a uniform fuzzy partition of D2 be given by {A1, . . . ,An}×⊙{B1, . . . ,Bm}

and let f ∈ C(D2) be a twice continuously differentiable function on (a, b) × (c, d).

Then for each i = 1, . . . , n and for each j = 1, . . . ,m

Fij = f(cx
i , c

y
j ) + O(max((hx)2, (hy)2)). (3.1.3)

proof: For i = 2, . . . , n − 1, and j = 2, . . . ,m − 1

Fij =
1

hxhy

cy
j+1∫

cy
j−1

cx
i+1∫

cx
i−1

f(x, y)Ai(x)Bj(y)dxdy =

1

hxhy

cy
j+1∫

cy
j−1

Bj(y)

cx
i+1∫

cx
i−1

f(x, y)Ai(x)dxdy
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which is due to the trapezium formula equal to

1

hxhy

cy
j+1∫

cy
j−1

Bj(y)

[
hx

2

(
f(cx

i−1, y)Ai(c
x
i−1) + 2f(cx

i , y)Ai(c
x
i ) + +f(cx

i+1, y)Ai(c
x
i+1)
)

+ O((hx)3)

]

dy

and because of the properties of the basic functions it is equal to

1

hxhy

cy
j+1∫

cy
j−1

Bj(y)(hxf(cx
i , y) + O((hx)3))dy =

1

hy

cy
j+1∫

cy
j−1

Bj(y)f(cx
i , y)dy +

1

hxhy

cy
j+1∫

cy
j−1

Bj(y)O((hx)3)dy.

Again, using the trapezium formula we get

1

hy

[
hy

2
(f(cx

i , c
y
j−1)Bj(c

y
j−1) + 2f(cx

i , c
y
j )Bj(c

y
j ) + f(cx

i , c
y
j+1)Bj(c

y
j+1))

]

+

O((hy)3)

hy
+

O((hx)3)

hxhy

cy
j+1∫

cy
j−1

Bj(y)dy = f(cx
i , c

y
j ) + O((hx)2) +

O((hy)3)

hxhy
hy

which is finally

f(cx
i , c

y
j ) + O(max((hx)2, (hy)2)).

For the remaining cases, the proof is analogous. 2

Lemma 12 can also be generalized for a fuzzy partition with a symmetry.

Lemma 13 Let a fuzzy partition with a symmetry of D2 be given by {A1, . . . ,An}×⊙

{B1, . . . ,Bm} and let f ∈ C(D2) be a twice continuously differentiable function on

(a, b) × (c, d). Then for each i = 1, . . . , n and j = 1, . . . ,m

Fij = f(cx
i , c

y
j ) + O(max((hx

i−1)
2, (hx

i )2, (hy
j−1)

2, (hy
j )2)). (3.1.4)
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proof: By Lemma 11 we can write

Fij =
4

(hx
i−1 + hx

i )(hy
j−1 + hy

j )

d∫

c

b∫

a

f(x, y)Ai(x)Bj(y)dxdy

which is equal to

4

(hx
i−1 + hx

i )(hy
j−1 + hy

j )

cy
j+1∫

cy
j−1

Bj(y)






cx
i∫

cx
i−1

f(x, y)Ai(x)dx +

cx
i+1∫

cx
i

f(x, y)Ai(x)dx




 dy

which is (see the proof of Lemma 6) equal to

4

(hx
i−1 + hx

i )(hy
j−1 + hy

j )

cy
j+1∫

cy
j−1

Bj(y)

[
(hx

i−1 + hx
i )

2
f(cx

i , y) + O((hx
i−1)

3 + (hx
i )3)

]

dy =

2

(hy
j−1 + hy

j )

cy
j+1∫

cy
j−1

Bj(y)f(cx
i , y)dy +

O((hx
i−1)

2 + (hx
i )2)

(hy
j−1 + hy

j )

cy
j+1∫

cy
j−1

Bj(y)dy

which is by Lemma 6 and by Lemma 3 equal to

f(cx
i , c

y
j ) + O(max((hx

i−1)
2, (hx

i )2, (hy
j−1)

2, (hy
j )2)).

2

Lemma 12 as well as Lemma 13 can be formulated for an arbitrary number of

variables and such extensions will be introduced later on. However, the proofs of the

extensions using the same technique would not be very transparent due to a high

number of indices.

For those situations when the knowledge of f is partial (e.g. given by some

measurements) and we know f only at some nodes (pk, qk) ∈ D2, the direct F-

transform is defined as follows.
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(a) f(x, y) = sin(x) · cos(y)

(b) The inverse F-transform w.r.t. a uniform
fuzzy partition which is comprised of 10 trian-
gular shaped basic functions on each axis

(c) The inverse F-transform w.r.t. a uniform
fuzzy partition which is comprised of 20 trian-
gular shaped basic functions on each axis

Figure 3.3: An illustration of the uniform convergence of the inverse F-transform to
the original function f(x, y) = sin(x) · cos(y) on D2 = [0, 2π]2.

Definition 26 Let a fuzzy partition of D2 be given by {A1, . . . ,An}×⊙{B1, . . . ,Bm}

and let a function f : D2 → R be known at nodes (p1, q1), . . . , (pN , qN) such that

for each (i, j) where i = 1, . . . , n and j = 1, . . . ,m, there exists k = 1, . . . , N :

Ai(pk)Bj(qk) > 0. We say that a real matrix F 2[f ] = [Fij]n×m given by

Fij =

∑N
k=1 f(pk, qk)Ai(pk)Bj(qk)
∑N

k=1 Ai(pk)Bj(qk)
, i = 1, . . . , n, j = 1, . . . ,m (3.1.5)

is the discrete (direct) F-transform of f with respect to the given fuzzy partition.

Definition 27 Let F 2[f ] be the F-transform of a function f ∈ C(D2) with respect
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to a given fuzzy partition {A1, . . . ,An} ×⊙ {B1, . . . ,Bm}. Then the function

fF
n,m(x, y) =

n∑

i=1

m∑

j=1

FijAi(x)Bj(y) (3.1.6)

is called the inverse F-transform of f .

The Inverse F-transform is defined analogously to the one-dimensional case.

A uniform convergence of the inverse F-transform to the original function, as

well as some other properties, will be proved in Section 3.2

3.2 Fuzzy Transform for Functions with r ∈ N

Variables

This section provides the full extension of the original concept of the F-transform

method to the space of functions with an arbitrary finite number of arguments. The

previous sections devoted to the two-dimensional case was provided because of clear

motivation, better visualization, possibility to provide the reader with figures and

more transparent proofs for some properties (see Lemmas 12 and 13).

3.2.1 Fuzzy Partition

We will denote the common domain of all functions with r variables by Dr = [a1, b1]×

· · · × [ar, br], vectors x = (x1, . . . , xr) will denote elements of Dr.

Definition 28 [74] Let a fuzzy partition of [aj, bj] be given by basic functions

Aj
1, . . . ,A

j
nj

⊂∼ [aj, bj], n > 2 for j = 1, . . . , r. Then the fuzzy partition of Dr is

given by the fuzzy Cartesian product {A1
1, . . . ,A

1
n1
} ×⊙ {A2

1, . . . ,A
2
n2
} ×⊙ · · · ×⊙

{Ar
1, . . . ,A

r
nr
} with respect to the product t-norm of these r fuzzy partitions. If

all fuzzy partitions of particular axes are uniform (with a symmetry) then also the

overall fuzzy partition is uniform (with a symmetry).
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Remark 9 Throughout the section, we will use the following notation. The nodes

of the fuzzy partition of [aj, bj] will be denoted by cj
0 = cj

1 < · · · < cj
nj

= cj
nj+1.

Furthermore, we denote hj
ij

= cj
ij+1 − cj

ij
, for ij = 0, . . . , nj and j = 0, . . . , r and

analogously hj = (bj − aj)/(nj − 1) in the case of a uniform fuzzy partition.

Now we can present the following lemma generalizing and simplifying Lemma

10.

Lemma 14 [74] Let {A1
1, . . . ,A

1
n1
} ×⊙ {A2

1, . . . ,A
2
n2
} ×⊙ · · · ×⊙ {Ar

1, . . . ,A
r
nr
} be

a uniform fuzzy partition of Dr. Then

∫

Dr

A1
i1

(x1) · · ·Ar
ir(xr)dx =

h1 · · ·hr

2α
, (3.2.1)

where α is the frequency of occurrence ij = 1 or ij = nj for all j = 1, . . . , r.

proof: Due to Lemma 2

∫ bj

aj

Aj
ij

(xj)dxj = hj for ij = 2, . . . , nj − 1,

and
∫ bj

aj

Aj
1(x

j)dxj =

∫ bj

aj

Aj
nj

(xj)dxj =
hj

2
.

The remainder of the proof is just a technical exercise (see the proof of Lemma 10)

and therefore is omitted. 2

Which can be for non-uniform basic functions formalized as follows.

Lemma 15 Let {A1
1, . . . ,A

1
n1
}×⊙{A2

1, . . . ,A
2
n2
}×⊙ · · ·×⊙{Ar

1, . . . ,A
r
nr
} be a fuzzy

partition with a symmetry of Dr. Then

∫

Dr

A1
i1

(x1) · · ·Ar
ir(xr)dx =

r∏

j=1

(hj
ij−1 + hj

ij
)

2r
. (3.2.2)

61



proof: Due to Lemma 3

∫ bj

aj

Aj
ij

(xj)dxj =
(hj

ij−1 + hj
ij

)

2
for ij = 1, . . . , nj,

which proves the lemma. 2

3.2.2 Direct F-transform

Definition 29 Let f ∈ C(Dr) and let {A1
1, . . . ,A

1
n1
} ×⊙ {A2

1, . . . ,A
2
n2
} ×⊙ · · · ×⊙

{Ar
1, . . . ,A

r
nr
} be a fuzzy partition of Dr. We say that a ν-tuple F (r)[f ] = [Fi1···ir ]

where ν = (n1 ·n2 · . . . ·nr) of real numbers is the direct F-transform of f with respect

to the given fuzzy partition if

Fi1···ir =

∫ br

ar
· · ·
∫ b1

a1
f(x1, . . . , xr)A1

i1
(x1) · · ·Ar

ir(xr)dx1 · · · dxr

∫ br

ar
· · ·
∫ b1

a1
A1

i1
(x1) · · ·Ar

ir
(xr)dxr · · · dxr

(3.2.3)

for each r-tuple i1 · · · ir.

Remark 10 Number ν will denote the following product ν = (n1 · n2 · . . . · nr)

throughout the entire thesis.

It is easy to see that if the fuzzy partition is fixed, then the direct F-transform

as a mapping from C(Dr) to R
ν is linear.

Lemma 16 Let {A1
1, . . . ,A

1
n1
}×⊙{A2

1, . . . ,A
2
n2
}×⊙ · · ·×⊙{Ar

1, . . . ,A
r
nr
} be a fuzzy

partition of Dr and let f, g, h be continuous functions on Dr such that h = αf + βg

where α, β are real numbers. Then the following equality holds

F (r)[αf + βg] = αF (r)[f ] + βF (r)[g]. (3.2.4)

proof: By direct computation one gets the proof using the fact that the def-

inite integral is a linear mapping, see the proof of Lemma 4. 2
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Definition 30 Let {A1
1, . . . ,A

1
n1
} ×⊙ {A2

1, . . . ,A
2
n2
} ×⊙ · · · ×⊙ {Ar

1, . . . ,A
r
nr
} be a

fuzzy partition of Dr and let a function f : Dr → R be known at nodes (p1
1, . . . , p

r
1), . . . , (p1

N . . . , pr
N)

such that for each (i1, · · · , ir) where ij = 1, . . . , nj and j = 1, . . . , r, there exists

k = 1, . . . , N : A1
i1

(p1
k) · · ·Ar

ir(pr
k) > 0. We say that the ν-tuple [Fi1···ir ] of real num-

bers is the discrete direct F-transform of f with respect to the given fuzzy partition

if

Fi1···ir =

∑N
k=1 f(p1

k, . . . , p
r
k)A1

i1
(p1

k) · · ·Ar
ir(pr

ir)
∑N

k=1 A1
i1

(p1
k) · · ·Ar

ir
(pr

ir
)

(3.2.5)

for each r-tuple i1 · · · ir.

Lemma 17 Let f ∈ C(Dr) be a twice continuously differentiable function on (a1, b1)×

· · ·× (ar, br) and {A1
1, . . . ,A

1
n1
}×⊙ {A2

1, . . . ,A
2
n2
}×⊙ · · ·×⊙ {Ar

1, . . . ,A
r
nr
} be a uni-

form fuzzy partition of Dr. Then

Fi1...ir = f(c1
i1
, . . . , cr

ir) + O

(
r∨

j=1

(hj)2

)

(3.2.6)

for each ij = 1, . . . , nj where j = 1, . . . , r.

proof: The proof uses the same technique as the proof of Lemma 12 and

therefore it is omitted. 2

Finally, we can extend Lemma 13 as follows.

Lemma 18 Let f ∈ C(Dr) be a twice continuously differentiable function on (a1, b1)×

· · ·×(ar, br) and {A1
1, . . . ,A

1
n1
}×⊙{A2

1, . . . ,A
2
n2
}×⊙ · · ·×⊙{Ar

1, . . . ,A
r
nr
} be a fuzzy

partition with a symmetry of Dr. Then

Fi1...ir = f(c1
i1
, . . . , cr

ir) + O

(

max

(
r∨

j=1

(hj
ij−1)

2,
r∨

j=1

(hj
ij

)2

))

(3.2.7)

for each ij = 1, . . . , nj where j = 1, . . . , r.

proof: The proof uses the same technique as the proof of Lemma 13 and

therefore it is omitted. 2
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Since the notation of the equality of the components of the F-transform to the

precise function values at nodes of a given fuzzy partition up to a certain accuracy

is becoming more complicated and less transparent when the number of variables

increase, we can state the following simplification.

Corollary 3 Let all the assumptions of Lemma 18 be fulfilled and let us denote

hmax = max{hj
ij
|ij ∈ {1, . . . , nj − 1}; j ∈ {1, . . . , r}}.

Then

Fi1...ir = f(c1
i1
, . . . , cr

ir) + O((hmax)2) (3.2.8)

for each ij = 1, . . . , nj where j = 1, . . . , r.

Since any uniform fuzzy partition is only a special case of the fuzzy partition

with a symmetry, the previous corollary simplifies the method of expressing the

accuracy of the F-transform for both - systems of non-uniform and even uniform

basic functions.

3.2.3 Inverse F-transform

Definition 31 Let F (r)[f ] be the direct F-transform of f ∈ C(Dr) with respect to

a given fuzzy partition {A1
1, . . . ,A

1
n1
} ×⊙ {A2

1, . . . ,A
2
n2
} ×⊙ · · · ×⊙ {Ar

1, . . . ,A
r
nr
}.

Then function

fF
n1,...,nr

(x1, . . . , xr) =

n1∑

i1=1

· · ·
nr∑

ir=1

Fi1···irA
1
i1

(x1) · · ·Ar
ir(xr) (3.2.9)

is called the inverse F-transform of f .

Similarly to Lemma 9 we can formulate the following one claiming the one-to-one

correspondence of the set R
ν and the space linν{Aj

ij
} of linear combinations of ν

fuzzy sets forming a fuzzy partition of Dr.
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Lemma 19 Let {A1
1, . . . ,A

1
n1
}×⊙{A2

1, . . . ,A
2
n2
}×⊙ · · ·×⊙{Ar

1, . . . ,A
r
nr
} be a fuzzy

partition of Dr. Then each q ∈ linν{Aj
ij
}nj

i.e.

q(x1, . . . , xr) =

n1∑

i1=1

· · ·
nr∑

ir=1

Qi1···irA
1
i1

(x1) · · ·Ar
ir(xr)

is uniquely determined by the ν-tuple [Qi1...ir ] of real numbers.

for Q1, . . . , Qn, R1, . . . , Rn ∈ R such that there exists i: Qi 6= Ri. For that index

i, Ai(ci) = 1, whence Aj(ci) = 0 for j 6= i. This implies Qi = Ri which contradicts

the assumption.

proof: By contradiction. Suppose that

n1∑

i1=1

· · ·
nr∑

ir=1

Qi1···irA
1
i1

(x1) · · ·Ar
ir(xr) =

n1∑

i1=1

· · ·
nr∑

ir=1

Ri1···irA
1
i1

(x1) · · ·Ar
ir(xr)

for Qi1,...,ir , Ri1,...,ir ∈ R where ij = 1, . . . , nj and j = 1, . . . , r such that there exists

an r-tuple (i1, . . . , ir): Qi1,...,ir 6= Ri1,...,ir . For that r-tuple,

A1
i1

(c1
i1

) · . . . · Ar
ir(cr

ir) = 1

whence

A1
l1

(c1
l1

) · . . . · Ar
lr(cr

lr) = 0

for (i1, . . . , ir) 6= (l1, . . . , lr). This implies Qi1,...,ir = Ri1,...,ir which contradicts the

assumption. 2

As well as in the one-dimensional case, we can state the crucial convergence

property as follows.

Theorem 3 Let f ∈ C(Dr). Then for any ε > 0 there exist nj(ε) for j = 1, . . . , r

and a fuzzy partition {A1
1, . . . ,A

1
n1(ε)}×⊙{A2

1, . . . ,A
2
n2(ε)}×⊙ · · ·×⊙{Ar

1, . . . ,A
r
nr(ε)}

of Dr such that for all x ∈ Dr

| f(x) − fF
n1(ε),...,nr(ε)(x) |< ε.

65



proof: Since f is continuous, for each ε > 0 we can find some δ > 0 such that

for all u,v ∈ Dr : ‖ u − v ‖ǫ< δ implies |f(u) − f(v)| < ε where ‖ · ‖ǫ denotes the

Euclidean norm.

Let {A1
1, . . . ,A

1
n1(ε)}×⊙{A2

1, . . . ,A
2
n2(ε)}×⊙ · · ·×⊙{Ar

1, . . . ,A
r
nr(ε)} be a uniform

fuzzy partition of Dr such that hj = (bj−aj)/(nj(ε)−1) ≤ δ/
√

r for all j = 1, . . . , r.

Let t = (t1, . . . , tr) be an arbitrary element of [c1
i1
, c1

i1+1] × · · · × [cr
ir , c

r
ir+1] then

| f(t) − Fi1...ir |=| f(t) − 2α

h1 · · ·hr

∫

Dr

f(x)A1
i1

(x1) · · ·Ar
ir(xr)dx |≤

2α

h1 · · ·hr

cr
ir+1∫

cr
ir

· · ·
c1i1+1∫

c1i1

| f(t) − f(x) | A1
i1

(x1) · · ·Ar
ir(xr)dx.

Due to the continuity of f we have

2α

h1 · · ·hr

· ε ·
cr
ir+1∫

cr
ir

· · ·
c1i1+1∫

c1i1

| f(t) − f(x) | A1
i1

(x1) · · ·Ar
ir(xr)dx.

Due to Lemma 14 the last expressions is equal to

2α

h1 · · ·hr

· ε · h1 · · ·hr

2α
= ε.

Therefore,

| f(t) − Fi1...ir |< ε.
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Analogously,

| f(t) − F(i1+1)...ir |< ε,

· · ·

| f(t) − Fi1...(ir+1) |< ε,

· · ·

| f(t) − F(i1+1)...(ir+1) |< ε,

and therefore

| f(t) − fF
n1(ε),...,nr(ε)(t) |=| f(t) −

n1(ε)
∑

i1=1

· · ·
nr(ε)
∑

ir=1

Fi1...irA
1
i1

(t1) · · ·Ar
ir(tr) |≤

n1(ε)
∑

i1=1

· · ·
nr(ε)
∑

ir=1

A1
i1

(t1) · · ·Ar
ir(tr) | f(t) − Fi1...ir |= ε.

Since the argument t has been chosen arbitrarily, Theorem 3 has been proved. 2

Corollary 4 Let f ∈ C(Dr) and let {{A1
1, . . . ,A

1
n1
} ×⊙ {A2

1, . . . ,A
2
n2
} ×⊙ · · · ×⊙

{Ar
1, . . . ,A

r
nr
}}(n1,n2,...,nr) be a sequence of uniform fuzzy partitions of Dr. Let

{fF
n1,...,nr

}(n1,n2,...,nr) be the sequence of the inverse F-transforms, one for each fuzzy

partition. Then for any ε > 0 there exist nj(ε) where j = 1, . . . , r such that for each

nj > nj(ε) and for all x ∈ D

| f(x) − fF
n1,...,nr

(x) |< ε.

Corollary 5 Let all the assumptions of Corollary 4 be fulfilled. Then the sequence

{fF
n1,...,nr

}(n1,n2,...,nr) of the inverse F-transforms, one for each fuzzy partition, uni-

formly converges to f .

67



68



Chapter 4

Applications to Partial Differential

Equations

4.1 Motivation

Differential equations are used for modelling various physical phenomena. Actually,

many problems are dynamic and too complicated in order to develop an accurate

differential equation model for such problems requires complex and time consuming

algorithms hardly implementable in practice. Thus, a usage of fuzzy mathematics

seems to be appropriate for such cases.

Much work has been done in the field of fuzzy differential equations see e.g.

[33], [34] or [84]. However, a fuzzy approach to numerical solutions of differential

equations has not yet been deeply investigated although some results have been

published e.g. in [64].

In [54] I. Perfilieva introduced an application to the Cauchy problem. It has been

shown that if the original function is replaced by an approximation model, then a

certain simplification of complex computations could be achieved. The main idea

consists in applying the fuzzy transform to both sides of an ordinary differential

equation of the first order. This transforms the given differential equation to an
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algebraic one which is solvable by existing methods. Then the obtained numerical

solution is transformed back to the space of continuous functions by the inverse

F-transform.

4.2 Partial Differential Equations

As known from physics, many problems cannot be expressed by ordinary differen-

tial equations thus partial differential are required. Therefore, the extension of the

F-transform from the previous Chapter was a necessary step in the approach intro-

duced in [54] to partial differential equations. Results in the field of the application

of the F-transform to numerical solutions of partial differential equation have been

already published in [72, 74, 75].

4.2.1 Equations of Mathematical Physics

We consider three main types of partial differential equations (the equations of math-

ematical physics) - heat equation, wave equation and Poisson’s equation. Without

any loss of generality we consider the 2-dimensional cases of these equations.

Each mentioned partial differential equation is considered on a domain D2 =

X × Y where X,Y are closed real intervals. It can be written in the following

general shape:

L

(
∂2u

∂x2
,
∂2u

∂y2
,
∂u

∂x
,
∂u

∂y

)

= q(x, y) (4.2.1)

where L is a linear form [25, 65]. Moreover, in order to have a unique solution, the

specific initial and boundary conditions are given. The open part of the domain will

be denoted by D2
0 which means that D2

0 = D2 \ ∂D2.

Remark 11 The heat equation and the wave equation are called evolutionary equa-

tions because the second variable is supposed to be a time variable. That is why in
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the next two sections we will consider a domain D2 = X × T and all the symbols y

will be replaced by t.

Our approach consists in applying F-transform (w.r.t. to some given fixed fuzzy

partition) to both sides of equation (4.2.1). This leads to an algebraic equation that

should be solved. The solution of this algebraic equation gives a discrete represen-

tation of an analytical solution of equation (4.2.1) which can be brought back to the

space of continuous functions C(D2) by the inverse F-transform.

Before we start to analyze concrete types of equations, let us fix a uniform fuzzy

partition {A1, . . . ,An} ×⊙ {B1, . . . ,Bm} of D2, with an equidistant step hx on X

and with an equidistant step hy(ht) on Y (T ). All the F-transforms considered in

this chapter are computed w.r.t. this fuzzy partition.

4.3 Heat Equation

The first partial differential equation to be studied is the heat equation. An ap-

plication of F-transform to this equation is investigated in [72]. Let the domain

D2 be a Cartesian product of two real intervals X = [0, 1] and T = [0, R] and let

D′2
0 = (0, 1) × (0, R]. Let u : X × T → R be a continuous solution to the parabolic

equation

∂u(x, t)

∂t
− α

∂2u(x, t)

∂x2
= q(x, t), α ∈ R

+, (x, t) ∈ D′2
0 (4.3.1)

with the following initial and boundary conditions

u(x, 0) = f(x), x ∈ X, (4.3.2)

u(0, t) = T1(t), u(1, t) = T2(t), t ∈ T. (4.3.3)
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After applying F-transform, equation (4.3.1) is transferred to the following alge-

braic equation

F 2[ut] − αF 2[uxx] = F 2[q] (4.3.4)

where

F 2[ut] =












U t
11 U t

12 . . . U t
1m

U t
21 U t

22 . . . U t
2m

...
. . . . . .

...
... . . . . . .

...

U t
n1 . . . . . . U t

nm












(4.3.5)

is the matrix of the F-transform components of ∂u
∂t

,

F 2[uxx] =












Uxx
11 Uxx

12 . . . Uxx
1m

Uxx
21 Uxx

22 . . . Uxx
2m

...
. . . . . .

...
... . . . . . .

...

Uxx
n1 . . . . . . Uxx

nm












(4.3.6)

is the matrix of the F-transform components of ∂2u
∂x2 , and finally

F 2[q] =












Q11 Q12 . . . Q1m

Q21 Q22 . . . Q2m

...
. . . . . .

...
... . . . . . .

...

Qn1 . . . . . . Qnm












(4.3.7)

is the matrix of the F-transform components of q.

Indeed, we are not able to find matrices F 2[ut] and F 2[uxx] since the partial

derivatives ∂u
∂t

and ∂2u
∂x2 are unknown. Therefore, the partial derivatives must be

replaced by their finite differences:

∂u(x, t)

∂t
is replaced by

(u(x, t + ht) − u(x, t))

ht

and analogously

∂2u(x, t)

∂x2
is replaced by

(u(x + hx, t) − 2u(x, t) + u(x − hx, t))

(hx)2
.
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Next, we can approximate U t
ij as follows:

U t
ij =

∫ R

0

∫ 1

0
∂u(x,t)

∂t
Ai(x)Bj(t)dxdt

∫ R

0

∫ 1

0
Ai(x)Bj(t)dxdt

≈
∫ R

0

∫ 1

0
(u(x,t+ht)−u(x,t))

ht Ai(x)Bj(t)dxdt
∫ R

0

∫ 1

0
Ai(x)Bj(t)dxdt

=
1

ht

∫ R

0

∫ 1

0
u(x, t + ht)Ai(x)Bj(t)dxdt
∫ R

0

∫ 1

0
Ai(x)Bj(t)dxdt

− 1

ht

∫ R

0

∫ 1

0
u(x, t)Ai(x)Bj(t)dxdt

∫ R

0

∫ 1

0
Ai(x)Bj(t)dxdt

=
1

ht

(Ui(j+1) − Uij). (4.3.8)

Similarly, we obtain

Uxx
ij ≈ 1

(hx)2
(U(i−1)j − 2Uij + U(i+1)j). (4.3.9)

By (4.3.8) and (4.3.9), we come to the following recursive equation

Ui(j+1) = rU(i−1)j + (1 − 2r)Uij + rU(i+1)j + htQij (4.3.10)

where r = (αht)/(hx)2 and i = 2, . . . , n − 1, j = 1, . . . ,m − 1.

Remark 12 The inequality 0 < r ≤ 1/2 must be fulfilled. This condition is associ-

ated with the convergence of the numerical solution to the analytical one (see Section

4.6) as well as with stable decay of the errors in the arithmetical operations needed

to solve the numerical problem. For more details we refer to [65].

We apply initial condition (4.3.2) as follows

Ui1 = f((i − 1)hx), i = 1, . . . , n, (4.3.11)

and boundary conditions (4.3.3) as follows

U1j = T1((j − 1)ht), Unj = T2((j − 1)ht), j = 1, . . . ,m. (4.3.12)
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Discrete numerical solution of equation (4.3.1) with initial condition (4.3.2) and

boundary conditions (4.3.3) will be given by the following real matrix

F 2[u] =












U11 U12 . . . U1m

U21 U22 . . . U2m

...
. . . . . .

...
... . . . . . .

...

Un1 . . . . . . Unm












(4.3.13)

where each component of the matrix is given either by one of formulas 4.3.11-4.3.12

or it is computed according to recursive formula 4.3.10. This solution is then trans-

ferred back to the space C(D2) by the inverse F-transform.

4.4 Wave Equation

The second equation of mathematical physics - the wave equation - is considered in

this section. An application of the F-transform to this equation has been published

in [74, 75] (in [74] even for a more dimensional case). Let the domain D2 be given

by a Cartesian product of two real intervals X = [0, 1] and T = [0, R] and let

D′2
0 = (0, 1) × (0, R]. Let u : X × T → R be a continuous solution of the following

hyperbolic equation

∂2u(x, t)

∂x2
− α2∂2u(x, t)

∂t2
= q(x, t), α ∈ R, (x, t) ∈ D′2

0 (4.4.1)

with the following initial and boundary conditions

u(x, 0) = f(x),
∂u(x, 0)

∂t
= g(x), x ∈ X, (4.4.2)

u(0, t) = T1(t), u(1, t) = T2(t), t ∈ T. (4.4.3)

Similarly to the computation of the heat equation, by applying F-transform we

transfer equation (4.4.1) into the following algebraic equation

F 2[uxx] − α2F 2[utt] = F 2[q] (4.4.4)
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where F 2[uxx] and F 2[q] are matrices (4.3.6) and (4.3.7) from the previous subsec-

tion, respectively, and where

F 2[utt] =












U tt
11 U tt

12 . . . U tt
1m

U tt
21 U tt

22 . . . U tt
2m

...
. . . . . .

...
... . . . . . .

...

U tt
n1 . . . . . . U tt

nm












is the matrix of the F-transform components of ∂2u
∂t2

.

Analogously to the case of heat equation, values Uxx
ij are replaced according to

(4.3.9) and values U tt
ij

U tt
ij ≈ 1

(ht)2
(Ui(j−1) − 2Uij + Ui(j+1)) (4.4.5)

for i = 1, . . . , n and j = 1, . . . ,m.

By (4.3.9) and (4.4.5) we come to the following recursive equation:

Ui(j+1) = r2U(i−1)j + 2(1 − r2)Uij +

+r2U(i+1)j − Ui(j−1) − (ht)2Qij (4.4.6)

where r = ht/(αhx) and i = 1, . . . n, j = 1, . . . ,m.

Remark 13 The inequality 0 < r ≤ 1 must be fulfilled. This condition is associated

with the convergence of the numerical solution to the analytical one (see Section

4.6) as well as with stable decay of the errors in the arithmetical operations needed

to solve the numerical problem. For more details we refer to [65].

Initial conditions (4.4.2) and boundary conditions (4.4.3) are taken into account

as well. The boundary conditions are applied as follows

U1j = T1((j − 1)ht), Unj = T2((j − 1)ht), j = 1, . . . ,m. (4.4.7)
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The first of initial conditions (4.4.2) is applied as follows

Ui1 = f((i − 1)hx). (4.4.8)

Expressions Ui0 for i = 2, . . . , n − 1 are last unknown occurring in recursive

equation (4.4.6). To determine them, we apply the following finite difference

∂u

∂t
≈ (u(x, t + ht) − u(x, t − ht))

2ht
(4.4.9)

to the second of initial conditions (4.4.2), which leads to

g((i − 1)hx) =
Ui2 − Ui0

2ht

which can be rewritten as follows

Ui0 = Ui2 − 2htg((i − 1)hx). (4.4.10)

The following matrix

F 2[u] =












U11 U12 . . . U1m

U21 U22 . . . U2m

...
. . . . . .

...
... . . . . . .

...

Un1 . . . . . . Unm












(4.4.11)

where the components Uij are given either by formulas 4.4.7)-(4.4.10) or they are

computed according to (4.4.6), serves as a discrete solution to equation (4.4.1) with

initial (4.4.2) and boundary (4.4.3) conditions. This solution is then transferred

back to the space C(D2) by the inverse F-transform.

4.5 Poisson’s Equation

In the case of the Poisson’s equation, the finite difference scheme leads to a large

set of linear algebraic equations with respect to a complete set of unknowns. There
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is no step-by-step algorithm analogous to parabolic or hyperbolic equations which

computes the unknown parameters, see [25].

Let the domain D2 be unit cube i.e. a Cartesian product of two real unit intervals

D=[0, 1] × [0, 1]. Let u(x, y) be a continuous solution of the following hyperbolic

equation

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= −q(x, y), α ∈ R

+, (x, y) ∈ D2
0 (4.5.1)

with the following Dirichlet boundary condition

u(x, y) = g(x, y), (x, y) ∈ ∂D2 (4.5.2)

where ∂D2 = D2 \ D2
0 is a boundary of the domain D2.

Because both derivatives on the left-hand side of equation (4.5.1) are of the same

order we set up the same step on both axes [25] i.e. h = hx = hy which yields m = n.

Analogously to both previous partial differential equations, we approximate the

second order derivatives on the left-hand side by finite differences. Next, we apply

the F-transform to both sides of equation (4.5.1) whereby we obtain the following

system

F 2[uxx] + F 2[uyy] = −F 2[q] (4.5.3)

where F 2[uxx] and F 2[q] are matrices (4.3.6) and (4.3.7) from Section 4.4 and where

F 2[uyy] =












Uyy
11 Uyy

12 . . . Uyy
1m

Uyy
21 Uyy

22 . . . Uyy
2m

...
. . . . . .

...
... . . . . . .

...

Uyy
n1 . . . . . . Uyy

nm












is a matrix of the F-transform components of ∂2u
∂y2 .

Again, values Uxx
ij and values Uyy

ij are replaced by finite difference as follows

Uxx
ij ≈ 1

h2
(Ui(j−1) − 2Uij + Ui(j+1)) (4.5.4)
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and

Uyy
ij ≈ 1

h2
(Ui(j−1) − 2Uij + Ui(j+1)) (4.5.5)

for i = 1, . . . , n and j = 1, . . . ,m.

By (4.5.4) and (4.5.5) we come to the following recursive equation

1

h2
(4Uij − U(i−1)j − U(i+1)j − Ui(j−1) − Ui(j+1)) = Qij (4.5.6)

for i, j = 2, . . . , n − 1.

Boundary condition (4.5.2) is applied as follows

Uij = Gij ≡ g((i − 1)h, (j − 1)h), i, j ∈ {1, n}. (4.5.7)

Values Uij for i, j 6∈ {1, n} are determined by solving the following system of

linear equations

Khuh = qh (4.5.8)

where uh and qh are the following real vectors

uh = [U22, . . . , U2(n−1); U32, . . . , U3(n−1); . . . ; U(n−1)2, . . . , U(n−1)(n−1)]
T

and

qh = [Q22, . . . ,Q2(n−1);Q32, . . . ,Q3(n−1); . . . ;Q(n−1)2, . . . ,Q(n−1)(n−1)]
T ,
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respectively and where

Qij = h2Qij,

Q22 = h2Q22 + G12 + G21,

Q2(n−1) = h2Q2(n−1) + G2n + G1(n−1),

Q(n−1)2 = h2Q(n−1)2 + Gn2 + G(n−1)1,

Q(n−1)(n−1) = h2Q(n−1)(n−1) + Gn(n−1) + G(n−1)n,

Qi2 = h2Qi2 + Gi1,

Qi(n−1) = h2Qi(n−1) + Gin,

Q2j = h2Q2j + G1j,

Q(n−1)j = h2Q(n−1)j + Gnj,

for i, j = 3, . . . , n− 2 and where again Qij are the F-transform components of q and

Gij came from the boundary condition by (4.5.7).

Matrix Kh has the following three-diagonal block structure

Kh =














H −I 0 . . . 0

−I H −I . . . 0

0 −I I . . . 0
...

. . . . . . . . .
...

0 . . . −I H −I

0 . . . 0 −I H














(4.5.9)

where matrices H are square matrices of type (n − 2) × (n − 2) given by

H =














4 −1 0 . . . 0

−1 4 −1 . . . 0

0 −1 4 . . . 0
...

. . . . . . . . .
...

0 . . . −1 4 −1

0 . . . 0 −1 4













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and matrices I are unit matrices of type (n − 2) × (n − 2) given as follows

I =











1 0 0 . . . 0

0 1 0 . . . 0
...

. . .
...

0 . . . 0 1 0

0 . . . 0 0 1











.

Details relating to the algorithm can be found in [65]. Solution of system (4.5.3)

is given by the following matrix

F 2[u] =












U11 U12 . . . U1m

U21 U22 . . . U2m

...
. . . . . .

...
... . . . . . .

...

Un1 . . . . . . Unm












(4.5.10)

where the components Uij are given either by (4.5.7) or they are determined as a

solution to 4.5.8. This solution serves as a discrete numerical solution to (4.5.1)

with boundary condition (4.5.2). To transfer it back to the space C(D2), the inverse

F-transform is applied.

4.6 Convergence of the Approximated Solutions

This section aims at proving important convergence properties of numerical solutions

of equations of mathematical physics given by algorithms using the F-transform

method and described in Section 4.3, Section 4.4 and finally in Section 4.5.

To make the result more transparent, let us again recall the notation that will

be used below. We fix a uniform fuzzy partition {A1, . . . ,An} ×⊙ {B1, . . . ,Bm} of

D2 with equidistant steps hx on X and hy on Y. Any of the F-transforms below

is computed with respect to this partition. Approximate solutions at nodes of the

partition (cx
i , c

y
j ) are denoted by Uij and analytical solutions u of the given partial
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differential equations at nodes of the partition (cx
i , c

y
j ) will be denoted as follows

uij = u(cx
i , c

y
j ). Analogously, the F-transform components of function q from the

right-hand sides of the studied partial differential equations are denoted by Qij

while their precise function values will be denoted as follows qij = q(cx
i , c

y
j ).

Remark 14 In the case of evolutionary equations, the domain is given as follows

D2 = X ×T , the nodes of a given fuzzy partition are denoted by (cx
i , c

t
j) and equidis-

tant steps are given analogously by hx on X and by ht on T.

4.6.1 Heat Equation

Here, we prove a convergence theorem that justifies our approach to an approximate

solution to heat equation (4.3.1) from Section 4.3. Besides the convergence, this

theorem confirms that the introduced numerical solution ia equal to the analytical

one up to a certain accuracy. It uses results from the finite difference method [44]

and the properties of the F-transform from Chapter 3 and Chapter 2 in consequence.

Let us recall, that in the case of the heat equation, domain D2 denotes the

following rectangle

D2 = X × T

where X = [0, 1], T = [0, R] and R ∈ R and D′2
0 = (0, 1) × (0, R].

Theorem 4 Let u : X × T → R be a solution to equation (4.3.1)-(4.3.3). Assume

that u a is four times continuously differentiable function with respect to x and twice

continuously differentiable function with respect to t. Let us be given a uniform

fuzzy partition {A1, . . . ,An} ×⊙ {B1, . . . ,Bm} of D2 such that 0 < r ≤ 1/2 where

r = (αht)/(hx)2. Let F 2[u] be the approximate solution given by (4.3.13) . Then the

norm of error of the approximate solution can be estimated as follows

|| uij − Uij ||= O(ht + (hx)2) (4.6.1)
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where the norm ‖ · ‖ is given as follows

|| uij − Uij ||≡ max
i=1,...,n

j=1,...,m

| uij − Uij | .

proof: Let us fix arbitrary i = 2, . . . , n − 1 and j = 2, . . . ,m. Since u is a

solution to (4.3.1)-(4.3.3) on D′2
0 , the following equality

∂u(cx
i , c

t
j)

∂t
− α

∂2u(cx
i , c

t
j)

∂x2
= q(cx

i , c
t
j), α ∈ R

+ (4.6.2)

is fulfilled for i = 2, . . . , n − 1 and for j = 2, . . . ,m. Finite differences keep the

following accuracies

∂u(cx
i , c

t
j)

∂t
=

ui(j+1) − uij

ht
+ O(ht),

∂2u(cx
i , c

t
j)

∂x2
=

u(i−1)j − 2uij + u(i+1)j

(hx)2
+ O((hx)2)

of the first and second order, respectively. So, if we replace the partial derivatives

on the left-hand side of (4.6.2) by the finite differences, the equation will be fulfilled

up to accuracy O(ht + (hx)2) which means

ui(j+1) − uij

ht
− α

u(i−1)j − 2uij + u(i+1)j

(hx)2
= q(cx

i , c
t
j) + O(ht + (hx)2). (4.6.3)

Therefore, we come to the conclucion that values uij fulfil equation (4.3.10) up

to accuracy htO((ht) + (hx)2) which means

ui(j+1) = ru(i−1)j + (1 − 2r)uij + ru(i+1)j + htqij + htO(ht + (hx)2). (4.6.4)

Due to Lemma 17, the F-transform components Qij approximate qij, precise

values of q at the fuzzy partition nodes, up to O((ht)2 + (hx)2).

Now, let us define an error of approximate solution at node (cx
i , c

t
j) by

eij = | uij − Uij | .
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By using both previous estimations we can continue as follows

ei(j+1) = re(i−1)j + (1 − 2r)eij + re(i+1)j + htO((ht)2 + (hx)2) + htO(ht + (hx)2)

which means

ei(j+1) = re(i−1)j + (1 − 2r)eij + re(i+1)j + htO(ht + (hx)2). (4.6.5)

From initial condition (4.3.2) and boundary conditions (4.3.3) we get ei1 = 0,

for i = 1, . . . , n and e1j = enj = 0 for j = 1, . . . ,m.

If we consider the following column norm

|| ej ||c= max
i=1,...,n

| eij |,

we obtain || e1 ||c= 0, which is going to be used at the end of the proof.

Since 0 < r ≤ 1/2, all the coefficients on the right-hand side of equation (4.6.5)

are non-negative and their sum is equal to 1. Then

| ei(j+1) | = r | e(i−1)j | +(1 − 2r) | eij | +r | e(i+1)j |

+ htO(ht + (hx)2) ≤|| ej ||c +htO(ht + (hx)2)

which yields

|| ej+1 ||c≤|| ej ||c +htO(ht + (hx)2).

This implies

|| ej ||c ≤ || ej−1 ||c +htO(ht + (hx)2)

|| ej ||c ≤ || ej−2 ||c +2htO(ht + (hx)2)

. . .

|| ej ||c ≤ || e1 ||c +(j − 1)htO(ht + (hx)2)
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and with the help of the proved equality || e1 ||c= 0 and the fact that (j − 1)ht is a

finite number less than R, we can write

|| ej ||c= O(ht + (hx)2)

for an arbitrary j which proves the theorem. 2

Now, we prove a convergence of the inverse F-transform of the numerical solution

F 2[u] to the precise analytical solution to equations (4.3.1)-(4.3.3).

Corollary 6 Let all the assumptions of Theorem 4 be fulfilled and furthermore, let

{{A1, . . . ,An}×⊙{B1, . . . ,Bm}}n,m be a sequence of uniform fuzzy partitions of D2.

Let {uF
n,m}n,m be a sequence of the inverse F-transforms applied to the approximate

solutions F 2[u] given by (4.3.13), one for each fuzzy partition. Then the sequence

{uF
n,m}n,m uniformly converges to the analytical solution u of equation (4.3.1)-(4.3.3)

on D2.

proof: Since u is continuous on D2, for each ε > 0 there exists δ > 0 such

that for all (x1, t1), (x2, t2) ∈ D2:

|| (x1, t1) − (x2, t2) ||ǫ< δ implies | u(x1, t1) − u(x2, t2) |< ε

where ‖ · ‖ǫ denotes the Euclidean norm.

Let us fix some ε > 0. Let {A1, . . . ,Anε
} ×⊙ {B1, . . . ,Bmε

} be a uniform fuzzy

partition such that hx < δ/
√

2 and ht < δ/
√

2.

Furthermore, we choose arbitrary (z1, z2) ∈ [cx
i , c

x
i+1] × [ct

j, c
t
j+1] where 2 ≤ i ≤

nε − 2 and 2 ≤ j ≤ mε − 2.

Because hx < δ/
√

2 and ht < δ/
√

2 we obtain

|| (x1, t1) − (x2, t2) ||ǫ<
√

δ2

2
+

δ2

2
= δ
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which due to the continuity implies

| u(z1, z2) − u(cx
i , c

t
j) |< ε.

The absolute difference | u(z1, z2) − Uij | can be estimated as follows

| u(z1, z2) − Uij |≤| u(z1, z2) − u(cx
i , c

t
j) | + | u(cx

i , c
t
j) − Uij |= ε + O(ht + (hx)2).

Analogously, way we obtain

| u(z1, z2) − U(i+1)j |≤ ε + O(ht + (hx)2),

| u(z1, z2) − Ui(j+1) |≤ ε + O(ht + (hx)2),

| u(z1, z2) − U(i+1)(j+1) |≤ ε + O(ht + (hx)2).

Finally, we can estimate the following difference

| u(z1, z2) − uF
nε,mε

(z1, z2) |=| u(z1, z2) −
nε∑

i=1

mε∑

j=1

Ai(z1)Bj(z2)Uij |

which is less or equal to

nε∑

i=1

mε∑

j=1

Ai(z1)Bj(z2) | u(z1, z2) − Uij |

which is less or equal to

nε∑

i=1

mε∑

j=1

Ai(z1)Bj(z2)(ε + O(ht + (hx)2))

and therefore we can state

| u(z1, z2) − uF
nε,mε

(z1, z2) |< ε + O(ht + (hx)2)

Therefore, the inverse F-transform computed from the components determined

by algorithm (4.3.10) uniformly converges to the precise (analytical) solution.

2
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4.6.2 Wave Equation

Here, we prove the convergence theorem which justifies our approach to an approx-

imate solution to wave equation (4.4.1) from Section 4.4. Besides the convergence,

this theorem confirms that the introduced numerical solution is equal to the analyti-

cal one up to a certain accuracy. It uses results from the finite difference method [44]

and the properties of the F-transform from Chapter 3 and Chapter 2 in consequence.

Let us recall, that in the case of the wave equation, domain D2 denotes the

following rectangle

D2 = X × T

where X = [0, 1], T = [0, R] and R ∈ R and D′2
0 = (0, 1) × (0, R].

Theorem 5 Let u : X × T → R be a solution to equation (4.4.1)-(4.4.3). Assume

that u is a four times continuously differentiable function with respect to x and a

four time continuously differentiable function with respect to t. Let us be given a

uniform fuzzy partition {A1, . . . ,An} ×⊙ {B1, . . . ,Bm} of D2 such that 0 < r ≤ 1

where r = ht/(αhx). Let F 2[u] be the approximate solution given by (4.4.11). Then

the norm of error of the approximate solution can be estimated as follows

|| uij − Uij ||= O((ht)2 + (hx)2) (4.6.6)

where the norm ‖ · ‖ is given as follows

|| uij − Uij ||≡ max
i=1,...,n

j=1,...,m

| uij − Uij | .

proof: Let us fix arbitrary i = 2, . . . , n − 1 and j = 2, . . . ,m. Since u is a

solution to (4.4.1)-(4.4.3) on D′2
0 , the following equality

∂2u(cx
i , c

t
j)

∂x2
− α2

∂2u(cx
i , c

t
j)

∂t2
= q(cx

i , c
t
j), α ∈ R (4.6.7)
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is fulfilled for i = 2, . . . , n − 1 and for j = 2, . . . ,m. Finite differences keep the

following accuracies of the second order

∂2u(cx
i , c

t
j)

∂x2
=

u(i−1)j − 2uij + u(i+1)j

(hx)2
+ O((hx)2),

∂2u(cx
i , c

t
j)

∂t2
=

ui(j−1) − 2uij + ui(j+1)

(ht)2
+ O((ht)2),

respectively. So, if we replace the partial derivatives on the left hand-side of (4.6.7)

by the finite differences, the equation will be fulfilled up to accuracy O((ht)2 +(hx)2)

which means

u(i−1)j − 2uij + u(i+1)j

(hx)2
− α2 ui(j−1) − 2uij + ui(j+1)

(ht)2
= qij + O((ht)2 + (hx)2).

Therefore, we come to the fact that values uij fulfil equation (4.4.6) up to accu-

racy (ht)2O((ht) + (hx)2) which means that

ui(j+1) = r2u(i−1)j +2(1−r2)uij +r2u(i+1)j −ui(j−1)− (ht)2qij +(ht)2O((ht)2 +(hx)2).

Due to Lemma 17, the F-transform components Qij approximate values qij up

to O((ht)2 + (hx)2).

Let the error eij of the approximate solution at node (cx
i , c

t
j) be defined as follows

eij = |uij − Uij|.

Using both previous estimations we continue as follows

ei(j+1) = r2e(i−1)j + 2(1 − r2)eij + r2e(i+1)j − ei(j−1) + (ht)2O((ht)2 + (hx)2).

From initial conditions (4.4.2) and boundary conditions (4.4.3) we get ei1 = 0,

for i = 1, . . . , n and e1j = enj = 0 for j = 1, . . . ,m.

Again, let the column norm || · ||c be given as follows

|| ej ||c= max
i=1,...,n

| eij | .
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Obviously, || e1 ||c= 0.

We can continue as follows

|ei(j+1)| = r2|e(i−1)j| + 2(1 − r2)|eij| + r2|e(i+1)j| − |ei(j−1)|

+ (ht)2O((ht)2 + (hx)2)

|ei(j+1)| ≤ || ej ||c −|ei(j−1)| + (ht)2O((ht)2 + (hx)2)

which yields

|| ej+1 ||c≤|| ej ||c +(ht)2O((ht)2 + (hx)2).

This implies

|| ej ||c ≤ || ej−1 ||c +(ht)2O((ht)2 + (hx)2)

|| ej ||c ≤ || ej−2 ||c +2(ht)2O((ht)2 + (hx)2)

. . .

|| ej ||c ≤ || e1 ||c +(j − 1)(ht)2O((ht)2 + (hx)2)

and with help of || e1 ||c= 0 and the fact that (j − 1)(ht)2 is a finite number less

than R2, we can write

|| ej ||c= O((ht)2 + (hx)2)

for an arbitrary j which proves the theorem.

2

Now, we prove a convergence of the inverse F-transform of the numerical solution

F 2[u] to the precise analytical solution to equations (4.4.1)-(4.4.3).

Corollary 7 Let all the assumptions of Theorem 5 be fulfilled and furthermore, let

{{A1, . . . ,An}×⊙{B1, . . . ,Bm}}n,m be a sequence of uniform fuzzy partitions of D2.

Let {uF
n,m}n,m be a sequence of the inverse F-transforms applied to the approximate
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solutions F 2[u] given by (4.4.11), one for each fuzzy partition. Then the sequence

{uF
n,m}n,m uniformly converges to the analytical solution u of equation (4.4.1)-(4.4.3)

on D2.

proof: Proof of the corollary is analogous to the proof of Corollary 6 and

therefore it is omitted. 2

4.6.3 Poisson’s Equation

This subsection, analogously to both previous subsections, discusses convergence

and accuracy of the proposed numerical solution.

Let us recall, that in the case of Poisson’s equation, domain D2 denotes the

following rectangle

D2 = X × Y

where X = [0, 1], Y = [0, 1] and D′2
0 = (0, 1) × (0, 1).

Theorem 6 Let u : X × T → R be a solution to equation (4.5.1)-(4.5.2). Assume

that u is a four times continuously differentiable function with respect to x and a

four times continuously differentiable function with respect to t. Let us be given

a uniform fuzzy partition {A1, . . . ,An} ×⊙ {B1, . . . ,Bn} of D2. Let F 2[u] be the

approximate solution given by (4.5.10). Then the norm of error of the approximate

solution can be estimated as follows

|| uij − Uij ||= O(h2) (4.6.8)

where the norm ‖ · ‖ is given as follows

|| uij − Uij ||≡ max
i=1,...,n

j=1,...,m

| uij − Uij | .

89



proof: Let us fix arbitrary i, j = 2, . . . , n− 1. Since u is a solution to (4.5.1)-

(4.5.2) on D2
0, the following equality

∂2u(cx
i , c

t
j)

∂t2
+

∂2u(cx
i , c

t
j)

∂x2
= −q(cx

i , c
t
j) (4.6.9)

is fulfilled. Finite differences keep the accuracies of the second order which yields

1

h2
(4uij − u(i−1)j − u(i+1)j − ui(j−1) − ui(j+1)) + O(h2) = qij (4.6.10)

for i, j = 2, . . . , n − 1.

So, we can write

Khu
p
h = qp

h + Oh2 (4.6.11)

where matrix Kh is given by (4.5.9) and where up
h and qp

h are the following real

vectors

up
h = [u22, . . . , u2(n−1); u32, . . . , u3(n−1); . . . ; u(n−1)2, . . . , u(n−1)(n−1)]

T

and

qp
h = [Qp

22, . . . ,Qp
2(n−1);Q

p
32, . . . ,Qp

3(n−1); . . . ;Qp
(n−1)2, . . . ,Q

p
(n−1)(n−1)]

T ,

respectively and where

Qp
ij=h2qij,

Qp
22=h2q22 + G12 + G21,

Qp
2(n−1)=h2q2(n−1) + G2n + G1(n−1),

Qp
(n−1)2=h2q(n−1)2 + Gn2 + G(n−1)1,

Qp
(n−1)(n−1)=h2q(n−1)(n−1) + Gn(n−1) + G(n−1)n,

Qp
i2=h2qi2 + Gi1,

Qp
i(n−1)=h2qi(n−1) + Gin,

Qp
2j=h2q2j + G1j,

Qp
(n−1)j=h2q(n−1)j + Gnj,
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for i, j = 3, . . . , n − 2. Finally, Oh2 is the following (n − 2) · (n − 2)-dimensional

vector

Oh2 = [O(h2), . . . , O(h2)]T .

When we subtract equation (4.5.8) from equation (4.6.11), we obtain

Kheh = qh − Qh + Oh2 (4.6.12)

where eh = (uh − Uh).

Since qij − Qij = O(h2) we come to

Kheh = h2Oh2 (4.6.13)

which means that ||eij|| = O(h2). 2

Now, let us prove the convergence of the inverse F-transform of the numerical

solution Uij to the precise solution of (4.4.1)-(4.4.3).

Corollary 8 Let all the assumptions of Theorem 6 be fulfilled and furthermore, let

{{A1, . . . ,An} ×⊙ {B1, . . . ,Bn}}n be a sequence of uniform fuzzy partitions of D2.

Let {uF
n,n}n be a sequence of the inverse F-transforms applied to the approximate

solutions F 2[u] given by (4.5.10), one for each fuzzy partition. Then the sequence

{uF
n,n}n uniformly converges to the analytical solution u of equation (4.5.1)-(4.5.2)

on D2.

proof: Proof of the corollary is analogous to the proof of Corollary 6 and

therefore it is omitted. 2

4.7 Demonstration

In physics, an integral usually means an energy, e.g., heat. For a demonstration

let us consider the heat equation where the solution u(x, t) means a temperature
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at point x in time t. The convergence property is required but it is not sufficient

because, e.g., in case of convergence of a numerical solution to the analytical one

from below (or alternatively from above), the computed heat flow would be too

far from the real heat flow, although the temperatures would be quite close to each

other. Therefore the integral proximity is found to be an important quality indicator

which advocates in favour of the F-transform method.

Let us demonstrate the advantage of the numerical solution based on the F-

transform in comparison with the ordinary numerical solution using the finite dif-

ference method. Let f : D2 → R be an arbitrary continuous function on a given

domain D2 and let {A1, . . . ,An}×⊙ {B1, . . . ,Bm} be a fuzzy partition of D2. Then

the following piecewise integral least square criterion

Ψ([cij]) =

∫ d

c

∫ b

a

n∑

i=1

m∑

j=1

(f(x, t) − cij)
2Ai(x)Bj(t)dxdt (4.7.1)

is minimized by the F-transform component matrix [Fij] given by (3.1.2).

Criterion (4.7.1) characterizes an integral proximity. The uniform convergence in

C(D2) in combination with a minimization of the previous integral criterion provides

a powerful tool that will be explained.

When the right-hand side q(x, t) of equation (4.3.1) is damaged by a noise (inac-

curacies in measurements), the ordinary finite difference method generates a dam-

aged approximate solution. For more results related to the noise removing by the

F-transform we refer to [61].

Let us consider the following example. Let D2 = [0, 1] × [0, 1] and let

∂u

∂t
− ∂2u

∂x2
= 5(−4(x − 1/2)2 + 1)e−t/2, (x, t) ∈ D′2

0 , (4.7.2)

furthermore let us be given the following boundary conditions

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1] (4.7.3)
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and the following initial condition

u(x, 0) =

{

2x, 0 ≤ x ≤ 1
2
,

2(1 − x), 1
2
≤ x ≤ 1.

(4.7.4)

Equation (4.7.2)-(4.7.4) describes a distribution of temperature u of a metal rod

at point x and time t while both ends of this rod are kept in contact with melting

ice. The right-hand side 5(−4(x − 1/2)2 + 1)e−t/2 gives us information about heat

sources. The solution of equation (4.7.2) is displayed on Figure 4.1(a).

Let us consider a situation (very common in practice) when the right-hand side

of equation (4.7.2) is obtained by some measurements with inaccuracies. These

inaccuracies can be modelled by adding random noise.

For the demonstration, we have added random noise with Gaussian distribution

with 0 mean and the standard deviation equal to 2, to the right-hand side of equation

(4.7.2). Such a modified equation has been numerically solved by both methods:

the finite difference method and by the F-transform technique. In both cases we

have used n = 11 nodes on axis x and m = 200 nodes on the time axis.

The difference is significant. The solution using the F-transform is practically

the same as in the case without any noise, see Figure 4.1(a) and Figure 4.1(b). On

the other hand, the solution based on the ordinary technique without any help of

the F-transform is highly influenced by the noise, see Figure 4.1(c).

This advocates in favour of the F-transform technique.
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(a) Solution of equation (4.7.2)

(b) Numerical solution of modified equation
(4.7.2). Finite difference method with help of F-
transform.

(c) Numerical solution of modified equation
(4.7.2). Finite difference method.

Figure 4.1: An illustration of the difference between numerical solutions with and
without the F-transform
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Chapter 5

Normal Forms and their

connection to the F-transform

This chapter has been motivated by two, up to now unrelated, approaches belonging

to fuzzy approximation framework. As mentioned in Section 1.3, fuzzy approxima-

tion is understood as a collection of techniques for an approximation of functional

dependencies between variables by means of the fuzzy set theory [9, 32, 52].

Two main approaches recalled already in Section 1.3 follow a similar task but

use different tools and methods. The first one, which relates to the so-called nor-

mal forms [13, 56], consists in an investigation of different interpretations of fuzzy

rules. Two standard interpretations [21, 46, 49] lead to two standard normal forms

- disjunctive and conjunctive normal forms - formalizing these interpretations. The

second approach represented typically by the F-transform technique aims at an

approximation of a given function by another function preserving the feature of

transparent interpretability. The approximated functional dependency is expressed

as a linear combination of basic functions where basic functions represent local sub-

domains.
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The main goal of the chapter is to investigate normal forms and their approxi-

mation abilities and interrelate them with the F-transform. We will also show that

F-transform fits even into the framework of the normal forms. This will require

the development of a formalization of the additive interpretations [27] of fuzzy sys-

tems. The formalization is based on the additive normal form from [59] which is

furthermore generalized and investigated in Section 5.2.

We achieve a generalized class of fuzzy transforms based on an arbitrary strict

continuous t-norm. The relationship to the normal forms allows us to use their

formal apparatus to inherit some particular results, especially an upper bound of an

approximation error.

5.1 Extensionality Property

Throughout the entire chapter, we assume that D is a nonempty set of objects and

F is a fuzzy set on D. We denote this fact by F ⊂∼ D.

Remark 15 For the domain we will again use symbol D used in the previous chap-

ters but because normal forms do not have to be defined on closed intervals or cubes

(products of intervals) D denotes generally a non-empty set of objects in this chapter.

Extensionality is a well-known notion from the classical set theory. A generalized

version of this notion has been introduced in [36]. There, extensional fuzzy sets

(relations) are defined with respect to a similarity relation on their domain where

the notion similarity is defined as follows.

Definition 32 Let ∗ be a t-norm and S ⊂∼ D ×D. Then S is called

1. reflexive if S(x, x) = 1,
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2. symmetric if S(x, y) = S(y, x),

3. ∗-transitive if S(x, y) ∗ S(y, z) ≤ S(x, z),

for all x, y, z ∈ D. If S is reflexive, symmetric and ∗-transitive then we say that S

is a ∗-similarity relation.

The similarity relation expresses a natural formalization of, say closeness or

proximity, i.e., equality up to some degree. If we fix a node c ∈ D then a similarity

S(c, y) is a symmetric fuzzy number on D which represents a neighborhood of the

node c or local sub-domain of D around c.

Fuzzy rules very often use symmetric fuzzy numbers as antecedent fuzzy sets,

therefore a similarity fuzzy relation S is used in normal forms, see Section 1.3.1.

But this is too restrictive and the discussed fuzzy relation may be handled more

generally.

Therefore, we present a more general case of extensionality then the ones pub-

lished in [36]. The reason comes from the fact that extensional fuzzy sets defined

with respect to a similarity have properties relating to Lipschitz continuity. Let

us recall the paper [43] where it was proved that in a t-norm based algebra, the

extensionality of a fuzzy set with respect to a similarity is equivalent to Lipschitz

continuity with respect to the pseudo-metric induced by the given similarity. An

analogous result was published in [10] even for fuzzy relations which are not simi-

larity relations.

Definition 33 [10] Let F ⊂∼ D, E ⊂∼ D ×D, and ∗ be a t-norm. We say that F is

extensional with respect to E and ∗ on D if for each x, y ∈ D:

E(x, y) ∗ F(x) ≤ F(y). (5.1.1)

97



Remark 16 If F ⊂∼ Dn then E ⊂∼ Dn × Dn is given as a combination of n binary

fuzzy relations on D i.e.

E(x̄, ȳ) = E1(x1, y1) ∗1 · · · ∗n−1 En(xn, yn),

where ∗1, . . . , ∗n−1 are arbitrary t-norms, Ei ⊂∼ D × D for i = 1, . . . , n and x̄ =

(x1, . . . , xn), ȳ = (y1, . . . yn) ∈ Dn.

Assuming ∗1 = . . . = ∗n−1 = ∗, we come to well-known form of the extensionality

see e.g. [13].

5.2 Normal Forms and Their Approximation Abil-

ities

Normal forms are presented in this section especially with the aim to have an ap-

proximation of a fuzzy set with an arbitrary precision. Information about the error

of approximation is contained in an inequality called conditional equivalence.

First of all, let us recall a remark from [38] concerning the extension of t-conorms

to infinitary operations.

Remark 17 Each t-conorm ⊔ can be extended to a (countably) infinitary operation

putting for each (xi)i∈N ∈ [0, 1]N i.e. for each sequence (xi)i∈N such that xi ∈ [0, 1]

for all i ∈ N:

∞⊔

i

xi = lim
n→∞

n⊔

i

xi. (5.2.1)

Note that the limit on the right-hand side always exists since the sequence

(
n⊔

i

xi

)

i∈N

is non-decreasing and bounded from above.
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We only mention that for an arbitrary (not necessarily countable) index set I

and (xi)i∈N ∈ [0, 1]I , i.e., a family (xi)i∈I with xi ∈ [0, 1] for all i ∈ I, the following

⊔

i∈I

xi =
∨
{

k⊔

j=1

| (xi1 , xi2 , . . . , xik) is finite subfamily of (xi)i∈I

}

(5.2.2)

is a well-defined formula.

Remind that, we assume that F ⊂∼ D, E ⊂∼ D×D, ∗ be a left-continuous t-norm

and →∗ its residuation and finally, ⊕ is  Lukasiwicz t-conorm. Moreover, let us fix a

set of nodes N ⊆ D.

Definition 34 [14] The following expressions on the right-hand sides are the dis-

junctive, conjunctive and additive normal form of F with respect to N

FDNF,∗(x) =
∨

c∈N

(E(c, x) ∗ F(c)), (5.2.3)

FCNF,∗(x) =
∧

c∈N

(E(x, c) →∗ F(c)), (5.2.4)

FANF,∗(x) =
⊕

c∈N

(E(c, x) ∗ F(c)), (5.2.5)

respectively.

For the definition of ⊕ over the infinite index set we refer to Remark 17 taken from

[38]. Definitions of FDNF,∗,FCNF,∗ are taken from [13] and FANF,∗ is generalized

version of FANF,⊙ from [59]. If there will be a danger of confusion, we will add the

index N to highlight the difference between particular normal forms.

The following definition of the orthogonality is taken from [59].

Definition 35 We say that E ⊂∼ D × D fulfils the orthogonality property with

respect to N ⊆ D, if

⊕

c∈N\{d}

E(c, x) = 1 − E(d, x), (5.2.6)

is valid for each x ∈ D and d ∈ N .
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Obviously, if N1 ⊆ N2 then FN1

DNF,∗(x) ≤ FN2

DNF,∗(x), FN1

ANF,∗(x) ≤ FN2

ANF,∗(x),

and FN2

CNF,∗(x) ≤ FN1

CNF,∗(x). As we will see, the disjunctive and conjunctive normal

forms of an extensional fuzzy set F give lower and upper approximations of F,

respectively [13].

Remark 18 It is well-known, that in Boolean algebra of functions a normal forms

represents an object of the algebra. Thus normal form is a special kind of represen-

tations of objects. If we generalize to say BL-alegbras [13, 59] we lose this property

of representation. What we can get is an approximate representation ability.

It should be stressed that normal forms are syntactical formulas i.e. expressions.

So, a normal form is no function and no normal form can approximate anything.

However, F ⊂∼ D can be expressed in a normal form and we will talk about normal

form of F as in Definition 34. And a normal form of F is already a fuzzy set (i.e.

a function). Therefore we can claim that a normal for of F approximates F.

Proposition 1 If F ⊂∼ D is extensional with respect to E ⊂∼ D ×D and ∗ then

FDNF,∗(x) ≤ F(x) ≤ FCNF,∗(x), (5.2.7)

for all x ∈ D.

Let us illustrate the relationships between normal forms on the following exam-

ple.

Example 3 Let us consider the following one-dimensional case where the approxi-

mated fuzzy set

F(x) = x2

is defined on D = [0, 1]. Binary fuzzy relation E is given by

E(x, y) = (x ↔⊗ y)2 ⊗ (y ↔⊗ x),
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Figure 5.1: An illustration of approximation abilities of all three given normal forms
for the fuzzy set from Example 3. The dashed black line represents FANF,⊗, the red
line depicts FCNF,⊗ and the blue line belongs to FDNF,⊗.

and the set of nodes N = {0.35, 0.5, 1}. Finally, let ∗ be the  Lukasiweicz t-norm ⊗.

Let us mention that the given F is extensional w.r.t. the given E and ⊗, see [10].

Next, we obtain a relationship between the conjunctive, disjunctive and additive

normal forms which is illustrated on Figure 5.1.

Obviously, without any assumption on F or E, the inequality FDNF,∗(x) ≤

FANF,∗(x) is valid for each x ∈ D. Based on the result of I. Perfilieva in [59],

the following proposition holds.

Proposition 2 [14] Let F ⊂∼ D and E ⊂∼ D ×D. If E is symmetric and fulfils the

orthogonality condition with respect to N then for all x ∈ D

FDNF,∗(x) ≤ FANF,∗(x) ≤ FCNF,⊗(x). (5.2.8)

proof: The proof uses a technique proposed in [59]. Let us recall the technique

in short. The first inequality

FDNF,∗(x) ≤ FANF,∗(x)
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is obvious since ∨ is the least t-conorm. The second part is proved by the following

sequence of inequalities.

E(c, x) ∗ F(c) ≤ E(c, x)

⊕

c∈N\{d}

(E(c, x) ∗ F(c)) ≤
⊕

c∈N\{d}

E(c, x)

due to orthogonality of E

⊕

c∈N\{d}

(E(c, x) ∗ F(c)) ≤ (1 − E(d, x))

⊕

c∈N\{d}

(E(c, x) ∗ F(c)) ⊕ (E(d, x) ∗ F(d)) ≤ (1 − E(d, x)) ⊕ (E(d, x) ∗ F(d))

⊕

c∈N

(E(c, x) ∗ F(c)) ≤ (1 − E(d, x)) ⊕ F(d)

which due to (1.1.11) and symmetry of E leads to

FANF,∗(x) ≤ E(x, d) →⊗ F(d)

which together with the fact that d ∈ N has been chosen arbitrarily proves the

proposition. 2

On the following example, let us illustrate the relationships between normal

forms assuming a symmetrical fuzzy relation E as we did in Proposition 2.

Example 4 Let us consider the fuzzy set

F(x) = 0.4 sin(4x) + 0.4

defined on D = [0, 1]. Furthermore, let binary fuzzy relation E be given by

E(x, y) = (x ↔⊗ y)k,
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Figure 5.2: An illustration of approximation abilities of all three given normal forms
for the fuzzy set from Example 4. The black line represents FANF,⊙, the dashed gray
line represents FDNF,⊙ and the smooth gray line belongs to FCNF,⊙.

while set of nodes N = {ci|i = 1, . . . , k + 1} contains such ci = (i − 1)/k. Finally,

let ∗ be the product t-norm.

Then, we obtain a relationship between the conjunctive, disjunctive and additive

normal forms which is illustrated on Figure 5.2 for k = 9. From Figure 5.2(c), it is

clear that the additive normal form is absolutely the best approximation from the set

of normal forms for F with respect to E and the given number and fixed distribution

of nodes ci over D. This fact follows from Proposition 1 and Proposition 2.

In Remark 18, we have opened the question of approximation. In general, if

we talk about approximation, the following three main items should be specified:
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1. What we approximate, 2. By what we approximate it and 3. How we measure

quality of the approximation.

In this case, we approximate fuzzy sets that are extensional with respect to a

fixed fuzzy relation E. We approximate them by fuzzy sets in normal forms which

constitute a subclass of all extensional fuzzy sets. However, we have no normed

or metric space, that is, we are not provided with a norm or a metric function

for measuring quality of approximation. On the other hand, we are provided by

a biresiduation (biresiduum) operation which expresses a measure of equivalence

between two objects. Moreover, a biresiduation operation is inverse to a metric.

Thus, we do not determine upper estimations of an approximation error mea-

sured by a metric, but lower estimations of equivalence between a fuzzy set and a

normal form of the given fuzzy set. Below, we prove that this lower estimations are

independent on the original fuzzy set.

Theorem 7 [14] If F ⊂∼ D is extensional with respect to E ⊂∼ D ×D and ∗ then

C∗(x) ≤ FDNF,∗(x) ↔∗ F(x), (5.2.9)

C∗(x) ≤ FCNF,∗(x) ↔∗ F(x), (5.2.10)

for all x ∈ D, where

C∗(x) =
∨

c∈N

(E(x, c) ∗ E(c, x)). (5.2.11)

proof: From the extensionality of E and the monotonicity of ∗ we obtain

E(c, x) ∗ E(x, c) ∗ F(x) ≤ E(c, x) ∗ F(c),

therefore

C∗(x) ≤ F(x) →∗ FDNF,∗(x),

and together with (5.2.8), we obtain (5.2.9).
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For arbitrary left continuous t-norm ∗, its residuation →∗ and for a, b, c, d ∈ [0, 1]

the following

(a →∗ b) ∗ (c →∗ d) ≤ (a ∗ c) →∗ (b ∗ d)

holds and so, we can write

(E(x, c) →∗ F(c)) ∗ (E(c, x) →∗ E(c, x)) ≤

(E(x, c) ∗ E(c, x)) →∗ (F (c) ∗ E(c, x)).

It is clear that x →∗ x = 1 and F is extensional, thus

E(x, c) ∗ E(c, x) ≤ (E(x, c) →∗ F(c)) →∗ F(x).

Finally, from (1.1.9) and using transitivity of →∗, we obtain

C∗(x) ≤ FCNF,∗(x) →∗ F(x).

And similarly to the proof of (5.2.9), since F(x) ≤ FCNF,∗(x), then we obviously

obtain the proof of (5.2.10). 2

The following corollary (introduced in [12]) shows that in the special case, the

extensionality property implies the equality of F to its normal form and vice-versa.

Corollary 9 Let N = D and fuzzy relation E ⊂∼ D ×D be reflexive. Then F ⊂∼ D

is extensional with respect to E and ∗ if and only if FDNF,∗(x) = F(x) = FCNF,∗(x)

for all x ∈ D.

proof: By reflexivity of E, we have C∗(x) = 1 for each x ∈ D, which proves

the first implication. We obtain the reverse directly from the equality FDNF,∗(x) =

F(x) = FCNF,∗(x) using properties of ∧ and ∨. 2

Theorem 7 and Proposition 2 also lead to the following obvious corollary.
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Corollary 10 Let F ⊂∼ D be extensional with respect to symmetric fuzzy relation

E ⊂∼ D×D and ⊗. Moreover, let E fulfils the orthogonality property with respect to

N . Then

C⊗(x) ≤ FANF,⊗(x) ↔⊗ F(x), (5.2.12)

for all x ∈ D.

proof: Based on the fact that FDNF,⊗ ≤ FANF,⊗ ≤ FCNF,⊗, see [59]. 2

The question of conditional equivalence of other additive normal forms is partially

clarified by the following theorem where the notion of weaker and stronger t-norm

will be used.

We say that a t-norm ∗1 is weaker than ∗2 if a∗1b ≤ a∗2b for all a, b ∈ [0, 1]. Then,

we write ∗1 ≤ ∗2. Analogously, we say that ∗1 is stronger than ∗2 if a ∗1 b ≥ a ∗2 b

for all a, b ∈ [0, 1], and we write ∗1 ≥ ∗2, see [38].

Theorem 8 Let E ⊂∼ D × D be symmetric and fulfils the orthogonality condition

with respect to N . Let F ⊂∼ D be extensional with respect to E and ⊗, and moreover,

let F be extensional with respect to E and ∗.

(1) If ∗ is weaker than ⊗ then for all x ∈ D

C∗(x) ≤ FANF,∗(x) ↔∗ F(x). (5.2.13)

(2) If ∗ is stronger than ⊗ then for all x ∈ D

C⊗(x) ≤ FANF,∗(x) ↔⊗ F(x). (5.2.14)

proof: Using Proposition 2, Theorem 7 and properties (1.1.9) and (1.1.10) of

the residuation operation we get

C∗(x) ≤ F(x) →∗ FDNF,∗(x) ≤ F(x) →∗ FANF,∗(x), (5.2.15)

C⊗(x) ≤ FCNF,⊗(x) →⊗ F(x) ≤ FANF,∗(x) →⊗ F(x). (5.2.16)

106



If ∗ is weaker than ⊗ then

C∗(x) ≤ C⊗(x) ≤ FANF,∗(x) →⊗ F(x) ≤ FANF,∗(x) →∗ F(x),

which together with (5.2.15) proves (5.2.13).

If ⊗ is weaker than ∗ then

C⊗(x) ≤ C∗(x) ≤ F(x) →∗ FANF,∗(x) ≤ F(x) →⊗ FANF,∗(x),

which together with (5.2.16) proves (5.2.14). 2

Now, we are going to characterize the orthogonality analogously to Corollary 9,

where we have characterized the extensionality.

Remark 19 Note that if E is reflexive and N = D then the orthogonality property

is valid if and only if E is trivial, i.e. E(x, y) = 1 for x = y, and otherwise,

E(x, y) = 0.

Proposition 3 Let N = D, F(x) ∈ (0, 1) for all x ∈ D, and E ⊂∼ D × D be

reflexive. Then, E fulfils the orthogonality condition with respect to N if and only

if FANF,∗(x) = F(x) for all x ∈ D.

proof: Since the reflexivity and the orthogonality of E we obtain the following

equality
⊕

c∈D\{x}

E(c, x) = 0,

and therefore

⊕

c∈D

(E(c, x) ∗ F(c)) =
⊕

c∈D\{x}

(E(c, x) ∗ F(c)) ⊕ (E(x, x) ∗ F(x)) = F(x).

On the other side, by reflexivity of E and F(x) ∈ (0, 1), for all x ∈ D, we obtain

that E(x, y) = 0 for x 6= y. Thus, E is trivial, i.e., the orthogonality condition with

respect to D is valid, see Remark 19. 2
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5.3 F-transform and the Additive Normal Form

Here, we debunk the inverse F-transform of as a special case of the additive normal

form. Hence we can bring to bear all the results from the theory of the normal forms

on this special additive normal form.

As the next step, we will introduce a generalized F-transform with respect to

a strict t-norm for a class of continuous fuzzy sets. Taking into account the con-

tinuity of the vagueness phenomenon then the continuity of fuzzy sets is a natural

requirement.

Below, we consider that D = [a, b] ⊆ R and ∗ is a continuous strict t-norm, i.e.

x ∗ y = g−1(g(x) · g(y)),

where g : [0, 1] → [0, 1] is a continuous strictly increasing mapping called multiplica-

tive generator. For simplicity, we will write gx instead of g(x).

Definition 36 Let f ⊂∼ D be continuous and E ⊂∼ D × D. We say that F ⊂∼ D is

the F-transform of f with respect to E and ∗ if

F(x) = g−1

(∫

D
gE(x, y) · gf(y) dy
∫

D
gE(x, y) dy

)

. (5.3.1)

Remark 20 Let x be a node ci, i = 1, . . . , n. Then since the multiplicative generator

of the product operation is the identity mapping [38] we immediately come to the fact

that generalized F-transform F(x) defined by (5.3.1) equals to the i-th component

of the F-transform Fi from Definition 21. It means, that Definition 36 does not

conflict the original definition of the F-transform but generalizes it from two points

of view. First, it allows to deal with an arbitrary continuous strict t-norm. Second,

the direct F-transform is a mapping F : D → [0, 1] while the original F-transform

was a mapping defined on a finite set of nodes N ⊂ D. Thus the new definition
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is a continuous extension to the whole domain. The fact that this generalized F-

transform is defined only for mappings to the unit interval is not restricting at all

since any continuous mapping on a real interval can be rescaled to keep the unit

interval range.

Both following lemmas relate to the extensionality of the F-transform. The first

lemma assumes that the definite integral over D of the similarity relation E mapped

by generator g is a finite number i.e. there exist some maximal value m ∈ R limiting

the integral.

Lemma 20 Let f ⊂∼ D, E be a ∗-similarity on D, and F be the F-transform of f

with respect to E. If for all x ∈ D:
∫

D
gE(x, y) dy = m < +∞ then F is extensional

with respect to E and ∗ on D.

proof: From the transitivity and symmetry of E, we obtain

gE(x, y) · gE(x, z) ≤ gE(y, z),

and obviously

gE(x, y) · 1

m
· gE(x, z) · gf(z) ≤ 1

m
· gE(y, z) · gf(z),

integrating over D we come to

gE(x, y)
1

m

∫

D

gE(x, z) · gf(z) dz ≤ 1

m

∫

D

gE(y, z) · gf(z) dz,

which finally leads to

E(x, y) ≤ g−1

(∫

D
gE(x, z) · gf(z) dz

m

)

→∗ g−1

(∫

D
gE(y, z) · gf(z) dz

m

)

,

and the reverse implication follows from symmetry of E. 2

The second lemma states the fact that the generalized F-transform is extensional

with respect to the relation E2 even without the previous assumption.
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Lemma 21 Let f ⊂∼ D, E be a ∗-similarity on D, and F be the F-transform of f

with respect to E. Then F is extensional with respect to E2 and ∗ on D.

proof: From the transitivity, symmetry of E and the monotonicity of ·, we

obtain the following inequalities

∫

D

gE(x, y) · gE(x, z) · gf(z) dz ≤
∫

D

gE(y, z) · gf(z) dz,
∫

D

gE(x, y) · gE(y, z) dz ≤
∫

D

gE(x, z) dz,

because we integrate over z, we have

gE(x, y) ·
∫

D

gE(x, z) · gf(z) dz ≤
∫

D

gE(y, z) · gf(z) dz,

gE(x, y) ·
∫

D

gE(y, z) dz ≤
∫

D

gE(x, z) dz,

and hence

(gE(x, y))2 ·
∫

D
gE(x, z) · gf(z) dz
∫

D
gE(x, z) dz

≤
∫

D
gE(y, z) · gf(z) dz
∫

D
gE(y, z) dz

,

by symmetry of E, we finally conclude that E2(x, y) ≤ F(x) ↔∗ F(y). 2

Now, let us introduce a generalized definition of the inverse F-transform in the

context of normal forms. It is based on Definition 23 where ⊙ is used. In the

following definition, we consider an arbitrary strict continuous t-norm.

Definition 37 Let f ⊂∼ D, E ⊂∼ D × D, and N ⊆ D. Furthermore, let F be the

F-transform of f with respect to E and ∗. Then the additive normal form of F with

respect to E and ∗

fFT (x) =
⊕

c∈N

(E(c, x) ∗ F(c)) (5.3.2)

will be called the inverse F-transform of f with respect to E and ∗.

So, we defined a generalized direct F-transform which is moreover an extension

of the original one to the whole domain. We further applied the additive normal
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form to this extended mapping to get the inverse F-transform. Again, there is no

conflict with the original definition.

In the following proposition, we show the conditional equivalence for the F-

transform which is an immediately inherited result from the field of normal forms

which justifies our efforts to connect both main streams belonging to the topics

studied by the fuzzy approximation.

Proposition 4 Let f , F, ∗, N be as above. Let E be symmetric and satisfies the

orthogonality condition with respect to N and moreover
∫

D
gE(x, y) dy = m < +∞

for arbitrary x ∈ D.

(1) If ∗ is stronger than ⊗ then for all x ∈ D

C⊗(x) ≤ F(x) ↔⊗ fFT (x). (5.3.3)

(2) If ∗ is weaker than ⊗ and F is extensional with respect to E and ⊗ then for all

x ∈ D

C∗(x) ≤ F(x) ↔∗ fFT (x). (5.3.4)

proof: From Lemma 20, we know that F is extensional with respect to E and

∗. If ∗ is stronger than ⊗ then F is extensional with respect to E and ⊗. Hence,

applying Theorem 8, we obtain (5.3.3). 2

Note that ⊙ is stronger than ⊗. Therefore, the quality estimation (5.3.3) is valid

even for the “classical” F-transform.

Let f ⊂∼ D and Ek ⊂∼ D ×D be defined as follows

Ek(x, y) = (T (x) ↔∗ T (y))k, (5.3.5)

where k ∈ N and T : D → [0, 1] is given by

T (x) =
x − a

b − a
. (5.3.6)
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(a) D = [0, 1] and T (x) is given by (5.3.6)
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(b) D = [0, 1] and T (x) = x2

Figure 5.3: An example of basic functions given as Ek(ci, x), where ci for i =
1, . . . , k+1 are distributed over [a, b] such that Ek fulfills the orthogonality property.

It is obvious that Ek is a similarity relation for each k ∈ N. In general, T

can be an arbitrary continuous strictly increasing function such that T (a) = 0 and

T (b) = 1.

In the case of Ek given by (5.3.5) and ∗ = ⊗, the orthogonality leads to (k + 1)

equidistant nodes ĉi = (i − 1)/k, i = 1, . . . , (k + 1) on [0, 1], which define nodes

ci ∈ D as ci = T−1(ĉi). Let us denote Nk = {ci| i = 1, . . . , k + 1}.

It is worth mentioning that fuzzy relations Ek(ci, x), where nodes ci are chosen

to fulfil the orthogonality condition, determine the basic functions from Definition

19 of the triangular shape whenever ⊗ is considered (see Fig. 5.3). Moreover, let us

stress that values Fk(ci) where Fk is the F-transform with respect to Ek are exactly

equal to the components Fi of the F-transform from Definition 21.

Let Fk denote the F-transform with respect to Ek for an arbitrary k ∈ N, and

moreover

E∞(x, y) = lim
k→∞

Ek(x, y) =







1 x = y,

0 otherwise.

F∞(x) = lim
k→∞

Fk(x) = f(x),
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If N = D then we obtain immediately that

FANF,∗(x) =
⊕

c∈D

(E∞(c, x) ∗ F∞(c)) = f(x). (5.3.7)

All results from this section have been established for the one-dimensional case

with the aim of better transparency. Nevertheless, a generalization is straightforward

and leads to the following formula

fFT (x) =
⊕

c∈N

(E(c,x) ∗ F(c)),

where F is given by

F(x) = g−1





∫

D

gE(x,y) ∗ gf(y) dy

∫

D

gE(x,y) dy





fuzzy relation E is given as follows E(x,y) = E(x1, y1) ∗ . . . ∗ E(xn, yn) and the

domain D is an n-dimensional cube.

Let us illustrate properties of the F-transform fFT on the following example.

Example 5 Let f(x) = 1∧ (x2 + 0.1) on D = [0, 1] and let ∗ be the product t-norm

⊙.

Considering k = 3, we obtain that

|Fk(x) − fFT (x)| ≤ 1 −
4∨

i=1

E2
3(ci, x).

The final approximation is depicted on Fig. 5.4.
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(a) Original function and its approximation for
k = 3
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(b) Error of approximation given by
e(x) = |fFT (x) − f(x)|

Figure 5.4: Example of fFT given by (5.3.2) for f(x) = 1 ∧ (x2 + 0.1) on D = [0, 1].

114



Chapter 6

Additive Interpretation of an FRB

Let us again recall that unless stated otherwise, we will assume ∗ to be a left-

continuous t-norm and →∗ its adjoint residuation and ⊕ stands for the  Lukasiewicz

t-conorm.

An expert knowledge is often expressed in the form of an FRB which is comprised

from n fuzzy rules of type (1.2.2) or of type (1.2.4) where Ai and Fi are linguistic

expressions represented by fuzzy sets Ai ⊂∼ D and Fi ⊂∼ D′, respectively.

The FRB consisting of n fuzzy rules (1.2.2) is usually interpreted by the fuzzy

relation R̂∗ ⊂∼ D ×D′ given by

R̂∗(x, y) =
n∧

i=1

(Ai(x) →∗ Fi(y))

and the FRB consisting of n fuzzy rules (1.2.4) is usually interpreted by the fuzzy

relation Ř∗ ⊂∼ D ×D′ given by

Ř∗(x, y) =
n∨

i=1

(Ai(x) ∗ Fi(y)).

As mentioned in the previous chapter, interpretations of FRB’s relate to normal

forms, fuzzy relation R̂∗ to the conjunctive normal form and Ř∗ to the disjunctive

normal form, in particular. The development of the additive normal forms intro-

duced in [59] and continued in [14] (see Chapter 5) directly leads to an investigation
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of new possible FRB interpretations related to these normal forms. Furthermore,

such investigation connects the F-transform even to the field of FRB interpretations

and related applications such as e.g. fuzzy control since the F-transform has been

proven to be a special case of the additive normal form.

Let us recall that T. Takagi and M. Sugeno [76] have proposed fuzzy rules in the

form given by (1.2.10) which are interpreted by weighted arithmetic mean (1.2.11)

of the consequent parts of the rules.

If we consider Takagi-Sugeno rules with constant consequents Fi ∈ R and the

antecedent fuzzy sets Ai ⊂∼ D fulfilling the Ruspini condition [62]:

n∑

i=1

Ai(x) = 1, for x ∈ D (6.0.1)

the rules will be interpreted by the following formula

n∑

i=1

Ai(x)Fi. (6.0.2)

This shows why functions produced by the the F-transform can be treated as Takagi-

Sugeno models of the 0-th order.

Let us consider crisp values Fi to be singletons i.e. special fuzzy numbers on D′.

Since the product is a particular t-norm and we assume the Ruspini condition we

can introduce the following definition where singletons Fi are replaced by fuzzy sets

in general and the product t-norm is replaced by an arbitrary one.

Definition 38 [70] Let us be given FRB (1.2.4) and let expressions Ai,Fi are rep-

resented by fuzzy sets Ai ⊂∼ D and Fi ⊂∼ D′ for i = 1, ..., n, respectively. Then the

following fuzzy relation

R⊕
∗ (x, y) =

n⊕

i=1

(Ai(x) ∗ Fi(y)) (6.0.3)

will be called the additive interpretation of the given FRB.
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Fuzzy relation R⊕
∗ stems from Takagi-Sugeno models but it is also closely related

to the fuzzy relation Ř∗ interpreting FRB (1.2.4) where the difference is given only

by another t-conorm aggregating all rules. Hence, R⊕
∗ given by (6.0.3) is an inter-

pretation of FRB (1.2.4) [67]. Moreover, it has a direct connection to a variety of

relations appearing in neuro-fuzzy systems [26].

The foregoing sections are devoted to the study of the additive interpretations,

particularly to approximation and interpolation properties and to relationship be-

tween the additive interpretations and the F-transform.

6.1 Approximation Properties

The universal approximation property is a typical request to FRB systems [6, 7, 40,

52] and it is a well-known fact that the two standard interpretations of FRBs R̂∗

and Ř∗ ε-approximate an arbitrary continuous function on a compact domain. Here

we claim that the additive interpretation of an FRB keeps the same property. First,

let us recall the following definition.

Definition 39 [52] Let R be a fuzzy relation on D×D′, f : D → D′ be a continuous

function and ε > 0. We say that the relation R ε-approximates the function f if

∀x ∈ D, ∀y ∈ D′ : R(x, y) > 0 ⇒| y − f(x) |< ε.

And the universal approximation property for the additive interpretations can

be formulated as follows.

Theorem 9 [70] Let D,D′ be two closed real intervals and let f : D → D′ be an

arbitrary continuous function. Then for arbitrary ε > 0 there exist Ai ⊂∼ D, Fi ⊂∼ D′

and n ∈ N such that the fuzzy relation given by (6.0.3) ε-approximates f .
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proof: The technique of the proof stems from the proof of universal approx-

imation property for two standard interpretations published in [52].

Let D = [a, b]. The continuity of f on D means that f is uniformly continuous:

∀ε ∃δ : ∀x, x′ ∈ D | x − x′ |< δ ⇒| f(x) − f(x′) |< ε/2. (6.1.1)

Let us fix an arbitrary ε > 0 and find δ > 0 with respect to 6.1.1. Let us choose

n > 2 such that

h =
| b − a |
n − 1

<
δ

2
.

Denote x1 = a and xi = xi−1 + h for i = 2, . . . , n.

Let Ai ⊂∼ D for i = 1, . . . , n be such that

• Ai(xi) = 1 for

• Ai(x) > 0 if and only if x ∈ (xi−1, xi+1) where x0 = x1, xn+1 = xn.

Let Ui = (xi−1, xi+1) then f(Ui) = [ai, bi] where ai ≤ bi. Denote the center of the

interval [ai, bi] by yi and let us construct interval Vi ⊆ D′ as follows

Vi = (yi − ε/2, yi + ε/2).

Because |xi−1 − xi+1| < δ and because of the continuity of f we get | bi − ai |< ε/2

and therefore f(Ui) ⊂ Vi.

Let Fi ⊂∼ D′ be such that Fi(y) > 0 if and only if y ∈ Vi and take an arbitrary

x′ ∈ D such that x′ /∈ {xi | i = 1, . . . , n}. Then there exist Ui, Ui+1 such that x′ ∈ Ui

and x′ ∈ Ui+1.

If x′ ∈ Ui and x′ ∈ Ui+1 then Ai(x
′) > 0 as well as Ai+1(x

′) > 0 while Aj(x
′) = 0

for j /∈ {i, i + 1} and furthermore, f(x′) ∈ Vi and f(x′) ∈ Vi+1.

Take an arbitrary y ∈ D′ such that R⊕
∗ (x′, y) > 0. Then

((Ai(x
′) ∗ Fi(y)) ⊕ (Ai+1(x

′) ∗ Fi+1(y))) > 0
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which occurs if and only if Fi(y) > 0 or Fi+1(y) > 0. Without loss of generality let

Fi(y) > 0 then y ∈ Vi. Finally, we can write

| y − f(x′) |=| y − yi + yi − f(x′) |≤| y − yi | + | yi − f(x′) |≤ ε.

In case of x′ ∈ {xi | i = 1, . . . , n} the proof uses the same technique and therefore

it is omitted. 2

Some results and techniques from Chapter 5 can be very helpful. For instance,

the orthogonality condition which played a crucial role in Chapter 5 can be slightly

modified to allow us to use it in the context of an FRB interpretations.

Definition 40 We say that Ai ⊂∼ D, i = 1, . . . , n fulfill the orthogonality condition

if
n⊕

i=1

i6=j

Ai(x) = 1 − Aj(x), j = 1, . . . , n. (6.1.2)

The Ruspini condition seems to be essential for the additive interpretations given

by (6.0.3). The following lemma characterizes the orthogonality condition as equiv-

alent to the Ruspini condition.

Lemma 22 [67] Fuzzy sets Ai ∈ F(D), i = 1, . . . , n fulfill the orthogonality condi-

tion if and only if
n∑

i=1

Ai(x) = 1, x ∈ D. (6.1.3)

proof: Let j ∈ {1, . . . , n} be an arbitrary index.

First, let x ∈ D be such that Aj(x) ∈ (0, 1). Then

n⊕

i=1

i6=j

Ai(x) =
n∑

i=1

i6=j

Ai(x)

and therefore (6.1.3) is fulfilled.
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Second, let x ∈ D be such that Aj(x) = 1. Then from the orthogonality condi-

tion, Ai(x) = 0 for any index i 6= j and therefore condition (6.1.3) is fulfilled.

Third, let x ∈ D be such that Aj(x) = 0. Then from the orthogonality condition,

there necessarily exists another index k 6= j such that either Ak(x) ∈ (0, 1) or

Ak(x) = 1. The rest goes as above.

The other side of the proof, showing that condition (6.1.3) implies the orthogo-

nality, is trivial and therefore it is omitted. 2

Just as we specified mutual position of normal forms by Proposition 2, we can

clarify a mutual position between the additive interpretation and standard interpre-

tations of an FRB by the following proposition.

Proposition 5 [70] Let us be given pairs of input-output fuzzy sets (A1,F1), . . . , (An,Fn)

where Ai ⊂∼ D and Fi ⊂∼ D′. Let Ai ⊂∼ D fulfill the orthogonality condition given by

(6.1.2). Then the following inequalities hold

n∨

i=1

(Ai(x) ∗ Fi(y)) ≤
n⊕

i=1

(Ai(x) ∗ Fi(y)) ≤
n∧

i=1

(Ai(x) →⊗ Fi(y)). (6.1.4)

proof: The proof uses the same technique as the proof of Proposition 2 and

therefore it is omitted. 2

6.2 Interpolation Properties

6.2.1 Systems of Fuzzy Relation Equations

In Subsection 1.2.2, fuzzy interpolation and its relationship to systems of relation

equations (FRE for short) has been remarked. It has been noted that the output

B ⊂∼ D′ of a fuzzy inference mechanism is given by an image of the input A ⊂∼ D

under a fuzzy relation R ⊂∼ D ×D′ which interprets a given FRB.
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In most practical cases when modelling an FRB system, we deal with the direct

image (sup-∗ composition) which stems from the compositional rule of inference

introduced by L.A. Zadeh [79]. It is worth mentioning that its logical background

coincides with the generalized modus ponens [32].

A fuzzy rule base may be viewed as a partial mapping from F(D) to F(D′).

Building a fuzzy inference module on the base of a rule base means extending this

partial function to a total function. It means that in some “reasonable manner”,

we have to associate with an arbitrary A ⊂∼ D some B ⊂∼ D′. The “reasonable

manner” means extending the partial mapping to a total one in such a way which

based on an input Ai ⊂∼ D would determine an output precisely equal to Fi ⊂∼ D′

for i = 1, . . . , n.

It leads to the following system of FREs with the sup-∗ composition

Ai ◦∗ R = Fi i = 1, . . . , n (6.2.1)

where Ai ⊂∼ D,Fi ⊂∼ D′ and R ⊂∼ D ×D′.

Fuzzy relation R ⊂∼ D×D′ which fulfills the equality (6.2.1) is a solution to the

system of FREs with the sup-∗ composition.

Let us recall some basic results concerning the system of FREs with the sup-∗

composition which can be found e.g. in [15, 35, 39].

Theorem 10 System (6.2.1) is solvable if and only if R̂∗ is a solution to the system

and moreover, R̂∗ is the greatest solution to (6.2.1).

Theorem 10 is a crucial theorem in the field of system of FREs with the sup-∗

composition. Besides the fact, that it is necessary and a sufficient condition for

the solvability of system (6.2.1), it already determines the solution and moreover, it

ensures the given solution to be the greatest solution. Finally, its further importance
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is as follows. Whenever we deal with fuzzy rules (1.2.2) interpreted by R̂∗, the direct

image is the first choice for an inference mechanism since fuzzy relation R̂∗ has a

unique position in the set of all possible solutions to the corresponding system of

FREs with the sup-∗ composition.

Let us recall a theorem published in [16] and then independently re-found in

[35] specifying conditions upon which even Ř∗ can be a solution to system (6.2.1).

Moreover, it is a sufficient condition for the solvability of the system.

Theorem 11 Let Ai ⊂∼ D for i = 1, . . . , n be normal. Then Ř∗ is a solution to

(6.2.1) if and only if the following condition

∨

x∈D

(Ai(x) ∗ Aj(x)) ≤
∧

y∈D′

(Fi(y) ↔∗ Fj(y)) (6.2.2)

holds for arbitrary i, j ∈ {1, . . . , n}.

Theorem 11 specifies a condition under which, Ř∗ connected to the sup-∗ infer-

ence, is an appropriate interpretation of an FRB.

Another inference mechanism that can be treated is related to the subdirect

image (inf→∗ composition). The subdirect image, conversely to the direct image,

does not have such a connection to the generalized modus ponens deductive rule

and its motivation was different, see [3]. On the other hand, as mentioned in [31],

the inference mechanism does not have to be necessarily logical but just a mapping

from F(D) to F(D′) fulfilling the required properties.

The systems of FREs with inf→∗ composition is given as follows

Ai �∗ R = Bi i = 1, . . . , n (6.2.3)

where Ai ⊂∼ D,Fi ⊂∼ D′ and R ⊂∼ D ×D′.

In the sequel, we will recall some basic facts [15, 39] about system (6.2.3) which

should justify our further usage of the subdirect image as an inference mechanism.
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Theorem 12 System (6.2.3) is solvable if and only if Ř∗ is a solution to the system

and moreover, Ř∗ is the least solution to system (6.2.3).

Furthermore, both systems of fuzzy relation equations are dual [15]. Only for

the completeness of the basic facts, let us recall the following theorem [45] which is

dual to Theorem 11.

Theorem 13 Let Ai for i = 1, . . . , n be normal. Then R̂∗ is a solution to (6.2.3)

if and only if the following condition

∨

x∈D

(Ai(x) ∗ Aj(x)) ≤
∧

y∈D

(Fi(y) ↔∗ Fj(y))

holds for arbitrary i, j ∈ {1, . . . , n}.

Here we observe that Ř∗ has precisely the same position among other solutions

to system (6.2.3) as fuzzy relation R̂∗ had in the case of system (6.2.1). So, if

we adopt the idea of [31] that the inference mechanism can be understood only as

certain mapping between collections of fuzzy sets without deeper connection to a

logical deduction rule, nothing prevents us from treating the subdirect image as a

mathematical basis for an inference mechanism.

Based on the facts and theorems above, we claim that fuzzy relation Ř∗ should be

primarily treated together with the subdirect image and fuzzy relation R̂∗ should be

primarily treated together with the direct image. Consequently, we claim that fuzzy

rules (1.2.2) are predetermined to be used with the inference based on the direct

image while fuzzy rules (1.2.4) are predetermined to be used with the inference based

on the subdirect image.

Remark 21 It is worth mentioning that checking condition (6.2.2) appearing in

Theorem 11 and Theorem 13 is not very convenient from a practical point of view.
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On the other hand, if the antecedent fuzzy sets form so-called ∗ semi-partition [17],

fulfilment of the discussed condition is ensured in advance.

Much work has been done in the field of fuzzy relation equations [15, 30, 35],

mainly aiming at the solvability criteria, greatest and lower solutions, least and

greater solutions, respectively and at determining complete solution sets.

Unfortunately, this work has not been followed by practitioners very often. This

was perhaps, besides other unspecified reasons, because neuro-fuzzy systems [26]

and Takagi-Sugeno rules [76] are the most frequently used fuzzy methods currently.

But only two particular solutions R̂∗ and Ř∗ have been primarily studied [55], so

far.

Therefore, an investigation of the additive interpretation of a fuzzy rule base in

the context of fuzzy interpolation seems to be straightforward.

6.2.2 Systems of FRE with inf→∗ composition

Fuzzy relation R⊕
∗ corresponds to fuzzy rules (1.2.4) which are assumed to be pri-

marily related to the inference mechanism based on the subdirect image. This

subsection investigates this relationship through FREs with the inf→∗ composition.

Theorem 14 [67, 68] Let Ai, i = 1, . . . , n be normal and fulfill Ruspini condition

(6.1.3). Then system (6.2.3) is solvable and R⊕
∗ is a solution.

proof:

Let j ∈ {1, . . . , n} be an arbitrary fixed subindex and let

B(y) =
∧

x∈D

(

Aj(x) →∗

n⊕

i=1

(Ai(x) ∗ Fi(y))

)

.
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Then

B(y) ≥
∧

x∈X

(

Aj(x) →∗

n∨

i=1

(Ai(x) ∗ Fi(y))

)

≥
∧

x∈D

(Aj(x) →∗ (Aj(x) ∗ Fj(y))) ≥ Fj(y)

which yields B ⊇ Fj.

On the other hand

B(y) ≤
∧

x∈D




Aj(x) →∗






n⊕

i=1

i6=j

(Ai(x)) ⊕ Fj(y)











holds. The Ruspini condition due to Lemma 22 yields

B(y) ≤
∧

x∈D

(Aj(x) →∗ ((1 − Aj(x)) ⊕ Fj(y))).

Let x′ ∈ D be such that Aj(x
′) = 1 then

B(y) ≤ (Aj(x
′) →∗ ((1 − Aj(x

′)) ⊕ Fj(y))) = Fj(y)

which yields B ⊆ Fj. 2

Due to Theorem 12 we can state the following corollary of Theorem 14.

Corollary 11 [67, 68] Let Ai, i = 1, . . . , n be normal and fulfill Ruspini condition

(6.1.3). Then Ř∗ is a solution to system (6.2.3).

Below, Proposition 6 claims that R⊕
∗ is not the only additive interpretation which

is a solution to system (6.2.3).

Proposition 6 [67, 68] Let Ai, i = 1, . . . , n be normal and fulfill Ruspini condition

(6.1.3). Furthermore, let N be a t-norm such that ∗ ≤ N. Then the fuzzy relation

R⊕
N is a solution to (6.2.3).

proof: The proof uses the same technique as the proof of Theorem 14 and is

therefore omitted. 2
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Let us briefly summarize results from this subsection. Theorem 14 provides us

with an easy-to-check condition certifying a proper performance of an additive in-

terpretation of an FRB connected to a subdirect image inference mechanism. More-

over, the assumption refers only to the antecedent fuzzy sets so, its fulfillment can

be ensured in advance during an identification process.

Since no solvability is assumed, the theorem impact is even in specifying sufficient

solvability condition. This consequently means that Ř∗ is a solution as well. Finally,

a wide variety of t-norms can be used in the additive interpretations.

6.2.3 Systems of FREs with sup-∗ composition

This subsection focuses on systems of FREs with sup-∗ composition. The disjunctive

interpretation Ř∗ has been proven to be a solution to system (6.2.1) assuming certain

conditions. Similarly, we study the additive interpretations on the same system.

Theorem 15 [67, 68] Let Ai for i = 1, . . . , n be normal and fulfill Ruspini condition

(6.1.3). Furthermore, let ∗ ≤ ⊗ where ⊗ is the  Lukasiewicz t-norm. Then system

(6.2.1) is solvable and R⊕
∗ is a solution.

proof: Let j ∈ {1, . . . , n} be an arbitrary fixed subindex and let

B(y) =
∨

x∈D

(

Aj(x) ∗
n⊕

i=1

(Ai(x) ∗ Fi(y))

)

.

Let x ∈ D be such that Aj(x
′) = 1. Then by direct assignments one gets

B(y) ≥
∨

x∈D

(

Aj(x) ∗
n∨

i=1

(Ai(x) ∗ Fi(y))

)

≥ (Aj(x
′) ∗ (Aj(x

′) ∗ Fj(y)))

which yields B ⊇ Fj.

On the other hand,

B(y) ≤
∨

x∈D




Aj(x) ∗






n⊕

i=1

i6=j

(Ai(x)) ⊕ Fj(y)










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holds and the Ruspini condition yields

B(y) ≤
∨

x∈D

(Aj(x) ∗ ((1 − Aj(x)) ⊕ Fj(y))) .

Since (1 − a) ⊕ b = a →⊗ b and since ∗ ≤ ⊗ we obtain

B(y) ≤
∨

x∈D

(Aj(x) ⊗ (Aj(x) →⊗ Fj(y)))

and finally, because a ∗ (a →∗ b) ≤ b for any ∗, we get B ⊆ Fj. 2

Due to Theorem 10 we can state the following corollary of Theorem 15.

Corollary 12 [67, 68] Let Ai for i = 1, . . . , n be normal and fulfill Ruspini condi-

tion (6.1.3). Furthermore, let ∗ ≤ ⊗. Then R̂∗ is a solution to system (6.2.1).

Theorem 15 requires the use of a t-norm which is even weaker than the  Lukasiewicz

one, which is already a very weak t-norm, see [38]. Thus for practical applications,

perhaps only the case when ∗ = ⊗ is worth mentioning. In this case, the  Lukasiewicz

t-norm is used for both, the sup-⊗ composition as an inference method and for con-

necting antecedent and consequent fuzzy sets in the corresponding fuzzy relation

R⊕
⊗.

The result is strengthened by the following theorem.

Proposition 7 [67, 68] Let Ai, i = 1, . . . , n be normal and Ai fulfill Ruspini con-

dition (6.1.3). Furthermore, let N be an arbitrary t-norm and let ∗ ≤ ⊗. Then R⊕
N

is a solution to (6.2.1).

proof:

The proof uses the same technique as the proof of Theorem 15 and therefore it

is omitted. 2

Proposition 7 allows us to deal with a t-norm weaker or equal to the  Lukasiewicz

one only in the inference mechanism but the interpretation of a fuzzy rule base can
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be build w.r.t. an arbitrary t-norm N. Similarly to the system of FREs with inf→∗

composition, only normality of antecedents and the Ruspini condition were assumed.

6.2.4 Illustration

This subsection is devoted to an illustration of results introduced in Subsections

6.2.2 and 6.2.3.

To visually illustrate how the additive interpretations look like let us introduce

the following example.

Example 6 Let us consider pairs (Ai,Fi), i = 1, . . . , 9 of fuzzy sets on D and D′,

respectively. Fuzzy sets Ai (see Figure 6.1(a)) are triangular and form a uniform

fuzzy partition of D = [0, 1]. Fuzzy sets Fi (see Figure 6.1(b)) are triangular with

kernel points equal to precise solution to equation y = x2 for x being the kernel point

of the corresponding Ai and together fulfilling the Ruspini condition.

Distinct interpretations of the fuzzy rule base are depicted in Figure 8.3.

To illustrate the impact of the results of this section to the to possible solutions

of FREs, let us consider the following example.

Example 7 [67] Let there is a fuzzy rule base (1.2.4) where the antecedents are

represented by fuzzy sets Ai ⊂∼ D which are normal and fulfill the Ruspini condition

n∑

i=1

Ai(x) = 1, ∀x ∈ D (6.2.4)

and the consequents are represented by arbitrary fuzzy sets Fi ⊂∼ D′.

Then due to Theorem 14, fuzzy relation

R⊕
⊗(x, y) =

n⊕

i=1

(Ai(x) ⊗ Fi(y)) (6.2.5)
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(a) Antecedent fuzzy sets (b) Consequent fuzzy sets

(c) Additive interpretation R
⊕

⊙ (d) Additive interpretation R
⊕

⊙ - view
from above

(e) Additive interpretation R
⊕

⊗ (f) Additive interpretation R
⊕

⊗ - view
from above

(g) Disjunctive interpretation Ř⊗ (h) Disjunctive interpretation Ř⊗ -
view from above

Figure 6.1: Different interpretations of a fuzzy rule base.
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is a solution to the following system of fuzzy relation equations

Ai �⊗ R = Fi i = 1, . . . , n,

as well as fuzzy relations

Ř⊗(x, y) =
n∨

i=1

(Ai(x) ⊗ Fi(y)) and

R⊕
⊙(x, y) =

n⊕

i=1

(Ai(x) ⊙ Fi(y)) =
n∑

i=1

Ai(x)Fi(y)

due to Corollary 11 and Proposition 6, respectively.

Moreover, due to Theorem 15, fuzzy relation (6.2.5) is also a solution to the

following system of fuzzy relation equations

Ai ◦⊗ R = Fi i = 1, . . . , n, (6.2.6)

and due to Proposition 7, a solution to system (6.2.6) can be also found in the form

of R⊕
⊙.

It means that (using the terminology of [60]) fuzzy relations Ř⊗, R⊕
⊗ and R⊕

⊙

are safe models of fuzzy rules (1.2.4) if connected to the inference mechanism based

on the inf→⊗ composition. The two latter fuzzy relations, R⊕
⊗ and R⊕

⊙ are safe even

in case of the inference mechanism based on the sup-⊗ composition.

It is worth noticing that fulfilling two conditions such as the Ruspini one and the

normality of fuzzy sets, which is very often required in practice, led to the solvability

of the corresponding fuzzy relation equations. These results are of a high practical

importance since they put assumptions only on the antecedent fuzzy sets. This

enables us to identify a fuzzy rule base in such a way to ensure the solvability of

an adjoint system of FREs only by fuzzy partitioning the input domain D. The

consequent fuzzy sets could be arbitrary, e.g. identified by some algorithm from

data which are at disposal, if any.
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6.3 Fuzzy Transform of Fuzzy Relations

Fuzzy relation F : D × D′ → [0, 1] can be viewed as a fuzzy set-valued function

F : D → [0, 1]D
′

, i.e., as a mapping which assigns a fuzzy subset of D′ to each node

x ∈ D. In the latter, we will not distinguish between both points of view since they

will be always clear from the context.

Fuzzy relation is a crucial mathematical notion related to FRB systems. Instead

of a crisp control function f : D → D′ we deal with some F : D → [0, 1]D
′

interpret-

ing an FRB. Therefore, approximation of fuzzy relations has the same motivation

as the approximation of functions. In this section, we adapt the F-transform tech-

nique for fuzzy relations. Similarly to Chapter 2, we also consider the approximated

object, fuzzy relation in this case, to be given only at some nodes p1, . . . , pN ∈ D.

6.3.1 Fuzzy Transform

The original ideas of the F-transform can be directly extended for fuzzy relations

[69], which leads to the following formulas for the F-transform and its inversion. Let

us again fix the domain D = [a, b] for the whole section.

Definition 41 Let a fuzzy partition of D be given by basic functions A1, . . . ,An ⊂∼
D, n > 2 and let F ⊂∼ D×D′ be a continuous fuzzy relation. The n-tuple [F1, . . . ,Fn]

of fuzzy sets on D′ given by

Fi(y) =

∫ b

a
F(x, y)Ai(x)dx
∫ b

a
Ai(x)dx

, i = 1, . . . , n (6.3.1)

is the direct F-transform of F with respect to the given fuzzy partition. F1, . . . ,Fn

are the components of the F-transform of F.

Definition 42 Let [F1, . . . ,Fn] be the direct F-transform of F ⊂∼ D × D′ with
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respect to A1, . . . ,An ⊂∼ D. Then the fuzzy relation FF
n ⊂∼ D ×D′ given by

FF
n (x, y) =

n∑

i=1

(Ai(x) · Fi(y)), (6.3.2)

is be called the inverse F-transform F.

Remark 22 It may be considered questionable to transform a fuzzy relation ac-

cording to formulas (6.3.1) and (6.3.1) because fuzzy relation is a function with two

variables and formulas for the F-transform of a two-dimensional function (3.1.2) and

(3.2.9) have been already introduced in Chapter 3. However, note that FF
n ≡ R⊕

⊙

and so Definitions 41 and 42 introduce the F-transform in the light of FRB systems,

additive interpretations and consequently again additive normal forms.

Thus for numerical purposes the F-transform from Chapter 3 should be used

but for FRB applications the last two definitions bring some advantages that will

be demonstrated in the oncoming text. Moreover, this approach was motivated and

later on justified by a real fuzzy control application [70, 71].

Analogously to Chapter 2, we can define a discrete version of the F-transform. An

approximated fuzzy relation is seen as a fuzzy set valued function and we assume its

partial knowledge i.e. that that the fuzzy relation is given at nodes p1, . . . , pN ∈ D.

The discrete version of the F-transform of a fuzzy relation is then defined as

follows.

Definition 43 Let a fuzzy partition of D be given by basic functions A1, . . . ,An ⊂∼
D, n > 2 and let F : D → [0, 1]D

′

be a fuzzy set valued function given at nodes

p1, . . . , pN ∈ D such that for each i = 1, . . . , n, there exists k = 1, . . . , N such that

Ai(pk) > 0. The n-tuple [F1, . . . ,Fn] of fuzzy sets on D′ given by

Fi(y) =

∑N
k=1 F(pk, y)Ai(pk)
∑N

k=1 Ai(pk)
, i = 1, . . . , n (6.3.3)
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is the discrete direct F-transform of F with respect to the given fuzzy partition.

Remark 23 A generalization to more-dimensional case is straightforward and there-

fore it is omitted, see Chapter 3.

The set of data (pk,F(pk, ·)) ⊂∼ D′ where pk ∈ D, F(pk, ·) ⊂∼ D′ and k = 1, . . . , N

can be either obtained by asking an expert how to control a given process at node

pk while F(pk, ·) is a fuzzy sets representing a linguistic expression the expert used

in his answer. For instance: What to do when the right-hand side wall is 5cm close?

Answer: turn the wheel very much to the right. Here pk = 5 and F(pk, ·) is a fuzzy

set representing the expression very much in the context D′.

The second possibility is to, say during a manual control, collect nodes (pk, f(pk))

and to “fuzzify” control actions f(pk). This increases the robustness since manual

control actions are typical but never precise. Further reasons for this approach will

be discussed later in the text, see Chapter 7.
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Chapter 7

Application to a Fuzzy Control of

an Autonomous Mobile Robot

This section focuses on a possible applications of the F-transform technique to the

fuzzy control. It directly uses the definitions of the F-transform of a fuzzy relation

and the heuristically proposed approach introduced above.

7.1 Approaches to Identification of an FRB

In general, there are two main approaches to an identification of an FRB control-

ling a given process [21]. FRB systems were motivated by dealing with an expert

knowledge which is more or less always expressed by a natural language where the

phenomenon of vagueness is essential. However for some processes, an expert knowl-

edge acquisition is not a trivial task or transformation of such knowledge into an

FRB is technically hardly feasible [1]. In these cases a data-driven approach can

be used either to adapt some initial very rough FRB or to generate a new one if

no initial FRB is attainable. In general, data-driven approaches (neural learning,

heuristic algorithms, adaptation optimizing a cost function etc.) deal with some

training data obtained by experiments.
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In the case of a generation of an FRB we just approximate given data, but

it might be done by any classical approach and thus the usage of fuzzy is ques-

tionable although it surely provides undoubtable advantages e.g. interpretability,

transparency or robustness. In the second case we assume that we are given some

initial FBR that is to be adapted. However, an adaptation algorithm can lead to

something completely different from the initial FRB and therefore it might be set

randomly. Thus we either do not have a prior expert knowledge or we lose it, at

least partially.

Finally, in any type of learning, there is a problem that the system must learn

all possible situation otherwise the system will not be able to behave correctly. This

can lead to a huge mass of experiments and even this may not be sufficient.

Here, we recall [70] an identification strategy that tries to deal with the men-

tioned problems and involves the F-transform technique. It can be algorithmically

described as follows:

• Manually control a given process and collect input-output pairs of data (pk, f(pk))

• “Fuzzify” the collected control actions f(pk) to get pairs (pk,F(pk, ·))

• Construct a fuzzy partition of D

• Compute components of the extended direct F-transform

• Proceed experiments with an automatic control by fuzzy rules (1.2.4) inter-

preted by fuzzy relation R⊕
⊙ i.e. by the extended inverse F-transform (with an

appropriate defuzzification e.g. COG).

At this moment an expert only observes a behaviour of the controlled process, i.e.

correctness of the model controlling the process. For those situation which were not
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learned sufficiently (or were not learned at all), the expert specifies an appropri-

ate control action by linguistic expression. It means that originally collected data

(pk, f(pk)) for k = 1, . . . , N were modified to (pk,F(pk, ·)) and finally enriched by

data (pN+l,F(pN+l, ·)), l = 1, . . . ,M with fuzzy control actions given linguistically

by an expert. It means that the fuzzy sets (pN+l,F(pN+l, ·)) represent appropriate

evaluating linguistic expression [50, 81, 82, 83] (small, very big, roughly five, etc.)

Some of these fuzzy sets related to evaluating linguistic expressions are depicted in

Figure 7.1.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 7.1: Fuzzy sets representing typical evaluating linguistic expressions.

Then the F-transform components, serving us as consequent fuzzy sets, are re-

computed from all data (pk,F(pk, ·)) where k = 1, . . . , N + M i.e. according to the

following formula

Fi(y) =

∑N+M
k=1 Ai(pk)F(pk, y)
∑N+M

k=1 Ai(pk)
. (7.1.1)

This means that the data set is enriched by the expert knowledge and the original

FRB generated by the F-transform is modified (recomputed). The F-transform

components now aggregate both types of information - experimental and expert -
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to get a well-tuned FRB system.

This approach has been successfully applied to an approximation based control

[70] of an autonomous dynamic robot, see Figure 7.2.

7.2 Corridor Problem and the Robot Description

We deal with a dynamic robot with a pivoted ultrasound sensor providing partial

(very imprecise) information about a robot’s position in a corridor. The robot’s

task is to pass through any chosen corridor. The given task is vague and any

effort to obtain a precise mathematical formulation of the task could lead either

to something that is far from original human understanding of driving vehicles or

to technically difficult systems like, e.g., systems of partial differential equations of

higher orders etc. Therefore, we consider this problem to be a typical problem for

an implementation of an FRB system.

Our task is to implement an automatic mechanism of cornering into the dynamic

robot (see Fig. 7.2) such that the robot could move through any possible corridor.

Of course, such corridors which have no sense for the robot (e.g. slimmer than the

robot) are out of our scope. At the first stage, the problem of a simple corridor with

no crossing and no obstacle is solved. The mechanism should be realized in a form

of fuzzy controller, i.e. a controller working with an FRB consisting of n fuzzy rules.

Let us describe the main features and properties of the robot. Briefly, the robot

could be described as a square metal plane with three wheels: a front wheel that is

free (movable) and two back ones; see Fig. 7.2. The back wheels are powered by

their own electric engines. This allows the robot to turn the wheels with different

speeds. There is an incremental sensor at each back wheel measuring a number of

its revolutions. It gives us information about a distance covered by the robot.
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Figure 7.2: The dynamic robot controlled by the F-transform.

At the top of the robot, there is a pivoted ultrasound sensor measuring a distance

to a corridor wall in a direction of the sensor. The robot measures a distance dk

on one hand side and, while moving through the corridor, the sensor rotates to

measure a distance dk+1 on the other hand side. This gives the robot an approximate

information about its position between walls on both sides.

An approximate relative distance to the middle of the corridor at a moment k is

denoted by ek and computed as

ek = (−1)k+1

(
2dk

dk + dk−1

− 1

)

k = 2, . . . , N (7.2.1)

where d0 is obtained at the beginning of the robot journey when the robot takes a

survey to both sides. Let us stress that the sign − represents the robot’s position on

the left-hand side of the corridor while the sign + reversely represents the right-hand

side position.
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Remark 24 Note that formula (7.2.1) neglects the fact, that there was some non-

zero time period between measuring the distance dk−1 on one side and the distance

dk on the second side while the robot was still moving. This imprecision could have

been solved by having two sensors in parallel, each measuring only the distance on

its own side. However, this would be a hardware solution which was not at disposal.

Thus, formula (7.2.1) was another source of high imprecision in input information

which favored an FRB approach.

The relative distance ek is the first input variable of the fuzzy controller. The

second input variable is a change of this relative distance ∆ek defined as

∆ek = ek − ek−1. (7.2.2)

The mentioned input variables are the only input variables and hence, we have a

double-input-single-output system. The output variable could be either a turning

radius u or its change in time ∆u. The first choice leads to a PD fuzzy controller:

IF e is Ae
i AND ∆e is A∆e

i THEN u is Fi, (7.2.3)

while the second one leads to a PI fuzzy controller:

IF e is Ae
i AND ∆e is A∆e

i THEN ∆u is Fi (7.2.4)

where i = 1, . . . , n and Ai,Fi are evaluating linguistic expressions.

7.3 Construction of the Controller

The choice of input and output variables, decisions about the type of fuzzy controller,

interpretation of an FRB, shapes of fuzzy sets representing used linguistic evaluating

expressions, used operations as well as identification of an FRB are the essential steps

leading to the final controller. This section briefly describes all of these items.
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Type of the Controller: PI v. PD

Although a PI controller was expected to be appropriate its implementation has

not been successful. The problem was hidden in technical deficits of the robot.

Particularly, there was a too long time period between the moments we measured

the distances dj−1 and dj. During that period the robot was still changing the

turning radius what brought it into such a situation that it could not get out of

there with inference based on rules where just a change of turning radius ∆u is used

as the output variable.

This does not mean that a PI controller is inappropriate in general. A similar

robot equipped by at least two sensors could be a very appropriate benchmark for

testing control methods given by a PI controller. Based on this, only a PD controller

was successfully implemented in practice.

Fuzzy Control Methods

The inverse F-transform of a fuzzy relation produces fuzzy relation FF
n

⊂∼ De ×

D∆e ×Du which will serve us as an interpretation of an FRB controlling the robot

movement. The input to the controller is pair of a crisp numbers, say (e′, ∆e′) ∈

De × D∆e which is fuzzified by a singleton fuzzifier so, the output of an inference

mechanism is a fuzzy set on Du given by FF
n (e′, ∆e′, u) which is then defuzzified by

the center of gravity.

Besides the F-transform, the perception based logical deduction [47, 51] was de-

cided to be implemented to have another fuzzy model for a comparison. It is a

specific linguistically-based method which considers an FRB to be a list of inde-

pendent implicative rules i.e. not aggregated by the minimum operation. There

is a special pre-selection algorithm [22] involved in the method, searching for the
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most appropriate rule(s) which is (are) the only fired rule(s). Antecedents and con-

sequents are evaluating linguistic expressions [50] modelled by fuzzy sets such as

depicted in Figure 7.1. The implications between antecedents and consequents are

modelled by the  Lukasiewicz residuation operation. Inferred fuzzy sets are then

defuzzified by the defuzzification of evaluating expressions [51].

This choice has been made for several reasons. First of all, the perception based

logical deduction is purely a linguistic method which allows an expert approach

but on the other hand there exists a related learning algorithm [5, 24]. Moreover,

the perception based logical deduction as well as the learning algorithm are already

implemented in a complex software package LFLC2000 [23] for fuzzy modelling

which is developed by the Institute for Research and Applications of Fuzzy Modeling

and therefore its licence is at disposal.

Parameters

Contexts (i.e. universes De,D∆e and Du) of the relative distance e, the change of the

relative distance ∆e and the control action u have been based on technical aspects

of the robot set up as displayed in Tab 7.1

De D∆e Du

[−0.8, 0.8] [-1,1] [-900,900]

Table 7.1: Contexts of particular linguistic variables.

Both back wheels can turn with a speed which can be set up by software from 0

up to 1600. The velocity is set to keep the sum of speed of both back wheels to be

equal to 900. The control action u determines the difference of the left-hand wheel

speed and the right-hand wheel speed.

142



Remark 25 The speed domain [0, 1600] of each wheel is given by the producer of the

robot and by the robot component suppliers. For our task, it is not very important

to go into hardware and software details.

Identification of Fuzzy Rule Bases

The linguistic fuzzy rule base connected to the perception based logical deduction

was built two different ways. The first way was purely an expert linguistic proposal,

while the second way was generated from a set of training data (ek, ∆ek, uk) k =

1, . . . N collected while manually driving the robot through different corridors, see

Tab 10.2.

The same data were used for a construction of an FRB consisting of fuzzy rules

(1.2.4) with the additive interpretation with help of the F-transform. Input domain

De × D∆e has been partitioned by a uniform fuzzy partition consisting of 5 trian-

gular fuzzy sets on both axes. The consequent fuzzy set were determined as the

components of the F-transform (6.3.3).

7.4 Results and Comparison

Perception Based Logical Deduction & Expert Identification

The first approach based on the expert construction of a fuzzy rule base (7.2.3) and

the perception based logical deduction led to a successful automatic control.

Behaviour of the robot controlled by the first fuzzy rule base PBLD1 composed

of 37 rules (see Table 10.5) could be described as a save behaviour since it was good

enough to avoid accidents. But the behaviour was not very smooth and the robot

was oscillating too much. The smoothness was partially improved (see video files

PBLD1-attempt1.avi and PBLD1-attempt2.avi) by the smooth DEE defuzzification
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method [51] - a method derived from the DEE and implemented in LFLC2000.

The second fuzzy rule base PBLD2 composed of 43 rules (see Table 10.6) was

created by modifications of some rules in PBLD1 and adding new ones. The smooth-

ness of the robot behaviour improved slightly (see video file PBLD2-attempt1.avi),

on the other the it was not so save anymore, i.e., some accidents were recorded (see

video file PBLD2-attempt2.avi).

Finally, PBLD2 was again expertly modified to get fuzzy rule base PBLD3 com-

posed of 51 rules (see Table 10.7). Behaviour of the robot controlled by this FRB

(see video file PBLD3) was slightly smoother that the one we got by PBLD1 and

slightly more save than the one we got by PBLD2.

Fuzzy Rule Bases Identified from Data

During experiments made by an expert training data Tab 10.2 were obtained. These

data were used to automatically identify a fuzzy rule base.

Fuzzy rule base PBLD-learning identified by the linguistic learning [5, 24] algo-

rithm implemented in the LFLC2000 is listed in Table 10.8. Since the training data

do not fully cover all possible situations, the fuzzy rule base was not able to control

the robot sufficiently (see vide file PBLD-learn.avi).

The same holds for the fuzzy rule base with an additive interpretation which

was identified by the direct F-transform although this approach led to a smoother

behaviour.

The main problem is that the training data do not contain “critical situations”

since an expert manually driving the robot during experiments did not get to such
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situations. But instead of continuing in experiments and collecting data an auto-

matic control of the robot by the generated FRBs was tested and observed. Situa-

tions when the automatic control did not performed well were recorded and appro-

priate control actions for them expertly proposed as proposed in Section 7.1.

New 3-tuples (eN+l, ∆eN+l,F(eN+l, ∆eN+l, ·)) where l = 1 . . . , r were appended

to the data set and the F-transform components recomputed according to (7.1.1).

In our case, r = 6 additional items displayed in Table 10.3 were sufficient to get

a well-tuned automatic control system, see video files FTR-attempt1.avi and FTR-

attempt2.avi.

Remark 26 Different rule bases with the additive interpretation were generated to

find an appropriate compromise between complexity, robustness and precision. Five

uniform triangular basic functions on both input axes were found to be appropriate.

Analogously, FRB PBLD-learning was extended by 6 new rules, see Table 10.9.

This extended FRB performed safely enough but comparably a bit less smooth

that the one identified by the F-transform, see video files PBLD-learn-improved-

attempt1.avi and PBLD-learn-improved-attempt2.avi.

Overview

Let us briefly discuss the proposed approach. What is the main aim of Definition

41 and Definition 42 besides the fact that components are fuzzy sets instead of real

numbers and the inverse F-transform formula coincides with the formula for the

additive interpretation of an FRB?

The main aim of the definition of the F-transform of a fuzzy relation is that the

technique is “shape dependent” compared to the original one and allows a user to

deal with training data as well as with an expert knowledge in a linguistic form. As
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such, it provides the possibility to aggregate both information into one FRB.

In Section 7.1, some typical problems which can appear during an identification

have been discussed. The purely expert approach has been presented as being

difficult and time-consuming, which has been approved by our experiments. On the

other hand, this approach led to a successful model. The data-driven generation

of an FRB requires many experiments and therefore it has been omitted from our

focus. The data-driven modifications of some initial rule bases would first require

some expert rule base proposal which is, again, not trivial. Moreover this proposal

can be then modified to something very different.

This Section experimentally justified the suggested approach where the initial

rule base is data-driven generated and then expertly improved. The experiments

demonstrated that this approach is not time-consuming, as it requires a short time to

collect training data and additional expert proposals improving behaviour in partic-

ular situations seem to be more consistent than a pure expert rule base construction.

This approach was used to identify two FRBs - the one using the F-transform and the

linguistic one. The linguistic FRB is clearly easier to interpret, however, it required

72 rules plus 6 additional rules. The approach using the F-transform generates as

many rules as required by a user, in our case only 25. Moreover, this number does

not increase when appending additional expert data!
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Chapter 8

Neural Network Approach to the

F-Transform

In this Chapter, we consider f : D → R to be a continuous function which is given

at a finite set of nodes pk ∈ D where k = 1, . . . N . The task is to approximate the

given data.

Approximation is a very often studied notion so, we can hardly avoid building

bridges between fuzzy approximation and already known results aiming at the ap-

proximation problem. Conversely, we can inherit many results from other branches

dealing with the approximation problem.

This chapter is an introduction to the study of different relationships between

a particular fuzzy approximation method (F-transform) and neural networks as an-

other soft computing area which has been demonstrated many times to be an ap-

propriate tool for approximation tasks.

By studying both approaches together we expect:

• development of new algorithms (known in neural networks) for fuzzy approx-

imation

• enriching both branches by already done results from each other
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• possible improvements

• answering natural question about similarities and similar problems in both

branches

• inheriting theoretical results e.g. conditions of universal approximations etc.

At this first stage of our investigation, we attempted to look at the fuzzy trans-

form from a neural network point of view to open this problematic, inherit neural

algorithms, investigate possible improvements, implement an incremental type of

learning and build a bridge between both branches for further results and algorithmic

improvements. Good behaviour of the proposed algorithm is then experimentally

justified.

8.1 RBF φ Neural Networks

The approximation of a function is a typical problem solved by neural networks.

Compared to fuzzy techniques, neural nets are usually implemented as black boxes

but they also have advantages like, an algorithmic approach to an identification of

a model or incremental (on-line) learning algorithms. This section is devoted to the

so-called φ-neural nets, see [41]. Basically, φ-neural nets are one hidden layer nets

with only one linear unit (with an identity activation function) in the output layer.

Basic functions Ai, i = 1, . . . , n partitioning the domain D can be viewed (in the

neural network terminology) as local units. Therefore, the F-transform technique is

closely related to the so-called RBF (Radial Basis Function) neural networks which

deal with the local units and we will consider only RBF φ-neural nets in the latter.

Obviously, there exists a neural network performing the F-transform approximation

i.e. the inverse F-transform, see Figure 8.1.
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Figure 8.1: RBF φ-neural network performing the F-transform

There are different definitions and approaches to local unit activation functions

or radial basis functions. In most practical situations, the Gaussian functions are

used [26, 63] but definitions of RBF are usually more general [66].

The most usual approach to RBF units is as follows:

• The activation function is basically a continuous non-increasing function A :

R
+ → [0, 1] (conversely to the perceptron neural nets where we require non-

decreasing activation function, see [66]);

• The inner potential (conversely to the perceptron neural nets) is not computed

as a weighted sum of inputs but according to the following formula

ξ(x) =
||x − c||

h
(8.1.1)

where x ∈ R
r is an input vector, c ∈ R

r is a vector determining a center of

the unit and finally h ∈ R
+ is a parameter determining the width of the unit,

see [8, 66].

In the latter, we restrict our focus on the case r = 1 for a simplified visualization.
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Such an RBF network performing the inverse F-transform and constructed according

to [8, 66] is similar to the one on Figure 8.1, with a few differences. First, all hidden

layer units will provide the same activation function A. Second, the input to the

i-th hidden layer unit will be marked by the weight parameter ci determining the

center of the unit. Third, each hidden layer unit will have a bias hi determining the

width parameter of the unit. Fourth, the inner potential ξi : R → R
+ of the i-th

unit is computed according to (8.1.1) i.e.

ξi(x) =
|x − ci|

hi

, (8.1.2)

see Figure 8.2.

Figure 8.2: RBF φ-neural network

It is easy to see that the basic functions from Definition 19 can be constructed

in the presented RBF neural network way. For instance, if we take A(z) = (1− z)∧

0, z ∈ R then it is easy to check that

Ai(x) = A (ξi(x)) (8.1.3)
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where Ai, i = 1, . . . , n are triangular shaped basic functions determining a uniform

fuzzy partition i.e. h = hi for i = 1, . . . , n − 1. Analogously, if we take

A(z) =

{
1
2

(cos (Πz) + 1) z ≤ 1,

0 otherwise
(8.1.4)

which is for z ∈ R
+ a non-increasing function then one can again check that equality

(8.1.3) holds for sinusoidal shaped basic functions Ai, i = 1, . . . , n.

8.2 Fuzzy transform as a Neural Network

As already discussed, both methods - RBF φ-neural networks and the F-transform

- provide us with an approximation of a function and are closely related to each

other. Moreover, there exists an RBF neural net performing the inverse F-transform.

However, the most important feature of neural networks is hidden in the possibility

to learn or tune their parameters, very often incrementally.

8.2.1 Learning Algorithm

In the terminology of the neural nets, the computation of the components of the

F-transform Fi according to (2.2.6) is called off-line (or batch) learning. However,

for certain applications incremental learning algorithms have to be used, especially

for on-line identification problems where we have to avoid complete rebuilding of a

model because of new measurements which could yield high computational efforts.

From the original definitions we keep only the inverse F-transform formula which

is performed by the RBF neural net displayed on Figure 8.1 and criterion (2.2.16)

which is to be minimized. Formula (2.2.6) which is forced by the minimization of

criterion (2.2.16) will be replaced by an on-line algorithm.

The most usual way how to construct an on-line learning is to consider it in the
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delta rule i.e. weights are modified by some ∆ after each new sample (pk, f(pk)) is

involved. The gradient descent method is a standard tool for finding ∆.

To minimize the error function Φ(Q1, . . . , Qn) =
∑N

k=1 Φk(Q1, . . . , Qn) where

each sample error Φk is equal to

Φk(Q1, . . . , Qn) =
n∑

i=1

(f(pk) − Qi)
2Ai(pk), Qi ∈ R, (8.2.1)

we differentiate

∂Φk

∂Qi

, i = 1, . . . , n (8.2.2)

which leads to

∂Φk

∂Qi

= 2A (ξi(pk)) (f(pk) − Qi) (8.2.3)

where

ξi(pk) =
|pk − ci|

h
. (8.2.4)

The gradient vector has the same directions as the vector of the the fastest growth

of the function values and therefore we use the negative gradient in the construction

of the delta rule. Hence the delta rule is as follows

F
(k)
i = F

(k−1)
i + θ1(f(pk) − F

(k−1)
i )A (ξi(pk)) (8.2.5)

where 0 ≤ θ1 ≤ 1 is a learning coefficient and F
(k)
i is the i-th component of the

F-transform after k samples involved where k = 1, . . . , N .

Remark 27 Notice, that although we use standard RBF neural network and stan-

dard neural tools like the gradient descent method together with the delta rule, the

error function which is minimized is different compared to usual approaches. We do

not compare function values f(pk) with the outputs of the network but with its weights

F
(k−1)
i . This is a significant difference which is inherited from the F-transform to

keep its properties.
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8.2.2 Unsupervised Learning

In the previous subsection, we have introduced a relationship between the F-transform

method and the RBF neural networks and proposed the gradient descent method

for a learning algorithm. Besides the learning of the weights Fi we can get more

from the neural network approach.

The construction of the basic functions can be the key issue for the results of

the approximation. In general, one can hardly expect that the uniform distribution

of the basic functions of the same length would provide us with best results but

on the other hand, the basic functions cannot be chosen arbitrarily and some say

fuzzy cluster analysis would have to be used. Therefore, in most applications, the

uniform fuzzy partition has been chosen. We will discuss the possibility of the neural

approach to the fuzzy partition construction.

Let us consider basic functions Ai comprising a fuzzy partition with a symme-

try. These basic functions are functions of one variable x and three parameters

ci−1, ci, ci+1. Therefore, in the latter, we will again use the notation from the F-

transform since it is shorter:

Ai(x) = A(x, ci−1, ci, ci+1) (8.2.6)

for i = 1, . . . , n.

For instance, the triangular shaped basic functions forming a fuzzy partition

with a symmetry are given by

Ai(x) =







(x−ci−1)
ci−ci−1

x ∈ [ci−1, ci]
(ci+1−x)
ci+1−ci

x ∈ [ci, ci+1]

0 otherwise

(8.2.7)

where i = 0, . . . , n + 1 and c0 = c1, cn+1 = cn, while the sinusoidal shaped basic
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functions are given by

Ai(x) =







1
2

(

cos
(

Π(x−ci)
(ci−ci−1)

)

+ 1
)

x ∈ [ci−1, ci]

1
2

(

cos
(

Π(x−ci)
(ci+1−ci)

)

+ 1
)

x ∈ [ci, ci+1]

0 otherwise

(8.2.8)

where i = 0, . . . , n + 1 and c0 = c1, cn+1 = cn.

For a given shape of basic functions the centroids ci for i = 1, . . . , n already

completely specify the fuzzy partition. The task is to tune the centroids. Again,

let us use the advantage of incremental self-organizing (unsupervised) algorithms

already developed for neural networks, see [26, 41]. We adopt a c-means clustering

for RBF neural networks published, e.g., in [66].

The resulting algorithm using both the self-organizing method for determining

a distribution of the nodes ci and the gradient descent method for adapting the

components Fi will be as follows.

Algorithm:

(8.2.9)

FOR k := 1 TO N DO BEGIN

j = argmini=1,...,n{|pk − c
(k−1)
i |};

FOR i := 1 TO n DO BEGIN

IF i = j AND j /∈ {1, n} THEN

c
(k)
i := c

(k−1)
i + θ2(pk − c

(k−1)
i )

ELSE

c
(k)
i := c

(k−1)
i ;

F
(k)
i = F

(k−1)
i + θ1(f(pk) − F

(k)
i )Ai(pk);

END;

END.
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The inputs F
(0)
i for i = 1, . . . , n to the algorithm described above are small

random numbers and c
(0)
i for i = 0, . . . , n + 1 are distributed equidistantly on the

domain and keeping the conditions c
(0)
0 = c

(0)
1 = a and c

(0)
n = c

(0)
n+1 = b.

The algorithm is independent on the shape of the basic functions. In the first

part, it searches for the closest centroid to an actual incoming value pk. The chosen

centroid is then shifted unless it is a corner centroid c
(k−1)
1 or c

(k−1)
n . Then the

delta rule formula is applied to each component of the F-transform but because of

the influence of the basic function Ai weighting the formula only two neighboring

components are modified.

8.3 Experiments

Let us consider function f given by

f(x) = 2e(−40(x−0.5)2) − 1 (8.3.1)

on a domain [a, b] = [0, 1]. Function (8.3.1) has been sampled to get a training set

(pk, f(pk)) at randomly chosen nodes pk ∈ [a, b] where k = 1, . . . , N = 100, see Tab

10.4. For simplicity, only one learning coefficient θ = θ1 = θ2 has been considered.

Obviously, incremental learning given by (8.2.5) cannot reach the accuracy ob-

tained in case when the components are given by original formula (2.2.6). The

components given by the delta rule only tend to the optimal ones given by (2.2.6).

On the other hand, through the resulting algorithm (8.2.9), which also modifies

the distribution of the nodes ci besides the components, significantly better results

have been achieved. It is impossible to measure the accuracy of the approximations

by criterion (2.2.16) since particular errors are weighted by the basic functions which

155



are different for both approximations. Thus, the simple normed least square criterion

Error = 100
1

N

N∑

k=1

(f̂(pk) − f(pk))2

(max f(pk) − min f(pk))
(8.3.2)

where f̂ is the approximate output, have been used to measure the accuracy.

The proposed neural approach very often provided even better results than the

original batch formula. For instance, for n = 10 the original approach gives results

with 0.523 error for the triangular shaped basic functions and 0.462 for the sinusoidal

shaped basic functions. The neural approach gives always different errors depending

on random generation of F
(0)
i and the choice of θ but in general, oscillating between

0.457 and 0.966 depending on different θ coefficient or methods varying the learning

coefficient.

The advantage of shifting the centroid will play the more important role the less

basic functions we use. For the case of n = 7 and sinusoidal shaped basic functions,

in which the original batch formula gives error 1.227, the neural approach returns

much better results, see Table 8.1.

Learning coefficient θ Error
0.6 0.669
0.7 0.618
0.8 0.586

Table 8.1: Table of experimentally obtained errors of the proposed neural approach,
n = 7.

Similar result were obtained for other combinations of number n and θ. In gen-

eral, it can be stated that for smaller numbers of the basic functions the advantage

of the neural network approach of shifting the centroids can compensate the higher

impreciseness caused by the incremental character of the algorithm.

Due to Lemma 7 from [54] we can use the F-transform technique to very fast
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(a) Original F-transform, uniform fuzzy partition
comprised from n = 8 sinusoidal shaped basic
functions.

(b) Proposed neural improvement of the F-
transform, fuzzy partition comprised from n = 8
sinusoidal shaped basic functions.

(c) Original F-transform, uniform fuzzy partition
comprised from n = 9 sinusoidal shaped basic
functions.

(d) Proposed neural improvement of the F-
transform, fuzzy partition comprised from n = 8
sinusoidal shaped basic functions.

Figure 8.3: Samples of function f given by (8.3.1) and its approximations by the
inverse F-transform and by the proposed neural improvement of the fuzzy transform
with learning coefficient θ = 0.8.
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and computationally simple numerical evaluation of the definite integral of f . Due

to Lemma 8, we can analogously use the F-transform w.r.t. non-uniform fuzzy

partitions so, even the incremental variant with centroids shifting can be considered.

Again, function (8.3.1) has been considered. Its definite integral is according

to adaptive recursive Simpson’s method implemented in MATLABr [28] equals

to −0.440 (with the tolerance responsiveness toll = 10−6 certifying a very high

accuracy, for details see [28]). The F-transform gives numerical definite integral

equal to −0.455 for n = 10 sinusoidal shaped basic functions and equal to −0.479 for

n = 7 sinusoidal shaped basic functions. The neural improvement of the F-transform

returns again always a bit different integral because of random start setting but of

a very high preciseness, see Table 8.2.

Remark 28 Note, that the numerical integral of function f has been computed by

MATLAB using its analytical description (8.3.1) while the F-transform either in

batch or neural incremental version used only a set of 100 random samples.

Learning coefficient θ MATLAB F-transform Neural F-transform
0.6 -0.440 -0.479 in (-0.459, -0.457)
0.7 -0.440 -0.479 in (-0.456, -0.455)
0.8 -0.440 -0.479 in (-0.454, -0.454)

Table 8.2: Numerical integrals by MATLAB, the fuzzy transform and the proposed
neural approach to the fuzzy transform, n = 7.

Even for the case of n = 10 sinusoidal shaped basic functions, the neural algo-

rithm (8.2.9) gives again numerical integral based on Lemma 8 which is always closer

to the value −0.440, than the integral computed with help of the original formula

for the fuzzy transform and based on Lemma 7, see Table 8.3.
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Learning coefficient θ MATLAB F-transform Neural F-transform
0.6 -0.440 -0.455 in (-0.447, -0.445)
0.7 -0.440 -0.455 in (-0.442, -0.441)
0.8 -0.440 -0.455 in (-0.438, -0.437)

Table 8.3: Numerical integrals by MATLAB, the fuzzy transform and the proposed
neural approach to the fuzzy transform, n = 10.

It can be stated that the advantage of shifted centroids is even stronger in numer-

ical integration regardless of whether the approximation was obtained incrementally.
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Chapter 9

Conclusion

The main goal of the thesis was to investigate fuzzy transform - a particular fuzzy

approximation method - from theoretical point of view as well as from the point

of view of possible practical applications. Fuzzy approximation is a very important

and well motivated field. It stems from works aiming at approximation abilities of

fuzzy rule based systems.

Fuzzy transform was proposed as a method consisting of two transformations.

The direct one transforming any function, continuous on a given closed interval, to a

discrete vector of average values describing local information about the transformed

function. The inverse one transforming the vector back to the space of continuous

domain on the given interval. It turned out that the F-transform can be very

powerful in different types of problems, e.g., function approximation or numerical

solutions of ordinary differential equations.

The main aim of the thesis is that the F-transform was investigated from ana-

lytical and numerical point of view as well as it was studied in the context of other

fuzzy approximation techniques and finally in the context neural networks - another

soft computing branch very often focusing on the approximation problem.

At first, main definitions and results were recalled. Then the F-transform was
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elaborated even for non-uniform fuzzy partitions of the given interval. It was showed

that if a very natural property - symmetry of basic functions forming a fuzzy parti-

tion - is kept than we can still get result analogous to those obtained in the case of

uniform fuzzy partitions, see Chapter 2.

At second, functions with two or more variables were considered and the F-

transform generalized. All the important results from the one-dimensional case

were obtained even for the case of the F-transform of a function with arbitrary

finite number of variables, see Chapter 3.

In Chapter 4, the F-transform was applied to numerical solutions of partial dif-

ferential equations. Three main types of partial differential equations (the equations

of mathematical physics) were considered and numerically solved. We applied the

direct F-transform on both sides of a given differential equation to get a system

of algebraic equations which could be solved by an existing method. The obtained

numerical solution was transformed back by the inverse F-transform to get a con-

tinuous approximation of the respective analytical solution.

Error estimations, i.e. the fact that the numerical solutions equal to the precise

analytical ones up to a certain accuracy, were proved for all three types of equations.

Moreover, the convergence of the continuous solution given by the direct F-transform

the numerical one, was proved for all types of equations as well. Finally, this Chapter

provided readers with an example demonstrating the advantage of the proposed

approach involving the F-transform method in comparison with the finite difference

method.

In Chapter 5, we established the basis for further investigations of approximating

abilities of normal forms - another fuzzy approximation concept. Such approach to

the approximation of extensional fuzzy sets brings a new view on this field and

simplifies further exploration of its properties. The main goal of this Chapter lies in
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introducing the F-transform in a generalized version as an eminent part of a larger

group of formulas called normal forms.

At first, we proved the conditional equivalence of disjunctive and conjunctive

normal forms with new, and better, estimations. At second, motivated by work

[59], we established a family of additive normal forms. At third, the conditional

equivalence of additive normal forms was partially clarified.

Disjunctive and conjunctive normal forms closely relate to two standard (dis-

junctive and conjunctive) interpretations of fuzzy rules. Based on the promising

investigation of the additive normal forms, a new (additive) interpretation of a fuzzy

rule base was proposed. This interpretation was also motivated by Takagi-Sugeno

rules and it has a direct link to the F-transform. Chapter 6 studied the additive

interpretations from approximation point of view as well as from interpolation point

of view. The latter means that we elaborated conditions under which the additive

interpretation of a fuzzy rule base is a a solution to adjoint systems of fuzzy relation

equations, see Theorems 14 and 15 as well as Propositions 6 and 7. Moreover, we

the sufficient conditions are of a very high practical importance because of their

easy to fulfill character. The results were presented on illustrative examples. The

Chapter also provided new definition of the F-transform of a fuzzy relation which

was motivated by a real application.

Chapter 7 follows the previous one and deals with the F-transform of a fuzzy

relation, i.e. studies the method in the context of fuzzy rule based systems. Our

approach is motivated and demonstrated by a real application - the fuzzy control

of an autonomous robot. The application is described at large and the proposed

approach is justified by tests and comparisons with another fuzzy rule based ap-

proach. Practical realization of the fuzzy control application required high efforts in

software and development and in overcoming technological drawbacks which finally
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led to a successful control tool. Video outputs of the practical tests are attached on

the enclosed compact disc.

The F-transform method is finally, in Chapter 8 studied in the context of neural

networks. The main idea of the Chapter is not to compare both approaches, but

to enrich the fuzzy approach by advantages of the neural one. It is showed that

there exists a neural network performing the inverse F-transform function. The

main advantage of the neural network field is that it has well established algorithms

for learning, i.e. for automatic structure and parameter determination from given

data. This fact was used and the new variant of F-transform using on-line learning

was proposed. It also enables to deal with non-uniform fuzzy partitions consisting

of basic functions with the symmetry, for which theoretical results were obtained

already in Chapter 2.

The proposed incremental improvement of the F-transform provided very promis-

ing result in approximation and made possible to be applied in fast in-line processes.

Moreover, the method can serve as an “automatic” numerical integration method

computing the definite integral of a function only from a given data set, say from a

set of measured samples.

Most of the theoretical results were used in further results and/or in practical

applications. Successful applications and implementations published in the thesis

proved itself that the F-transform is a method of a high importance which is possible

to be applied in distinct practical problems.
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Chapter 10

Appendices

Table 10.1: List of basic evaluating linguistic expressions with their abbreviations
and list of modifiers with their abbreviations. Each evaluating linguistic expressions
is composed of a modifier and a basic expression. Expression “Zero” is interpreted
by a fuzzy number and only “Empty” modifier can be connected to the expression.

Evaluating Linguistic Expressions
Basic Expression Abbreviation Modifier Abbreviation

Small sm Extremely ex
Medium me Significantly si

Big bi Very ve
Zero ze Rather ra

“Empty”
More or less ml

Roughly ro
Quite roughly qr
Very roughly vr
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Table 10.2: Training data for an automatic generation

of fuzzy rule bases serving for the dynamic robot control

from Chapter 7.

Training Data for Fuzzy Control

k ek ∆ek uk

(−0.8, 0.8) (−1, 1) (−900, 900)

1 0,293372412 -0,071725689 -512

2 0,271326899 0,022045513 -344

3 0,166681578 0,10464532 -56

4 0,117908893 0,048772685 -80

5 0,081348479 0,036560414 -104

6 0,514312007 -0,432963527 -464

7 0,298691589 0,215620418 -464

8 0,084977238 0,213714351 -440

9 0,050257056 0,034720182 -152

10 -0,127413127 0,177670183 -152

11 -0,071561092 -0,055852035 -32

12 0,388258435 -0,459819527 -32

13 0,439102815 -0,05084438 -296

14 0,129026365 0,31007645 -296

15 0,149107586 -0,02008122 -296

16 -0,009484597 0,158592182 -56

17 -0,03495702 0,025472423 -56

18 -0,088033737 0,053076717 16

19 -0,118824129 0,030790391 -80

20 -0,122417695 0,003593566 -80

21 -0,045873016 -0,076544679 -80

22 0,110436074 -0,15630909 -8

23 -0,333333333 0,065713904 208

24 -0,070453803 -0,26287953 184

25 -0,009420602 -0,061033201 112

26 -0,070809749 0,061389147 16

27 -0,218454259 0,147644509 16

28 -0,216910312 -0,001543947 160

29 -0,414141414 0,197231102 208
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Table 10.2: Training data for an automatic generation

of fuzzy rule bases serving for the dynamic robot control

from Chapter 7.

Training Data for Fuzzy Control

k ek ∆ek uk

(−0.8, 0.8) (−1, 1) (−900, 900)

30 -0,394926104 -0,01921531 208

31 -0,491717377 0,096791272 208

32 -0,436469265 -0,055248111 208

33 -0,040662548 -0,395806717 208

34 -0,013128492 -0,027534057 208

35 -0,536814507 -0,463185493 0

36 -0,262967598 -0,273846909 0

37 -0,211579509 -0,051388089 480

38 -0,13215859 -0,079420919 0

39 -0,025402314 -0,106756276 72

40 -0,012931034 -0,01247128 72

41 -0,021114808 0,008183773 0

42 -0,130817458 0,109702651 -24

43 -0,451295938 0,32047848 0

44 -0,408013356 -0,043282583 168

45 -0,409071924 0,001058568 504

46 -0,323321217 -0,085750707 -24

47 0,13679424 -0,63679424 -216

48 0,39503386 -0,25823962 -360

49 0,429874107 -0,034840247 -312

50 0,189434985 0,240439122 -456

51 0,045585984 0,143849001 0

52 0,508625974 -0,46303999 -192

53 0,437739943 0,070886031 -432

54 0,405278955 0,032460988 -432

55 0,303287077 0,101991878 -432

56 0,144766595 0,158520482 -192

57 0,167349867 -0,022583272 -192

58 -0,197406234 0,364756101 -216
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Table 10.2: Training data for an automatic generation

of fuzzy rule bases serving for the dynamic robot control

from Chapter 7.

Training Data for Fuzzy Control

k ek ∆ek uk

(−0.8, 0.8) (−1, 1) (−900, 900)

59 -0,272702991 0,075296758 0

60 -0,194984326 -0,077718665 0

61 -0,146446852 -0,048537474 0

62 -0,015306723 -0,131140129 0

63 0,064807741 -0,080114464 -216

64 -0,113300493 0,178108234 -216

65 -0,082136973 -0,031163519 -24

66 0,151556157 -0,23369313 96

67 0,115533576 0,036022581 96

68 0,022906793 0,092626783 168

69 0,027370091 -0,004463298 0

70 0,055166656 -0,027796565 96

71 -0,061946903 0,117113559 144

72 -0,211174057 0,149227155 120

73 -0,113631375 -0,097542683 192

74 -0,214975653 0,101344278 192

75 -0,165549427 -0,049426225 -312

76 -0,314323988 0,148774561 528

77 -0,329340197 0,015016208 528

78 -0,190013405 -0,139326792 528

79 0,398307601 -0,011835238 -144

80 0,40146201 -0,003154409 -504

81 0,374167391 0,027294619 -480

82 0,31743525 0,056732141 0

83 0,221376281 0,096058968 72

84 -0,363159429 0,000232102 0

85 -0,363159429 0,002321017 0

86 -0,363159429 0,000232102 0

87 -0,363159429 0,002321017 0
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Table 10.2: Training data for an automatic generation

of fuzzy rule bases serving for the dynamic robot control

from Chapter 7.

Training Data for Fuzzy Control

k ek ∆ek uk

(−0.8, 0.8) (−1, 1) (−900, 900)

88 -0,455196017 0,092036589 24

89 -0,476297293 0,021101276 408

90 -0,171611678 -0,304685615 -72

91 -0,091855321 -0,079756357 -72

92 0,150476426 -0,099314687 -96

93 0,411991146 -0,030056513 -264

94 0,2 0,211991146 -456

95 0,230696925 -0,030696925 -192

96 0,124273922 0,106423003 -72

97 0,109351433 0,014922489 216

98 0,118985453 -0,00963402 216

99 0,251042535 -0,132057082 -240

100 0,376085597 -0,125043062 -264

101 0,071955145 0,042466271 -312

102 -0,333572763 0,07775663 528

103 -0,323218324 -0,010544388 576

104 -0,067938302 -0,252800216 72

105 -0,333572763 0,07775663 528

106 -0,323218324 -0,010344388 576

107 -0,067938302 -0,255200216 72

108 0,0466746 -0,114612022 72

109 0,028890834 0,017783766 -72
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Table 10.3: Additional data expertly appended to Table 10.2 for an identification of
a fuzzy model by the F-transform, see Chapter 7.

Additional Data for Fuzzy Control
k ek ∆ek uk

(−0.8, 0.8) (-1,1) (-900,900) u
110 0,7 0,2 - ve bi
111 -0,7 -0,2 ve bi
112 0,7 -0,2 - vr bi
113 -0,7 0,2 vr bi
114 0,8 -0,12 -ra bi
115 -0,8 0,12 ra bi

Table 10.4: Data generated by random sampling of func-

tion (8.3.1) and approximated by the F-transform, see

Section 8.3.

Approximated Data

k pk f(pk)

1 0,20668 -0,935964503

2 0,11618 -0,994481033

3 0,26328 -0,787392419

4 0,89524 -0,99613363

5 0,3693 0,009896228

6 0,13752 -0,989564302

7 0,81596 -0,963119845

8 0,79084 -0,932144107

9 0,03132 -0,999694417

10 0,83563 -0,977912704

11 0,9442 -0,999252965

12 0,21594 -0,920695164

13 0,90964 -0,997568021

14 0,74702 -0,825809898

15 0,72158 -0,719381919

16 0,84529 -0,983022395

17 0,81109 -0,958328271
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Table 10.4: Data generated by random sampling of func-

tion (8.3.1) and approximated by the F-transform, see

Section 8.3.

Approximated Data

k pk f(pk)

18 0,89894 -0,996562386

19 0,70665 -0,637605441

20 0,24015 -0,865707325

21 0,73392 -0,77588489

22 0,02015 -0,99979998

23 0,09633 -0,997046698

24 0,22398 -0,905043315

25 0,88423 -0,994550114

26 0,267 -0,772000723

27 0,40875 0,433450795

28 0,53099 0,924626603

29 0,07633 -0,998476437

30 0,85713 -0,987826895

31 0,0833 -0,99807419

32 0,29434 -0,631639884

33 0,91534 -0,997985019

34 0,75988 -0,865791054

35 0,02707 -0,999739619

36 0,09198 -0,997435689

37 0,59563 0,387277654

38 0,89848 -0,996511576

39 0,14096 -0,988475058

40 0,56144 0,719704092

41 0,16042 -0,980147709

42 0,7281 -0,750435335

43 0,8696 -0,991528259

44 0,55885 0,741269214

45 0,67375 -0,402149956

46 0,07947 -0,998306016

47 0,70449 -0,624500907
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Table 10.4: Data generated by random sampling of func-

tion (8.3.1) and approximated by the F-transform, see

Section 8.3.

Approximated Data

k pk f(pk)

48 0,04852 -0,999424471

49 0,68343 -0,479369871

50 0,16164 -0,979479941

51 0,72489 -0,735489228

52 0,31861 -0,46363807

53 0,31406 -0,498323688

54 0,63558 -0,041255128

55 0,2759 -0,731709578

56 0,83456 -0,977269976

57 0,38753 0,205828816

58 0,10852 -0,995647985

59 0,98449 -0,999832759

60 0,84802 -0,984260308

61 0,62104 0,113067722

62 0,46976 0,928165199

63 0,73142 -0,765209459

64 0,46918 0,925435709

65 0,05208 -0,999345832

66 0,69098 -0,535032252

67 0,3243 -0,418225533

68 0,20639 -0,936399001

69 0,12067 -0,993670302

70 0,31386 -0,499814777

71 0,62926 0,025131889

72 0,20058 -0,944587289

73 0,1357 -0,990102098

74 0,96377 -0,999633003

75 0,35933 -0,093690822

76 0,20518 -0,938184808

77 0,29501 -0,627563536
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Table 10.4: Data generated by random sampling of func-

tion (8.3.1) and approximated by the F-transform, see

Section 8.3.

Approximated Data

k pk f(pk)

78 0,49706 0,999308632

79 0,87388 -0,992540769

80 0,62555 0,064638261

81 0,73093 -0,763072103

82 0,68094 -0,460128518

83 0,75268 -0,844442543

84 0,29399 -0,633756777

85 0,47767 0,960504866

86 0,42024 0,550660356

87 0,34814 -0,204918937

88 0,34096 -0,272834866

89 0,80599 -0,952737969

90 0,81265 -0,959919034

91 0,24422 -0,853947503

92 0,64865 -0,173640789

93 0,5727 0,618881665

94 0,67904 -0,445154556

95 0,06724 -0,998884108

96 0,53089 0,925103046

97 0,09259 -0,997384158

98 0,50001 0,999999992

99 0,80984 -0,957014217

100 0,64189 -0,106102089
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Table 10.5: Fuzzy rule base PBLD1, see Section 7.4 .

Fuzzy Rules

i Ae
i A∆e

i Fi i Ae
i A∆e

i Fi

1 -bi +me +ve bi 2 -bi +sm +ve bi

3 -bi -sm +bi 4 -bi -me +sm

5 -me +me +bi 6 -me +sm +me

7 -me -sm ze 8 -me -me -sm

9 -sm +me +bi 10 -sm +sm +me

11 -sm -sm ze 12 +sm +bi +sm

13 +me +bi ze 14 -sm +bi +me

15 -me +bi +bi 16 -sm -bi -sm

17 -me -bi ze 18 +sm -bi -me

19 +me -bi -bi 20 -sm -me -sm

21 +sm -me -bi 22 +sm -sm -me

23 +sm +sm ze 24 +sm +me +sm

25 +me -me -bi 26 +me -sm -me

27 +me +sm ze 28 +me +me +sm

29 +bi +me -sm 30 +bi +sm -bi

31 +bi -sm -ve bi 32 +bi -me -ve bi

33 ze ze ze 34 ze +sm -me

35 ze -sm +me 36 ze +me -bi

37 ze -me +bi

Table 10.6: Fuzzy rule base PBLD2, see Section 7.4 .

Fuzzy Rules

i Ae
i A∆e

i Fi i Ae
i A∆e

i Fi

1 -bi -bi -sm 2 -bi -me ze

3 -bi -sm +sm 4 -bi +sm +me

5 -bi +me +bi 6 -bi +bi +ve bi

7 -me +bi +bi 8 -me +me +me

9 -me +sm +me 10 -me -sm ze

11 -me -me -sm 12 -me -bi ze
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Table 10.6: Fuzzy rule base PBLD2, see Section 7.4 .

Fuzzy Rules

i Ae
i A∆e

i Fi i Ae
i A∆e

i Fi

13 -sm +bi +bi 14 -sm +me +bi

15 -sm +sm +me 16 -sm -sm ze

17 -sm -me -sm 18 -sm -bi -sm

19 +sm -bi -bi 20 +sm -me -bi

21 +sm -sm -me 22 +sm +sm ze

23 +sm +me +me 24 +sm +bi +sm

25 +me -bi -bi 26 +me -me -me

27 +me -sm -me 28 +me +sm ze

29 +me +me +sm 30 +me +bi ze

31 +bi +bi +sm 32 +bi +me ze

33 +bi +sm -sm 34 +bi -sm -me

35 +bi -me -bi 36 +bi -bi -ve bi

37 ze ze ze 38 ze +bi +bi

39 ze +me -bi 40 ze +sm -me

41 ze -sm +me 42 ze -me +bi

43 ze -bi -bi

Table 10.7: Fuzzy rule base PBLD3, see Section 7.4 .

Fuzzy Rules

i Ae
i A∆e

i Fi i Ae
i A∆e

i Fi

1 -bi -bi -sm 2 -bi -me ze

3 -bi -sm +sm 4 -bi ze +me

5 -bi +sm +me 6 -bi +me +bi

7 -bi +bi +ve bi 8 -me +bi +bi

9 -me +me +me 10 -me +sm +me

11 -me -sm ze 12 -me ze +ve sm

13 -me -me -ve sm 14 -me -bi -me

15 -sm +bi +bi 16 -sm +me +me

17 -sm +sm +sm 18 -sm -sm ze
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Table 10.7: Fuzzy rule base PBLD3, see Section 7.4 .

Fuzzy Rules

i Ae
i A∆e

i Fi i Ae
i A∆e

i Fi

19 -sm ze ze 20 -sm -me -sm

21 -sm -bi -qr sm 22 +sm -bi -bi

23 +sm -me -me 24 +sm -sm -sm

25 +sm ze ze 26 +sm +sm ze

27 +sm +me +sm 28 +sm +bi +qr sm

29 +me -bi -bi 30 +me -me -me

31 +me -sm -me 32 +me ze -ve sm

33 +me +sm ze 34 +me +me +ve sm

35 +me +bi +me 36 +bi +bi +sm

37 +bi +me ze 38 +bi +sm -sm

39 +bi -sm -me 40 +bi ze -me

41 +bi -me -bi 42 +bi -bi -ve bi

43 ze ze ze 44 ze +bi +me

45 ze +me +me 46 ze +ro sm +sm

47 ze +ve sm ze 48 ze -ro sm ze

49 ze -ve sm -sm 50 ze -me -me

51 ze -bi -me

Table 10.8: Fuzzy rule base PBLD-learning, see Section

7.4

.

Fuzzy Rules

i Ae
i A∆e

i Fi i Ae
i A∆e

i Fi

1 ze ze ze 2 ml me -ve sm -qr bi

3 vr sm ex sm -me 4 ro sm sm -ve sm

5 ra sm si sm -sm 6 ro bi -me -vr bi

7 me ro sm -vr bi 8 ve sm si sm -ra sm

9 -ra sm ml sm -ra sm 10 -sm -ve sm -si sm

11 vr bi -ml me -si sm 12 ra sm vr sm -vr sm

13 ml sm -ex sm -vr sm 14 -ex sm ra sm -ve sm
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Table 10.8: Fuzzy rule base PBLD-learning, see Section

7.4

.

Fuzzy Rules

i Ae
i A∆e

i Fi i Ae
i A∆e

i Fi

15 -si sm ex sm -ve sm 16 -ra sm si sm -sm

17 -ve sm -ve sm -sm 18 ra sm -ra sm -ex sm

19 -me ve sm ro sm 20 -sm -qr sm ro sm

21 -ex sm -ve sm sm 22 -qr sm ra sm ex sm

23 -qr sm -ex sm ml sm 24 -vr bi ro sm ro sm

25 -vr bi -ve sm ro sm 26 -si sm -me ro sm

27 -ro bi -ml me ze 28 -vr sm -qr sm ze

29 -qr sm -si sm vr bi 30 -ra sm sm -ex sm

31 -qr bi vr sm ze 32 -vr bi -si sm ml sm

33 -vr bi ex sm qr bi 34 -me -sm -ex sm

35 ra sm -ro bi -ro sm 36 vr bi -qr sm -me

37 vr bi -si sm -ml me 38 ve sm ra sm ze

39 ro bi -ml me -ro sm 40 vr bi ve sm -vr bi

41 ml sm ra sm -ro sm 42 -qr sm ml me -ro sm

43 -vr sm ve sm ze 44 sm -ve sm -ro sm

45 -sm -si sm -ex sm 46 ml sm -ro sm sm

47 si sm sm ml sm 48 si sm -ex sm ze

49 -ve sm sm ra sm 50 -ra sm -sm ro sm

51 -qr sm sm ro sm 52 -ro sm -si sm -ml me

53 -me ra sm qr bi 54 -ro sm -ra sm qr bi

55 vr bi -ex sm -qr bi 56 ml me si sm -vr bi

57 me ve sm ze 58 qr sm sm ve sm

59 -ml me ex sm ze 60 -qr bi sm ex sm

61 -qr bi ex sm ml me 62 -ro sm -vr sm -ve sm

63 ml sm -sm -sm 64 qr sm ro sm -vr bi

65 qr sm -si sm -ro sm 66 ra sm ex sm ro sm

67 ra sm -ex sm ro sm 68 vr sm -sm -qr sm

69 ml me -sm -qr sm 70 sm si sm -ml me

71 -me -ex sm ro bi 72 ve sm -sm ve sm
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Table 10.9: Additional fuzzy rules expertly proposed and

appended to fuzzy rule base PBLD-learning to improve

its performance , see Section 7.4

.

Additional Fuzzy Rules

i Ae
i A∆e

i Fi i Ae
i A∆e

i Fi

1 ve bi ro sm -ve bi 2 -ve bi - ro sm ve bi

3 ve bi -ro sm -vr bi 4 -ve bi ro sm vr bi

5 ex bi -sm -ra bi 6 -ex bi sm ra bi
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Štěpnička, M., De Baets, B. and Nosková , L.(2007), On Additive and multi-

plicative fuzzy models. In: New Dimensions in Fuzzy Logic and Related Tech-
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